swap_info: swap count continuations
[wandboard.git] / mm / swapfile.c
blobcc5e7ebf2d2c5105328688045080bcc6ce5a983f
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/rmap.h>
26 #include <linux/security.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mutex.h>
29 #include <linux/capability.h>
30 #include <linux/syscalls.h>
31 #include <linux/memcontrol.h>
33 #include <asm/pgtable.h>
34 #include <asm/tlbflush.h>
35 #include <linux/swapops.h>
36 #include <linux/page_cgroup.h>
38 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
39 unsigned char);
40 static void free_swap_count_continuations(struct swap_info_struct *);
42 static DEFINE_SPINLOCK(swap_lock);
43 static unsigned int nr_swapfiles;
44 long nr_swap_pages;
45 long total_swap_pages;
46 static int least_priority;
48 static const char Bad_file[] = "Bad swap file entry ";
49 static const char Unused_file[] = "Unused swap file entry ";
50 static const char Bad_offset[] = "Bad swap offset entry ";
51 static const char Unused_offset[] = "Unused swap offset entry ";
53 static struct swap_list_t swap_list = {-1, -1};
55 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
57 static DEFINE_MUTEX(swapon_mutex);
59 static inline unsigned char swap_count(unsigned char ent)
61 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
64 /* returns 1 if swap entry is freed */
65 static int
66 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
68 swp_entry_t entry = swp_entry(si->type, offset);
69 struct page *page;
70 int ret = 0;
72 page = find_get_page(&swapper_space, entry.val);
73 if (!page)
74 return 0;
76 * This function is called from scan_swap_map() and it's called
77 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
78 * We have to use trylock for avoiding deadlock. This is a special
79 * case and you should use try_to_free_swap() with explicit lock_page()
80 * in usual operations.
82 if (trylock_page(page)) {
83 ret = try_to_free_swap(page);
84 unlock_page(page);
86 page_cache_release(page);
87 return ret;
91 * We need this because the bdev->unplug_fn can sleep and we cannot
92 * hold swap_lock while calling the unplug_fn. And swap_lock
93 * cannot be turned into a mutex.
95 static DECLARE_RWSEM(swap_unplug_sem);
97 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
99 swp_entry_t entry;
101 down_read(&swap_unplug_sem);
102 entry.val = page_private(page);
103 if (PageSwapCache(page)) {
104 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
105 struct backing_dev_info *bdi;
108 * If the page is removed from swapcache from under us (with a
109 * racy try_to_unuse/swapoff) we need an additional reference
110 * count to avoid reading garbage from page_private(page) above.
111 * If the WARN_ON triggers during a swapoff it maybe the race
112 * condition and it's harmless. However if it triggers without
113 * swapoff it signals a problem.
115 WARN_ON(page_count(page) <= 1);
117 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
118 blk_run_backing_dev(bdi, page);
120 up_read(&swap_unplug_sem);
124 * swapon tell device that all the old swap contents can be discarded,
125 * to allow the swap device to optimize its wear-levelling.
127 static int discard_swap(struct swap_info_struct *si)
129 struct swap_extent *se;
130 sector_t start_block;
131 sector_t nr_blocks;
132 int err = 0;
134 /* Do not discard the swap header page! */
135 se = &si->first_swap_extent;
136 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
137 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
138 if (nr_blocks) {
139 err = blkdev_issue_discard(si->bdev, start_block,
140 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
141 if (err)
142 return err;
143 cond_resched();
146 list_for_each_entry(se, &si->first_swap_extent.list, list) {
147 start_block = se->start_block << (PAGE_SHIFT - 9);
148 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
150 err = blkdev_issue_discard(si->bdev, start_block,
151 nr_blocks, GFP_KERNEL, DISCARD_FL_BARRIER);
152 if (err)
153 break;
155 cond_resched();
157 return err; /* That will often be -EOPNOTSUPP */
161 * swap allocation tell device that a cluster of swap can now be discarded,
162 * to allow the swap device to optimize its wear-levelling.
164 static void discard_swap_cluster(struct swap_info_struct *si,
165 pgoff_t start_page, pgoff_t nr_pages)
167 struct swap_extent *se = si->curr_swap_extent;
168 int found_extent = 0;
170 while (nr_pages) {
171 struct list_head *lh;
173 if (se->start_page <= start_page &&
174 start_page < se->start_page + se->nr_pages) {
175 pgoff_t offset = start_page - se->start_page;
176 sector_t start_block = se->start_block + offset;
177 sector_t nr_blocks = se->nr_pages - offset;
179 if (nr_blocks > nr_pages)
180 nr_blocks = nr_pages;
181 start_page += nr_blocks;
182 nr_pages -= nr_blocks;
184 if (!found_extent++)
185 si->curr_swap_extent = se;
187 start_block <<= PAGE_SHIFT - 9;
188 nr_blocks <<= PAGE_SHIFT - 9;
189 if (blkdev_issue_discard(si->bdev, start_block,
190 nr_blocks, GFP_NOIO, DISCARD_FL_BARRIER))
191 break;
194 lh = se->list.next;
195 se = list_entry(lh, struct swap_extent, list);
199 static int wait_for_discard(void *word)
201 schedule();
202 return 0;
205 #define SWAPFILE_CLUSTER 256
206 #define LATENCY_LIMIT 256
208 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
209 unsigned char usage)
211 unsigned long offset;
212 unsigned long scan_base;
213 unsigned long last_in_cluster = 0;
214 int latency_ration = LATENCY_LIMIT;
215 int found_free_cluster = 0;
218 * We try to cluster swap pages by allocating them sequentially
219 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
220 * way, however, we resort to first-free allocation, starting
221 * a new cluster. This prevents us from scattering swap pages
222 * all over the entire swap partition, so that we reduce
223 * overall disk seek times between swap pages. -- sct
224 * But we do now try to find an empty cluster. -Andrea
225 * And we let swap pages go all over an SSD partition. Hugh
228 si->flags += SWP_SCANNING;
229 scan_base = offset = si->cluster_next;
231 if (unlikely(!si->cluster_nr--)) {
232 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
233 si->cluster_nr = SWAPFILE_CLUSTER - 1;
234 goto checks;
236 if (si->flags & SWP_DISCARDABLE) {
238 * Start range check on racing allocations, in case
239 * they overlap the cluster we eventually decide on
240 * (we scan without swap_lock to allow preemption).
241 * It's hardly conceivable that cluster_nr could be
242 * wrapped during our scan, but don't depend on it.
244 if (si->lowest_alloc)
245 goto checks;
246 si->lowest_alloc = si->max;
247 si->highest_alloc = 0;
249 spin_unlock(&swap_lock);
252 * If seek is expensive, start searching for new cluster from
253 * start of partition, to minimize the span of allocated swap.
254 * But if seek is cheap, search from our current position, so
255 * that swap is allocated from all over the partition: if the
256 * Flash Translation Layer only remaps within limited zones,
257 * we don't want to wear out the first zone too quickly.
259 if (!(si->flags & SWP_SOLIDSTATE))
260 scan_base = offset = si->lowest_bit;
261 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
263 /* Locate the first empty (unaligned) cluster */
264 for (; last_in_cluster <= si->highest_bit; offset++) {
265 if (si->swap_map[offset])
266 last_in_cluster = offset + SWAPFILE_CLUSTER;
267 else if (offset == last_in_cluster) {
268 spin_lock(&swap_lock);
269 offset -= SWAPFILE_CLUSTER - 1;
270 si->cluster_next = offset;
271 si->cluster_nr = SWAPFILE_CLUSTER - 1;
272 found_free_cluster = 1;
273 goto checks;
275 if (unlikely(--latency_ration < 0)) {
276 cond_resched();
277 latency_ration = LATENCY_LIMIT;
281 offset = si->lowest_bit;
282 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
284 /* Locate the first empty (unaligned) cluster */
285 for (; last_in_cluster < scan_base; offset++) {
286 if (si->swap_map[offset])
287 last_in_cluster = offset + SWAPFILE_CLUSTER;
288 else if (offset == last_in_cluster) {
289 spin_lock(&swap_lock);
290 offset -= SWAPFILE_CLUSTER - 1;
291 si->cluster_next = offset;
292 si->cluster_nr = SWAPFILE_CLUSTER - 1;
293 found_free_cluster = 1;
294 goto checks;
296 if (unlikely(--latency_ration < 0)) {
297 cond_resched();
298 latency_ration = LATENCY_LIMIT;
302 offset = scan_base;
303 spin_lock(&swap_lock);
304 si->cluster_nr = SWAPFILE_CLUSTER - 1;
305 si->lowest_alloc = 0;
308 checks:
309 if (!(si->flags & SWP_WRITEOK))
310 goto no_page;
311 if (!si->highest_bit)
312 goto no_page;
313 if (offset > si->highest_bit)
314 scan_base = offset = si->lowest_bit;
316 /* reuse swap entry of cache-only swap if not busy. */
317 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
318 int swap_was_freed;
319 spin_unlock(&swap_lock);
320 swap_was_freed = __try_to_reclaim_swap(si, offset);
321 spin_lock(&swap_lock);
322 /* entry was freed successfully, try to use this again */
323 if (swap_was_freed)
324 goto checks;
325 goto scan; /* check next one */
328 if (si->swap_map[offset])
329 goto scan;
331 if (offset == si->lowest_bit)
332 si->lowest_bit++;
333 if (offset == si->highest_bit)
334 si->highest_bit--;
335 si->inuse_pages++;
336 if (si->inuse_pages == si->pages) {
337 si->lowest_bit = si->max;
338 si->highest_bit = 0;
340 si->swap_map[offset] = usage;
341 si->cluster_next = offset + 1;
342 si->flags -= SWP_SCANNING;
344 if (si->lowest_alloc) {
346 * Only set when SWP_DISCARDABLE, and there's a scan
347 * for a free cluster in progress or just completed.
349 if (found_free_cluster) {
351 * To optimize wear-levelling, discard the
352 * old data of the cluster, taking care not to
353 * discard any of its pages that have already
354 * been allocated by racing tasks (offset has
355 * already stepped over any at the beginning).
357 if (offset < si->highest_alloc &&
358 si->lowest_alloc <= last_in_cluster)
359 last_in_cluster = si->lowest_alloc - 1;
360 si->flags |= SWP_DISCARDING;
361 spin_unlock(&swap_lock);
363 if (offset < last_in_cluster)
364 discard_swap_cluster(si, offset,
365 last_in_cluster - offset + 1);
367 spin_lock(&swap_lock);
368 si->lowest_alloc = 0;
369 si->flags &= ~SWP_DISCARDING;
371 smp_mb(); /* wake_up_bit advises this */
372 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
374 } else if (si->flags & SWP_DISCARDING) {
376 * Delay using pages allocated by racing tasks
377 * until the whole discard has been issued. We
378 * could defer that delay until swap_writepage,
379 * but it's easier to keep this self-contained.
381 spin_unlock(&swap_lock);
382 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
383 wait_for_discard, TASK_UNINTERRUPTIBLE);
384 spin_lock(&swap_lock);
385 } else {
387 * Note pages allocated by racing tasks while
388 * scan for a free cluster is in progress, so
389 * that its final discard can exclude them.
391 if (offset < si->lowest_alloc)
392 si->lowest_alloc = offset;
393 if (offset > si->highest_alloc)
394 si->highest_alloc = offset;
397 return offset;
399 scan:
400 spin_unlock(&swap_lock);
401 while (++offset <= si->highest_bit) {
402 if (!si->swap_map[offset]) {
403 spin_lock(&swap_lock);
404 goto checks;
406 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
407 spin_lock(&swap_lock);
408 goto checks;
410 if (unlikely(--latency_ration < 0)) {
411 cond_resched();
412 latency_ration = LATENCY_LIMIT;
415 offset = si->lowest_bit;
416 while (++offset < scan_base) {
417 if (!si->swap_map[offset]) {
418 spin_lock(&swap_lock);
419 goto checks;
421 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
422 spin_lock(&swap_lock);
423 goto checks;
425 if (unlikely(--latency_ration < 0)) {
426 cond_resched();
427 latency_ration = LATENCY_LIMIT;
430 spin_lock(&swap_lock);
432 no_page:
433 si->flags -= SWP_SCANNING;
434 return 0;
437 swp_entry_t get_swap_page(void)
439 struct swap_info_struct *si;
440 pgoff_t offset;
441 int type, next;
442 int wrapped = 0;
444 spin_lock(&swap_lock);
445 if (nr_swap_pages <= 0)
446 goto noswap;
447 nr_swap_pages--;
449 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
450 si = swap_info[type];
451 next = si->next;
452 if (next < 0 ||
453 (!wrapped && si->prio != swap_info[next]->prio)) {
454 next = swap_list.head;
455 wrapped++;
458 if (!si->highest_bit)
459 continue;
460 if (!(si->flags & SWP_WRITEOK))
461 continue;
463 swap_list.next = next;
464 /* This is called for allocating swap entry for cache */
465 offset = scan_swap_map(si, SWAP_HAS_CACHE);
466 if (offset) {
467 spin_unlock(&swap_lock);
468 return swp_entry(type, offset);
470 next = swap_list.next;
473 nr_swap_pages++;
474 noswap:
475 spin_unlock(&swap_lock);
476 return (swp_entry_t) {0};
479 /* The only caller of this function is now susupend routine */
480 swp_entry_t get_swap_page_of_type(int type)
482 struct swap_info_struct *si;
483 pgoff_t offset;
485 spin_lock(&swap_lock);
486 si = swap_info[type];
487 if (si && (si->flags & SWP_WRITEOK)) {
488 nr_swap_pages--;
489 /* This is called for allocating swap entry, not cache */
490 offset = scan_swap_map(si, 1);
491 if (offset) {
492 spin_unlock(&swap_lock);
493 return swp_entry(type, offset);
495 nr_swap_pages++;
497 spin_unlock(&swap_lock);
498 return (swp_entry_t) {0};
501 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
503 struct swap_info_struct *p;
504 unsigned long offset, type;
506 if (!entry.val)
507 goto out;
508 type = swp_type(entry);
509 if (type >= nr_swapfiles)
510 goto bad_nofile;
511 p = swap_info[type];
512 if (!(p->flags & SWP_USED))
513 goto bad_device;
514 offset = swp_offset(entry);
515 if (offset >= p->max)
516 goto bad_offset;
517 if (!p->swap_map[offset])
518 goto bad_free;
519 spin_lock(&swap_lock);
520 return p;
522 bad_free:
523 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
524 goto out;
525 bad_offset:
526 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
527 goto out;
528 bad_device:
529 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
530 goto out;
531 bad_nofile:
532 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
533 out:
534 return NULL;
537 static unsigned char swap_entry_free(struct swap_info_struct *p,
538 swp_entry_t entry, unsigned char usage)
540 unsigned long offset = swp_offset(entry);
541 unsigned char count;
542 unsigned char has_cache;
544 count = p->swap_map[offset];
545 has_cache = count & SWAP_HAS_CACHE;
546 count &= ~SWAP_HAS_CACHE;
548 if (usage == SWAP_HAS_CACHE) {
549 VM_BUG_ON(!has_cache);
550 has_cache = 0;
551 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
552 if (count == COUNT_CONTINUED) {
553 if (swap_count_continued(p, offset, count))
554 count = SWAP_MAP_MAX | COUNT_CONTINUED;
555 else
556 count = SWAP_MAP_MAX;
557 } else
558 count--;
561 if (!count)
562 mem_cgroup_uncharge_swap(entry);
564 usage = count | has_cache;
565 p->swap_map[offset] = usage;
567 /* free if no reference */
568 if (!usage) {
569 if (offset < p->lowest_bit)
570 p->lowest_bit = offset;
571 if (offset > p->highest_bit)
572 p->highest_bit = offset;
573 if (swap_list.next >= 0 &&
574 p->prio > swap_info[swap_list.next]->prio)
575 swap_list.next = p->type;
576 nr_swap_pages++;
577 p->inuse_pages--;
580 return usage;
584 * Caller has made sure that the swapdevice corresponding to entry
585 * is still around or has not been recycled.
587 void swap_free(swp_entry_t entry)
589 struct swap_info_struct *p;
591 p = swap_info_get(entry);
592 if (p) {
593 swap_entry_free(p, entry, 1);
594 spin_unlock(&swap_lock);
599 * Called after dropping swapcache to decrease refcnt to swap entries.
601 void swapcache_free(swp_entry_t entry, struct page *page)
603 struct swap_info_struct *p;
604 unsigned char count;
606 p = swap_info_get(entry);
607 if (p) {
608 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
609 if (page)
610 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
611 spin_unlock(&swap_lock);
616 * How many references to page are currently swapped out?
617 * This does not give an exact answer when swap count is continued,
618 * but does include the high COUNT_CONTINUED flag to allow for that.
620 static inline int page_swapcount(struct page *page)
622 int count = 0;
623 struct swap_info_struct *p;
624 swp_entry_t entry;
626 entry.val = page_private(page);
627 p = swap_info_get(entry);
628 if (p) {
629 count = swap_count(p->swap_map[swp_offset(entry)]);
630 spin_unlock(&swap_lock);
632 return count;
636 * We can write to an anon page without COW if there are no other references
637 * to it. And as a side-effect, free up its swap: because the old content
638 * on disk will never be read, and seeking back there to write new content
639 * later would only waste time away from clustering.
641 int reuse_swap_page(struct page *page)
643 int count;
645 VM_BUG_ON(!PageLocked(page));
646 count = page_mapcount(page);
647 if (count <= 1 && PageSwapCache(page)) {
648 count += page_swapcount(page);
649 if (count == 1 && !PageWriteback(page)) {
650 delete_from_swap_cache(page);
651 SetPageDirty(page);
654 return count == 1;
658 * If swap is getting full, or if there are no more mappings of this page,
659 * then try_to_free_swap is called to free its swap space.
661 int try_to_free_swap(struct page *page)
663 VM_BUG_ON(!PageLocked(page));
665 if (!PageSwapCache(page))
666 return 0;
667 if (PageWriteback(page))
668 return 0;
669 if (page_swapcount(page))
670 return 0;
672 delete_from_swap_cache(page);
673 SetPageDirty(page);
674 return 1;
678 * Free the swap entry like above, but also try to
679 * free the page cache entry if it is the last user.
681 int free_swap_and_cache(swp_entry_t entry)
683 struct swap_info_struct *p;
684 struct page *page = NULL;
686 if (non_swap_entry(entry))
687 return 1;
689 p = swap_info_get(entry);
690 if (p) {
691 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
692 page = find_get_page(&swapper_space, entry.val);
693 if (page && !trylock_page(page)) {
694 page_cache_release(page);
695 page = NULL;
698 spin_unlock(&swap_lock);
700 if (page) {
702 * Not mapped elsewhere, or swap space full? Free it!
703 * Also recheck PageSwapCache now page is locked (above).
705 if (PageSwapCache(page) && !PageWriteback(page) &&
706 (!page_mapped(page) || vm_swap_full())) {
707 delete_from_swap_cache(page);
708 SetPageDirty(page);
710 unlock_page(page);
711 page_cache_release(page);
713 return p != NULL;
716 #ifdef CONFIG_HIBERNATION
718 * Find the swap type that corresponds to given device (if any).
720 * @offset - number of the PAGE_SIZE-sized block of the device, starting
721 * from 0, in which the swap header is expected to be located.
723 * This is needed for the suspend to disk (aka swsusp).
725 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
727 struct block_device *bdev = NULL;
728 int type;
730 if (device)
731 bdev = bdget(device);
733 spin_lock(&swap_lock);
734 for (type = 0; type < nr_swapfiles; type++) {
735 struct swap_info_struct *sis = swap_info[type];
737 if (!(sis->flags & SWP_WRITEOK))
738 continue;
740 if (!bdev) {
741 if (bdev_p)
742 *bdev_p = bdgrab(sis->bdev);
744 spin_unlock(&swap_lock);
745 return type;
747 if (bdev == sis->bdev) {
748 struct swap_extent *se = &sis->first_swap_extent;
750 if (se->start_block == offset) {
751 if (bdev_p)
752 *bdev_p = bdgrab(sis->bdev);
754 spin_unlock(&swap_lock);
755 bdput(bdev);
756 return type;
760 spin_unlock(&swap_lock);
761 if (bdev)
762 bdput(bdev);
764 return -ENODEV;
768 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
769 * corresponding to given index in swap_info (swap type).
771 sector_t swapdev_block(int type, pgoff_t offset)
773 struct block_device *bdev;
775 if ((unsigned int)type >= nr_swapfiles)
776 return 0;
777 if (!(swap_info[type]->flags & SWP_WRITEOK))
778 return 0;
779 return map_swap_page(swp_entry(type, offset), &bdev);
783 * Return either the total number of swap pages of given type, or the number
784 * of free pages of that type (depending on @free)
786 * This is needed for software suspend
788 unsigned int count_swap_pages(int type, int free)
790 unsigned int n = 0;
792 spin_lock(&swap_lock);
793 if ((unsigned int)type < nr_swapfiles) {
794 struct swap_info_struct *sis = swap_info[type];
796 if (sis->flags & SWP_WRITEOK) {
797 n = sis->pages;
798 if (free)
799 n -= sis->inuse_pages;
802 spin_unlock(&swap_lock);
803 return n;
805 #endif /* CONFIG_HIBERNATION */
808 * No need to decide whether this PTE shares the swap entry with others,
809 * just let do_wp_page work it out if a write is requested later - to
810 * force COW, vm_page_prot omits write permission from any private vma.
812 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
813 unsigned long addr, swp_entry_t entry, struct page *page)
815 struct mem_cgroup *ptr = NULL;
816 spinlock_t *ptl;
817 pte_t *pte;
818 int ret = 1;
820 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
821 ret = -ENOMEM;
822 goto out_nolock;
825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
826 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
827 if (ret > 0)
828 mem_cgroup_cancel_charge_swapin(ptr);
829 ret = 0;
830 goto out;
833 inc_mm_counter(vma->vm_mm, anon_rss);
834 get_page(page);
835 set_pte_at(vma->vm_mm, addr, pte,
836 pte_mkold(mk_pte(page, vma->vm_page_prot)));
837 page_add_anon_rmap(page, vma, addr);
838 mem_cgroup_commit_charge_swapin(page, ptr);
839 swap_free(entry);
841 * Move the page to the active list so it is not
842 * immediately swapped out again after swapon.
844 activate_page(page);
845 out:
846 pte_unmap_unlock(pte, ptl);
847 out_nolock:
848 return ret;
851 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
852 unsigned long addr, unsigned long end,
853 swp_entry_t entry, struct page *page)
855 pte_t swp_pte = swp_entry_to_pte(entry);
856 pte_t *pte;
857 int ret = 0;
860 * We don't actually need pte lock while scanning for swp_pte: since
861 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
862 * page table while we're scanning; though it could get zapped, and on
863 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
864 * of unmatched parts which look like swp_pte, so unuse_pte must
865 * recheck under pte lock. Scanning without pte lock lets it be
866 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
868 pte = pte_offset_map(pmd, addr);
869 do {
871 * swapoff spends a _lot_ of time in this loop!
872 * Test inline before going to call unuse_pte.
874 if (unlikely(pte_same(*pte, swp_pte))) {
875 pte_unmap(pte);
876 ret = unuse_pte(vma, pmd, addr, entry, page);
877 if (ret)
878 goto out;
879 pte = pte_offset_map(pmd, addr);
881 } while (pte++, addr += PAGE_SIZE, addr != end);
882 pte_unmap(pte - 1);
883 out:
884 return ret;
887 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
888 unsigned long addr, unsigned long end,
889 swp_entry_t entry, struct page *page)
891 pmd_t *pmd;
892 unsigned long next;
893 int ret;
895 pmd = pmd_offset(pud, addr);
896 do {
897 next = pmd_addr_end(addr, end);
898 if (pmd_none_or_clear_bad(pmd))
899 continue;
900 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
901 if (ret)
902 return ret;
903 } while (pmd++, addr = next, addr != end);
904 return 0;
907 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
908 unsigned long addr, unsigned long end,
909 swp_entry_t entry, struct page *page)
911 pud_t *pud;
912 unsigned long next;
913 int ret;
915 pud = pud_offset(pgd, addr);
916 do {
917 next = pud_addr_end(addr, end);
918 if (pud_none_or_clear_bad(pud))
919 continue;
920 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
921 if (ret)
922 return ret;
923 } while (pud++, addr = next, addr != end);
924 return 0;
927 static int unuse_vma(struct vm_area_struct *vma,
928 swp_entry_t entry, struct page *page)
930 pgd_t *pgd;
931 unsigned long addr, end, next;
932 int ret;
934 if (page->mapping) {
935 addr = page_address_in_vma(page, vma);
936 if (addr == -EFAULT)
937 return 0;
938 else
939 end = addr + PAGE_SIZE;
940 } else {
941 addr = vma->vm_start;
942 end = vma->vm_end;
945 pgd = pgd_offset(vma->vm_mm, addr);
946 do {
947 next = pgd_addr_end(addr, end);
948 if (pgd_none_or_clear_bad(pgd))
949 continue;
950 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
951 if (ret)
952 return ret;
953 } while (pgd++, addr = next, addr != end);
954 return 0;
957 static int unuse_mm(struct mm_struct *mm,
958 swp_entry_t entry, struct page *page)
960 struct vm_area_struct *vma;
961 int ret = 0;
963 if (!down_read_trylock(&mm->mmap_sem)) {
965 * Activate page so shrink_inactive_list is unlikely to unmap
966 * its ptes while lock is dropped, so swapoff can make progress.
968 activate_page(page);
969 unlock_page(page);
970 down_read(&mm->mmap_sem);
971 lock_page(page);
973 for (vma = mm->mmap; vma; vma = vma->vm_next) {
974 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
975 break;
977 up_read(&mm->mmap_sem);
978 return (ret < 0)? ret: 0;
982 * Scan swap_map from current position to next entry still in use.
983 * Recycle to start on reaching the end, returning 0 when empty.
985 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
986 unsigned int prev)
988 unsigned int max = si->max;
989 unsigned int i = prev;
990 unsigned char count;
993 * No need for swap_lock here: we're just looking
994 * for whether an entry is in use, not modifying it; false
995 * hits are okay, and sys_swapoff() has already prevented new
996 * allocations from this area (while holding swap_lock).
998 for (;;) {
999 if (++i >= max) {
1000 if (!prev) {
1001 i = 0;
1002 break;
1005 * No entries in use at top of swap_map,
1006 * loop back to start and recheck there.
1008 max = prev + 1;
1009 prev = 0;
1010 i = 1;
1012 count = si->swap_map[i];
1013 if (count && swap_count(count) != SWAP_MAP_BAD)
1014 break;
1016 return i;
1020 * We completely avoid races by reading each swap page in advance,
1021 * and then search for the process using it. All the necessary
1022 * page table adjustments can then be made atomically.
1024 static int try_to_unuse(unsigned int type)
1026 struct swap_info_struct *si = swap_info[type];
1027 struct mm_struct *start_mm;
1028 unsigned char *swap_map;
1029 unsigned char swcount;
1030 struct page *page;
1031 swp_entry_t entry;
1032 unsigned int i = 0;
1033 int retval = 0;
1034 int shmem;
1037 * When searching mms for an entry, a good strategy is to
1038 * start at the first mm we freed the previous entry from
1039 * (though actually we don't notice whether we or coincidence
1040 * freed the entry). Initialize this start_mm with a hold.
1042 * A simpler strategy would be to start at the last mm we
1043 * freed the previous entry from; but that would take less
1044 * advantage of mmlist ordering, which clusters forked mms
1045 * together, child after parent. If we race with dup_mmap(), we
1046 * prefer to resolve parent before child, lest we miss entries
1047 * duplicated after we scanned child: using last mm would invert
1048 * that.
1050 start_mm = &init_mm;
1051 atomic_inc(&init_mm.mm_users);
1054 * Keep on scanning until all entries have gone. Usually,
1055 * one pass through swap_map is enough, but not necessarily:
1056 * there are races when an instance of an entry might be missed.
1058 while ((i = find_next_to_unuse(si, i)) != 0) {
1059 if (signal_pending(current)) {
1060 retval = -EINTR;
1061 break;
1065 * Get a page for the entry, using the existing swap
1066 * cache page if there is one. Otherwise, get a clean
1067 * page and read the swap into it.
1069 swap_map = &si->swap_map[i];
1070 entry = swp_entry(type, i);
1071 page = read_swap_cache_async(entry,
1072 GFP_HIGHUSER_MOVABLE, NULL, 0);
1073 if (!page) {
1075 * Either swap_duplicate() failed because entry
1076 * has been freed independently, and will not be
1077 * reused since sys_swapoff() already disabled
1078 * allocation from here, or alloc_page() failed.
1080 if (!*swap_map)
1081 continue;
1082 retval = -ENOMEM;
1083 break;
1087 * Don't hold on to start_mm if it looks like exiting.
1089 if (atomic_read(&start_mm->mm_users) == 1) {
1090 mmput(start_mm);
1091 start_mm = &init_mm;
1092 atomic_inc(&init_mm.mm_users);
1096 * Wait for and lock page. When do_swap_page races with
1097 * try_to_unuse, do_swap_page can handle the fault much
1098 * faster than try_to_unuse can locate the entry. This
1099 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1100 * defer to do_swap_page in such a case - in some tests,
1101 * do_swap_page and try_to_unuse repeatedly compete.
1103 wait_on_page_locked(page);
1104 wait_on_page_writeback(page);
1105 lock_page(page);
1106 wait_on_page_writeback(page);
1109 * Remove all references to entry.
1110 * Whenever we reach init_mm, there's no address space
1111 * to search, but use it as a reminder to search shmem.
1113 shmem = 0;
1114 swcount = *swap_map;
1115 if (swap_count(swcount)) {
1116 if (start_mm == &init_mm)
1117 shmem = shmem_unuse(entry, page);
1118 else
1119 retval = unuse_mm(start_mm, entry, page);
1121 if (swap_count(*swap_map)) {
1122 int set_start_mm = (*swap_map >= swcount);
1123 struct list_head *p = &start_mm->mmlist;
1124 struct mm_struct *new_start_mm = start_mm;
1125 struct mm_struct *prev_mm = start_mm;
1126 struct mm_struct *mm;
1128 atomic_inc(&new_start_mm->mm_users);
1129 atomic_inc(&prev_mm->mm_users);
1130 spin_lock(&mmlist_lock);
1131 while (swap_count(*swap_map) && !retval && !shmem &&
1132 (p = p->next) != &start_mm->mmlist) {
1133 mm = list_entry(p, struct mm_struct, mmlist);
1134 if (!atomic_inc_not_zero(&mm->mm_users))
1135 continue;
1136 spin_unlock(&mmlist_lock);
1137 mmput(prev_mm);
1138 prev_mm = mm;
1140 cond_resched();
1142 swcount = *swap_map;
1143 if (!swap_count(swcount)) /* any usage ? */
1145 else if (mm == &init_mm) {
1146 set_start_mm = 1;
1147 shmem = shmem_unuse(entry, page);
1148 } else
1149 retval = unuse_mm(mm, entry, page);
1151 if (set_start_mm && *swap_map < swcount) {
1152 mmput(new_start_mm);
1153 atomic_inc(&mm->mm_users);
1154 new_start_mm = mm;
1155 set_start_mm = 0;
1157 spin_lock(&mmlist_lock);
1159 spin_unlock(&mmlist_lock);
1160 mmput(prev_mm);
1161 mmput(start_mm);
1162 start_mm = new_start_mm;
1164 if (shmem) {
1165 /* page has already been unlocked and released */
1166 if (shmem > 0)
1167 continue;
1168 retval = shmem;
1169 break;
1171 if (retval) {
1172 unlock_page(page);
1173 page_cache_release(page);
1174 break;
1178 * If a reference remains (rare), we would like to leave
1179 * the page in the swap cache; but try_to_unmap could
1180 * then re-duplicate the entry once we drop page lock,
1181 * so we might loop indefinitely; also, that page could
1182 * not be swapped out to other storage meanwhile. So:
1183 * delete from cache even if there's another reference,
1184 * after ensuring that the data has been saved to disk -
1185 * since if the reference remains (rarer), it will be
1186 * read from disk into another page. Splitting into two
1187 * pages would be incorrect if swap supported "shared
1188 * private" pages, but they are handled by tmpfs files.
1190 if (swap_count(*swap_map) &&
1191 PageDirty(page) && PageSwapCache(page)) {
1192 struct writeback_control wbc = {
1193 .sync_mode = WB_SYNC_NONE,
1196 swap_writepage(page, &wbc);
1197 lock_page(page);
1198 wait_on_page_writeback(page);
1202 * It is conceivable that a racing task removed this page from
1203 * swap cache just before we acquired the page lock at the top,
1204 * or while we dropped it in unuse_mm(). The page might even
1205 * be back in swap cache on another swap area: that we must not
1206 * delete, since it may not have been written out to swap yet.
1208 if (PageSwapCache(page) &&
1209 likely(page_private(page) == entry.val))
1210 delete_from_swap_cache(page);
1213 * So we could skip searching mms once swap count went
1214 * to 1, we did not mark any present ptes as dirty: must
1215 * mark page dirty so shrink_page_list will preserve it.
1217 SetPageDirty(page);
1218 unlock_page(page);
1219 page_cache_release(page);
1222 * Make sure that we aren't completely killing
1223 * interactive performance.
1225 cond_resched();
1228 mmput(start_mm);
1229 return retval;
1233 * After a successful try_to_unuse, if no swap is now in use, we know
1234 * we can empty the mmlist. swap_lock must be held on entry and exit.
1235 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1236 * added to the mmlist just after page_duplicate - before would be racy.
1238 static void drain_mmlist(void)
1240 struct list_head *p, *next;
1241 unsigned int type;
1243 for (type = 0; type < nr_swapfiles; type++)
1244 if (swap_info[type]->inuse_pages)
1245 return;
1246 spin_lock(&mmlist_lock);
1247 list_for_each_safe(p, next, &init_mm.mmlist)
1248 list_del_init(p);
1249 spin_unlock(&mmlist_lock);
1253 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1254 * corresponds to page offset `offset'. Note that the type of this function
1255 * is sector_t, but it returns page offset into the bdev, not sector offset.
1257 sector_t map_swap_page(swp_entry_t entry, struct block_device **bdev)
1259 struct swap_info_struct *sis;
1260 struct swap_extent *start_se;
1261 struct swap_extent *se;
1262 pgoff_t offset;
1264 sis = swap_info[swp_type(entry)];
1265 *bdev = sis->bdev;
1267 offset = swp_offset(entry);
1268 start_se = sis->curr_swap_extent;
1269 se = start_se;
1271 for ( ; ; ) {
1272 struct list_head *lh;
1274 if (se->start_page <= offset &&
1275 offset < (se->start_page + se->nr_pages)) {
1276 return se->start_block + (offset - se->start_page);
1278 lh = se->list.next;
1279 se = list_entry(lh, struct swap_extent, list);
1280 sis->curr_swap_extent = se;
1281 BUG_ON(se == start_se); /* It *must* be present */
1286 * Free all of a swapdev's extent information
1288 static void destroy_swap_extents(struct swap_info_struct *sis)
1290 while (!list_empty(&sis->first_swap_extent.list)) {
1291 struct swap_extent *se;
1293 se = list_entry(sis->first_swap_extent.list.next,
1294 struct swap_extent, list);
1295 list_del(&se->list);
1296 kfree(se);
1301 * Add a block range (and the corresponding page range) into this swapdev's
1302 * extent list. The extent list is kept sorted in page order.
1304 * This function rather assumes that it is called in ascending page order.
1306 static int
1307 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1308 unsigned long nr_pages, sector_t start_block)
1310 struct swap_extent *se;
1311 struct swap_extent *new_se;
1312 struct list_head *lh;
1314 if (start_page == 0) {
1315 se = &sis->first_swap_extent;
1316 sis->curr_swap_extent = se;
1317 se->start_page = 0;
1318 se->nr_pages = nr_pages;
1319 se->start_block = start_block;
1320 return 1;
1321 } else {
1322 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1323 se = list_entry(lh, struct swap_extent, list);
1324 BUG_ON(se->start_page + se->nr_pages != start_page);
1325 if (se->start_block + se->nr_pages == start_block) {
1326 /* Merge it */
1327 se->nr_pages += nr_pages;
1328 return 0;
1333 * No merge. Insert a new extent, preserving ordering.
1335 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1336 if (new_se == NULL)
1337 return -ENOMEM;
1338 new_se->start_page = start_page;
1339 new_se->nr_pages = nr_pages;
1340 new_se->start_block = start_block;
1342 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1343 return 1;
1347 * A `swap extent' is a simple thing which maps a contiguous range of pages
1348 * onto a contiguous range of disk blocks. An ordered list of swap extents
1349 * is built at swapon time and is then used at swap_writepage/swap_readpage
1350 * time for locating where on disk a page belongs.
1352 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1353 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1354 * swap files identically.
1356 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1357 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1358 * swapfiles are handled *identically* after swapon time.
1360 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1361 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1362 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1363 * requirements, they are simply tossed out - we will never use those blocks
1364 * for swapping.
1366 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1367 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1368 * which will scribble on the fs.
1370 * The amount of disk space which a single swap extent represents varies.
1371 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1372 * extents in the list. To avoid much list walking, we cache the previous
1373 * search location in `curr_swap_extent', and start new searches from there.
1374 * This is extremely effective. The average number of iterations in
1375 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1377 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1379 struct inode *inode;
1380 unsigned blocks_per_page;
1381 unsigned long page_no;
1382 unsigned blkbits;
1383 sector_t probe_block;
1384 sector_t last_block;
1385 sector_t lowest_block = -1;
1386 sector_t highest_block = 0;
1387 int nr_extents = 0;
1388 int ret;
1390 inode = sis->swap_file->f_mapping->host;
1391 if (S_ISBLK(inode->i_mode)) {
1392 ret = add_swap_extent(sis, 0, sis->max, 0);
1393 *span = sis->pages;
1394 goto out;
1397 blkbits = inode->i_blkbits;
1398 blocks_per_page = PAGE_SIZE >> blkbits;
1401 * Map all the blocks into the extent list. This code doesn't try
1402 * to be very smart.
1404 probe_block = 0;
1405 page_no = 0;
1406 last_block = i_size_read(inode) >> blkbits;
1407 while ((probe_block + blocks_per_page) <= last_block &&
1408 page_no < sis->max) {
1409 unsigned block_in_page;
1410 sector_t first_block;
1412 first_block = bmap(inode, probe_block);
1413 if (first_block == 0)
1414 goto bad_bmap;
1417 * It must be PAGE_SIZE aligned on-disk
1419 if (first_block & (blocks_per_page - 1)) {
1420 probe_block++;
1421 goto reprobe;
1424 for (block_in_page = 1; block_in_page < blocks_per_page;
1425 block_in_page++) {
1426 sector_t block;
1428 block = bmap(inode, probe_block + block_in_page);
1429 if (block == 0)
1430 goto bad_bmap;
1431 if (block != first_block + block_in_page) {
1432 /* Discontiguity */
1433 probe_block++;
1434 goto reprobe;
1438 first_block >>= (PAGE_SHIFT - blkbits);
1439 if (page_no) { /* exclude the header page */
1440 if (first_block < lowest_block)
1441 lowest_block = first_block;
1442 if (first_block > highest_block)
1443 highest_block = first_block;
1447 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1449 ret = add_swap_extent(sis, page_no, 1, first_block);
1450 if (ret < 0)
1451 goto out;
1452 nr_extents += ret;
1453 page_no++;
1454 probe_block += blocks_per_page;
1455 reprobe:
1456 continue;
1458 ret = nr_extents;
1459 *span = 1 + highest_block - lowest_block;
1460 if (page_no == 0)
1461 page_no = 1; /* force Empty message */
1462 sis->max = page_no;
1463 sis->pages = page_no - 1;
1464 sis->highest_bit = page_no - 1;
1465 out:
1466 return ret;
1467 bad_bmap:
1468 printk(KERN_ERR "swapon: swapfile has holes\n");
1469 ret = -EINVAL;
1470 goto out;
1473 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1475 struct swap_info_struct *p = NULL;
1476 unsigned char *swap_map;
1477 struct file *swap_file, *victim;
1478 struct address_space *mapping;
1479 struct inode *inode;
1480 char *pathname;
1481 int i, type, prev;
1482 int err;
1484 if (!capable(CAP_SYS_ADMIN))
1485 return -EPERM;
1487 pathname = getname(specialfile);
1488 err = PTR_ERR(pathname);
1489 if (IS_ERR(pathname))
1490 goto out;
1492 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1493 putname(pathname);
1494 err = PTR_ERR(victim);
1495 if (IS_ERR(victim))
1496 goto out;
1498 mapping = victim->f_mapping;
1499 prev = -1;
1500 spin_lock(&swap_lock);
1501 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1502 p = swap_info[type];
1503 if (p->flags & SWP_WRITEOK) {
1504 if (p->swap_file->f_mapping == mapping)
1505 break;
1507 prev = type;
1509 if (type < 0) {
1510 err = -EINVAL;
1511 spin_unlock(&swap_lock);
1512 goto out_dput;
1514 if (!security_vm_enough_memory(p->pages))
1515 vm_unacct_memory(p->pages);
1516 else {
1517 err = -ENOMEM;
1518 spin_unlock(&swap_lock);
1519 goto out_dput;
1521 if (prev < 0)
1522 swap_list.head = p->next;
1523 else
1524 swap_info[prev]->next = p->next;
1525 if (type == swap_list.next) {
1526 /* just pick something that's safe... */
1527 swap_list.next = swap_list.head;
1529 if (p->prio < 0) {
1530 for (i = p->next; i >= 0; i = swap_info[i]->next)
1531 swap_info[i]->prio = p->prio--;
1532 least_priority++;
1534 nr_swap_pages -= p->pages;
1535 total_swap_pages -= p->pages;
1536 p->flags &= ~SWP_WRITEOK;
1537 spin_unlock(&swap_lock);
1539 current->flags |= PF_OOM_ORIGIN;
1540 err = try_to_unuse(type);
1541 current->flags &= ~PF_OOM_ORIGIN;
1543 if (err) {
1544 /* re-insert swap space back into swap_list */
1545 spin_lock(&swap_lock);
1546 if (p->prio < 0)
1547 p->prio = --least_priority;
1548 prev = -1;
1549 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1550 if (p->prio >= swap_info[i]->prio)
1551 break;
1552 prev = i;
1554 p->next = i;
1555 if (prev < 0)
1556 swap_list.head = swap_list.next = type;
1557 else
1558 swap_info[prev]->next = type;
1559 nr_swap_pages += p->pages;
1560 total_swap_pages += p->pages;
1561 p->flags |= SWP_WRITEOK;
1562 spin_unlock(&swap_lock);
1563 goto out_dput;
1566 /* wait for any unplug function to finish */
1567 down_write(&swap_unplug_sem);
1568 up_write(&swap_unplug_sem);
1570 destroy_swap_extents(p);
1571 if (p->flags & SWP_CONTINUED)
1572 free_swap_count_continuations(p);
1574 mutex_lock(&swapon_mutex);
1575 spin_lock(&swap_lock);
1576 drain_mmlist();
1578 /* wait for anyone still in scan_swap_map */
1579 p->highest_bit = 0; /* cuts scans short */
1580 while (p->flags >= SWP_SCANNING) {
1581 spin_unlock(&swap_lock);
1582 schedule_timeout_uninterruptible(1);
1583 spin_lock(&swap_lock);
1586 swap_file = p->swap_file;
1587 p->swap_file = NULL;
1588 p->max = 0;
1589 swap_map = p->swap_map;
1590 p->swap_map = NULL;
1591 p->flags = 0;
1592 spin_unlock(&swap_lock);
1593 mutex_unlock(&swapon_mutex);
1594 vfree(swap_map);
1595 /* Destroy swap account informatin */
1596 swap_cgroup_swapoff(type);
1598 inode = mapping->host;
1599 if (S_ISBLK(inode->i_mode)) {
1600 struct block_device *bdev = I_BDEV(inode);
1601 set_blocksize(bdev, p->old_block_size);
1602 bd_release(bdev);
1603 } else {
1604 mutex_lock(&inode->i_mutex);
1605 inode->i_flags &= ~S_SWAPFILE;
1606 mutex_unlock(&inode->i_mutex);
1608 filp_close(swap_file, NULL);
1609 err = 0;
1611 out_dput:
1612 filp_close(victim, NULL);
1613 out:
1614 return err;
1617 #ifdef CONFIG_PROC_FS
1618 /* iterator */
1619 static void *swap_start(struct seq_file *swap, loff_t *pos)
1621 struct swap_info_struct *si;
1622 int type;
1623 loff_t l = *pos;
1625 mutex_lock(&swapon_mutex);
1627 if (!l)
1628 return SEQ_START_TOKEN;
1630 for (type = 0; type < nr_swapfiles; type++) {
1631 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1632 si = swap_info[type];
1633 if (!(si->flags & SWP_USED) || !si->swap_map)
1634 continue;
1635 if (!--l)
1636 return si;
1639 return NULL;
1642 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1644 struct swap_info_struct *si = v;
1645 int type;
1647 if (v == SEQ_START_TOKEN)
1648 type = 0;
1649 else
1650 type = si->type + 1;
1652 for (; type < nr_swapfiles; type++) {
1653 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1654 si = swap_info[type];
1655 if (!(si->flags & SWP_USED) || !si->swap_map)
1656 continue;
1657 ++*pos;
1658 return si;
1661 return NULL;
1664 static void swap_stop(struct seq_file *swap, void *v)
1666 mutex_unlock(&swapon_mutex);
1669 static int swap_show(struct seq_file *swap, void *v)
1671 struct swap_info_struct *si = v;
1672 struct file *file;
1673 int len;
1675 if (si == SEQ_START_TOKEN) {
1676 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1677 return 0;
1680 file = si->swap_file;
1681 len = seq_path(swap, &file->f_path, " \t\n\\");
1682 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1683 len < 40 ? 40 - len : 1, " ",
1684 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1685 "partition" : "file\t",
1686 si->pages << (PAGE_SHIFT - 10),
1687 si->inuse_pages << (PAGE_SHIFT - 10),
1688 si->prio);
1689 return 0;
1692 static const struct seq_operations swaps_op = {
1693 .start = swap_start,
1694 .next = swap_next,
1695 .stop = swap_stop,
1696 .show = swap_show
1699 static int swaps_open(struct inode *inode, struct file *file)
1701 return seq_open(file, &swaps_op);
1704 static const struct file_operations proc_swaps_operations = {
1705 .open = swaps_open,
1706 .read = seq_read,
1707 .llseek = seq_lseek,
1708 .release = seq_release,
1711 static int __init procswaps_init(void)
1713 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1714 return 0;
1716 __initcall(procswaps_init);
1717 #endif /* CONFIG_PROC_FS */
1719 #ifdef MAX_SWAPFILES_CHECK
1720 static int __init max_swapfiles_check(void)
1722 MAX_SWAPFILES_CHECK();
1723 return 0;
1725 late_initcall(max_swapfiles_check);
1726 #endif
1729 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1731 * The swapon system call
1733 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1735 struct swap_info_struct *p;
1736 char *name = NULL;
1737 struct block_device *bdev = NULL;
1738 struct file *swap_file = NULL;
1739 struct address_space *mapping;
1740 unsigned int type;
1741 int i, prev;
1742 int error;
1743 union swap_header *swap_header = NULL;
1744 unsigned int nr_good_pages = 0;
1745 int nr_extents = 0;
1746 sector_t span;
1747 unsigned long maxpages = 1;
1748 unsigned long swapfilepages;
1749 unsigned char *swap_map = NULL;
1750 struct page *page = NULL;
1751 struct inode *inode = NULL;
1752 int did_down = 0;
1754 if (!capable(CAP_SYS_ADMIN))
1755 return -EPERM;
1757 p = kzalloc(sizeof(*p), GFP_KERNEL);
1758 if (!p)
1759 return -ENOMEM;
1761 spin_lock(&swap_lock);
1762 for (type = 0; type < nr_swapfiles; type++) {
1763 if (!(swap_info[type]->flags & SWP_USED))
1764 break;
1766 error = -EPERM;
1767 if (type >= MAX_SWAPFILES) {
1768 spin_unlock(&swap_lock);
1769 kfree(p);
1770 goto out;
1772 if (type >= nr_swapfiles) {
1773 p->type = type;
1774 swap_info[type] = p;
1776 * Write swap_info[type] before nr_swapfiles, in case a
1777 * racing procfs swap_start() or swap_next() is reading them.
1778 * (We never shrink nr_swapfiles, we never free this entry.)
1780 smp_wmb();
1781 nr_swapfiles++;
1782 } else {
1783 kfree(p);
1784 p = swap_info[type];
1786 * Do not memset this entry: a racing procfs swap_next()
1787 * would be relying on p->type to remain valid.
1790 INIT_LIST_HEAD(&p->first_swap_extent.list);
1791 p->flags = SWP_USED;
1792 p->next = -1;
1793 spin_unlock(&swap_lock);
1795 name = getname(specialfile);
1796 error = PTR_ERR(name);
1797 if (IS_ERR(name)) {
1798 name = NULL;
1799 goto bad_swap_2;
1801 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1802 error = PTR_ERR(swap_file);
1803 if (IS_ERR(swap_file)) {
1804 swap_file = NULL;
1805 goto bad_swap_2;
1808 p->swap_file = swap_file;
1809 mapping = swap_file->f_mapping;
1810 inode = mapping->host;
1812 error = -EBUSY;
1813 for (i = 0; i < nr_swapfiles; i++) {
1814 struct swap_info_struct *q = swap_info[i];
1816 if (i == type || !q->swap_file)
1817 continue;
1818 if (mapping == q->swap_file->f_mapping)
1819 goto bad_swap;
1822 error = -EINVAL;
1823 if (S_ISBLK(inode->i_mode)) {
1824 bdev = I_BDEV(inode);
1825 error = bd_claim(bdev, sys_swapon);
1826 if (error < 0) {
1827 bdev = NULL;
1828 error = -EINVAL;
1829 goto bad_swap;
1831 p->old_block_size = block_size(bdev);
1832 error = set_blocksize(bdev, PAGE_SIZE);
1833 if (error < 0)
1834 goto bad_swap;
1835 p->bdev = bdev;
1836 } else if (S_ISREG(inode->i_mode)) {
1837 p->bdev = inode->i_sb->s_bdev;
1838 mutex_lock(&inode->i_mutex);
1839 did_down = 1;
1840 if (IS_SWAPFILE(inode)) {
1841 error = -EBUSY;
1842 goto bad_swap;
1844 } else {
1845 goto bad_swap;
1848 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1851 * Read the swap header.
1853 if (!mapping->a_ops->readpage) {
1854 error = -EINVAL;
1855 goto bad_swap;
1857 page = read_mapping_page(mapping, 0, swap_file);
1858 if (IS_ERR(page)) {
1859 error = PTR_ERR(page);
1860 goto bad_swap;
1862 swap_header = kmap(page);
1864 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1865 printk(KERN_ERR "Unable to find swap-space signature\n");
1866 error = -EINVAL;
1867 goto bad_swap;
1870 /* swap partition endianess hack... */
1871 if (swab32(swap_header->info.version) == 1) {
1872 swab32s(&swap_header->info.version);
1873 swab32s(&swap_header->info.last_page);
1874 swab32s(&swap_header->info.nr_badpages);
1875 for (i = 0; i < swap_header->info.nr_badpages; i++)
1876 swab32s(&swap_header->info.badpages[i]);
1878 /* Check the swap header's sub-version */
1879 if (swap_header->info.version != 1) {
1880 printk(KERN_WARNING
1881 "Unable to handle swap header version %d\n",
1882 swap_header->info.version);
1883 error = -EINVAL;
1884 goto bad_swap;
1887 p->lowest_bit = 1;
1888 p->cluster_next = 1;
1889 p->cluster_nr = 0;
1892 * Find out how many pages are allowed for a single swap
1893 * device. There are two limiting factors: 1) the number of
1894 * bits for the swap offset in the swp_entry_t type and
1895 * 2) the number of bits in the a swap pte as defined by
1896 * the different architectures. In order to find the
1897 * largest possible bit mask a swap entry with swap type 0
1898 * and swap offset ~0UL is created, encoded to a swap pte,
1899 * decoded to a swp_entry_t again and finally the swap
1900 * offset is extracted. This will mask all the bits from
1901 * the initial ~0UL mask that can't be encoded in either
1902 * the swp_entry_t or the architecture definition of a
1903 * swap pte.
1905 maxpages = swp_offset(pte_to_swp_entry(
1906 swp_entry_to_pte(swp_entry(0, ~0UL)))) - 1;
1907 if (maxpages > swap_header->info.last_page)
1908 maxpages = swap_header->info.last_page;
1909 p->highest_bit = maxpages - 1;
1911 error = -EINVAL;
1912 if (!maxpages)
1913 goto bad_swap;
1914 if (swapfilepages && maxpages > swapfilepages) {
1915 printk(KERN_WARNING
1916 "Swap area shorter than signature indicates\n");
1917 goto bad_swap;
1919 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
1920 goto bad_swap;
1921 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
1922 goto bad_swap;
1924 /* OK, set up the swap map and apply the bad block list */
1925 swap_map = vmalloc(maxpages);
1926 if (!swap_map) {
1927 error = -ENOMEM;
1928 goto bad_swap;
1931 memset(swap_map, 0, maxpages);
1932 for (i = 0; i < swap_header->info.nr_badpages; i++) {
1933 int page_nr = swap_header->info.badpages[i];
1934 if (page_nr <= 0 || page_nr >= swap_header->info.last_page) {
1935 error = -EINVAL;
1936 goto bad_swap;
1938 swap_map[page_nr] = SWAP_MAP_BAD;
1941 error = swap_cgroup_swapon(type, maxpages);
1942 if (error)
1943 goto bad_swap;
1945 nr_good_pages = swap_header->info.last_page -
1946 swap_header->info.nr_badpages -
1947 1 /* header page */;
1949 if (nr_good_pages) {
1950 swap_map[0] = SWAP_MAP_BAD;
1951 p->max = maxpages;
1952 p->pages = nr_good_pages;
1953 nr_extents = setup_swap_extents(p, &span);
1954 if (nr_extents < 0) {
1955 error = nr_extents;
1956 goto bad_swap;
1958 nr_good_pages = p->pages;
1960 if (!nr_good_pages) {
1961 printk(KERN_WARNING "Empty swap-file\n");
1962 error = -EINVAL;
1963 goto bad_swap;
1966 if (p->bdev) {
1967 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
1968 p->flags |= SWP_SOLIDSTATE;
1969 p->cluster_next = 1 + (random32() % p->highest_bit);
1971 if (discard_swap(p) == 0)
1972 p->flags |= SWP_DISCARDABLE;
1975 mutex_lock(&swapon_mutex);
1976 spin_lock(&swap_lock);
1977 if (swap_flags & SWAP_FLAG_PREFER)
1978 p->prio =
1979 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
1980 else
1981 p->prio = --least_priority;
1982 p->swap_map = swap_map;
1983 p->flags |= SWP_WRITEOK;
1984 nr_swap_pages += nr_good_pages;
1985 total_swap_pages += nr_good_pages;
1987 printk(KERN_INFO "Adding %uk swap on %s. "
1988 "Priority:%d extents:%d across:%lluk %s%s\n",
1989 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
1990 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
1991 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
1992 (p->flags & SWP_DISCARDABLE) ? "D" : "");
1994 /* insert swap space into swap_list: */
1995 prev = -1;
1996 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1997 if (p->prio >= swap_info[i]->prio)
1998 break;
1999 prev = i;
2001 p->next = i;
2002 if (prev < 0)
2003 swap_list.head = swap_list.next = type;
2004 else
2005 swap_info[prev]->next = type;
2006 spin_unlock(&swap_lock);
2007 mutex_unlock(&swapon_mutex);
2008 error = 0;
2009 goto out;
2010 bad_swap:
2011 if (bdev) {
2012 set_blocksize(bdev, p->old_block_size);
2013 bd_release(bdev);
2015 destroy_swap_extents(p);
2016 swap_cgroup_swapoff(type);
2017 bad_swap_2:
2018 spin_lock(&swap_lock);
2019 p->swap_file = NULL;
2020 p->flags = 0;
2021 spin_unlock(&swap_lock);
2022 vfree(swap_map);
2023 if (swap_file)
2024 filp_close(swap_file, NULL);
2025 out:
2026 if (page && !IS_ERR(page)) {
2027 kunmap(page);
2028 page_cache_release(page);
2030 if (name)
2031 putname(name);
2032 if (did_down) {
2033 if (!error)
2034 inode->i_flags |= S_SWAPFILE;
2035 mutex_unlock(&inode->i_mutex);
2037 return error;
2040 void si_swapinfo(struct sysinfo *val)
2042 unsigned int type;
2043 unsigned long nr_to_be_unused = 0;
2045 spin_lock(&swap_lock);
2046 for (type = 0; type < nr_swapfiles; type++) {
2047 struct swap_info_struct *si = swap_info[type];
2049 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2050 nr_to_be_unused += si->inuse_pages;
2052 val->freeswap = nr_swap_pages + nr_to_be_unused;
2053 val->totalswap = total_swap_pages + nr_to_be_unused;
2054 spin_unlock(&swap_lock);
2058 * Verify that a swap entry is valid and increment its swap map count.
2060 * Returns error code in following case.
2061 * - success -> 0
2062 * - swp_entry is invalid -> EINVAL
2063 * - swp_entry is migration entry -> EINVAL
2064 * - swap-cache reference is requested but there is already one. -> EEXIST
2065 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2066 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2068 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2070 struct swap_info_struct *p;
2071 unsigned long offset, type;
2072 unsigned char count;
2073 unsigned char has_cache;
2074 int err = -EINVAL;
2076 if (non_swap_entry(entry))
2077 goto out;
2079 type = swp_type(entry);
2080 if (type >= nr_swapfiles)
2081 goto bad_file;
2082 p = swap_info[type];
2083 offset = swp_offset(entry);
2085 spin_lock(&swap_lock);
2086 if (unlikely(offset >= p->max))
2087 goto unlock_out;
2089 count = p->swap_map[offset];
2090 has_cache = count & SWAP_HAS_CACHE;
2091 count &= ~SWAP_HAS_CACHE;
2092 err = 0;
2094 if (usage == SWAP_HAS_CACHE) {
2096 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2097 if (!has_cache && count)
2098 has_cache = SWAP_HAS_CACHE;
2099 else if (has_cache) /* someone else added cache */
2100 err = -EEXIST;
2101 else /* no users remaining */
2102 err = -ENOENT;
2104 } else if (count || has_cache) {
2106 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2107 count += usage;
2108 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2109 err = -EINVAL;
2110 else if (swap_count_continued(p, offset, count))
2111 count = COUNT_CONTINUED;
2112 else
2113 err = -ENOMEM;
2114 } else
2115 err = -ENOENT; /* unused swap entry */
2117 p->swap_map[offset] = count | has_cache;
2119 unlock_out:
2120 spin_unlock(&swap_lock);
2121 out:
2122 return err;
2124 bad_file:
2125 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2126 goto out;
2130 * increase reference count of swap entry by 1.
2132 int swap_duplicate(swp_entry_t entry)
2134 int err = 0;
2136 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2137 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2138 return err;
2142 * @entry: swap entry for which we allocate swap cache.
2144 * Called when allocating swap cache for existing swap entry,
2145 * This can return error codes. Returns 0 at success.
2146 * -EBUSY means there is a swap cache.
2147 * Note: return code is different from swap_duplicate().
2149 int swapcache_prepare(swp_entry_t entry)
2151 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2155 * swap_lock prevents swap_map being freed. Don't grab an extra
2156 * reference on the swaphandle, it doesn't matter if it becomes unused.
2158 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2160 struct swap_info_struct *si;
2161 int our_page_cluster = page_cluster;
2162 pgoff_t target, toff;
2163 pgoff_t base, end;
2164 int nr_pages = 0;
2166 if (!our_page_cluster) /* no readahead */
2167 return 0;
2169 si = swap_info[swp_type(entry)];
2170 target = swp_offset(entry);
2171 base = (target >> our_page_cluster) << our_page_cluster;
2172 end = base + (1 << our_page_cluster);
2173 if (!base) /* first page is swap header */
2174 base++;
2176 spin_lock(&swap_lock);
2177 if (end > si->max) /* don't go beyond end of map */
2178 end = si->max;
2180 /* Count contiguous allocated slots above our target */
2181 for (toff = target; ++toff < end; nr_pages++) {
2182 /* Don't read in free or bad pages */
2183 if (!si->swap_map[toff])
2184 break;
2185 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2186 break;
2188 /* Count contiguous allocated slots below our target */
2189 for (toff = target; --toff >= base; nr_pages++) {
2190 /* Don't read in free or bad pages */
2191 if (!si->swap_map[toff])
2192 break;
2193 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2194 break;
2196 spin_unlock(&swap_lock);
2199 * Indicate starting offset, and return number of pages to get:
2200 * if only 1, say 0, since there's then no readahead to be done.
2202 *offset = ++toff;
2203 return nr_pages? ++nr_pages: 0;
2207 * add_swap_count_continuation - called when a swap count is duplicated
2208 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2209 * page of the original vmalloc'ed swap_map, to hold the continuation count
2210 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2211 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2213 * These continuation pages are seldom referenced: the common paths all work
2214 * on the original swap_map, only referring to a continuation page when the
2215 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2217 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2218 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2219 * can be called after dropping locks.
2221 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2223 struct swap_info_struct *si;
2224 struct page *head;
2225 struct page *page;
2226 struct page *list_page;
2227 pgoff_t offset;
2228 unsigned char count;
2231 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2232 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2234 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2236 si = swap_info_get(entry);
2237 if (!si) {
2239 * An acceptable race has occurred since the failing
2240 * __swap_duplicate(): the swap entry has been freed,
2241 * perhaps even the whole swap_map cleared for swapoff.
2243 goto outer;
2246 offset = swp_offset(entry);
2247 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2249 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2251 * The higher the swap count, the more likely it is that tasks
2252 * will race to add swap count continuation: we need to avoid
2253 * over-provisioning.
2255 goto out;
2258 if (!page) {
2259 spin_unlock(&swap_lock);
2260 return -ENOMEM;
2264 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2265 * no architecture is using highmem pages for kernel pagetables: so it
2266 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2268 head = vmalloc_to_page(si->swap_map + offset);
2269 offset &= ~PAGE_MASK;
2272 * Page allocation does not initialize the page's lru field,
2273 * but it does always reset its private field.
2275 if (!page_private(head)) {
2276 BUG_ON(count & COUNT_CONTINUED);
2277 INIT_LIST_HEAD(&head->lru);
2278 set_page_private(head, SWP_CONTINUED);
2279 si->flags |= SWP_CONTINUED;
2282 list_for_each_entry(list_page, &head->lru, lru) {
2283 unsigned char *map;
2286 * If the previous map said no continuation, but we've found
2287 * a continuation page, free our allocation and use this one.
2289 if (!(count & COUNT_CONTINUED))
2290 goto out;
2292 map = kmap_atomic(list_page, KM_USER0) + offset;
2293 count = *map;
2294 kunmap_atomic(map, KM_USER0);
2297 * If this continuation count now has some space in it,
2298 * free our allocation and use this one.
2300 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2301 goto out;
2304 list_add_tail(&page->lru, &head->lru);
2305 page = NULL; /* now it's attached, don't free it */
2306 out:
2307 spin_unlock(&swap_lock);
2308 outer:
2309 if (page)
2310 __free_page(page);
2311 return 0;
2315 * swap_count_continued - when the original swap_map count is incremented
2316 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2317 * into, carry if so, or else fail until a new continuation page is allocated;
2318 * when the original swap_map count is decremented from 0 with continuation,
2319 * borrow from the continuation and report whether it still holds more.
2320 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2322 static bool swap_count_continued(struct swap_info_struct *si,
2323 pgoff_t offset, unsigned char count)
2325 struct page *head;
2326 struct page *page;
2327 unsigned char *map;
2329 head = vmalloc_to_page(si->swap_map + offset);
2330 if (page_private(head) != SWP_CONTINUED) {
2331 BUG_ON(count & COUNT_CONTINUED);
2332 return false; /* need to add count continuation */
2335 offset &= ~PAGE_MASK;
2336 page = list_entry(head->lru.next, struct page, lru);
2337 map = kmap_atomic(page, KM_USER0) + offset;
2339 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2340 goto init_map; /* jump over SWAP_CONT_MAX checks */
2342 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2344 * Think of how you add 1 to 999
2346 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2347 kunmap_atomic(map, KM_USER0);
2348 page = list_entry(page->lru.next, struct page, lru);
2349 BUG_ON(page == head);
2350 map = kmap_atomic(page, KM_USER0) + offset;
2352 if (*map == SWAP_CONT_MAX) {
2353 kunmap_atomic(map, KM_USER0);
2354 page = list_entry(page->lru.next, struct page, lru);
2355 if (page == head)
2356 return false; /* add count continuation */
2357 map = kmap_atomic(page, KM_USER0) + offset;
2358 init_map: *map = 0; /* we didn't zero the page */
2360 *map += 1;
2361 kunmap_atomic(map, KM_USER0);
2362 page = list_entry(page->lru.prev, struct page, lru);
2363 while (page != head) {
2364 map = kmap_atomic(page, KM_USER0) + offset;
2365 *map = COUNT_CONTINUED;
2366 kunmap_atomic(map, KM_USER0);
2367 page = list_entry(page->lru.prev, struct page, lru);
2369 return true; /* incremented */
2371 } else { /* decrementing */
2373 * Think of how you subtract 1 from 1000
2375 BUG_ON(count != COUNT_CONTINUED);
2376 while (*map == COUNT_CONTINUED) {
2377 kunmap_atomic(map, KM_USER0);
2378 page = list_entry(page->lru.next, struct page, lru);
2379 BUG_ON(page == head);
2380 map = kmap_atomic(page, KM_USER0) + offset;
2382 BUG_ON(*map == 0);
2383 *map -= 1;
2384 if (*map == 0)
2385 count = 0;
2386 kunmap_atomic(map, KM_USER0);
2387 page = list_entry(page->lru.prev, struct page, lru);
2388 while (page != head) {
2389 map = kmap_atomic(page, KM_USER0) + offset;
2390 *map = SWAP_CONT_MAX | count;
2391 count = COUNT_CONTINUED;
2392 kunmap_atomic(map, KM_USER0);
2393 page = list_entry(page->lru.prev, struct page, lru);
2395 return count == COUNT_CONTINUED;
2400 * free_swap_count_continuations - swapoff free all the continuation pages
2401 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2403 static void free_swap_count_continuations(struct swap_info_struct *si)
2405 pgoff_t offset;
2407 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2408 struct page *head;
2409 head = vmalloc_to_page(si->swap_map + offset);
2410 if (page_private(head)) {
2411 struct list_head *this, *next;
2412 list_for_each_safe(this, next, &head->lru) {
2413 struct page *page;
2414 page = list_entry(this, struct page, lru);
2415 list_del(this);
2416 __free_page(page);