NOMMU: Fix MAP_PRIVATE mmap() of objects where the data can be mapped directly
[wandboard.git] / mm / nommu.c
blob82fedca84577bba0ce5c2d4c867f5e96370679c3
1 /*
2 * linux/mm/nommu.c
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
43 #if 0
44 #define kenter(FMT, ...) \
45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
59 #include "internal.h"
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long num_physpages;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
72 atomic_long_t mmap_pages_allocated;
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
82 struct vm_operations_struct generic_file_vm_ops = {
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
93 int vmtruncate(struct inode *inode, loff_t offset)
95 struct address_space *mapping = inode->i_mapping;
96 unsigned long limit;
98 if (inode->i_size < offset)
99 goto do_expand;
100 i_size_write(inode, offset);
102 truncate_inode_pages(mapping, offset);
103 goto out_truncate;
105 do_expand:
106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 if (limit != RLIM_INFINITY && offset > limit)
108 goto out_sig;
109 if (offset > inode->i_sb->s_maxbytes)
110 goto out;
111 i_size_write(inode, offset);
113 out_truncate:
114 if (inode->i_op->truncate)
115 inode->i_op->truncate(inode);
116 return 0;
117 out_sig:
118 send_sig(SIGXFSZ, current, 0);
119 out:
120 return -EFBIG;
123 EXPORT_SYMBOL(vmtruncate);
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
129 * Doesn't have to be accurate, i.e. may have races.
131 unsigned int kobjsize(const void *objp)
133 struct page *page;
136 * If the object we have should not have ksize performed on it,
137 * return size of 0
139 if (!objp || !virt_addr_valid(objp))
140 return 0;
142 page = virt_to_head_page(objp);
145 * If the allocator sets PageSlab, we know the pointer came from
146 * kmalloc().
148 if (PageSlab(page))
149 return ksize(objp);
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
157 if (!PageCompound(page)) {
158 struct vm_area_struct *vma;
160 vma = find_vma(current->mm, (unsigned long)objp);
161 if (vma)
162 return vma->vm_end - vma->vm_start;
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
169 return PAGE_SIZE << compound_order(page);
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 unsigned long start, int nr_pages, int flags,
174 struct page **pages, struct vm_area_struct **vmas)
176 struct vm_area_struct *vma;
177 unsigned long vm_flags;
178 int i;
179 int write = !!(flags & GUP_FLAGS_WRITE);
180 int force = !!(flags & GUP_FLAGS_FORCE);
181 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
183 /* calculate required read or write permissions.
184 * - if 'force' is set, we only require the "MAY" flags.
186 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
187 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
189 for (i = 0; i < nr_pages; i++) {
190 vma = find_vma(mm, start);
191 if (!vma)
192 goto finish_or_fault;
194 /* protect what we can, including chardevs */
195 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
196 (!ignore && !(vm_flags & vma->vm_flags)))
197 goto finish_or_fault;
199 if (pages) {
200 pages[i] = virt_to_page(start);
201 if (pages[i])
202 page_cache_get(pages[i]);
204 if (vmas)
205 vmas[i] = vma;
206 start += PAGE_SIZE;
209 return i;
211 finish_or_fault:
212 return i ? : -EFAULT;
217 * get a list of pages in an address range belonging to the specified process
218 * and indicate the VMA that covers each page
219 * - this is potentially dodgy as we may end incrementing the page count of a
220 * slab page or a secondary page from a compound page
221 * - don't permit access to VMAs that don't support it, such as I/O mappings
223 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
224 unsigned long start, int nr_pages, int write, int force,
225 struct page **pages, struct vm_area_struct **vmas)
227 int flags = 0;
229 if (write)
230 flags |= GUP_FLAGS_WRITE;
231 if (force)
232 flags |= GUP_FLAGS_FORCE;
234 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
236 EXPORT_SYMBOL(get_user_pages);
239 * follow_pfn - look up PFN at a user virtual address
240 * @vma: memory mapping
241 * @address: user virtual address
242 * @pfn: location to store found PFN
244 * Only IO mappings and raw PFN mappings are allowed.
246 * Returns zero and the pfn at @pfn on success, -ve otherwise.
248 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
249 unsigned long *pfn)
251 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
252 return -EINVAL;
254 *pfn = address >> PAGE_SHIFT;
255 return 0;
257 EXPORT_SYMBOL(follow_pfn);
259 DEFINE_RWLOCK(vmlist_lock);
260 struct vm_struct *vmlist;
262 void vfree(const void *addr)
264 kfree(addr);
266 EXPORT_SYMBOL(vfree);
268 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
271 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
272 * returns only a logical address.
274 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
276 EXPORT_SYMBOL(__vmalloc);
278 void *vmalloc_user(unsigned long size)
280 void *ret;
282 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
283 PAGE_KERNEL);
284 if (ret) {
285 struct vm_area_struct *vma;
287 down_write(&current->mm->mmap_sem);
288 vma = find_vma(current->mm, (unsigned long)ret);
289 if (vma)
290 vma->vm_flags |= VM_USERMAP;
291 up_write(&current->mm->mmap_sem);
294 return ret;
296 EXPORT_SYMBOL(vmalloc_user);
298 struct page *vmalloc_to_page(const void *addr)
300 return virt_to_page(addr);
302 EXPORT_SYMBOL(vmalloc_to_page);
304 unsigned long vmalloc_to_pfn(const void *addr)
306 return page_to_pfn(virt_to_page(addr));
308 EXPORT_SYMBOL(vmalloc_to_pfn);
310 long vread(char *buf, char *addr, unsigned long count)
312 memcpy(buf, addr, count);
313 return count;
316 long vwrite(char *buf, char *addr, unsigned long count)
318 /* Don't allow overflow */
319 if ((unsigned long) addr + count < count)
320 count = -(unsigned long) addr;
322 memcpy(addr, buf, count);
323 return(count);
327 * vmalloc - allocate virtually continguos memory
329 * @size: allocation size
331 * Allocate enough pages to cover @size from the page level
332 * allocator and map them into continguos kernel virtual space.
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
337 void *vmalloc(unsigned long size)
339 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
341 EXPORT_SYMBOL(vmalloc);
343 void *vmalloc_node(unsigned long size, int node)
345 return vmalloc(size);
347 EXPORT_SYMBOL(vmalloc_node);
349 #ifndef PAGE_KERNEL_EXEC
350 # define PAGE_KERNEL_EXEC PAGE_KERNEL
351 #endif
354 * vmalloc_exec - allocate virtually contiguous, executable memory
355 * @size: allocation size
357 * Kernel-internal function to allocate enough pages to cover @size
358 * the page level allocator and map them into contiguous and
359 * executable kernel virtual space.
361 * For tight control over page level allocator and protection flags
362 * use __vmalloc() instead.
365 void *vmalloc_exec(unsigned long size)
367 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
372 * @size: allocation size
374 * Allocate enough 32bit PA addressable pages to cover @size from the
375 * page level allocator and map them into continguos kernel virtual space.
377 void *vmalloc_32(unsigned long size)
379 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
381 EXPORT_SYMBOL(vmalloc_32);
384 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
385 * @size: allocation size
387 * The resulting memory area is 32bit addressable and zeroed so it can be
388 * mapped to userspace without leaking data.
390 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
391 * remap_vmalloc_range() are permissible.
393 void *vmalloc_32_user(unsigned long size)
396 * We'll have to sort out the ZONE_DMA bits for 64-bit,
397 * but for now this can simply use vmalloc_user() directly.
399 return vmalloc_user(size);
401 EXPORT_SYMBOL(vmalloc_32_user);
403 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
405 BUG();
406 return NULL;
408 EXPORT_SYMBOL(vmap);
410 void vunmap(const void *addr)
412 BUG();
414 EXPORT_SYMBOL(vunmap);
416 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
418 BUG();
419 return NULL;
421 EXPORT_SYMBOL(vm_map_ram);
423 void vm_unmap_ram(const void *mem, unsigned int count)
425 BUG();
427 EXPORT_SYMBOL(vm_unmap_ram);
429 void vm_unmap_aliases(void)
432 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
435 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
436 * have one.
438 void __attribute__((weak)) vmalloc_sync_all(void)
442 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
443 struct page *page)
445 return -EINVAL;
447 EXPORT_SYMBOL(vm_insert_page);
450 * sys_brk() for the most part doesn't need the global kernel
451 * lock, except when an application is doing something nasty
452 * like trying to un-brk an area that has already been mapped
453 * to a regular file. in this case, the unmapping will need
454 * to invoke file system routines that need the global lock.
456 SYSCALL_DEFINE1(brk, unsigned long, brk)
458 struct mm_struct *mm = current->mm;
460 if (brk < mm->start_brk || brk > mm->context.end_brk)
461 return mm->brk;
463 if (mm->brk == brk)
464 return mm->brk;
467 * Always allow shrinking brk
469 if (brk <= mm->brk) {
470 mm->brk = brk;
471 return brk;
475 * Ok, looks good - let it rip.
477 return mm->brk = brk;
481 * initialise the VMA and region record slabs
483 void __init mmap_init(void)
485 int ret;
487 ret = percpu_counter_init(&vm_committed_as, 0);
488 VM_BUG_ON(ret);
489 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
493 * validate the region tree
494 * - the caller must hold the region lock
496 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
497 static noinline void validate_nommu_regions(void)
499 struct vm_region *region, *last;
500 struct rb_node *p, *lastp;
502 lastp = rb_first(&nommu_region_tree);
503 if (!lastp)
504 return;
506 last = rb_entry(lastp, struct vm_region, vm_rb);
507 BUG_ON(unlikely(last->vm_end <= last->vm_start));
508 BUG_ON(unlikely(last->vm_top < last->vm_end));
510 while ((p = rb_next(lastp))) {
511 region = rb_entry(p, struct vm_region, vm_rb);
512 last = rb_entry(lastp, struct vm_region, vm_rb);
514 BUG_ON(unlikely(region->vm_end <= region->vm_start));
515 BUG_ON(unlikely(region->vm_top < region->vm_end));
516 BUG_ON(unlikely(region->vm_start < last->vm_top));
518 lastp = p;
521 #else
522 static void validate_nommu_regions(void)
525 #endif
528 * add a region into the global tree
530 static void add_nommu_region(struct vm_region *region)
532 struct vm_region *pregion;
533 struct rb_node **p, *parent;
535 validate_nommu_regions();
537 parent = NULL;
538 p = &nommu_region_tree.rb_node;
539 while (*p) {
540 parent = *p;
541 pregion = rb_entry(parent, struct vm_region, vm_rb);
542 if (region->vm_start < pregion->vm_start)
543 p = &(*p)->rb_left;
544 else if (region->vm_start > pregion->vm_start)
545 p = &(*p)->rb_right;
546 else if (pregion == region)
547 return;
548 else
549 BUG();
552 rb_link_node(&region->vm_rb, parent, p);
553 rb_insert_color(&region->vm_rb, &nommu_region_tree);
555 validate_nommu_regions();
559 * delete a region from the global tree
561 static void delete_nommu_region(struct vm_region *region)
563 BUG_ON(!nommu_region_tree.rb_node);
565 validate_nommu_regions();
566 rb_erase(&region->vm_rb, &nommu_region_tree);
567 validate_nommu_regions();
571 * free a contiguous series of pages
573 static void free_page_series(unsigned long from, unsigned long to)
575 for (; from < to; from += PAGE_SIZE) {
576 struct page *page = virt_to_page(from);
578 kdebug("- free %lx", from);
579 atomic_long_dec(&mmap_pages_allocated);
580 if (page_count(page) != 1)
581 kdebug("free page %p: refcount not one: %d",
582 page, page_count(page));
583 put_page(page);
588 * release a reference to a region
589 * - the caller must hold the region semaphore for writing, which this releases
590 * - the region may not have been added to the tree yet, in which case vm_top
591 * will equal vm_start
593 static void __put_nommu_region(struct vm_region *region)
594 __releases(nommu_region_sem)
596 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
598 BUG_ON(!nommu_region_tree.rb_node);
600 if (atomic_dec_and_test(&region->vm_usage)) {
601 if (region->vm_top > region->vm_start)
602 delete_nommu_region(region);
603 up_write(&nommu_region_sem);
605 if (region->vm_file)
606 fput(region->vm_file);
608 /* IO memory and memory shared directly out of the pagecache
609 * from ramfs/tmpfs mustn't be released here */
610 if (region->vm_flags & VM_MAPPED_COPY) {
611 kdebug("free series");
612 free_page_series(region->vm_start, region->vm_top);
614 kmem_cache_free(vm_region_jar, region);
615 } else {
616 up_write(&nommu_region_sem);
621 * release a reference to a region
623 static void put_nommu_region(struct vm_region *region)
625 down_write(&nommu_region_sem);
626 __put_nommu_region(region);
630 * add a VMA into a process's mm_struct in the appropriate place in the list
631 * and tree and add to the address space's page tree also if not an anonymous
632 * page
633 * - should be called with mm->mmap_sem held writelocked
635 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
637 struct vm_area_struct *pvma, **pp;
638 struct address_space *mapping;
639 struct rb_node **p, *parent;
641 kenter(",%p", vma);
643 BUG_ON(!vma->vm_region);
645 mm->map_count++;
646 vma->vm_mm = mm;
648 /* add the VMA to the mapping */
649 if (vma->vm_file) {
650 mapping = vma->vm_file->f_mapping;
652 flush_dcache_mmap_lock(mapping);
653 vma_prio_tree_insert(vma, &mapping->i_mmap);
654 flush_dcache_mmap_unlock(mapping);
657 /* add the VMA to the tree */
658 parent = NULL;
659 p = &mm->mm_rb.rb_node;
660 while (*p) {
661 parent = *p;
662 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
664 /* sort by: start addr, end addr, VMA struct addr in that order
665 * (the latter is necessary as we may get identical VMAs) */
666 if (vma->vm_start < pvma->vm_start)
667 p = &(*p)->rb_left;
668 else if (vma->vm_start > pvma->vm_start)
669 p = &(*p)->rb_right;
670 else if (vma->vm_end < pvma->vm_end)
671 p = &(*p)->rb_left;
672 else if (vma->vm_end > pvma->vm_end)
673 p = &(*p)->rb_right;
674 else if (vma < pvma)
675 p = &(*p)->rb_left;
676 else if (vma > pvma)
677 p = &(*p)->rb_right;
678 else
679 BUG();
682 rb_link_node(&vma->vm_rb, parent, p);
683 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
685 /* add VMA to the VMA list also */
686 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
687 if (pvma->vm_start > vma->vm_start)
688 break;
689 if (pvma->vm_start < vma->vm_start)
690 continue;
691 if (pvma->vm_end < vma->vm_end)
692 break;
695 vma->vm_next = *pp;
696 *pp = vma;
700 * delete a VMA from its owning mm_struct and address space
702 static void delete_vma_from_mm(struct vm_area_struct *vma)
704 struct vm_area_struct **pp;
705 struct address_space *mapping;
706 struct mm_struct *mm = vma->vm_mm;
708 kenter("%p", vma);
710 mm->map_count--;
711 if (mm->mmap_cache == vma)
712 mm->mmap_cache = NULL;
714 /* remove the VMA from the mapping */
715 if (vma->vm_file) {
716 mapping = vma->vm_file->f_mapping;
718 flush_dcache_mmap_lock(mapping);
719 vma_prio_tree_remove(vma, &mapping->i_mmap);
720 flush_dcache_mmap_unlock(mapping);
723 /* remove from the MM's tree and list */
724 rb_erase(&vma->vm_rb, &mm->mm_rb);
725 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
726 if (*pp == vma) {
727 *pp = vma->vm_next;
728 break;
732 vma->vm_mm = NULL;
736 * destroy a VMA record
738 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
740 kenter("%p", vma);
741 if (vma->vm_ops && vma->vm_ops->close)
742 vma->vm_ops->close(vma);
743 if (vma->vm_file) {
744 fput(vma->vm_file);
745 if (vma->vm_flags & VM_EXECUTABLE)
746 removed_exe_file_vma(mm);
748 put_nommu_region(vma->vm_region);
749 kmem_cache_free(vm_area_cachep, vma);
753 * look up the first VMA in which addr resides, NULL if none
754 * - should be called with mm->mmap_sem at least held readlocked
756 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
758 struct vm_area_struct *vma;
759 struct rb_node *n = mm->mm_rb.rb_node;
761 /* check the cache first */
762 vma = mm->mmap_cache;
763 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
764 return vma;
766 /* trawl the tree (there may be multiple mappings in which addr
767 * resides) */
768 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
769 vma = rb_entry(n, struct vm_area_struct, vm_rb);
770 if (vma->vm_start > addr)
771 return NULL;
772 if (vma->vm_end > addr) {
773 mm->mmap_cache = vma;
774 return vma;
778 return NULL;
780 EXPORT_SYMBOL(find_vma);
783 * find a VMA
784 * - we don't extend stack VMAs under NOMMU conditions
786 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
788 return find_vma(mm, addr);
792 * expand a stack to a given address
793 * - not supported under NOMMU conditions
795 int expand_stack(struct vm_area_struct *vma, unsigned long address)
797 return -ENOMEM;
801 * look up the first VMA exactly that exactly matches addr
802 * - should be called with mm->mmap_sem at least held readlocked
804 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
805 unsigned long addr,
806 unsigned long len)
808 struct vm_area_struct *vma;
809 struct rb_node *n = mm->mm_rb.rb_node;
810 unsigned long end = addr + len;
812 /* check the cache first */
813 vma = mm->mmap_cache;
814 if (vma && vma->vm_start == addr && vma->vm_end == end)
815 return vma;
817 /* trawl the tree (there may be multiple mappings in which addr
818 * resides) */
819 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
820 vma = rb_entry(n, struct vm_area_struct, vm_rb);
821 if (vma->vm_start < addr)
822 continue;
823 if (vma->vm_start > addr)
824 return NULL;
825 if (vma->vm_end == end) {
826 mm->mmap_cache = vma;
827 return vma;
831 return NULL;
835 * determine whether a mapping should be permitted and, if so, what sort of
836 * mapping we're capable of supporting
838 static int validate_mmap_request(struct file *file,
839 unsigned long addr,
840 unsigned long len,
841 unsigned long prot,
842 unsigned long flags,
843 unsigned long pgoff,
844 unsigned long *_capabilities)
846 unsigned long capabilities, rlen;
847 unsigned long reqprot = prot;
848 int ret;
850 /* do the simple checks first */
851 if (flags & MAP_FIXED || addr) {
852 printk(KERN_DEBUG
853 "%d: Can't do fixed-address/overlay mmap of RAM\n",
854 current->pid);
855 return -EINVAL;
858 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
859 (flags & MAP_TYPE) != MAP_SHARED)
860 return -EINVAL;
862 if (!len)
863 return -EINVAL;
865 /* Careful about overflows.. */
866 rlen = PAGE_ALIGN(len);
867 if (!rlen || rlen > TASK_SIZE)
868 return -ENOMEM;
870 /* offset overflow? */
871 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
872 return -EOVERFLOW;
874 if (file) {
875 /* validate file mapping requests */
876 struct address_space *mapping;
878 /* files must support mmap */
879 if (!file->f_op || !file->f_op->mmap)
880 return -ENODEV;
882 /* work out if what we've got could possibly be shared
883 * - we support chardevs that provide their own "memory"
884 * - we support files/blockdevs that are memory backed
886 mapping = file->f_mapping;
887 if (!mapping)
888 mapping = file->f_path.dentry->d_inode->i_mapping;
890 capabilities = 0;
891 if (mapping && mapping->backing_dev_info)
892 capabilities = mapping->backing_dev_info->capabilities;
894 if (!capabilities) {
895 /* no explicit capabilities set, so assume some
896 * defaults */
897 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
898 case S_IFREG:
899 case S_IFBLK:
900 capabilities = BDI_CAP_MAP_COPY;
901 break;
903 case S_IFCHR:
904 capabilities =
905 BDI_CAP_MAP_DIRECT |
906 BDI_CAP_READ_MAP |
907 BDI_CAP_WRITE_MAP;
908 break;
910 default:
911 return -EINVAL;
915 /* eliminate any capabilities that we can't support on this
916 * device */
917 if (!file->f_op->get_unmapped_area)
918 capabilities &= ~BDI_CAP_MAP_DIRECT;
919 if (!file->f_op->read)
920 capabilities &= ~BDI_CAP_MAP_COPY;
922 /* The file shall have been opened with read permission. */
923 if (!(file->f_mode & FMODE_READ))
924 return -EACCES;
926 if (flags & MAP_SHARED) {
927 /* do checks for writing, appending and locking */
928 if ((prot & PROT_WRITE) &&
929 !(file->f_mode & FMODE_WRITE))
930 return -EACCES;
932 if (IS_APPEND(file->f_path.dentry->d_inode) &&
933 (file->f_mode & FMODE_WRITE))
934 return -EACCES;
936 if (locks_verify_locked(file->f_path.dentry->d_inode))
937 return -EAGAIN;
939 if (!(capabilities & BDI_CAP_MAP_DIRECT))
940 return -ENODEV;
942 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
943 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
944 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
946 printk("MAP_SHARED not completely supported on !MMU\n");
947 return -EINVAL;
950 /* we mustn't privatise shared mappings */
951 capabilities &= ~BDI_CAP_MAP_COPY;
953 else {
954 /* we're going to read the file into private memory we
955 * allocate */
956 if (!(capabilities & BDI_CAP_MAP_COPY))
957 return -ENODEV;
959 /* we don't permit a private writable mapping to be
960 * shared with the backing device */
961 if (prot & PROT_WRITE)
962 capabilities &= ~BDI_CAP_MAP_DIRECT;
965 /* handle executable mappings and implied executable
966 * mappings */
967 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
968 if (prot & PROT_EXEC)
969 return -EPERM;
971 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
972 /* handle implication of PROT_EXEC by PROT_READ */
973 if (current->personality & READ_IMPLIES_EXEC) {
974 if (capabilities & BDI_CAP_EXEC_MAP)
975 prot |= PROT_EXEC;
978 else if ((prot & PROT_READ) &&
979 (prot & PROT_EXEC) &&
980 !(capabilities & BDI_CAP_EXEC_MAP)
982 /* backing file is not executable, try to copy */
983 capabilities &= ~BDI_CAP_MAP_DIRECT;
986 else {
987 /* anonymous mappings are always memory backed and can be
988 * privately mapped
990 capabilities = BDI_CAP_MAP_COPY;
992 /* handle PROT_EXEC implication by PROT_READ */
993 if ((prot & PROT_READ) &&
994 (current->personality & READ_IMPLIES_EXEC))
995 prot |= PROT_EXEC;
998 /* allow the security API to have its say */
999 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1000 if (ret < 0)
1001 return ret;
1003 /* looks okay */
1004 *_capabilities = capabilities;
1005 return 0;
1009 * we've determined that we can make the mapping, now translate what we
1010 * now know into VMA flags
1012 static unsigned long determine_vm_flags(struct file *file,
1013 unsigned long prot,
1014 unsigned long flags,
1015 unsigned long capabilities)
1017 unsigned long vm_flags;
1019 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1020 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1021 /* vm_flags |= mm->def_flags; */
1023 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1024 /* attempt to share read-only copies of mapped file chunks */
1025 if (file && !(prot & PROT_WRITE))
1026 vm_flags |= VM_MAYSHARE;
1028 else {
1029 /* overlay a shareable mapping on the backing device or inode
1030 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1031 * romfs/cramfs */
1032 if (flags & MAP_SHARED)
1033 vm_flags |= VM_MAYSHARE | VM_SHARED;
1034 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1035 vm_flags |= VM_MAYSHARE;
1038 /* refuse to let anyone share private mappings with this process if
1039 * it's being traced - otherwise breakpoints set in it may interfere
1040 * with another untraced process
1042 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1043 vm_flags &= ~VM_MAYSHARE;
1045 return vm_flags;
1049 * set up a shared mapping on a file (the driver or filesystem provides and
1050 * pins the storage)
1052 static int do_mmap_shared_file(struct vm_area_struct *vma)
1054 int ret;
1056 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1057 if (ret == 0) {
1058 vma->vm_region->vm_top = vma->vm_region->vm_end;
1059 return 0;
1061 if (ret != -ENOSYS)
1062 return ret;
1064 /* getting an ENOSYS error indicates that direct mmap isn't
1065 * possible (as opposed to tried but failed) so we'll fall
1066 * through to making a private copy of the data and mapping
1067 * that if we can */
1068 return -ENODEV;
1072 * set up a private mapping or an anonymous shared mapping
1074 static int do_mmap_private(struct vm_area_struct *vma,
1075 struct vm_region *region,
1076 unsigned long len,
1077 unsigned long capabilities)
1079 struct page *pages;
1080 unsigned long total, point, n, rlen;
1081 void *base;
1082 int ret, order;
1084 /* invoke the file's mapping function so that it can keep track of
1085 * shared mappings on devices or memory
1086 * - VM_MAYSHARE will be set if it may attempt to share
1088 if (capabilities & BDI_CAP_MAP_DIRECT) {
1089 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1090 if (ret == 0) {
1091 /* shouldn't return success if we're not sharing */
1092 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1093 vma->vm_region->vm_top = vma->vm_region->vm_end;
1094 return 0;
1096 if (ret != -ENOSYS)
1097 return ret;
1099 /* getting an ENOSYS error indicates that direct mmap isn't
1100 * possible (as opposed to tried but failed) so we'll try to
1101 * make a private copy of the data and map that instead */
1104 rlen = PAGE_ALIGN(len);
1106 /* allocate some memory to hold the mapping
1107 * - note that this may not return a page-aligned address if the object
1108 * we're allocating is smaller than a page
1110 order = get_order(rlen);
1111 kdebug("alloc order %d for %lx", order, len);
1113 pages = alloc_pages(GFP_KERNEL, order);
1114 if (!pages)
1115 goto enomem;
1117 total = 1 << order;
1118 atomic_long_add(total, &mmap_pages_allocated);
1120 point = rlen >> PAGE_SHIFT;
1122 /* we allocated a power-of-2 sized page set, so we may want to trim off
1123 * the excess */
1124 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1125 while (total > point) {
1126 order = ilog2(total - point);
1127 n = 1 << order;
1128 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1129 atomic_long_sub(n, &mmap_pages_allocated);
1130 total -= n;
1131 set_page_refcounted(pages + total);
1132 __free_pages(pages + total, order);
1136 for (point = 1; point < total; point++)
1137 set_page_refcounted(&pages[point]);
1139 base = page_address(pages);
1140 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1141 region->vm_start = (unsigned long) base;
1142 region->vm_end = region->vm_start + rlen;
1143 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1145 vma->vm_start = region->vm_start;
1146 vma->vm_end = region->vm_start + len;
1148 if (vma->vm_file) {
1149 /* read the contents of a file into the copy */
1150 mm_segment_t old_fs;
1151 loff_t fpos;
1153 fpos = vma->vm_pgoff;
1154 fpos <<= PAGE_SHIFT;
1156 old_fs = get_fs();
1157 set_fs(KERNEL_DS);
1158 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1159 set_fs(old_fs);
1161 if (ret < 0)
1162 goto error_free;
1164 /* clear the last little bit */
1165 if (ret < rlen)
1166 memset(base + ret, 0, rlen - ret);
1168 } else {
1169 /* if it's an anonymous mapping, then just clear it */
1170 memset(base, 0, rlen);
1173 return 0;
1175 error_free:
1176 free_page_series(region->vm_start, region->vm_end);
1177 region->vm_start = vma->vm_start = 0;
1178 region->vm_end = vma->vm_end = 0;
1179 region->vm_top = 0;
1180 return ret;
1182 enomem:
1183 printk("Allocation of length %lu from process %d (%s) failed\n",
1184 len, current->pid, current->comm);
1185 show_free_areas();
1186 return -ENOMEM;
1190 * handle mapping creation for uClinux
1192 unsigned long do_mmap_pgoff(struct file *file,
1193 unsigned long addr,
1194 unsigned long len,
1195 unsigned long prot,
1196 unsigned long flags,
1197 unsigned long pgoff)
1199 struct vm_area_struct *vma;
1200 struct vm_region *region;
1201 struct rb_node *rb;
1202 unsigned long capabilities, vm_flags, result;
1203 int ret;
1205 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1207 if (!(flags & MAP_FIXED))
1208 addr = round_hint_to_min(addr);
1210 /* decide whether we should attempt the mapping, and if so what sort of
1211 * mapping */
1212 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1213 &capabilities);
1214 if (ret < 0) {
1215 kleave(" = %d [val]", ret);
1216 return ret;
1219 /* we've determined that we can make the mapping, now translate what we
1220 * now know into VMA flags */
1221 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1223 /* we're going to need to record the mapping */
1224 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1225 if (!region)
1226 goto error_getting_region;
1228 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1229 if (!vma)
1230 goto error_getting_vma;
1232 atomic_set(&region->vm_usage, 1);
1233 region->vm_flags = vm_flags;
1234 region->vm_pgoff = pgoff;
1236 INIT_LIST_HEAD(&vma->anon_vma_node);
1237 vma->vm_flags = vm_flags;
1238 vma->vm_pgoff = pgoff;
1240 if (file) {
1241 region->vm_file = file;
1242 get_file(file);
1243 vma->vm_file = file;
1244 get_file(file);
1245 if (vm_flags & VM_EXECUTABLE) {
1246 added_exe_file_vma(current->mm);
1247 vma->vm_mm = current->mm;
1251 down_write(&nommu_region_sem);
1253 /* if we want to share, we need to check for regions created by other
1254 * mmap() calls that overlap with our proposed mapping
1255 * - we can only share with a superset match on most regular files
1256 * - shared mappings on character devices and memory backed files are
1257 * permitted to overlap inexactly as far as we are concerned for in
1258 * these cases, sharing is handled in the driver or filesystem rather
1259 * than here
1261 if (vm_flags & VM_MAYSHARE) {
1262 struct vm_region *pregion;
1263 unsigned long pglen, rpglen, pgend, rpgend, start;
1265 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1266 pgend = pgoff + pglen;
1268 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1269 pregion = rb_entry(rb, struct vm_region, vm_rb);
1271 if (!(pregion->vm_flags & VM_MAYSHARE))
1272 continue;
1274 /* search for overlapping mappings on the same file */
1275 if (pregion->vm_file->f_path.dentry->d_inode !=
1276 file->f_path.dentry->d_inode)
1277 continue;
1279 if (pregion->vm_pgoff >= pgend)
1280 continue;
1282 rpglen = pregion->vm_end - pregion->vm_start;
1283 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1284 rpgend = pregion->vm_pgoff + rpglen;
1285 if (pgoff >= rpgend)
1286 continue;
1288 /* handle inexactly overlapping matches between
1289 * mappings */
1290 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1291 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1292 /* new mapping is not a subset of the region */
1293 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1294 goto sharing_violation;
1295 continue;
1298 /* we've found a region we can share */
1299 atomic_inc(&pregion->vm_usage);
1300 vma->vm_region = pregion;
1301 start = pregion->vm_start;
1302 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1303 vma->vm_start = start;
1304 vma->vm_end = start + len;
1306 if (pregion->vm_flags & VM_MAPPED_COPY) {
1307 kdebug("share copy");
1308 vma->vm_flags |= VM_MAPPED_COPY;
1309 } else {
1310 kdebug("share mmap");
1311 ret = do_mmap_shared_file(vma);
1312 if (ret < 0) {
1313 vma->vm_region = NULL;
1314 vma->vm_start = 0;
1315 vma->vm_end = 0;
1316 atomic_dec(&pregion->vm_usage);
1317 pregion = NULL;
1318 goto error_just_free;
1321 fput(region->vm_file);
1322 kmem_cache_free(vm_region_jar, region);
1323 region = pregion;
1324 result = start;
1325 goto share;
1328 /* obtain the address at which to make a shared mapping
1329 * - this is the hook for quasi-memory character devices to
1330 * tell us the location of a shared mapping
1332 if (capabilities & BDI_CAP_MAP_DIRECT) {
1333 addr = file->f_op->get_unmapped_area(file, addr, len,
1334 pgoff, flags);
1335 if (IS_ERR((void *) addr)) {
1336 ret = addr;
1337 if (ret != (unsigned long) -ENOSYS)
1338 goto error_just_free;
1340 /* the driver refused to tell us where to site
1341 * the mapping so we'll have to attempt to copy
1342 * it */
1343 ret = (unsigned long) -ENODEV;
1344 if (!(capabilities & BDI_CAP_MAP_COPY))
1345 goto error_just_free;
1347 capabilities &= ~BDI_CAP_MAP_DIRECT;
1348 } else {
1349 vma->vm_start = region->vm_start = addr;
1350 vma->vm_end = region->vm_end = addr + len;
1355 vma->vm_region = region;
1357 /* set up the mapping
1358 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1360 if (file && vma->vm_flags & VM_SHARED)
1361 ret = do_mmap_shared_file(vma);
1362 else
1363 ret = do_mmap_private(vma, region, len, capabilities);
1364 if (ret < 0)
1365 goto error_just_free;
1366 add_nommu_region(region);
1368 /* okay... we have a mapping; now we have to register it */
1369 result = vma->vm_start;
1371 current->mm->total_vm += len >> PAGE_SHIFT;
1373 share:
1374 add_vma_to_mm(current->mm, vma);
1376 up_write(&nommu_region_sem);
1378 if (prot & PROT_EXEC)
1379 flush_icache_range(result, result + len);
1381 kleave(" = %lx", result);
1382 return result;
1384 error_just_free:
1385 up_write(&nommu_region_sem);
1386 error:
1387 fput(region->vm_file);
1388 kmem_cache_free(vm_region_jar, region);
1389 fput(vma->vm_file);
1390 if (vma->vm_flags & VM_EXECUTABLE)
1391 removed_exe_file_vma(vma->vm_mm);
1392 kmem_cache_free(vm_area_cachep, vma);
1393 kleave(" = %d", ret);
1394 return ret;
1396 sharing_violation:
1397 up_write(&nommu_region_sem);
1398 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1399 ret = -EINVAL;
1400 goto error;
1402 error_getting_vma:
1403 kmem_cache_free(vm_region_jar, region);
1404 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1405 " from process %d failed\n",
1406 len, current->pid);
1407 show_free_areas();
1408 return -ENOMEM;
1410 error_getting_region:
1411 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1412 " from process %d failed\n",
1413 len, current->pid);
1414 show_free_areas();
1415 return -ENOMEM;
1417 EXPORT_SYMBOL(do_mmap_pgoff);
1420 * split a vma into two pieces at address 'addr', a new vma is allocated either
1421 * for the first part or the tail.
1423 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1424 unsigned long addr, int new_below)
1426 struct vm_area_struct *new;
1427 struct vm_region *region;
1428 unsigned long npages;
1430 kenter("");
1432 /* we're only permitted to split anonymous regions that have a single
1433 * owner */
1434 if (vma->vm_file ||
1435 atomic_read(&vma->vm_region->vm_usage) != 1)
1436 return -ENOMEM;
1438 if (mm->map_count >= sysctl_max_map_count)
1439 return -ENOMEM;
1441 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1442 if (!region)
1443 return -ENOMEM;
1445 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1446 if (!new) {
1447 kmem_cache_free(vm_region_jar, region);
1448 return -ENOMEM;
1451 /* most fields are the same, copy all, and then fixup */
1452 *new = *vma;
1453 *region = *vma->vm_region;
1454 new->vm_region = region;
1456 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1458 if (new_below) {
1459 region->vm_top = region->vm_end = new->vm_end = addr;
1460 } else {
1461 region->vm_start = new->vm_start = addr;
1462 region->vm_pgoff = new->vm_pgoff += npages;
1465 if (new->vm_ops && new->vm_ops->open)
1466 new->vm_ops->open(new);
1468 delete_vma_from_mm(vma);
1469 down_write(&nommu_region_sem);
1470 delete_nommu_region(vma->vm_region);
1471 if (new_below) {
1472 vma->vm_region->vm_start = vma->vm_start = addr;
1473 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1474 } else {
1475 vma->vm_region->vm_end = vma->vm_end = addr;
1476 vma->vm_region->vm_top = addr;
1478 add_nommu_region(vma->vm_region);
1479 add_nommu_region(new->vm_region);
1480 up_write(&nommu_region_sem);
1481 add_vma_to_mm(mm, vma);
1482 add_vma_to_mm(mm, new);
1483 return 0;
1487 * shrink a VMA by removing the specified chunk from either the beginning or
1488 * the end
1490 static int shrink_vma(struct mm_struct *mm,
1491 struct vm_area_struct *vma,
1492 unsigned long from, unsigned long to)
1494 struct vm_region *region;
1496 kenter("");
1498 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1499 * and list */
1500 delete_vma_from_mm(vma);
1501 if (from > vma->vm_start)
1502 vma->vm_end = from;
1503 else
1504 vma->vm_start = to;
1505 add_vma_to_mm(mm, vma);
1507 /* cut the backing region down to size */
1508 region = vma->vm_region;
1509 BUG_ON(atomic_read(&region->vm_usage) != 1);
1511 down_write(&nommu_region_sem);
1512 delete_nommu_region(region);
1513 if (from > region->vm_start) {
1514 to = region->vm_top;
1515 region->vm_top = region->vm_end = from;
1516 } else {
1517 region->vm_start = to;
1519 add_nommu_region(region);
1520 up_write(&nommu_region_sem);
1522 free_page_series(from, to);
1523 return 0;
1527 * release a mapping
1528 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1529 * VMA, though it need not cover the whole VMA
1531 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1533 struct vm_area_struct *vma;
1534 struct rb_node *rb;
1535 unsigned long end = start + len;
1536 int ret;
1538 kenter(",%lx,%zx", start, len);
1540 if (len == 0)
1541 return -EINVAL;
1543 /* find the first potentially overlapping VMA */
1544 vma = find_vma(mm, start);
1545 if (!vma) {
1546 static int limit = 0;
1547 if (limit < 5) {
1548 printk(KERN_WARNING
1549 "munmap of memory not mmapped by process %d"
1550 " (%s): 0x%lx-0x%lx\n",
1551 current->pid, current->comm,
1552 start, start + len - 1);
1553 limit++;
1555 return -EINVAL;
1558 /* we're allowed to split an anonymous VMA but not a file-backed one */
1559 if (vma->vm_file) {
1560 do {
1561 if (start > vma->vm_start) {
1562 kleave(" = -EINVAL [miss]");
1563 return -EINVAL;
1565 if (end == vma->vm_end)
1566 goto erase_whole_vma;
1567 rb = rb_next(&vma->vm_rb);
1568 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1569 } while (rb);
1570 kleave(" = -EINVAL [split file]");
1571 return -EINVAL;
1572 } else {
1573 /* the chunk must be a subset of the VMA found */
1574 if (start == vma->vm_start && end == vma->vm_end)
1575 goto erase_whole_vma;
1576 if (start < vma->vm_start || end > vma->vm_end) {
1577 kleave(" = -EINVAL [superset]");
1578 return -EINVAL;
1580 if (start & ~PAGE_MASK) {
1581 kleave(" = -EINVAL [unaligned start]");
1582 return -EINVAL;
1584 if (end != vma->vm_end && end & ~PAGE_MASK) {
1585 kleave(" = -EINVAL [unaligned split]");
1586 return -EINVAL;
1588 if (start != vma->vm_start && end != vma->vm_end) {
1589 ret = split_vma(mm, vma, start, 1);
1590 if (ret < 0) {
1591 kleave(" = %d [split]", ret);
1592 return ret;
1595 return shrink_vma(mm, vma, start, end);
1598 erase_whole_vma:
1599 delete_vma_from_mm(vma);
1600 delete_vma(mm, vma);
1601 kleave(" = 0");
1602 return 0;
1604 EXPORT_SYMBOL(do_munmap);
1606 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1608 int ret;
1609 struct mm_struct *mm = current->mm;
1611 down_write(&mm->mmap_sem);
1612 ret = do_munmap(mm, addr, len);
1613 up_write(&mm->mmap_sem);
1614 return ret;
1618 * release all the mappings made in a process's VM space
1620 void exit_mmap(struct mm_struct *mm)
1622 struct vm_area_struct *vma;
1624 if (!mm)
1625 return;
1627 kenter("");
1629 mm->total_vm = 0;
1631 while ((vma = mm->mmap)) {
1632 mm->mmap = vma->vm_next;
1633 delete_vma_from_mm(vma);
1634 delete_vma(mm, vma);
1637 kleave("");
1640 unsigned long do_brk(unsigned long addr, unsigned long len)
1642 return -ENOMEM;
1646 * expand (or shrink) an existing mapping, potentially moving it at the same
1647 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1649 * under NOMMU conditions, we only permit changing a mapping's size, and only
1650 * as long as it stays within the region allocated by do_mmap_private() and the
1651 * block is not shareable
1653 * MREMAP_FIXED is not supported under NOMMU conditions
1655 unsigned long do_mremap(unsigned long addr,
1656 unsigned long old_len, unsigned long new_len,
1657 unsigned long flags, unsigned long new_addr)
1659 struct vm_area_struct *vma;
1661 /* insanity checks first */
1662 if (old_len == 0 || new_len == 0)
1663 return (unsigned long) -EINVAL;
1665 if (addr & ~PAGE_MASK)
1666 return -EINVAL;
1668 if (flags & MREMAP_FIXED && new_addr != addr)
1669 return (unsigned long) -EINVAL;
1671 vma = find_vma_exact(current->mm, addr, old_len);
1672 if (!vma)
1673 return (unsigned long) -EINVAL;
1675 if (vma->vm_end != vma->vm_start + old_len)
1676 return (unsigned long) -EFAULT;
1678 if (vma->vm_flags & VM_MAYSHARE)
1679 return (unsigned long) -EPERM;
1681 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1682 return (unsigned long) -ENOMEM;
1684 /* all checks complete - do it */
1685 vma->vm_end = vma->vm_start + new_len;
1686 return vma->vm_start;
1688 EXPORT_SYMBOL(do_mremap);
1690 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1691 unsigned long, new_len, unsigned long, flags,
1692 unsigned long, new_addr)
1694 unsigned long ret;
1696 down_write(&current->mm->mmap_sem);
1697 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1698 up_write(&current->mm->mmap_sem);
1699 return ret;
1702 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1703 unsigned int foll_flags)
1705 return NULL;
1708 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1709 unsigned long to, unsigned long size, pgprot_t prot)
1711 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1712 return 0;
1714 EXPORT_SYMBOL(remap_pfn_range);
1716 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1717 unsigned long pgoff)
1719 unsigned int size = vma->vm_end - vma->vm_start;
1721 if (!(vma->vm_flags & VM_USERMAP))
1722 return -EINVAL;
1724 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1725 vma->vm_end = vma->vm_start + size;
1727 return 0;
1729 EXPORT_SYMBOL(remap_vmalloc_range);
1731 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1735 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1736 unsigned long len, unsigned long pgoff, unsigned long flags)
1738 return -ENOMEM;
1741 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1745 void unmap_mapping_range(struct address_space *mapping,
1746 loff_t const holebegin, loff_t const holelen,
1747 int even_cows)
1750 EXPORT_SYMBOL(unmap_mapping_range);
1753 * ask for an unmapped area at which to create a mapping on a file
1755 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1756 unsigned long len, unsigned long pgoff,
1757 unsigned long flags)
1759 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1760 unsigned long, unsigned long);
1762 get_area = current->mm->get_unmapped_area;
1763 if (file && file->f_op && file->f_op->get_unmapped_area)
1764 get_area = file->f_op->get_unmapped_area;
1766 if (!get_area)
1767 return -ENOSYS;
1769 return get_area(file, addr, len, pgoff, flags);
1771 EXPORT_SYMBOL(get_unmapped_area);
1774 * Check that a process has enough memory to allocate a new virtual
1775 * mapping. 0 means there is enough memory for the allocation to
1776 * succeed and -ENOMEM implies there is not.
1778 * We currently support three overcommit policies, which are set via the
1779 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1781 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1782 * Additional code 2002 Jul 20 by Robert Love.
1784 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1786 * Note this is a helper function intended to be used by LSMs which
1787 * wish to use this logic.
1789 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1791 unsigned long free, allowed;
1793 vm_acct_memory(pages);
1796 * Sometimes we want to use more memory than we have
1798 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1799 return 0;
1801 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1802 unsigned long n;
1804 free = global_page_state(NR_FILE_PAGES);
1805 free += nr_swap_pages;
1808 * Any slabs which are created with the
1809 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1810 * which are reclaimable, under pressure. The dentry
1811 * cache and most inode caches should fall into this
1813 free += global_page_state(NR_SLAB_RECLAIMABLE);
1816 * Leave the last 3% for root
1818 if (!cap_sys_admin)
1819 free -= free / 32;
1821 if (free > pages)
1822 return 0;
1825 * nr_free_pages() is very expensive on large systems,
1826 * only call if we're about to fail.
1828 n = nr_free_pages();
1831 * Leave reserved pages. The pages are not for anonymous pages.
1833 if (n <= totalreserve_pages)
1834 goto error;
1835 else
1836 n -= totalreserve_pages;
1839 * Leave the last 3% for root
1841 if (!cap_sys_admin)
1842 n -= n / 32;
1843 free += n;
1845 if (free > pages)
1846 return 0;
1848 goto error;
1851 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1853 * Leave the last 3% for root
1855 if (!cap_sys_admin)
1856 allowed -= allowed / 32;
1857 allowed += total_swap_pages;
1859 /* Don't let a single process grow too big:
1860 leave 3% of the size of this process for other processes */
1861 if (mm)
1862 allowed -= mm->total_vm / 32;
1864 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1865 return 0;
1867 error:
1868 vm_unacct_memory(pages);
1870 return -ENOMEM;
1873 int in_gate_area_no_task(unsigned long addr)
1875 return 0;
1878 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1880 BUG();
1881 return 0;
1883 EXPORT_SYMBOL(filemap_fault);
1886 * Access another process' address space.
1887 * - source/target buffer must be kernel space
1889 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1891 struct vm_area_struct *vma;
1892 struct mm_struct *mm;
1894 if (addr + len < addr)
1895 return 0;
1897 mm = get_task_mm(tsk);
1898 if (!mm)
1899 return 0;
1901 down_read(&mm->mmap_sem);
1903 /* the access must start within one of the target process's mappings */
1904 vma = find_vma(mm, addr);
1905 if (vma) {
1906 /* don't overrun this mapping */
1907 if (addr + len >= vma->vm_end)
1908 len = vma->vm_end - addr;
1910 /* only read or write mappings where it is permitted */
1911 if (write && vma->vm_flags & VM_MAYWRITE)
1912 len -= copy_to_user((void *) addr, buf, len);
1913 else if (!write && vma->vm_flags & VM_MAYREAD)
1914 len -= copy_from_user(buf, (void *) addr, len);
1915 else
1916 len = 0;
1917 } else {
1918 len = 0;
1921 up_read(&mm->mmap_sem);
1922 mmput(mm);
1923 return len;