2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
34 * The subsystem keeps a global list of dma_device structs it is protected by a
35 * mutex, dma_list_mutex.
37 * A subsystem can get access to a channel by calling dmaengine_get() followed
38 * by dma_find_channel(), or if it has need for an exclusive channel it can call
39 * dma_request_channel(). Once a channel is allocated a reference is taken
40 * against its corresponding driver to disable removal.
42 * Each device has a channels list, which runs unlocked but is never modified
43 * once the device is registered, it's just setup by the driver.
45 * See Documentation/dmaengine.txt for more details
48 #include <linux/init.h>
49 #include <linux/module.h>
51 #include <linux/device.h>
52 #include <linux/dmaengine.h>
53 #include <linux/hardirq.h>
54 #include <linux/spinlock.h>
55 #include <linux/percpu.h>
56 #include <linux/rcupdate.h>
57 #include <linux/mutex.h>
58 #include <linux/jiffies.h>
59 #include <linux/rculist.h>
60 #include <linux/idr.h>
62 static DEFINE_MUTEX(dma_list_mutex
);
63 static LIST_HEAD(dma_device_list
);
64 static long dmaengine_ref_count
;
65 static struct idr dma_idr
;
67 /* --- sysfs implementation --- */
70 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
73 * Must be called under dma_list_mutex
75 static struct dma_chan
*dev_to_dma_chan(struct device
*dev
)
77 struct dma_chan_dev
*chan_dev
;
79 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
80 return chan_dev
->chan
;
83 static ssize_t
show_memcpy_count(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
85 struct dma_chan
*chan
;
86 unsigned long count
= 0;
90 mutex_lock(&dma_list_mutex
);
91 chan
= dev_to_dma_chan(dev
);
93 for_each_possible_cpu(i
)
94 count
+= per_cpu_ptr(chan
->local
, i
)->memcpy_count
;
95 err
= sprintf(buf
, "%lu\n", count
);
98 mutex_unlock(&dma_list_mutex
);
103 static ssize_t
show_bytes_transferred(struct device
*dev
, struct device_attribute
*attr
,
106 struct dma_chan
*chan
;
107 unsigned long count
= 0;
111 mutex_lock(&dma_list_mutex
);
112 chan
= dev_to_dma_chan(dev
);
114 for_each_possible_cpu(i
)
115 count
+= per_cpu_ptr(chan
->local
, i
)->bytes_transferred
;
116 err
= sprintf(buf
, "%lu\n", count
);
119 mutex_unlock(&dma_list_mutex
);
124 static ssize_t
show_in_use(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
126 struct dma_chan
*chan
;
129 mutex_lock(&dma_list_mutex
);
130 chan
= dev_to_dma_chan(dev
);
132 err
= sprintf(buf
, "%d\n", chan
->client_count
);
135 mutex_unlock(&dma_list_mutex
);
140 static struct device_attribute dma_attrs
[] = {
141 __ATTR(memcpy_count
, S_IRUGO
, show_memcpy_count
, NULL
),
142 __ATTR(bytes_transferred
, S_IRUGO
, show_bytes_transferred
, NULL
),
143 __ATTR(in_use
, S_IRUGO
, show_in_use
, NULL
),
147 static void chan_dev_release(struct device
*dev
)
149 struct dma_chan_dev
*chan_dev
;
151 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
152 if (atomic_dec_and_test(chan_dev
->idr_ref
)) {
153 mutex_lock(&dma_list_mutex
);
154 idr_remove(&dma_idr
, chan_dev
->dev_id
);
155 mutex_unlock(&dma_list_mutex
);
156 kfree(chan_dev
->idr_ref
);
161 static struct class dma_devclass
= {
163 .dev_attrs
= dma_attrs
,
164 .dev_release
= chan_dev_release
,
167 /* --- client and device registration --- */
169 #define dma_device_satisfies_mask(device, mask) \
170 __dma_device_satisfies_mask((device), &(mask))
172 __dma_device_satisfies_mask(struct dma_device
*device
, dma_cap_mask_t
*want
)
176 bitmap_and(has
.bits
, want
->bits
, device
->cap_mask
.bits
,
178 return bitmap_equal(want
->bits
, has
.bits
, DMA_TX_TYPE_END
);
181 static struct module
*dma_chan_to_owner(struct dma_chan
*chan
)
183 return chan
->device
->dev
->driver
->owner
;
187 * balance_ref_count - catch up the channel reference count
188 * @chan - channel to balance ->client_count versus dmaengine_ref_count
190 * balance_ref_count must be called under dma_list_mutex
192 static void balance_ref_count(struct dma_chan
*chan
)
194 struct module
*owner
= dma_chan_to_owner(chan
);
196 while (chan
->client_count
< dmaengine_ref_count
) {
198 chan
->client_count
++;
203 * dma_chan_get - try to grab a dma channel's parent driver module
204 * @chan - channel to grab
206 * Must be called under dma_list_mutex
208 static int dma_chan_get(struct dma_chan
*chan
)
211 struct module
*owner
= dma_chan_to_owner(chan
);
213 if (chan
->client_count
) {
216 } else if (try_module_get(owner
))
220 chan
->client_count
++;
222 /* allocate upon first client reference */
223 if (chan
->client_count
== 1 && err
== 0) {
224 int desc_cnt
= chan
->device
->device_alloc_chan_resources(chan
);
228 chan
->client_count
= 0;
230 } else if (!dma_has_cap(DMA_PRIVATE
, chan
->device
->cap_mask
))
231 balance_ref_count(chan
);
238 * dma_chan_put - drop a reference to a dma channel's parent driver module
239 * @chan - channel to release
241 * Must be called under dma_list_mutex
243 static void dma_chan_put(struct dma_chan
*chan
)
245 if (!chan
->client_count
)
246 return; /* this channel failed alloc_chan_resources */
247 chan
->client_count
--;
248 module_put(dma_chan_to_owner(chan
));
249 if (chan
->client_count
== 0)
250 chan
->device
->device_free_chan_resources(chan
);
253 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
)
255 enum dma_status status
;
256 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
258 dma_async_issue_pending(chan
);
260 status
= dma_async_is_tx_complete(chan
, cookie
, NULL
, NULL
);
261 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
262 printk(KERN_ERR
"dma_sync_wait_timeout!\n");
265 } while (status
== DMA_IN_PROGRESS
);
269 EXPORT_SYMBOL(dma_sync_wait
);
272 * dma_cap_mask_all - enable iteration over all operation types
274 static dma_cap_mask_t dma_cap_mask_all
;
277 * dma_chan_tbl_ent - tracks channel allocations per core/operation
278 * @chan - associated channel for this entry
280 struct dma_chan_tbl_ent
{
281 struct dma_chan
*chan
;
285 * channel_table - percpu lookup table for memory-to-memory offload providers
287 static struct dma_chan_tbl_ent
*channel_table
[DMA_TX_TYPE_END
];
289 static int __init
dma_channel_table_init(void)
291 enum dma_transaction_type cap
;
294 bitmap_fill(dma_cap_mask_all
.bits
, DMA_TX_TYPE_END
);
296 /* 'interrupt', 'private', and 'slave' are channel capabilities,
297 * but are not associated with an operation so they do not need
298 * an entry in the channel_table
300 clear_bit(DMA_INTERRUPT
, dma_cap_mask_all
.bits
);
301 clear_bit(DMA_PRIVATE
, dma_cap_mask_all
.bits
);
302 clear_bit(DMA_SLAVE
, dma_cap_mask_all
.bits
);
304 for_each_dma_cap_mask(cap
, dma_cap_mask_all
) {
305 channel_table
[cap
] = alloc_percpu(struct dma_chan_tbl_ent
);
306 if (!channel_table
[cap
]) {
313 pr_err("dmaengine: initialization failure\n");
314 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
315 if (channel_table
[cap
])
316 free_percpu(channel_table
[cap
]);
321 arch_initcall(dma_channel_table_init
);
324 * dma_find_channel - find a channel to carry out the operation
325 * @tx_type: transaction type
327 struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
)
329 struct dma_chan
*chan
;
333 chan
= per_cpu_ptr(channel_table
[tx_type
], cpu
)->chan
;
338 EXPORT_SYMBOL(dma_find_channel
);
341 * dma_issue_pending_all - flush all pending operations across all channels
343 void dma_issue_pending_all(void)
345 struct dma_device
*device
;
346 struct dma_chan
*chan
;
349 list_for_each_entry_rcu(device
, &dma_device_list
, global_node
) {
350 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
352 list_for_each_entry(chan
, &device
->channels
, device_node
)
353 if (chan
->client_count
)
354 device
->device_issue_pending(chan
);
358 EXPORT_SYMBOL(dma_issue_pending_all
);
361 * nth_chan - returns the nth channel of the given capability
362 * @cap: capability to match
363 * @n: nth channel desired
365 * Defaults to returning the channel with the desired capability and the
366 * lowest reference count when 'n' cannot be satisfied. Must be called
367 * under dma_list_mutex.
369 static struct dma_chan
*nth_chan(enum dma_transaction_type cap
, int n
)
371 struct dma_device
*device
;
372 struct dma_chan
*chan
;
373 struct dma_chan
*ret
= NULL
;
374 struct dma_chan
*min
= NULL
;
376 list_for_each_entry(device
, &dma_device_list
, global_node
) {
377 if (!dma_has_cap(cap
, device
->cap_mask
) ||
378 dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
380 list_for_each_entry(chan
, &device
->channels
, device_node
) {
381 if (!chan
->client_count
)
385 else if (chan
->table_count
< min
->table_count
)
407 * dma_channel_rebalance - redistribute the available channels
409 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
410 * operation type) in the SMP case, and operation isolation (avoid
411 * multi-tasking channels) in the non-SMP case. Must be called under
414 static void dma_channel_rebalance(void)
416 struct dma_chan
*chan
;
417 struct dma_device
*device
;
422 /* undo the last distribution */
423 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
424 for_each_possible_cpu(cpu
)
425 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= NULL
;
427 list_for_each_entry(device
, &dma_device_list
, global_node
) {
428 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
430 list_for_each_entry(chan
, &device
->channels
, device_node
)
431 chan
->table_count
= 0;
434 /* don't populate the channel_table if no clients are available */
435 if (!dmaengine_ref_count
)
438 /* redistribute available channels */
440 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
441 for_each_online_cpu(cpu
) {
442 if (num_possible_cpus() > 1)
443 chan
= nth_chan(cap
, n
++);
445 chan
= nth_chan(cap
, -1);
447 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= chan
;
451 static struct dma_chan
*private_candidate(dma_cap_mask_t
*mask
, struct dma_device
*dev
,
452 dma_filter_fn fn
, void *fn_param
)
454 struct dma_chan
*chan
;
456 if (!__dma_device_satisfies_mask(dev
, mask
)) {
457 pr_debug("%s: wrong capabilities\n", __func__
);
460 /* devices with multiple channels need special handling as we need to
461 * ensure that all channels are either private or public.
463 if (dev
->chancnt
> 1 && !dma_has_cap(DMA_PRIVATE
, dev
->cap_mask
))
464 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
465 /* some channels are already publicly allocated */
466 if (chan
->client_count
)
470 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
471 if (chan
->client_count
) {
472 pr_debug("%s: %s busy\n",
473 __func__
, dma_chan_name(chan
));
476 if (fn
&& !fn(chan
, fn_param
)) {
477 pr_debug("%s: %s filter said false\n",
478 __func__
, dma_chan_name(chan
));
488 * dma_request_channel - try to allocate an exclusive channel
489 * @mask: capabilities that the channel must satisfy
490 * @fn: optional callback to disposition available channels
491 * @fn_param: opaque parameter to pass to dma_filter_fn
493 struct dma_chan
*__dma_request_channel(dma_cap_mask_t
*mask
, dma_filter_fn fn
, void *fn_param
)
495 struct dma_device
*device
, *_d
;
496 struct dma_chan
*chan
= NULL
;
500 mutex_lock(&dma_list_mutex
);
501 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
502 chan
= private_candidate(mask
, device
, fn
, fn_param
);
504 /* Found a suitable channel, try to grab, prep, and
505 * return it. We first set DMA_PRIVATE to disable
506 * balance_ref_count as this channel will not be
507 * published in the general-purpose allocator
509 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
510 err
= dma_chan_get(chan
);
512 if (err
== -ENODEV
) {
513 pr_debug("%s: %s module removed\n", __func__
,
514 dma_chan_name(chan
));
515 list_del_rcu(&device
->global_node
);
517 pr_err("dmaengine: failed to get %s: (%d)\n",
518 dma_chan_name(chan
), err
);
524 mutex_unlock(&dma_list_mutex
);
526 pr_debug("%s: %s (%s)\n", __func__
, chan
? "success" : "fail",
527 chan
? dma_chan_name(chan
) : NULL
);
531 EXPORT_SYMBOL_GPL(__dma_request_channel
);
533 void dma_release_channel(struct dma_chan
*chan
)
535 mutex_lock(&dma_list_mutex
);
536 WARN_ONCE(chan
->client_count
!= 1,
537 "chan reference count %d != 1\n", chan
->client_count
);
539 mutex_unlock(&dma_list_mutex
);
541 EXPORT_SYMBOL_GPL(dma_release_channel
);
544 * dmaengine_get - register interest in dma_channels
546 void dmaengine_get(void)
548 struct dma_device
*device
, *_d
;
549 struct dma_chan
*chan
;
552 mutex_lock(&dma_list_mutex
);
553 dmaengine_ref_count
++;
555 /* try to grab channels */
556 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
557 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
559 list_for_each_entry(chan
, &device
->channels
, device_node
) {
560 err
= dma_chan_get(chan
);
561 if (err
== -ENODEV
) {
562 /* module removed before we could use it */
563 list_del_rcu(&device
->global_node
);
566 pr_err("dmaengine: failed to get %s: (%d)\n",
567 dma_chan_name(chan
), err
);
571 /* if this is the first reference and there were channels
572 * waiting we need to rebalance to get those channels
573 * incorporated into the channel table
575 if (dmaengine_ref_count
== 1)
576 dma_channel_rebalance();
577 mutex_unlock(&dma_list_mutex
);
579 EXPORT_SYMBOL(dmaengine_get
);
582 * dmaengine_put - let dma drivers be removed when ref_count == 0
584 void dmaengine_put(void)
586 struct dma_device
*device
;
587 struct dma_chan
*chan
;
589 mutex_lock(&dma_list_mutex
);
590 dmaengine_ref_count
--;
591 BUG_ON(dmaengine_ref_count
< 0);
592 /* drop channel references */
593 list_for_each_entry(device
, &dma_device_list
, global_node
) {
594 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
596 list_for_each_entry(chan
, &device
->channels
, device_node
)
599 mutex_unlock(&dma_list_mutex
);
601 EXPORT_SYMBOL(dmaengine_put
);
604 * dma_async_device_register - registers DMA devices found
605 * @device: &dma_device
607 int dma_async_device_register(struct dma_device
*device
)
610 struct dma_chan
* chan
;
616 /* validate device routines */
617 BUG_ON(dma_has_cap(DMA_MEMCPY
, device
->cap_mask
) &&
618 !device
->device_prep_dma_memcpy
);
619 BUG_ON(dma_has_cap(DMA_XOR
, device
->cap_mask
) &&
620 !device
->device_prep_dma_xor
);
621 BUG_ON(dma_has_cap(DMA_ZERO_SUM
, device
->cap_mask
) &&
622 !device
->device_prep_dma_zero_sum
);
623 BUG_ON(dma_has_cap(DMA_MEMSET
, device
->cap_mask
) &&
624 !device
->device_prep_dma_memset
);
625 BUG_ON(dma_has_cap(DMA_INTERRUPT
, device
->cap_mask
) &&
626 !device
->device_prep_dma_interrupt
);
627 BUG_ON(dma_has_cap(DMA_SLAVE
, device
->cap_mask
) &&
628 !device
->device_prep_slave_sg
);
629 BUG_ON(dma_has_cap(DMA_SLAVE
, device
->cap_mask
) &&
630 !device
->device_terminate_all
);
632 BUG_ON(!device
->device_alloc_chan_resources
);
633 BUG_ON(!device
->device_free_chan_resources
);
634 BUG_ON(!device
->device_is_tx_complete
);
635 BUG_ON(!device
->device_issue_pending
);
636 BUG_ON(!device
->dev
);
638 idr_ref
= kmalloc(sizeof(*idr_ref
), GFP_KERNEL
);
641 atomic_set(idr_ref
, 0);
643 if (!idr_pre_get(&dma_idr
, GFP_KERNEL
))
645 mutex_lock(&dma_list_mutex
);
646 rc
= idr_get_new(&dma_idr
, NULL
, &device
->dev_id
);
647 mutex_unlock(&dma_list_mutex
);
653 /* represent channels in sysfs. Probably want devs too */
654 list_for_each_entry(chan
, &device
->channels
, device_node
) {
655 chan
->local
= alloc_percpu(typeof(*chan
->local
));
656 if (chan
->local
== NULL
)
658 chan
->dev
= kzalloc(sizeof(*chan
->dev
), GFP_KERNEL
);
659 if (chan
->dev
== NULL
) {
660 free_percpu(chan
->local
);
664 chan
->chan_id
= chancnt
++;
665 chan
->dev
->device
.class = &dma_devclass
;
666 chan
->dev
->device
.parent
= device
->dev
;
667 chan
->dev
->chan
= chan
;
668 chan
->dev
->idr_ref
= idr_ref
;
669 chan
->dev
->dev_id
= device
->dev_id
;
671 dev_set_name(&chan
->dev
->device
, "dma%dchan%d",
672 device
->dev_id
, chan
->chan_id
);
674 rc
= device_register(&chan
->dev
->device
);
676 free_percpu(chan
->local
);
680 chan
->client_count
= 0;
682 device
->chancnt
= chancnt
;
684 mutex_lock(&dma_list_mutex
);
685 /* take references on public channels */
686 if (dmaengine_ref_count
&& !dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
687 list_for_each_entry(chan
, &device
->channels
, device_node
) {
688 /* if clients are already waiting for channels we need
689 * to take references on their behalf
691 if (dma_chan_get(chan
) == -ENODEV
) {
692 /* note we can only get here for the first
693 * channel as the remaining channels are
694 * guaranteed to get a reference
697 mutex_unlock(&dma_list_mutex
);
701 list_add_tail_rcu(&device
->global_node
, &dma_device_list
);
702 dma_channel_rebalance();
703 mutex_unlock(&dma_list_mutex
);
708 list_for_each_entry(chan
, &device
->channels
, device_node
) {
709 if (chan
->local
== NULL
)
711 mutex_lock(&dma_list_mutex
);
712 chan
->dev
->chan
= NULL
;
713 mutex_unlock(&dma_list_mutex
);
714 device_unregister(&chan
->dev
->device
);
715 free_percpu(chan
->local
);
719 EXPORT_SYMBOL(dma_async_device_register
);
722 * dma_async_device_unregister - unregister a DMA device
723 * @device: &dma_device
725 * This routine is called by dma driver exit routines, dmaengine holds module
726 * references to prevent it being called while channels are in use.
728 void dma_async_device_unregister(struct dma_device
*device
)
730 struct dma_chan
*chan
;
732 mutex_lock(&dma_list_mutex
);
733 list_del_rcu(&device
->global_node
);
734 dma_channel_rebalance();
735 mutex_unlock(&dma_list_mutex
);
737 list_for_each_entry(chan
, &device
->channels
, device_node
) {
738 WARN_ONCE(chan
->client_count
,
739 "%s called while %d clients hold a reference\n",
740 __func__
, chan
->client_count
);
741 mutex_lock(&dma_list_mutex
);
742 chan
->dev
->chan
= NULL
;
743 mutex_unlock(&dma_list_mutex
);
744 device_unregister(&chan
->dev
->device
);
747 EXPORT_SYMBOL(dma_async_device_unregister
);
750 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
751 * @chan: DMA channel to offload copy to
752 * @dest: destination address (virtual)
753 * @src: source address (virtual)
756 * Both @dest and @src must be mappable to a bus address according to the
757 * DMA mapping API rules for streaming mappings.
758 * Both @dest and @src must stay memory resident (kernel memory or locked
762 dma_async_memcpy_buf_to_buf(struct dma_chan
*chan
, void *dest
,
763 void *src
, size_t len
)
765 struct dma_device
*dev
= chan
->device
;
766 struct dma_async_tx_descriptor
*tx
;
767 dma_addr_t dma_dest
, dma_src
;
771 dma_src
= dma_map_single(dev
->dev
, src
, len
, DMA_TO_DEVICE
);
772 dma_dest
= dma_map_single(dev
->dev
, dest
, len
, DMA_FROM_DEVICE
);
773 tx
= dev
->device_prep_dma_memcpy(chan
, dma_dest
, dma_src
, len
,
777 dma_unmap_single(dev
->dev
, dma_src
, len
, DMA_TO_DEVICE
);
778 dma_unmap_single(dev
->dev
, dma_dest
, len
, DMA_FROM_DEVICE
);
783 cookie
= tx
->tx_submit(tx
);
786 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
787 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
792 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf
);
795 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
796 * @chan: DMA channel to offload copy to
797 * @page: destination page
798 * @offset: offset in page to copy to
799 * @kdata: source address (virtual)
802 * Both @page/@offset and @kdata must be mappable to a bus address according
803 * to the DMA mapping API rules for streaming mappings.
804 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
805 * locked user space pages)
808 dma_async_memcpy_buf_to_pg(struct dma_chan
*chan
, struct page
*page
,
809 unsigned int offset
, void *kdata
, size_t len
)
811 struct dma_device
*dev
= chan
->device
;
812 struct dma_async_tx_descriptor
*tx
;
813 dma_addr_t dma_dest
, dma_src
;
817 dma_src
= dma_map_single(dev
->dev
, kdata
, len
, DMA_TO_DEVICE
);
818 dma_dest
= dma_map_page(dev
->dev
, page
, offset
, len
, DMA_FROM_DEVICE
);
819 tx
= dev
->device_prep_dma_memcpy(chan
, dma_dest
, dma_src
, len
,
823 dma_unmap_single(dev
->dev
, dma_src
, len
, DMA_TO_DEVICE
);
824 dma_unmap_page(dev
->dev
, dma_dest
, len
, DMA_FROM_DEVICE
);
829 cookie
= tx
->tx_submit(tx
);
832 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
833 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
838 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg
);
841 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
842 * @chan: DMA channel to offload copy to
843 * @dest_pg: destination page
844 * @dest_off: offset in page to copy to
845 * @src_pg: source page
846 * @src_off: offset in page to copy from
849 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
850 * address according to the DMA mapping API rules for streaming mappings.
851 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
852 * (kernel memory or locked user space pages).
855 dma_async_memcpy_pg_to_pg(struct dma_chan
*chan
, struct page
*dest_pg
,
856 unsigned int dest_off
, struct page
*src_pg
, unsigned int src_off
,
859 struct dma_device
*dev
= chan
->device
;
860 struct dma_async_tx_descriptor
*tx
;
861 dma_addr_t dma_dest
, dma_src
;
865 dma_src
= dma_map_page(dev
->dev
, src_pg
, src_off
, len
, DMA_TO_DEVICE
);
866 dma_dest
= dma_map_page(dev
->dev
, dest_pg
, dest_off
, len
,
868 tx
= dev
->device_prep_dma_memcpy(chan
, dma_dest
, dma_src
, len
,
872 dma_unmap_page(dev
->dev
, dma_src
, len
, DMA_TO_DEVICE
);
873 dma_unmap_page(dev
->dev
, dma_dest
, len
, DMA_FROM_DEVICE
);
878 cookie
= tx
->tx_submit(tx
);
881 per_cpu_ptr(chan
->local
, cpu
)->bytes_transferred
+= len
;
882 per_cpu_ptr(chan
->local
, cpu
)->memcpy_count
++;
887 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg
);
889 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
890 struct dma_chan
*chan
)
893 spin_lock_init(&tx
->lock
);
895 EXPORT_SYMBOL(dma_async_tx_descriptor_init
);
897 /* dma_wait_for_async_tx - spin wait for a transaction to complete
898 * @tx: in-flight transaction to wait on
900 * This routine assumes that tx was obtained from a call to async_memcpy,
901 * async_xor, async_memset, etc which ensures that tx is "in-flight" (prepped
902 * and submitted). Walking the parent chain is only meant to cover for DMA
903 * drivers that do not implement the DMA_INTERRUPT capability and may race with
904 * the driver's descriptor cleanup routine.
907 dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
)
909 enum dma_status status
;
910 struct dma_async_tx_descriptor
*iter
;
911 struct dma_async_tx_descriptor
*parent
;
916 WARN_ONCE(tx
->parent
, "%s: speculatively walking dependency chain for"
917 " %s\n", __func__
, dma_chan_name(tx
->chan
));
919 /* poll through the dependency chain, return when tx is complete */
923 /* find the root of the unsubmitted dependency chain */
925 parent
= iter
->parent
;
932 /* there is a small window for ->parent == NULL and
935 while (iter
->cookie
== -EBUSY
)
938 status
= dma_sync_wait(iter
->chan
, iter
->cookie
);
939 } while (status
== DMA_IN_PROGRESS
|| (iter
!= tx
));
943 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx
);
945 /* dma_run_dependencies - helper routine for dma drivers to process
946 * (start) dependent operations on their target channel
947 * @tx: transaction with dependencies
949 void dma_run_dependencies(struct dma_async_tx_descriptor
*tx
)
951 struct dma_async_tx_descriptor
*dep
= tx
->next
;
952 struct dma_async_tx_descriptor
*dep_next
;
953 struct dma_chan
*chan
;
958 /* we'll submit tx->next now, so clear the link */
962 /* keep submitting up until a channel switch is detected
963 * in that case we will be called again as a result of
964 * processing the interrupt from async_tx_channel_switch
966 for (; dep
; dep
= dep_next
) {
967 spin_lock_bh(&dep
->lock
);
969 dep_next
= dep
->next
;
970 if (dep_next
&& dep_next
->chan
== chan
)
971 dep
->next
= NULL
; /* ->next will be submitted */
973 dep_next
= NULL
; /* submit current dep and terminate */
974 spin_unlock_bh(&dep
->lock
);
979 chan
->device
->device_issue_pending(chan
);
981 EXPORT_SYMBOL_GPL(dma_run_dependencies
);
983 static int __init
dma_bus_init(void)
986 mutex_init(&dma_list_mutex
);
987 return class_register(&dma_devclass
);
989 arch_initcall(dma_bus_init
);