Staging: tidspbridge: Makefile: replace the use of <module>-objs with <module>-y
[wandboard.git] / drivers / char / hpet.c
bloba0a1829d3198fc19ccab2748718dbee2f814db86
1 /*
2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
5 * Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/smp_lock.h>
18 #include <linux/types.h>
19 #include <linux/miscdevice.h>
20 #include <linux/major.h>
21 #include <linux/ioport.h>
22 #include <linux/fcntl.h>
23 #include <linux/init.h>
24 #include <linux/poll.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/spinlock.h>
28 #include <linux/sysctl.h>
29 #include <linux/wait.h>
30 #include <linux/bcd.h>
31 #include <linux/seq_file.h>
32 #include <linux/bitops.h>
33 #include <linux/clocksource.h>
34 #include <linux/slab.h>
36 #include <asm/current.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
65 #else
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
68 #endif
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
76 static cycle_t read_hpet(struct clocksource *cs)
78 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
81 static struct clocksource clocksource_hpet = {
82 .name = "hpet",
83 .rating = 250,
84 .read = read_hpet,
85 .mask = CLOCKSOURCE_MASK(64),
86 .mult = 0, /* to be calculated */
87 .shift = 10,
88 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
90 static struct clocksource *hpet_clocksource;
91 #endif
93 /* A lock for concurrent access by app and isr hpet activity. */
94 static DEFINE_SPINLOCK(hpet_lock);
96 #define HPET_DEV_NAME (7)
98 struct hpet_dev {
99 struct hpets *hd_hpets;
100 struct hpet __iomem *hd_hpet;
101 struct hpet_timer __iomem *hd_timer;
102 unsigned long hd_ireqfreq;
103 unsigned long hd_irqdata;
104 wait_queue_head_t hd_waitqueue;
105 struct fasync_struct *hd_async_queue;
106 unsigned int hd_flags;
107 unsigned int hd_irq;
108 unsigned int hd_hdwirq;
109 char hd_name[HPET_DEV_NAME];
112 struct hpets {
113 struct hpets *hp_next;
114 struct hpet __iomem *hp_hpet;
115 unsigned long hp_hpet_phys;
116 struct clocksource *hp_clocksource;
117 unsigned long long hp_tick_freq;
118 unsigned long hp_delta;
119 unsigned int hp_ntimer;
120 unsigned int hp_which;
121 struct hpet_dev hp_dev[1];
124 static struct hpets *hpets;
126 #define HPET_OPEN 0x0001
127 #define HPET_IE 0x0002 /* interrupt enabled */
128 #define HPET_PERIODIC 0x0004
129 #define HPET_SHARED_IRQ 0x0008
132 #ifndef readq
133 static inline unsigned long long readq(void __iomem *addr)
135 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
137 #endif
139 #ifndef writeq
140 static inline void writeq(unsigned long long v, void __iomem *addr)
142 writel(v & 0xffffffff, addr);
143 writel(v >> 32, addr + 4);
145 #endif
147 static irqreturn_t hpet_interrupt(int irq, void *data)
149 struct hpet_dev *devp;
150 unsigned long isr;
152 devp = data;
153 isr = 1 << (devp - devp->hd_hpets->hp_dev);
155 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
156 !(isr & readl(&devp->hd_hpet->hpet_isr)))
157 return IRQ_NONE;
159 spin_lock(&hpet_lock);
160 devp->hd_irqdata++;
163 * For non-periodic timers, increment the accumulator.
164 * This has the effect of treating non-periodic like periodic.
166 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
167 unsigned long m, t;
169 t = devp->hd_ireqfreq;
170 m = read_counter(&devp->hd_timer->hpet_compare);
171 write_counter(t + m, &devp->hd_timer->hpet_compare);
174 if (devp->hd_flags & HPET_SHARED_IRQ)
175 writel(isr, &devp->hd_hpet->hpet_isr);
176 spin_unlock(&hpet_lock);
178 wake_up_interruptible(&devp->hd_waitqueue);
180 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
182 return IRQ_HANDLED;
185 static void hpet_timer_set_irq(struct hpet_dev *devp)
187 unsigned long v;
188 int irq, gsi;
189 struct hpet_timer __iomem *timer;
191 spin_lock_irq(&hpet_lock);
192 if (devp->hd_hdwirq) {
193 spin_unlock_irq(&hpet_lock);
194 return;
197 timer = devp->hd_timer;
199 /* we prefer level triggered mode */
200 v = readl(&timer->hpet_config);
201 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
202 v |= Tn_INT_TYPE_CNF_MASK;
203 writel(v, &timer->hpet_config);
205 spin_unlock_irq(&hpet_lock);
207 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
208 Tn_INT_ROUTE_CAP_SHIFT;
211 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
212 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
214 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
215 v &= ~0xf3df;
216 else
217 v &= ~0xffff;
219 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
220 if (irq >= nr_irqs) {
221 irq = HPET_MAX_IRQ;
222 break;
225 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
226 ACPI_ACTIVE_LOW);
227 if (gsi > 0)
228 break;
230 /* FIXME: Setup interrupt source table */
233 if (irq < HPET_MAX_IRQ) {
234 spin_lock_irq(&hpet_lock);
235 v = readl(&timer->hpet_config);
236 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
237 writel(v, &timer->hpet_config);
238 devp->hd_hdwirq = gsi;
239 spin_unlock_irq(&hpet_lock);
241 return;
244 static int hpet_open(struct inode *inode, struct file *file)
246 struct hpet_dev *devp;
247 struct hpets *hpetp;
248 int i;
250 if (file->f_mode & FMODE_WRITE)
251 return -EINVAL;
253 lock_kernel();
254 spin_lock_irq(&hpet_lock);
256 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
257 for (i = 0; i < hpetp->hp_ntimer; i++)
258 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
259 continue;
260 else {
261 devp = &hpetp->hp_dev[i];
262 break;
265 if (!devp) {
266 spin_unlock_irq(&hpet_lock);
267 unlock_kernel();
268 return -EBUSY;
271 file->private_data = devp;
272 devp->hd_irqdata = 0;
273 devp->hd_flags |= HPET_OPEN;
274 spin_unlock_irq(&hpet_lock);
275 unlock_kernel();
277 hpet_timer_set_irq(devp);
279 return 0;
282 static ssize_t
283 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
285 DECLARE_WAITQUEUE(wait, current);
286 unsigned long data;
287 ssize_t retval;
288 struct hpet_dev *devp;
290 devp = file->private_data;
291 if (!devp->hd_ireqfreq)
292 return -EIO;
294 if (count < sizeof(unsigned long))
295 return -EINVAL;
297 add_wait_queue(&devp->hd_waitqueue, &wait);
299 for ( ; ; ) {
300 set_current_state(TASK_INTERRUPTIBLE);
302 spin_lock_irq(&hpet_lock);
303 data = devp->hd_irqdata;
304 devp->hd_irqdata = 0;
305 spin_unlock_irq(&hpet_lock);
307 if (data)
308 break;
309 else if (file->f_flags & O_NONBLOCK) {
310 retval = -EAGAIN;
311 goto out;
312 } else if (signal_pending(current)) {
313 retval = -ERESTARTSYS;
314 goto out;
316 schedule();
319 retval = put_user(data, (unsigned long __user *)buf);
320 if (!retval)
321 retval = sizeof(unsigned long);
322 out:
323 __set_current_state(TASK_RUNNING);
324 remove_wait_queue(&devp->hd_waitqueue, &wait);
326 return retval;
329 static unsigned int hpet_poll(struct file *file, poll_table * wait)
331 unsigned long v;
332 struct hpet_dev *devp;
334 devp = file->private_data;
336 if (!devp->hd_ireqfreq)
337 return 0;
339 poll_wait(file, &devp->hd_waitqueue, wait);
341 spin_lock_irq(&hpet_lock);
342 v = devp->hd_irqdata;
343 spin_unlock_irq(&hpet_lock);
345 if (v != 0)
346 return POLLIN | POLLRDNORM;
348 return 0;
351 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
353 #ifdef CONFIG_HPET_MMAP
354 struct hpet_dev *devp;
355 unsigned long addr;
357 if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
358 return -EINVAL;
360 devp = file->private_data;
361 addr = devp->hd_hpets->hp_hpet_phys;
363 if (addr & (PAGE_SIZE - 1))
364 return -ENOSYS;
366 vma->vm_flags |= VM_IO;
367 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
369 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
370 PAGE_SIZE, vma->vm_page_prot)) {
371 printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
372 __func__);
373 return -EAGAIN;
376 return 0;
377 #else
378 return -ENOSYS;
379 #endif
382 static int hpet_fasync(int fd, struct file *file, int on)
384 struct hpet_dev *devp;
386 devp = file->private_data;
388 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
389 return 0;
390 else
391 return -EIO;
394 static int hpet_release(struct inode *inode, struct file *file)
396 struct hpet_dev *devp;
397 struct hpet_timer __iomem *timer;
398 int irq = 0;
400 devp = file->private_data;
401 timer = devp->hd_timer;
403 spin_lock_irq(&hpet_lock);
405 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
406 &timer->hpet_config);
408 irq = devp->hd_irq;
409 devp->hd_irq = 0;
411 devp->hd_ireqfreq = 0;
413 if (devp->hd_flags & HPET_PERIODIC
414 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
415 unsigned long v;
417 v = readq(&timer->hpet_config);
418 v ^= Tn_TYPE_CNF_MASK;
419 writeq(v, &timer->hpet_config);
422 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
423 spin_unlock_irq(&hpet_lock);
425 if (irq)
426 free_irq(irq, devp);
428 file->private_data = NULL;
429 return 0;
432 static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
434 static long hpet_ioctl(struct file *file, unsigned int cmd,
435 unsigned long arg)
437 struct hpet_dev *devp;
438 int ret;
440 devp = file->private_data;
441 lock_kernel();
442 ret = hpet_ioctl_common(devp, cmd, arg, 0);
443 unlock_kernel();
445 return ret;
448 static int hpet_ioctl_ieon(struct hpet_dev *devp)
450 struct hpet_timer __iomem *timer;
451 struct hpet __iomem *hpet;
452 struct hpets *hpetp;
453 int irq;
454 unsigned long g, v, t, m;
455 unsigned long flags, isr;
457 timer = devp->hd_timer;
458 hpet = devp->hd_hpet;
459 hpetp = devp->hd_hpets;
461 if (!devp->hd_ireqfreq)
462 return -EIO;
464 spin_lock_irq(&hpet_lock);
466 if (devp->hd_flags & HPET_IE) {
467 spin_unlock_irq(&hpet_lock);
468 return -EBUSY;
471 devp->hd_flags |= HPET_IE;
473 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
474 devp->hd_flags |= HPET_SHARED_IRQ;
475 spin_unlock_irq(&hpet_lock);
477 irq = devp->hd_hdwirq;
479 if (irq) {
480 unsigned long irq_flags;
482 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
483 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
484 ? IRQF_SHARED : IRQF_DISABLED;
485 if (request_irq(irq, hpet_interrupt, irq_flags,
486 devp->hd_name, (void *)devp)) {
487 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
488 irq = 0;
492 if (irq == 0) {
493 spin_lock_irq(&hpet_lock);
494 devp->hd_flags ^= HPET_IE;
495 spin_unlock_irq(&hpet_lock);
496 return -EIO;
499 devp->hd_irq = irq;
500 t = devp->hd_ireqfreq;
501 v = readq(&timer->hpet_config);
503 /* 64-bit comparators are not yet supported through the ioctls,
504 * so force this into 32-bit mode if it supports both modes
506 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
508 if (devp->hd_flags & HPET_PERIODIC) {
509 g |= Tn_TYPE_CNF_MASK;
510 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
511 writeq(v, &timer->hpet_config);
512 local_irq_save(flags);
515 * NOTE: First we modify the hidden accumulator
516 * register supported by periodic-capable comparators.
517 * We never want to modify the (single) counter; that
518 * would affect all the comparators. The value written
519 * is the counter value when the first interrupt is due.
521 m = read_counter(&hpet->hpet_mc);
522 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
524 * Then we modify the comparator, indicating the period
525 * for subsequent interrupt.
527 write_counter(t, &timer->hpet_compare);
528 } else {
529 local_irq_save(flags);
530 m = read_counter(&hpet->hpet_mc);
531 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
534 if (devp->hd_flags & HPET_SHARED_IRQ) {
535 isr = 1 << (devp - devp->hd_hpets->hp_dev);
536 writel(isr, &hpet->hpet_isr);
538 writeq(g, &timer->hpet_config);
539 local_irq_restore(flags);
541 return 0;
544 /* converts Hz to number of timer ticks */
545 static inline unsigned long hpet_time_div(struct hpets *hpets,
546 unsigned long dis)
548 unsigned long long m;
550 m = hpets->hp_tick_freq + (dis >> 1);
551 do_div(m, dis);
552 return (unsigned long)m;
555 static int
556 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
558 struct hpet_timer __iomem *timer;
559 struct hpet __iomem *hpet;
560 struct hpets *hpetp;
561 int err;
562 unsigned long v;
564 switch (cmd) {
565 case HPET_IE_OFF:
566 case HPET_INFO:
567 case HPET_EPI:
568 case HPET_DPI:
569 case HPET_IRQFREQ:
570 timer = devp->hd_timer;
571 hpet = devp->hd_hpet;
572 hpetp = devp->hd_hpets;
573 break;
574 case HPET_IE_ON:
575 return hpet_ioctl_ieon(devp);
576 default:
577 return -EINVAL;
580 err = 0;
582 switch (cmd) {
583 case HPET_IE_OFF:
584 if ((devp->hd_flags & HPET_IE) == 0)
585 break;
586 v = readq(&timer->hpet_config);
587 v &= ~Tn_INT_ENB_CNF_MASK;
588 writeq(v, &timer->hpet_config);
589 if (devp->hd_irq) {
590 free_irq(devp->hd_irq, devp);
591 devp->hd_irq = 0;
593 devp->hd_flags ^= HPET_IE;
594 break;
595 case HPET_INFO:
597 struct hpet_info info;
599 if (devp->hd_ireqfreq)
600 info.hi_ireqfreq =
601 hpet_time_div(hpetp, devp->hd_ireqfreq);
602 else
603 info.hi_ireqfreq = 0;
604 info.hi_flags =
605 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
606 info.hi_hpet = hpetp->hp_which;
607 info.hi_timer = devp - hpetp->hp_dev;
608 if (kernel)
609 memcpy((void *)arg, &info, sizeof(info));
610 else
611 if (copy_to_user((void __user *)arg, &info,
612 sizeof(info)))
613 err = -EFAULT;
614 break;
616 case HPET_EPI:
617 v = readq(&timer->hpet_config);
618 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
619 err = -ENXIO;
620 break;
622 devp->hd_flags |= HPET_PERIODIC;
623 break;
624 case HPET_DPI:
625 v = readq(&timer->hpet_config);
626 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
627 err = -ENXIO;
628 break;
630 if (devp->hd_flags & HPET_PERIODIC &&
631 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
632 v = readq(&timer->hpet_config);
633 v ^= Tn_TYPE_CNF_MASK;
634 writeq(v, &timer->hpet_config);
636 devp->hd_flags &= ~HPET_PERIODIC;
637 break;
638 case HPET_IRQFREQ:
639 if (!kernel && (arg > hpet_max_freq) &&
640 !capable(CAP_SYS_RESOURCE)) {
641 err = -EACCES;
642 break;
645 if (!arg) {
646 err = -EINVAL;
647 break;
650 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
653 return err;
656 static const struct file_operations hpet_fops = {
657 .owner = THIS_MODULE,
658 .llseek = no_llseek,
659 .read = hpet_read,
660 .poll = hpet_poll,
661 .unlocked_ioctl = hpet_ioctl,
662 .open = hpet_open,
663 .release = hpet_release,
664 .fasync = hpet_fasync,
665 .mmap = hpet_mmap,
668 static int hpet_is_known(struct hpet_data *hdp)
670 struct hpets *hpetp;
672 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
673 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
674 return 1;
676 return 0;
679 static ctl_table hpet_table[] = {
681 .procname = "max-user-freq",
682 .data = &hpet_max_freq,
683 .maxlen = sizeof(int),
684 .mode = 0644,
685 .proc_handler = proc_dointvec,
690 static ctl_table hpet_root[] = {
692 .procname = "hpet",
693 .maxlen = 0,
694 .mode = 0555,
695 .child = hpet_table,
700 static ctl_table dev_root[] = {
702 .procname = "dev",
703 .maxlen = 0,
704 .mode = 0555,
705 .child = hpet_root,
710 static struct ctl_table_header *sysctl_header;
713 * Adjustment for when arming the timer with
714 * initial conditions. That is, main counter
715 * ticks expired before interrupts are enabled.
717 #define TICK_CALIBRATE (1000UL)
719 static unsigned long __hpet_calibrate(struct hpets *hpetp)
721 struct hpet_timer __iomem *timer = NULL;
722 unsigned long t, m, count, i, flags, start;
723 struct hpet_dev *devp;
724 int j;
725 struct hpet __iomem *hpet;
727 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
728 if ((devp->hd_flags & HPET_OPEN) == 0) {
729 timer = devp->hd_timer;
730 break;
733 if (!timer)
734 return 0;
736 hpet = hpetp->hp_hpet;
737 t = read_counter(&timer->hpet_compare);
739 i = 0;
740 count = hpet_time_div(hpetp, TICK_CALIBRATE);
742 local_irq_save(flags);
744 start = read_counter(&hpet->hpet_mc);
746 do {
747 m = read_counter(&hpet->hpet_mc);
748 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
749 } while (i++, (m - start) < count);
751 local_irq_restore(flags);
753 return (m - start) / i;
756 static unsigned long hpet_calibrate(struct hpets *hpetp)
758 unsigned long ret = -1;
759 unsigned long tmp;
762 * Try to calibrate until return value becomes stable small value.
763 * If SMI interruption occurs in calibration loop, the return value
764 * will be big. This avoids its impact.
766 for ( ; ; ) {
767 tmp = __hpet_calibrate(hpetp);
768 if (ret <= tmp)
769 break;
770 ret = tmp;
773 return ret;
776 int hpet_alloc(struct hpet_data *hdp)
778 u64 cap, mcfg;
779 struct hpet_dev *devp;
780 u32 i, ntimer;
781 struct hpets *hpetp;
782 size_t siz;
783 struct hpet __iomem *hpet;
784 static struct hpets *last = NULL;
785 unsigned long period;
786 unsigned long long temp;
787 u32 remainder;
790 * hpet_alloc can be called by platform dependent code.
791 * If platform dependent code has allocated the hpet that
792 * ACPI has also reported, then we catch it here.
794 if (hpet_is_known(hdp)) {
795 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
796 __func__);
797 return 0;
800 siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
801 sizeof(struct hpet_dev));
803 hpetp = kzalloc(siz, GFP_KERNEL);
805 if (!hpetp)
806 return -ENOMEM;
808 hpetp->hp_which = hpet_nhpet++;
809 hpetp->hp_hpet = hdp->hd_address;
810 hpetp->hp_hpet_phys = hdp->hd_phys_address;
812 hpetp->hp_ntimer = hdp->hd_nirqs;
814 for (i = 0; i < hdp->hd_nirqs; i++)
815 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
817 hpet = hpetp->hp_hpet;
819 cap = readq(&hpet->hpet_cap);
821 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
823 if (hpetp->hp_ntimer != ntimer) {
824 printk(KERN_WARNING "hpet: number irqs doesn't agree"
825 " with number of timers\n");
826 kfree(hpetp);
827 return -ENODEV;
830 if (last)
831 last->hp_next = hpetp;
832 else
833 hpets = hpetp;
835 last = hpetp;
837 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
838 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
839 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
840 temp += period >> 1; /* round */
841 do_div(temp, period);
842 hpetp->hp_tick_freq = temp; /* ticks per second */
844 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
845 hpetp->hp_which, hdp->hd_phys_address,
846 hpetp->hp_ntimer > 1 ? "s" : "");
847 for (i = 0; i < hpetp->hp_ntimer; i++)
848 printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
849 printk("\n");
851 temp = hpetp->hp_tick_freq;
852 remainder = do_div(temp, 1000000);
853 printk(KERN_INFO
854 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
855 hpetp->hp_which, hpetp->hp_ntimer,
856 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
857 (unsigned) temp, remainder);
859 mcfg = readq(&hpet->hpet_config);
860 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
861 write_counter(0L, &hpet->hpet_mc);
862 mcfg |= HPET_ENABLE_CNF_MASK;
863 writeq(mcfg, &hpet->hpet_config);
866 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
867 struct hpet_timer __iomem *timer;
869 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
871 devp->hd_hpets = hpetp;
872 devp->hd_hpet = hpet;
873 devp->hd_timer = timer;
876 * If the timer was reserved by platform code,
877 * then make timer unavailable for opens.
879 if (hdp->hd_state & (1 << i)) {
880 devp->hd_flags = HPET_OPEN;
881 continue;
884 init_waitqueue_head(&devp->hd_waitqueue);
887 hpetp->hp_delta = hpet_calibrate(hpetp);
889 /* This clocksource driver currently only works on ia64 */
890 #ifdef CONFIG_IA64
891 if (!hpet_clocksource) {
892 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
893 CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
894 clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
895 clocksource_hpet.shift);
896 clocksource_register(&clocksource_hpet);
897 hpetp->hp_clocksource = &clocksource_hpet;
898 hpet_clocksource = &clocksource_hpet;
900 #endif
902 return 0;
905 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
907 struct hpet_data *hdp;
908 acpi_status status;
909 struct acpi_resource_address64 addr;
911 hdp = data;
913 status = acpi_resource_to_address64(res, &addr);
915 if (ACPI_SUCCESS(status)) {
916 hdp->hd_phys_address = addr.minimum;
917 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
919 if (hpet_is_known(hdp)) {
920 iounmap(hdp->hd_address);
921 return AE_ALREADY_EXISTS;
923 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
924 struct acpi_resource_fixed_memory32 *fixmem32;
926 fixmem32 = &res->data.fixed_memory32;
927 if (!fixmem32)
928 return AE_NO_MEMORY;
930 hdp->hd_phys_address = fixmem32->address;
931 hdp->hd_address = ioremap(fixmem32->address,
932 HPET_RANGE_SIZE);
934 if (hpet_is_known(hdp)) {
935 iounmap(hdp->hd_address);
936 return AE_ALREADY_EXISTS;
938 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
939 struct acpi_resource_extended_irq *irqp;
940 int i, irq;
942 irqp = &res->data.extended_irq;
944 for (i = 0; i < irqp->interrupt_count; i++) {
945 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
946 irqp->triggering, irqp->polarity);
947 if (irq < 0)
948 return AE_ERROR;
950 hdp->hd_irq[hdp->hd_nirqs] = irq;
951 hdp->hd_nirqs++;
955 return AE_OK;
958 static int hpet_acpi_add(struct acpi_device *device)
960 acpi_status result;
961 struct hpet_data data;
963 memset(&data, 0, sizeof(data));
965 result =
966 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
967 hpet_resources, &data);
969 if (ACPI_FAILURE(result))
970 return -ENODEV;
972 if (!data.hd_address || !data.hd_nirqs) {
973 printk("%s: no address or irqs in _CRS\n", __func__);
974 return -ENODEV;
977 return hpet_alloc(&data);
980 static int hpet_acpi_remove(struct acpi_device *device, int type)
982 /* XXX need to unregister clocksource, dealloc mem, etc */
983 return -EINVAL;
986 static const struct acpi_device_id hpet_device_ids[] = {
987 {"PNP0103", 0},
988 {"", 0},
990 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
992 static struct acpi_driver hpet_acpi_driver = {
993 .name = "hpet",
994 .ids = hpet_device_ids,
995 .ops = {
996 .add = hpet_acpi_add,
997 .remove = hpet_acpi_remove,
1001 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1003 static int __init hpet_init(void)
1005 int result;
1007 result = misc_register(&hpet_misc);
1008 if (result < 0)
1009 return -ENODEV;
1011 sysctl_header = register_sysctl_table(dev_root);
1013 result = acpi_bus_register_driver(&hpet_acpi_driver);
1014 if (result < 0) {
1015 if (sysctl_header)
1016 unregister_sysctl_table(sysctl_header);
1017 misc_deregister(&hpet_misc);
1018 return result;
1021 return 0;
1024 static void __exit hpet_exit(void)
1026 acpi_bus_unregister_driver(&hpet_acpi_driver);
1028 if (sysctl_header)
1029 unregister_sysctl_table(sysctl_header);
1030 misc_deregister(&hpet_misc);
1032 return;
1035 module_init(hpet_init);
1036 module_exit(hpet_exit);
1037 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1038 MODULE_LICENSE("GPL");