2 * linux/fs/ext2/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@dcs.ed.ac.uk), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
25 #include <linux/smp_lock.h>
26 #include <linux/time.h>
27 #include <linux/highuid.h>
28 #include <linux/pagemap.h>
29 #include <linux/quotaops.h>
30 #include <linux/module.h>
31 #include <linux/writeback.h>
32 #include <linux/buffer_head.h>
33 #include <linux/mpage.h>
37 MODULE_AUTHOR("Remy Card and others");
38 MODULE_DESCRIPTION("Second Extended Filesystem");
39 MODULE_LICENSE("GPL");
41 static int ext2_update_inode(struct inode
* inode
, int do_sync
);
44 * Test whether an inode is a fast symlink.
46 static inline int ext2_inode_is_fast_symlink(struct inode
*inode
)
48 int ea_blocks
= EXT2_I(inode
)->i_file_acl
?
49 (inode
->i_sb
->s_blocksize
>> 9) : 0;
51 return (S_ISLNK(inode
->i_mode
) &&
52 inode
->i_blocks
- ea_blocks
== 0);
56 * Called at each iput().
58 * The inode may be "bad" if ext2_read_inode() saw an error from
59 * ext2_get_inode(), so we need to check that to avoid freeing random disk
62 void ext2_put_inode(struct inode
*inode
)
64 if (!is_bad_inode(inode
))
65 ext2_discard_prealloc(inode
);
69 * Called at the last iput() if i_nlink is zero.
71 void ext2_delete_inode (struct inode
* inode
)
73 if (is_bad_inode(inode
))
75 EXT2_I(inode
)->i_dtime
= get_seconds();
76 mark_inode_dirty(inode
);
77 ext2_update_inode(inode
, inode_needs_sync(inode
));
81 ext2_truncate (inode
);
82 ext2_free_inode (inode
);
86 clear_inode(inode
); /* We must guarantee clearing of inode... */
89 void ext2_discard_prealloc (struct inode
* inode
)
91 #ifdef EXT2_PREALLOCATE
92 struct ext2_inode_info
*ei
= EXT2_I(inode
);
93 write_lock(&ei
->i_meta_lock
);
94 if (ei
->i_prealloc_count
) {
95 unsigned short total
= ei
->i_prealloc_count
;
96 unsigned long block
= ei
->i_prealloc_block
;
97 ei
->i_prealloc_count
= 0;
98 ei
->i_prealloc_block
= 0;
99 write_unlock(&ei
->i_meta_lock
);
100 ext2_free_blocks (inode
, block
, total
);
103 write_unlock(&ei
->i_meta_lock
);
107 static int ext2_alloc_block (struct inode
* inode
, unsigned long goal
, int *err
)
110 static unsigned long alloc_hits
, alloc_attempts
;
112 unsigned long result
;
115 #ifdef EXT2_PREALLOCATE
116 struct ext2_inode_info
*ei
= EXT2_I(inode
);
117 write_lock(&ei
->i_meta_lock
);
118 if (ei
->i_prealloc_count
&&
119 (goal
== ei
->i_prealloc_block
|| goal
+ 1 == ei
->i_prealloc_block
))
121 result
= ei
->i_prealloc_block
++;
122 ei
->i_prealloc_count
--;
123 write_unlock(&ei
->i_meta_lock
);
124 ext2_debug ("preallocation hit (%lu/%lu).\n",
125 ++alloc_hits
, ++alloc_attempts
);
127 write_unlock(&ei
->i_meta_lock
);
128 ext2_discard_prealloc (inode
);
129 ext2_debug ("preallocation miss (%lu/%lu).\n",
130 alloc_hits
, ++alloc_attempts
);
131 if (S_ISREG(inode
->i_mode
))
132 result
= ext2_new_block (inode
, goal
,
133 &ei
->i_prealloc_count
,
134 &ei
->i_prealloc_block
, err
);
136 result
= ext2_new_block(inode
, goal
, NULL
, NULL
, err
);
139 result
= ext2_new_block (inode
, goal
, 0, 0, err
);
147 struct buffer_head
*bh
;
150 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
152 p
->key
= *(p
->p
= v
);
156 static inline int verify_chain(Indirect
*from
, Indirect
*to
)
158 while (from
<= to
&& from
->key
== *from
->p
)
164 * ext2_block_to_path - parse the block number into array of offsets
165 * @inode: inode in question (we are only interested in its superblock)
166 * @i_block: block number to be parsed
167 * @offsets: array to store the offsets in
168 * @boundary: set this non-zero if the referred-to block is likely to be
169 * followed (on disk) by an indirect block.
170 * To store the locations of file's data ext2 uses a data structure common
171 * for UNIX filesystems - tree of pointers anchored in the inode, with
172 * data blocks at leaves and indirect blocks in intermediate nodes.
173 * This function translates the block number into path in that tree -
174 * return value is the path length and @offsets[n] is the offset of
175 * pointer to (n+1)th node in the nth one. If @block is out of range
176 * (negative or too large) warning is printed and zero returned.
178 * Note: function doesn't find node addresses, so no IO is needed. All
179 * we need to know is the capacity of indirect blocks (taken from the
184 * Portability note: the last comparison (check that we fit into triple
185 * indirect block) is spelled differently, because otherwise on an
186 * architecture with 32-bit longs and 8Kb pages we might get into trouble
187 * if our filesystem had 8Kb blocks. We might use long long, but that would
188 * kill us on x86. Oh, well, at least the sign propagation does not matter -
189 * i_block would have to be negative in the very beginning, so we would not
193 static int ext2_block_to_path(struct inode
*inode
,
194 long i_block
, int offsets
[4], int *boundary
)
196 int ptrs
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
197 int ptrs_bits
= EXT2_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
198 const long direct_blocks
= EXT2_NDIR_BLOCKS
,
199 indirect_blocks
= ptrs
,
200 double_blocks
= (1 << (ptrs_bits
* 2));
205 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block < 0");
206 } else if (i_block
< direct_blocks
) {
207 offsets
[n
++] = i_block
;
208 final
= direct_blocks
;
209 } else if ( (i_block
-= direct_blocks
) < indirect_blocks
) {
210 offsets
[n
++] = EXT2_IND_BLOCK
;
211 offsets
[n
++] = i_block
;
213 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
214 offsets
[n
++] = EXT2_DIND_BLOCK
;
215 offsets
[n
++] = i_block
>> ptrs_bits
;
216 offsets
[n
++] = i_block
& (ptrs
- 1);
218 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
219 offsets
[n
++] = EXT2_TIND_BLOCK
;
220 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
221 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
222 offsets
[n
++] = i_block
& (ptrs
- 1);
225 ext2_warning (inode
->i_sb
, "ext2_block_to_path", "block > big");
228 *boundary
= (i_block
& (ptrs
- 1)) == (final
- 1);
233 * ext2_get_branch - read the chain of indirect blocks leading to data
234 * @inode: inode in question
235 * @depth: depth of the chain (1 - direct pointer, etc.)
236 * @offsets: offsets of pointers in inode/indirect blocks
237 * @chain: place to store the result
238 * @err: here we store the error value
240 * Function fills the array of triples <key, p, bh> and returns %NULL
241 * if everything went OK or the pointer to the last filled triple
242 * (incomplete one) otherwise. Upon the return chain[i].key contains
243 * the number of (i+1)-th block in the chain (as it is stored in memory,
244 * i.e. little-endian 32-bit), chain[i].p contains the address of that
245 * number (it points into struct inode for i==0 and into the bh->b_data
246 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
247 * block for i>0 and NULL for i==0. In other words, it holds the block
248 * numbers of the chain, addresses they were taken from (and where we can
249 * verify that chain did not change) and buffer_heads hosting these
252 * Function stops when it stumbles upon zero pointer (absent block)
253 * (pointer to last triple returned, *@err == 0)
254 * or when it gets an IO error reading an indirect block
255 * (ditto, *@err == -EIO)
256 * or when it notices that chain had been changed while it was reading
257 * (ditto, *@err == -EAGAIN)
258 * or when it reads all @depth-1 indirect blocks successfully and finds
259 * the whole chain, all way to the data (returns %NULL, *err == 0).
261 static Indirect
*ext2_get_branch(struct inode
*inode
,
267 struct super_block
*sb
= inode
->i_sb
;
269 struct buffer_head
*bh
;
272 /* i_data is not going away, no lock needed */
273 add_chain (chain
, NULL
, EXT2_I(inode
)->i_data
+ *offsets
);
277 bh
= sb_bread(sb
, le32_to_cpu(p
->key
));
280 read_lock(&EXT2_I(inode
)->i_meta_lock
);
281 if (!verify_chain(chain
, p
))
283 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
284 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
291 read_unlock(&EXT2_I(inode
)->i_meta_lock
);
302 * ext2_find_near - find a place for allocation with sufficient locality
304 * @ind: descriptor of indirect block.
306 * This function returns the prefered place for block allocation.
307 * It is used when heuristic for sequential allocation fails.
309 * + if there is a block to the left of our position - allocate near it.
310 * + if pointer will live in indirect block - allocate near that block.
311 * + if pointer will live in inode - allocate in the same cylinder group.
313 * In the latter case we colour the starting block by the callers PID to
314 * prevent it from clashing with concurrent allocations for a different inode
315 * in the same block group. The PID is used here so that functionally related
316 * files will be close-by on-disk.
318 * Caller must make sure that @ind is valid and will stay that way.
321 static unsigned long ext2_find_near(struct inode
*inode
, Indirect
*ind
)
323 struct ext2_inode_info
*ei
= EXT2_I(inode
);
324 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
326 unsigned long bg_start
;
327 unsigned long colour
;
329 /* Try to find previous block */
330 for (p
= ind
->p
- 1; p
>= start
; p
--)
332 return le32_to_cpu(*p
);
334 /* No such thing, so let's try location of indirect block */
336 return ind
->bh
->b_blocknr
;
339 * It is going to be refered from inode itself? OK, just put it into
340 * the same cylinder group then.
342 bg_start
= (ei
->i_block_group
* EXT2_BLOCKS_PER_GROUP(inode
->i_sb
)) +
343 le32_to_cpu(EXT2_SB(inode
->i_sb
)->s_es
->s_first_data_block
);
344 colour
= (current
->pid
% 16) *
345 (EXT2_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
346 return bg_start
+ colour
;
350 * ext2_find_goal - find a prefered place for allocation.
352 * @block: block we want
353 * @chain: chain of indirect blocks
354 * @partial: pointer to the last triple within a chain
355 * @goal: place to store the result.
357 * Normally this function find the prefered place for block allocation,
358 * stores it in *@goal and returns zero. If the branch had been changed
359 * under us we return -EAGAIN.
362 static inline int ext2_find_goal(struct inode
*inode
,
368 struct ext2_inode_info
*ei
= EXT2_I(inode
);
369 write_lock(&ei
->i_meta_lock
);
370 if ((block
== ei
->i_next_alloc_block
+ 1) && ei
->i_next_alloc_goal
) {
371 ei
->i_next_alloc_block
++;
372 ei
->i_next_alloc_goal
++;
374 if (verify_chain(chain
, partial
)) {
376 * try the heuristic for sequential allocation,
377 * failing that at least try to get decent locality.
379 if (block
== ei
->i_next_alloc_block
)
380 *goal
= ei
->i_next_alloc_goal
;
382 *goal
= ext2_find_near(inode
, partial
);
383 write_unlock(&ei
->i_meta_lock
);
386 write_unlock(&ei
->i_meta_lock
);
391 * ext2_alloc_branch - allocate and set up a chain of blocks.
393 * @num: depth of the chain (number of blocks to allocate)
394 * @offsets: offsets (in the blocks) to store the pointers to next.
395 * @branch: place to store the chain in.
397 * This function allocates @num blocks, zeroes out all but the last one,
398 * links them into chain and (if we are synchronous) writes them to disk.
399 * In other words, it prepares a branch that can be spliced onto the
400 * inode. It stores the information about that chain in the branch[], in
401 * the same format as ext2_get_branch() would do. We are calling it after
402 * we had read the existing part of chain and partial points to the last
403 * triple of that (one with zero ->key). Upon the exit we have the same
404 * picture as after the successful ext2_get_block(), excpet that in one
405 * place chain is disconnected - *branch->p is still zero (we did not
406 * set the last link), but branch->key contains the number that should
407 * be placed into *branch->p to fill that gap.
409 * If allocation fails we free all blocks we've allocated (and forget
410 * their buffer_heads) and return the error value the from failed
411 * ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
412 * as described above and return 0.
415 static int ext2_alloc_branch(struct inode
*inode
,
421 int blocksize
= inode
->i_sb
->s_blocksize
;
425 int parent
= ext2_alloc_block(inode
, goal
, &err
);
427 branch
[0].key
= cpu_to_le32(parent
);
428 if (parent
) for (n
= 1; n
< num
; n
++) {
429 struct buffer_head
*bh
;
430 /* Allocate the next block */
431 int nr
= ext2_alloc_block(inode
, parent
, &err
);
434 branch
[n
].key
= cpu_to_le32(nr
);
436 * Get buffer_head for parent block, zero it out and set
437 * the pointer to new one, then send parent to disk.
439 bh
= sb_getblk(inode
->i_sb
, parent
);
441 memset(bh
->b_data
, 0, blocksize
);
443 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
444 *branch
[n
].p
= branch
[n
].key
;
445 set_buffer_uptodate(bh
);
447 mark_buffer_dirty_inode(bh
, inode
);
448 /* We used to sync bh here if IS_SYNC(inode).
449 * But we now rely upon generic_osync_inode()
450 * and b_inode_buffers. But not for directories.
452 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
453 sync_dirty_buffer(bh
);
459 /* Allocation failed, free what we already allocated */
460 for (i
= 1; i
< n
; i
++)
461 bforget(branch
[i
].bh
);
462 for (i
= 0; i
< n
; i
++)
463 ext2_free_blocks(inode
, le32_to_cpu(branch
[i
].key
), 1);
468 * ext2_splice_branch - splice the allocated branch onto inode.
470 * @block: (logical) number of block we are adding
471 * @chain: chain of indirect blocks (with a missing link - see
473 * @where: location of missing link
474 * @num: number of blocks we are adding
476 * This function verifies that chain (up to the missing link) had not
477 * changed, fills the missing link and does all housekeeping needed in
478 * inode (->i_blocks, etc.). In case of success we end up with the full
479 * chain to new block and return 0. Otherwise (== chain had been changed)
480 * we free the new blocks (forgetting their buffer_heads, indeed) and
484 static inline int ext2_splice_branch(struct inode
*inode
,
490 struct ext2_inode_info
*ei
= EXT2_I(inode
);
493 /* Verify that place we are splicing to is still there and vacant */
495 write_lock(&ei
->i_meta_lock
);
496 if (!verify_chain(chain
, where
-1) || *where
->p
)
501 *where
->p
= where
->key
;
502 ei
->i_next_alloc_block
= block
;
503 ei
->i_next_alloc_goal
= le32_to_cpu(where
[num
-1].key
);
505 write_unlock(&ei
->i_meta_lock
);
507 /* We are done with atomic stuff, now do the rest of housekeeping */
509 inode
->i_ctime
= CURRENT_TIME_SEC
;
511 /* had we spliced it onto indirect block? */
513 mark_buffer_dirty_inode(where
->bh
, inode
);
515 mark_inode_dirty(inode
);
519 write_unlock(&ei
->i_meta_lock
);
520 for (i
= 1; i
< num
; i
++)
521 bforget(where
[i
].bh
);
522 for (i
= 0; i
< num
; i
++)
523 ext2_free_blocks(inode
, le32_to_cpu(where
[i
].key
), 1);
528 * Allocation strategy is simple: if we have to allocate something, we will
529 * have to go the whole way to leaf. So let's do it before attaching anything
530 * to tree, set linkage between the newborn blocks, write them if sync is
531 * required, recheck the path, free and repeat if check fails, otherwise
532 * set the last missing link (that will protect us from any truncate-generated
533 * removals - all blocks on the path are immune now) and possibly force the
534 * write on the parent block.
535 * That has a nice additional property: no special recovery from the failed
536 * allocations is needed - we simply release blocks and do not touch anything
537 * reachable from inode.
540 int ext2_get_block(struct inode
*inode
, sector_t iblock
, struct buffer_head
*bh_result
, int create
)
549 int depth
= ext2_block_to_path(inode
, iblock
, offsets
, &boundary
);
555 partial
= ext2_get_branch(inode
, depth
, offsets
, chain
, &err
);
557 /* Simplest case - block found, no allocation needed */
560 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
562 set_buffer_boundary(bh_result
);
563 /* Clean up and exit */
564 partial
= chain
+depth
-1; /* the whole chain */
568 /* Next simple case - plain lookup or failed read of indirect block */
569 if (!create
|| err
== -EIO
) {
571 while (partial
> chain
) {
580 * Indirect block might be removed by truncate while we were
581 * reading it. Handling of that case (forget what we've got and
582 * reread) is taken out of the main path.
588 if (ext2_find_goal(inode
, iblock
, chain
, partial
, &goal
) < 0)
591 left
= (chain
+ depth
) - partial
;
592 err
= ext2_alloc_branch(inode
, left
, goal
,
593 offsets
+(partial
-chain
), partial
);
597 if (ext2_splice_branch(inode
, iblock
, chain
, partial
, left
) < 0)
600 set_buffer_new(bh_result
);
604 while (partial
> chain
) {
611 static int ext2_writepage(struct page
*page
, struct writeback_control
*wbc
)
613 return block_write_full_page(page
, ext2_get_block
, wbc
);
616 static int ext2_readpage(struct file
*file
, struct page
*page
)
618 return mpage_readpage(page
, ext2_get_block
);
622 ext2_readpages(struct file
*file
, struct address_space
*mapping
,
623 struct list_head
*pages
, unsigned nr_pages
)
625 return mpage_readpages(mapping
, pages
, nr_pages
, ext2_get_block
);
629 ext2_prepare_write(struct file
*file
, struct page
*page
,
630 unsigned from
, unsigned to
)
632 return block_prepare_write(page
,from
,to
,ext2_get_block
);
636 ext2_nobh_prepare_write(struct file
*file
, struct page
*page
,
637 unsigned from
, unsigned to
)
639 return nobh_prepare_write(page
,from
,to
,ext2_get_block
);
642 static int ext2_nobh_writepage(struct page
*page
,
643 struct writeback_control
*wbc
)
645 return nobh_writepage(page
, ext2_get_block
, wbc
);
648 static sector_t
ext2_bmap(struct address_space
*mapping
, sector_t block
)
650 return generic_block_bmap(mapping
,block
,ext2_get_block
);
654 ext2_get_blocks(struct inode
*inode
, sector_t iblock
, unsigned long max_blocks
,
655 struct buffer_head
*bh_result
, int create
)
659 ret
= ext2_get_block(inode
, iblock
, bh_result
, create
);
661 bh_result
->b_size
= (1 << inode
->i_blkbits
);
666 ext2_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
667 loff_t offset
, unsigned long nr_segs
)
669 struct file
*file
= iocb
->ki_filp
;
670 struct inode
*inode
= file
->f_mapping
->host
;
672 return blockdev_direct_IO(rw
, iocb
, inode
, inode
->i_sb
->s_bdev
, iov
,
673 offset
, nr_segs
, ext2_get_blocks
, NULL
);
677 ext2_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
679 return mpage_writepages(mapping
, wbc
, ext2_get_block
);
682 struct address_space_operations ext2_aops
= {
683 .readpage
= ext2_readpage
,
684 .readpages
= ext2_readpages
,
685 .writepage
= ext2_writepage
,
686 .sync_page
= block_sync_page
,
687 .prepare_write
= ext2_prepare_write
,
688 .commit_write
= generic_commit_write
,
690 .direct_IO
= ext2_direct_IO
,
691 .writepages
= ext2_writepages
,
694 struct address_space_operations ext2_nobh_aops
= {
695 .readpage
= ext2_readpage
,
696 .readpages
= ext2_readpages
,
697 .writepage
= ext2_nobh_writepage
,
698 .sync_page
= block_sync_page
,
699 .prepare_write
= ext2_nobh_prepare_write
,
700 .commit_write
= nobh_commit_write
,
702 .direct_IO
= ext2_direct_IO
,
703 .writepages
= ext2_writepages
,
707 * Probably it should be a library function... search for first non-zero word
708 * or memcmp with zero_page, whatever is better for particular architecture.
711 static inline int all_zeroes(__le32
*p
, __le32
*q
)
720 * ext2_find_shared - find the indirect blocks for partial truncation.
721 * @inode: inode in question
722 * @depth: depth of the affected branch
723 * @offsets: offsets of pointers in that branch (see ext2_block_to_path)
724 * @chain: place to store the pointers to partial indirect blocks
725 * @top: place to the (detached) top of branch
727 * This is a helper function used by ext2_truncate().
729 * When we do truncate() we may have to clean the ends of several indirect
730 * blocks but leave the blocks themselves alive. Block is partially
731 * truncated if some data below the new i_size is refered from it (and
732 * it is on the path to the first completely truncated data block, indeed).
733 * We have to free the top of that path along with everything to the right
734 * of the path. Since no allocation past the truncation point is possible
735 * until ext2_truncate() finishes, we may safely do the latter, but top
736 * of branch may require special attention - pageout below the truncation
737 * point might try to populate it.
739 * We atomically detach the top of branch from the tree, store the block
740 * number of its root in *@top, pointers to buffer_heads of partially
741 * truncated blocks - in @chain[].bh and pointers to their last elements
742 * that should not be removed - in @chain[].p. Return value is the pointer
743 * to last filled element of @chain.
745 * The work left to caller to do the actual freeing of subtrees:
746 * a) free the subtree starting from *@top
747 * b) free the subtrees whose roots are stored in
748 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
749 * c) free the subtrees growing from the inode past the @chain[0].p
750 * (no partially truncated stuff there).
753 static Indirect
*ext2_find_shared(struct inode
*inode
,
759 Indirect
*partial
, *p
;
763 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
765 partial
= ext2_get_branch(inode
, k
, offsets
, chain
, &err
);
767 partial
= chain
+ k
-1;
769 * If the branch acquired continuation since we've looked at it -
770 * fine, it should all survive and (new) top doesn't belong to us.
772 write_lock(&EXT2_I(inode
)->i_meta_lock
);
773 if (!partial
->key
&& *partial
->p
) {
774 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
777 for (p
=partial
; p
>chain
&& all_zeroes((__le32
*)p
->bh
->b_data
,p
->p
); p
--)
780 * OK, we've found the last block that must survive. The rest of our
781 * branch should be detached before unlocking. However, if that rest
782 * of branch is all ours and does not grow immediately from the inode
783 * it's easier to cheat and just decrement partial->p.
785 if (p
== chain
+ k
- 1 && p
> chain
) {
791 write_unlock(&EXT2_I(inode
)->i_meta_lock
);
803 * ext2_free_data - free a list of data blocks
804 * @inode: inode we are dealing with
805 * @p: array of block numbers
806 * @q: points immediately past the end of array
808 * We are freeing all blocks refered from that array (numbers are
809 * stored as little-endian 32-bit) and updating @inode->i_blocks
812 static inline void ext2_free_data(struct inode
*inode
, __le32
*p
, __le32
*q
)
814 unsigned long block_to_free
= 0, count
= 0;
817 for ( ; p
< q
; p
++) {
818 nr
= le32_to_cpu(*p
);
821 /* accumulate blocks to free if they're contiguous */
824 else if (block_to_free
== nr
- count
)
827 mark_inode_dirty(inode
);
828 ext2_free_blocks (inode
, block_to_free
, count
);
836 mark_inode_dirty(inode
);
837 ext2_free_blocks (inode
, block_to_free
, count
);
842 * ext2_free_branches - free an array of branches
843 * @inode: inode we are dealing with
844 * @p: array of block numbers
845 * @q: pointer immediately past the end of array
846 * @depth: depth of the branches to free
848 * We are freeing all blocks refered from these branches (numbers are
849 * stored as little-endian 32-bit) and updating @inode->i_blocks
852 static void ext2_free_branches(struct inode
*inode
, __le32
*p
, __le32
*q
, int depth
)
854 struct buffer_head
* bh
;
858 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
859 for ( ; p
< q
; p
++) {
860 nr
= le32_to_cpu(*p
);
864 bh
= sb_bread(inode
->i_sb
, nr
);
866 * A read failure? Report error and clear slot
870 ext2_error(inode
->i_sb
, "ext2_free_branches",
871 "Read failure, inode=%ld, block=%ld",
875 ext2_free_branches(inode
,
877 (__le32
*)bh
->b_data
+ addr_per_block
,
880 ext2_free_blocks(inode
, nr
, 1);
881 mark_inode_dirty(inode
);
884 ext2_free_data(inode
, p
, q
);
887 void ext2_truncate (struct inode
* inode
)
889 __le32
*i_data
= EXT2_I(inode
)->i_data
;
890 int addr_per_block
= EXT2_ADDR_PER_BLOCK(inode
->i_sb
);
899 if (!(S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
900 S_ISLNK(inode
->i_mode
)))
902 if (ext2_inode_is_fast_symlink(inode
))
904 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
907 ext2_discard_prealloc(inode
);
909 blocksize
= inode
->i_sb
->s_blocksize
;
910 iblock
= (inode
->i_size
+ blocksize
-1)
911 >> EXT2_BLOCK_SIZE_BITS(inode
->i_sb
);
913 if (test_opt(inode
->i_sb
, NOBH
))
914 nobh_truncate_page(inode
->i_mapping
, inode
->i_size
);
916 block_truncate_page(inode
->i_mapping
,
917 inode
->i_size
, ext2_get_block
);
919 n
= ext2_block_to_path(inode
, iblock
, offsets
, NULL
);
924 ext2_free_data(inode
, i_data
+offsets
[0],
925 i_data
+ EXT2_NDIR_BLOCKS
);
929 partial
= ext2_find_shared(inode
, n
, offsets
, chain
, &nr
);
930 /* Kill the top of shared branch (already detached) */
932 if (partial
== chain
)
933 mark_inode_dirty(inode
);
935 mark_buffer_dirty_inode(partial
->bh
, inode
);
936 ext2_free_branches(inode
, &nr
, &nr
+1, (chain
+n
-1) - partial
);
938 /* Clear the ends of indirect blocks on the shared branch */
939 while (partial
> chain
) {
940 ext2_free_branches(inode
,
942 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
943 (chain
+n
-1) - partial
);
944 mark_buffer_dirty_inode(partial
->bh
, inode
);
945 brelse (partial
->bh
);
949 /* Kill the remaining (whole) subtrees */
950 switch (offsets
[0]) {
952 nr
= i_data
[EXT2_IND_BLOCK
];
954 i_data
[EXT2_IND_BLOCK
] = 0;
955 mark_inode_dirty(inode
);
956 ext2_free_branches(inode
, &nr
, &nr
+1, 1);
959 nr
= i_data
[EXT2_DIND_BLOCK
];
961 i_data
[EXT2_DIND_BLOCK
] = 0;
962 mark_inode_dirty(inode
);
963 ext2_free_branches(inode
, &nr
, &nr
+1, 2);
965 case EXT2_DIND_BLOCK
:
966 nr
= i_data
[EXT2_TIND_BLOCK
];
968 i_data
[EXT2_TIND_BLOCK
] = 0;
969 mark_inode_dirty(inode
);
970 ext2_free_branches(inode
, &nr
, &nr
+1, 3);
972 case EXT2_TIND_BLOCK
:
975 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME_SEC
;
976 if (inode_needs_sync(inode
)) {
977 sync_mapping_buffers(inode
->i_mapping
);
978 ext2_sync_inode (inode
);
980 mark_inode_dirty(inode
);
984 static struct ext2_inode
*ext2_get_inode(struct super_block
*sb
, ino_t ino
,
985 struct buffer_head
**p
)
987 struct buffer_head
* bh
;
988 unsigned long block_group
;
990 unsigned long offset
;
991 struct ext2_group_desc
* gdp
;
994 if ((ino
!= EXT2_ROOT_INO
&& ino
< EXT2_FIRST_INO(sb
)) ||
995 ino
> le32_to_cpu(EXT2_SB(sb
)->s_es
->s_inodes_count
))
998 block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(sb
);
999 gdp
= ext2_get_group_desc(sb
, block_group
, &bh
);
1003 * Figure out the offset within the block group inode table
1005 offset
= ((ino
- 1) % EXT2_INODES_PER_GROUP(sb
)) * EXT2_INODE_SIZE(sb
);
1006 block
= le32_to_cpu(gdp
->bg_inode_table
) +
1007 (offset
>> EXT2_BLOCK_SIZE_BITS(sb
));
1008 if (!(bh
= sb_bread(sb
, block
)))
1012 offset
&= (EXT2_BLOCK_SIZE(sb
) - 1);
1013 return (struct ext2_inode
*) (bh
->b_data
+ offset
);
1016 ext2_error(sb
, "ext2_get_inode", "bad inode number: %lu",
1017 (unsigned long) ino
);
1018 return ERR_PTR(-EINVAL
);
1020 ext2_error(sb
, "ext2_get_inode",
1021 "unable to read inode block - inode=%lu, block=%lu",
1022 (unsigned long) ino
, block
);
1024 return ERR_PTR(-EIO
);
1027 void ext2_set_inode_flags(struct inode
*inode
)
1029 unsigned int flags
= EXT2_I(inode
)->i_flags
;
1031 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
1032 if (flags
& EXT2_SYNC_FL
)
1033 inode
->i_flags
|= S_SYNC
;
1034 if (flags
& EXT2_APPEND_FL
)
1035 inode
->i_flags
|= S_APPEND
;
1036 if (flags
& EXT2_IMMUTABLE_FL
)
1037 inode
->i_flags
|= S_IMMUTABLE
;
1038 if (flags
& EXT2_NOATIME_FL
)
1039 inode
->i_flags
|= S_NOATIME
;
1040 if (flags
& EXT2_DIRSYNC_FL
)
1041 inode
->i_flags
|= S_DIRSYNC
;
1044 void ext2_read_inode (struct inode
* inode
)
1046 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1047 ino_t ino
= inode
->i_ino
;
1048 struct buffer_head
* bh
;
1049 struct ext2_inode
* raw_inode
= ext2_get_inode(inode
->i_sb
, ino
, &bh
);
1052 #ifdef CONFIG_EXT2_FS_POSIX_ACL
1053 ei
->i_acl
= EXT2_ACL_NOT_CACHED
;
1054 ei
->i_default_acl
= EXT2_ACL_NOT_CACHED
;
1056 if (IS_ERR(raw_inode
))
1059 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
1060 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
1061 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
1062 if (!(test_opt (inode
->i_sb
, NO_UID32
))) {
1063 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
1064 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
1066 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
1067 inode
->i_size
= le32_to_cpu(raw_inode
->i_size
);
1068 inode
->i_atime
.tv_sec
= le32_to_cpu(raw_inode
->i_atime
);
1069 inode
->i_ctime
.tv_sec
= le32_to_cpu(raw_inode
->i_ctime
);
1070 inode
->i_mtime
.tv_sec
= le32_to_cpu(raw_inode
->i_mtime
);
1071 inode
->i_atime
.tv_nsec
= inode
->i_mtime
.tv_nsec
= inode
->i_ctime
.tv_nsec
= 0;
1072 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
1073 /* We now have enough fields to check if the inode was active or not.
1074 * This is needed because nfsd might try to access dead inodes
1075 * the test is that same one that e2fsck uses
1076 * NeilBrown 1999oct15
1078 if (inode
->i_nlink
== 0 && (inode
->i_mode
== 0 || ei
->i_dtime
)) {
1079 /* this inode is deleted */
1083 inode
->i_blksize
= PAGE_SIZE
; /* This is the optimal IO size (for stat), not the fs block size */
1084 inode
->i_blocks
= le32_to_cpu(raw_inode
->i_blocks
);
1085 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
1086 ei
->i_faddr
= le32_to_cpu(raw_inode
->i_faddr
);
1087 ei
->i_frag_no
= raw_inode
->i_frag
;
1088 ei
->i_frag_size
= raw_inode
->i_fsize
;
1089 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl
);
1091 if (S_ISREG(inode
->i_mode
))
1092 inode
->i_size
|= ((__u64
)le32_to_cpu(raw_inode
->i_size_high
)) << 32;
1094 ei
->i_dir_acl
= le32_to_cpu(raw_inode
->i_dir_acl
);
1096 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
1098 ei
->i_next_alloc_block
= 0;
1099 ei
->i_next_alloc_goal
= 0;
1100 ei
->i_prealloc_count
= 0;
1101 ei
->i_block_group
= (ino
- 1) / EXT2_INODES_PER_GROUP(inode
->i_sb
);
1102 ei
->i_dir_start_lookup
= 0;
1105 * NOTE! The in-memory inode i_data array is in little-endian order
1106 * even on big-endian machines: we do NOT byteswap the block numbers!
1108 for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1109 ei
->i_data
[n
] = raw_inode
->i_block
[n
];
1111 if (S_ISREG(inode
->i_mode
)) {
1112 inode
->i_op
= &ext2_file_inode_operations
;
1113 inode
->i_fop
= &ext2_file_operations
;
1114 if (test_opt(inode
->i_sb
, NOBH
))
1115 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1117 inode
->i_mapping
->a_ops
= &ext2_aops
;
1118 } else if (S_ISDIR(inode
->i_mode
)) {
1119 inode
->i_op
= &ext2_dir_inode_operations
;
1120 inode
->i_fop
= &ext2_dir_operations
;
1121 if (test_opt(inode
->i_sb
, NOBH
))
1122 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1124 inode
->i_mapping
->a_ops
= &ext2_aops
;
1125 } else if (S_ISLNK(inode
->i_mode
)) {
1126 if (ext2_inode_is_fast_symlink(inode
))
1127 inode
->i_op
= &ext2_fast_symlink_inode_operations
;
1129 inode
->i_op
= &ext2_symlink_inode_operations
;
1130 if (test_opt(inode
->i_sb
, NOBH
))
1131 inode
->i_mapping
->a_ops
= &ext2_nobh_aops
;
1133 inode
->i_mapping
->a_ops
= &ext2_aops
;
1136 inode
->i_op
= &ext2_special_inode_operations
;
1137 if (raw_inode
->i_block
[0])
1138 init_special_inode(inode
, inode
->i_mode
,
1139 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
1141 init_special_inode(inode
, inode
->i_mode
,
1142 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
1145 ext2_set_inode_flags(inode
);
1149 make_bad_inode(inode
);
1153 static int ext2_update_inode(struct inode
* inode
, int do_sync
)
1155 struct ext2_inode_info
*ei
= EXT2_I(inode
);
1156 struct super_block
*sb
= inode
->i_sb
;
1157 ino_t ino
= inode
->i_ino
;
1158 uid_t uid
= inode
->i_uid
;
1159 gid_t gid
= inode
->i_gid
;
1160 struct buffer_head
* bh
;
1161 struct ext2_inode
* raw_inode
= ext2_get_inode(sb
, ino
, &bh
);
1165 if (IS_ERR(raw_inode
))
1168 /* For fields not not tracking in the in-memory inode,
1169 * initialise them to zero for new inodes. */
1170 if (ei
->i_state
& EXT2_STATE_NEW
)
1171 memset(raw_inode
, 0, EXT2_SB(sb
)->s_inode_size
);
1173 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
1174 if (!(test_opt(sb
, NO_UID32
))) {
1175 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(uid
));
1176 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(gid
));
1178 * Fix up interoperability with old kernels. Otherwise, old inodes get
1179 * re-used with the upper 16 bits of the uid/gid intact
1182 raw_inode
->i_uid_high
= cpu_to_le16(high_16_bits(uid
));
1183 raw_inode
->i_gid_high
= cpu_to_le16(high_16_bits(gid
));
1185 raw_inode
->i_uid_high
= 0;
1186 raw_inode
->i_gid_high
= 0;
1189 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(uid
));
1190 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(gid
));
1191 raw_inode
->i_uid_high
= 0;
1192 raw_inode
->i_gid_high
= 0;
1194 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
1195 raw_inode
->i_size
= cpu_to_le32(inode
->i_size
);
1196 raw_inode
->i_atime
= cpu_to_le32(inode
->i_atime
.tv_sec
);
1197 raw_inode
->i_ctime
= cpu_to_le32(inode
->i_ctime
.tv_sec
);
1198 raw_inode
->i_mtime
= cpu_to_le32(inode
->i_mtime
.tv_sec
);
1200 raw_inode
->i_blocks
= cpu_to_le32(inode
->i_blocks
);
1201 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
1202 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
1203 raw_inode
->i_faddr
= cpu_to_le32(ei
->i_faddr
);
1204 raw_inode
->i_frag
= ei
->i_frag_no
;
1205 raw_inode
->i_fsize
= ei
->i_frag_size
;
1206 raw_inode
->i_file_acl
= cpu_to_le32(ei
->i_file_acl
);
1207 if (!S_ISREG(inode
->i_mode
))
1208 raw_inode
->i_dir_acl
= cpu_to_le32(ei
->i_dir_acl
);
1210 raw_inode
->i_size_high
= cpu_to_le32(inode
->i_size
>> 32);
1211 if (inode
->i_size
> 0x7fffffffULL
) {
1212 if (!EXT2_HAS_RO_COMPAT_FEATURE(sb
,
1213 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
) ||
1214 EXT2_SB(sb
)->s_es
->s_rev_level
==
1215 cpu_to_le32(EXT2_GOOD_OLD_REV
)) {
1216 /* If this is the first large file
1217 * created, add a flag to the superblock.
1220 ext2_update_dynamic_rev(sb
);
1221 EXT2_SET_RO_COMPAT_FEATURE(sb
,
1222 EXT2_FEATURE_RO_COMPAT_LARGE_FILE
);
1224 ext2_write_super(sb
);
1229 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
1230 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
1231 if (old_valid_dev(inode
->i_rdev
)) {
1232 raw_inode
->i_block
[0] =
1233 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
1234 raw_inode
->i_block
[1] = 0;
1236 raw_inode
->i_block
[0] = 0;
1237 raw_inode
->i_block
[1] =
1238 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
1239 raw_inode
->i_block
[2] = 0;
1241 } else for (n
= 0; n
< EXT2_N_BLOCKS
; n
++)
1242 raw_inode
->i_block
[n
] = ei
->i_data
[n
];
1243 mark_buffer_dirty(bh
);
1245 sync_dirty_buffer(bh
);
1246 if (buffer_req(bh
) && !buffer_uptodate(bh
)) {
1247 printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1248 sb
->s_id
, (unsigned long) ino
);
1252 ei
->i_state
&= ~EXT2_STATE_NEW
;
1257 int ext2_write_inode(struct inode
*inode
, int wait
)
1259 return ext2_update_inode(inode
, wait
);
1262 int ext2_sync_inode(struct inode
*inode
)
1264 struct writeback_control wbc
= {
1265 .sync_mode
= WB_SYNC_ALL
,
1266 .nr_to_write
= 0, /* sys_fsync did this */
1268 return sync_inode(inode
, &wbc
);
1271 int ext2_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
1273 struct inode
*inode
= dentry
->d_inode
;
1276 error
= inode_change_ok(inode
, iattr
);
1279 if ((iattr
->ia_valid
& ATTR_UID
&& iattr
->ia_uid
!= inode
->i_uid
) ||
1280 (iattr
->ia_valid
& ATTR_GID
&& iattr
->ia_gid
!= inode
->i_gid
)) {
1281 error
= DQUOT_TRANSFER(inode
, iattr
) ? -EDQUOT
: 0;
1285 error
= inode_setattr(inode
, iattr
);
1286 if (!error
&& (iattr
->ia_valid
& ATTR_MODE
))
1287 error
= ext2_acl_chmod(inode
);