1 #include <linux/errno.h>
2 #include <linux/signal.h>
3 #include <linux/sched.h>
4 #include <linux/ioport.h>
5 #include <linux/interrupt.h>
6 #include <linux/slab.h>
7 #include <linux/random.h>
8 #include <linux/init.h>
9 #include <linux/kernel_stat.h>
10 #include <linux/sysdev.h>
11 #include <linux/bitops.h>
13 #include <asm/atomic.h>
14 #include <asm/system.h>
16 #include <asm/timer.h>
17 #include <asm/pgtable.h>
18 #include <asm/delay.h>
21 #include <asm/arch_hooks.h>
22 #include <asm/i8259.h>
25 * This is the 'legacy' 8259A Programmable Interrupt Controller,
26 * present in the majority of PC/AT boxes.
27 * plus some generic x86 specific things if generic specifics makes
31 static int i8259A_auto_eoi
;
32 DEFINE_SPINLOCK(i8259A_lock
);
33 static void mask_and_ack_8259A(unsigned int);
35 static struct irq_chip i8259A_chip
= {
37 .mask
= disable_8259A_irq
,
38 .disable
= disable_8259A_irq
,
39 .unmask
= enable_8259A_irq
,
40 .mask_ack
= mask_and_ack_8259A
,
44 * 8259A PIC functions to handle ISA devices:
48 * This contains the irq mask for both 8259A irq controllers,
50 unsigned int cached_irq_mask
= 0xffff;
53 * Not all IRQs can be routed through the IO-APIC, eg. on certain (older)
54 * boards the timer interrupt is not really connected to any IO-APIC pin,
55 * it's fed to the master 8259A's IR0 line only.
57 * Any '1' bit in this mask means the IRQ is routed through the IO-APIC.
58 * this 'mixed mode' IRQ handling costs nothing because it's only used
61 unsigned long io_apic_irqs
;
63 void disable_8259A_irq(unsigned int irq
)
65 unsigned int mask
= 1 << irq
;
68 spin_lock_irqsave(&i8259A_lock
, flags
);
69 cached_irq_mask
|= mask
;
71 outb(cached_slave_mask
, PIC_SLAVE_IMR
);
73 outb(cached_master_mask
, PIC_MASTER_IMR
);
74 spin_unlock_irqrestore(&i8259A_lock
, flags
);
77 void enable_8259A_irq(unsigned int irq
)
79 unsigned int mask
= ~(1 << irq
);
82 spin_lock_irqsave(&i8259A_lock
, flags
);
83 cached_irq_mask
&= mask
;
85 outb(cached_slave_mask
, PIC_SLAVE_IMR
);
87 outb(cached_master_mask
, PIC_MASTER_IMR
);
88 spin_unlock_irqrestore(&i8259A_lock
, flags
);
91 int i8259A_irq_pending(unsigned int irq
)
93 unsigned int mask
= 1<<irq
;
97 spin_lock_irqsave(&i8259A_lock
, flags
);
99 ret
= inb(PIC_MASTER_CMD
) & mask
;
101 ret
= inb(PIC_SLAVE_CMD
) & (mask
>> 8);
102 spin_unlock_irqrestore(&i8259A_lock
, flags
);
107 void make_8259A_irq(unsigned int irq
)
109 disable_irq_nosync(irq
);
110 io_apic_irqs
&= ~(1<<irq
);
111 set_irq_chip_and_handler_name(irq
, &i8259A_chip
, handle_level_irq
,
117 * This function assumes to be called rarely. Switching between
118 * 8259A registers is slow.
119 * This has to be protected by the irq controller spinlock
120 * before being called.
122 static inline int i8259A_irq_real(unsigned int irq
)
125 int irqmask
= 1<<irq
;
128 outb(0x0B,PIC_MASTER_CMD
); /* ISR register */
129 value
= inb(PIC_MASTER_CMD
) & irqmask
;
130 outb(0x0A,PIC_MASTER_CMD
); /* back to the IRR register */
133 outb(0x0B,PIC_SLAVE_CMD
); /* ISR register */
134 value
= inb(PIC_SLAVE_CMD
) & (irqmask
>> 8);
135 outb(0x0A,PIC_SLAVE_CMD
); /* back to the IRR register */
140 * Careful! The 8259A is a fragile beast, it pretty
141 * much _has_ to be done exactly like this (mask it
142 * first, _then_ send the EOI, and the order of EOI
143 * to the two 8259s is important!
145 static void mask_and_ack_8259A(unsigned int irq
)
147 unsigned int irqmask
= 1 << irq
;
150 spin_lock_irqsave(&i8259A_lock
, flags
);
152 * Lightweight spurious IRQ detection. We do not want
153 * to overdo spurious IRQ handling - it's usually a sign
154 * of hardware problems, so we only do the checks we can
155 * do without slowing down good hardware unnecessarily.
157 * Note that IRQ7 and IRQ15 (the two spurious IRQs
158 * usually resulting from the 8259A-1|2 PICs) occur
159 * even if the IRQ is masked in the 8259A. Thus we
160 * can check spurious 8259A IRQs without doing the
161 * quite slow i8259A_irq_real() call for every IRQ.
162 * This does not cover 100% of spurious interrupts,
163 * but should be enough to warn the user that there
164 * is something bad going on ...
166 if (cached_irq_mask
& irqmask
)
167 goto spurious_8259A_irq
;
168 cached_irq_mask
|= irqmask
;
172 inb(PIC_SLAVE_IMR
); /* DUMMY - (do we need this?) */
173 outb(cached_slave_mask
, PIC_SLAVE_IMR
);
174 outb(0x60+(irq
&7),PIC_SLAVE_CMD
);/* 'Specific EOI' to slave */
175 outb(0x60+PIC_CASCADE_IR
,PIC_MASTER_CMD
); /* 'Specific EOI' to master-IRQ2 */
177 inb(PIC_MASTER_IMR
); /* DUMMY - (do we need this?) */
178 outb(cached_master_mask
, PIC_MASTER_IMR
);
179 outb(0x60+irq
,PIC_MASTER_CMD
); /* 'Specific EOI to master */
181 spin_unlock_irqrestore(&i8259A_lock
, flags
);
186 * this is the slow path - should happen rarely.
188 if (i8259A_irq_real(irq
))
190 * oops, the IRQ _is_ in service according to the
191 * 8259A - not spurious, go handle it.
193 goto handle_real_irq
;
196 static int spurious_irq_mask
;
198 * At this point we can be sure the IRQ is spurious,
199 * lets ACK and report it. [once per IRQ]
201 if (!(spurious_irq_mask
& irqmask
)) {
202 printk(KERN_DEBUG
"spurious 8259A interrupt: IRQ%d.\n", irq
);
203 spurious_irq_mask
|= irqmask
;
205 atomic_inc(&irq_err_count
);
207 * Theoretically we do not have to handle this IRQ,
208 * but in Linux this does not cause problems and is
211 goto handle_real_irq
;
215 static char irq_trigger
[2];
217 * ELCR registers (0x4d0, 0x4d1) control edge/level of IRQ
219 static void restore_ELCR(char *trigger
)
221 outb(trigger
[0], 0x4d0);
222 outb(trigger
[1], 0x4d1);
225 static void save_ELCR(char *trigger
)
227 /* IRQ 0,1,2,8,13 are marked as reserved */
228 trigger
[0] = inb(0x4d0) & 0xF8;
229 trigger
[1] = inb(0x4d1) & 0xDE;
232 static int i8259A_resume(struct sys_device
*dev
)
234 init_8259A(i8259A_auto_eoi
);
235 restore_ELCR(irq_trigger
);
239 static int i8259A_suspend(struct sys_device
*dev
, pm_message_t state
)
241 save_ELCR(irq_trigger
);
245 static int i8259A_shutdown(struct sys_device
*dev
)
247 /* Put the i8259A into a quiescent state that
248 * the kernel initialization code can get it
251 outb(0xff, PIC_MASTER_IMR
); /* mask all of 8259A-1 */
252 outb(0xff, PIC_SLAVE_IMR
); /* mask all of 8259A-1 */
256 static struct sysdev_class i8259_sysdev_class
= {
258 .suspend
= i8259A_suspend
,
259 .resume
= i8259A_resume
,
260 .shutdown
= i8259A_shutdown
,
263 static struct sys_device device_i8259A
= {
265 .cls
= &i8259_sysdev_class
,
268 static int __init
i8259A_init_sysfs(void)
270 int error
= sysdev_class_register(&i8259_sysdev_class
);
272 error
= sysdev_register(&device_i8259A
);
276 device_initcall(i8259A_init_sysfs
);
278 void init_8259A(int auto_eoi
)
282 i8259A_auto_eoi
= auto_eoi
;
284 spin_lock_irqsave(&i8259A_lock
, flags
);
286 outb(0xff, PIC_MASTER_IMR
); /* mask all of 8259A-1 */
287 outb(0xff, PIC_SLAVE_IMR
); /* mask all of 8259A-2 */
290 * outb_pic - this has to work on a wide range of PC hardware.
292 outb_pic(0x11, PIC_MASTER_CMD
); /* ICW1: select 8259A-1 init */
293 outb_pic(0x20 + 0, PIC_MASTER_IMR
); /* ICW2: 8259A-1 IR0-7 mapped to 0x20-0x27 */
294 outb_pic(1U << PIC_CASCADE_IR
, PIC_MASTER_IMR
); /* 8259A-1 (the master) has a slave on IR2 */
295 if (auto_eoi
) /* master does Auto EOI */
296 outb_pic(MASTER_ICW4_DEFAULT
| PIC_ICW4_AEOI
, PIC_MASTER_IMR
);
297 else /* master expects normal EOI */
298 outb_pic(MASTER_ICW4_DEFAULT
, PIC_MASTER_IMR
);
300 outb_pic(0x11, PIC_SLAVE_CMD
); /* ICW1: select 8259A-2 init */
301 outb_pic(0x20 + 8, PIC_SLAVE_IMR
); /* ICW2: 8259A-2 IR0-7 mapped to 0x28-0x2f */
302 outb_pic(PIC_CASCADE_IR
, PIC_SLAVE_IMR
); /* 8259A-2 is a slave on master's IR2 */
303 outb_pic(SLAVE_ICW4_DEFAULT
, PIC_SLAVE_IMR
); /* (slave's support for AEOI in flat mode is to be investigated) */
306 * In AEOI mode we just have to mask the interrupt
309 i8259A_chip
.mask_ack
= disable_8259A_irq
;
311 i8259A_chip
.mask_ack
= mask_and_ack_8259A
;
313 udelay(100); /* wait for 8259A to initialize */
315 outb(cached_master_mask
, PIC_MASTER_IMR
); /* restore master IRQ mask */
316 outb(cached_slave_mask
, PIC_SLAVE_IMR
); /* restore slave IRQ mask */
318 spin_unlock_irqrestore(&i8259A_lock
, flags
);
322 * Note that on a 486, we don't want to do a SIGFPE on an irq13
323 * as the irq is unreliable, and exception 16 works correctly
324 * (ie as explained in the intel literature). On a 386, you
325 * can't use exception 16 due to bad IBM design, so we have to
326 * rely on the less exact irq13.
328 * Careful.. Not only is IRQ13 unreliable, but it is also
329 * leads to races. IBM designers who came up with it should
334 static irqreturn_t
math_error_irq(int cpl
, void *dev_id
)
336 extern void math_error(void __user
*);
338 if (ignore_fpu_irq
|| !boot_cpu_data
.hard_math
)
340 math_error((void __user
*)get_irq_regs()->ip
);
345 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
346 * so allow interrupt sharing.
348 static struct irqaction fpu_irq
= {
349 .handler
= math_error_irq
,
350 .mask
= CPU_MASK_NONE
,
354 void __init
init_ISA_irqs (void)
358 #ifdef CONFIG_X86_LOCAL_APIC
364 * 16 old-style INTA-cycle interrupts:
366 for (i
= 0; i
< 16; i
++) {
367 set_irq_chip_and_handler_name(i
, &i8259A_chip
,
368 handle_level_irq
, "XT");
372 /* Overridden in paravirt.c */
373 void init_IRQ(void) __attribute__((weak
, alias("native_init_IRQ")));
375 void __init
native_init_IRQ(void)
379 /* all the set up before the call gates are initialised */
380 pre_intr_init_hook();
383 * Cover the whole vector space, no vector can escape
384 * us. (some of these will be overridden and become
385 * 'special' SMP interrupts)
387 for (i
= 0; i
< (NR_VECTORS
- FIRST_EXTERNAL_VECTOR
); i
++) {
388 int vector
= FIRST_EXTERNAL_VECTOR
+ i
;
391 /* SYSCALL_VECTOR was reserved in trap_init. */
392 if (!test_bit(vector
, used_vectors
))
393 set_intr_gate(vector
, interrupt
[i
]);
396 /* setup after call gates are initialised (usually add in
397 * the architecture specific gates)
402 * External FPU? Set up irq13 if so, for
403 * original braindamaged IBM FERR coupling.
405 if (boot_cpu_data
.hard_math
&& !cpu_has_fpu
)
406 setup_irq(FPU_IRQ
, &fpu_irq
);
408 irq_ctx_init(smp_processor_id());