2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
12 #include <linux/module.h>
13 #include <linux/bit_spinlock.h>
14 #include <linux/interrupt.h>
15 #include <linux/bitops.h>
16 #include <linux/slab.h>
17 #include <linux/seq_file.h>
18 #include <linux/cpu.h>
19 #include <linux/cpuset.h>
20 #include <linux/mempolicy.h>
21 #include <linux/ctype.h>
22 #include <linux/kallsyms.h>
23 #include <linux/memory.h>
30 * The slab_lock protects operations on the object of a particular
31 * slab and its metadata in the page struct. If the slab lock
32 * has been taken then no allocations nor frees can be performed
33 * on the objects in the slab nor can the slab be added or removed
34 * from the partial or full lists since this would mean modifying
35 * the page_struct of the slab.
37 * The list_lock protects the partial and full list on each node and
38 * the partial slab counter. If taken then no new slabs may be added or
39 * removed from the lists nor make the number of partial slabs be modified.
40 * (Note that the total number of slabs is an atomic value that may be
41 * modified without taking the list lock).
43 * The list_lock is a centralized lock and thus we avoid taking it as
44 * much as possible. As long as SLUB does not have to handle partial
45 * slabs, operations can continue without any centralized lock. F.e.
46 * allocating a long series of objects that fill up slabs does not require
49 * The lock order is sometimes inverted when we are trying to get a slab
50 * off a list. We take the list_lock and then look for a page on the list
51 * to use. While we do that objects in the slabs may be freed. We can
52 * only operate on the slab if we have also taken the slab_lock. So we use
53 * a slab_trylock() on the slab. If trylock was successful then no frees
54 * can occur anymore and we can use the slab for allocations etc. If the
55 * slab_trylock() does not succeed then frees are in progress in the slab and
56 * we must stay away from it for a while since we may cause a bouncing
57 * cacheline if we try to acquire the lock. So go onto the next slab.
58 * If all pages are busy then we may allocate a new slab instead of reusing
59 * a partial slab. A new slab has noone operating on it and thus there is
60 * no danger of cacheline contention.
62 * Interrupts are disabled during allocation and deallocation in order to
63 * make the slab allocator safe to use in the context of an irq. In addition
64 * interrupts are disabled to ensure that the processor does not change
65 * while handling per_cpu slabs, due to kernel preemption.
67 * SLUB assigns one slab for allocation to each processor.
68 * Allocations only occur from these slabs called cpu slabs.
70 * Slabs with free elements are kept on a partial list and during regular
71 * operations no list for full slabs is used. If an object in a full slab is
72 * freed then the slab will show up again on the partial lists.
73 * We track full slabs for debugging purposes though because otherwise we
74 * cannot scan all objects.
76 * Slabs are freed when they become empty. Teardown and setup is
77 * minimal so we rely on the page allocators per cpu caches for
78 * fast frees and allocs.
80 * Overloading of page flags that are otherwise used for LRU management.
82 * PageActive The slab is frozen and exempt from list processing.
83 * This means that the slab is dedicated to a purpose
84 * such as satisfying allocations for a specific
85 * processor. Objects may be freed in the slab while
86 * it is frozen but slab_free will then skip the usual
87 * list operations. It is up to the processor holding
88 * the slab to integrate the slab into the slab lists
89 * when the slab is no longer needed.
91 * One use of this flag is to mark slabs that are
92 * used for allocations. Then such a slab becomes a cpu
93 * slab. The cpu slab may be equipped with an additional
94 * freelist that allows lockless access to
95 * free objects in addition to the regular freelist
96 * that requires the slab lock.
98 * PageError Slab requires special handling due to debug
99 * options set. This moves slab handling out of
100 * the fast path and disables lockless freelists.
103 #define FROZEN (1 << PG_active)
105 #ifdef CONFIG_SLUB_DEBUG
106 #define SLABDEBUG (1 << PG_error)
111 static inline int SlabFrozen(struct page
*page
)
113 return page
->flags
& FROZEN
;
116 static inline void SetSlabFrozen(struct page
*page
)
118 page
->flags
|= FROZEN
;
121 static inline void ClearSlabFrozen(struct page
*page
)
123 page
->flags
&= ~FROZEN
;
126 static inline int SlabDebug(struct page
*page
)
128 return page
->flags
& SLABDEBUG
;
131 static inline void SetSlabDebug(struct page
*page
)
133 page
->flags
|= SLABDEBUG
;
136 static inline void ClearSlabDebug(struct page
*page
)
138 page
->flags
&= ~SLABDEBUG
;
142 * Issues still to be resolved:
144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
146 * - Variable sizing of the per node arrays
149 /* Enable to test recovery from slab corruption on boot */
150 #undef SLUB_RESILIENCY_TEST
155 * Small page size. Make sure that we do not fragment memory
157 #define DEFAULT_MAX_ORDER 1
158 #define DEFAULT_MIN_OBJECTS 4
163 * Large page machines are customarily able to handle larger
166 #define DEFAULT_MAX_ORDER 2
167 #define DEFAULT_MIN_OBJECTS 8
172 * Mininum number of partial slabs. These will be left on the partial
173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
175 #define MIN_PARTIAL 5
178 * Maximum number of desirable partial slabs.
179 * The existence of more partial slabs makes kmem_cache_shrink
180 * sort the partial list by the number of objects in the.
182 #define MAX_PARTIAL 10
184 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
185 SLAB_POISON | SLAB_STORE_USER)
188 * Set of flags that will prevent slab merging
190 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
191 SLAB_TRACE | SLAB_DESTROY_BY_RCU)
193 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
196 #ifndef ARCH_KMALLOC_MINALIGN
197 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
200 #ifndef ARCH_SLAB_MINALIGN
201 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
204 /* Internal SLUB flags */
205 #define __OBJECT_POISON 0x80000000 /* Poison object */
206 #define __SYSFS_ADD_DEFERRED 0x40000000 /* Not yet visible via sysfs */
207 #define __KMALLOC_CACHE 0x20000000 /* objects freed using kfree */
208 #define __PAGE_ALLOC_FALLBACK 0x10000000 /* Allow fallback to page alloc */
210 /* Not all arches define cache_line_size */
211 #ifndef cache_line_size
212 #define cache_line_size() L1_CACHE_BYTES
215 static int kmem_size
= sizeof(struct kmem_cache
);
218 static struct notifier_block slab_notifier
;
222 DOWN
, /* No slab functionality available */
223 PARTIAL
, /* kmem_cache_open() works but kmalloc does not */
224 UP
, /* Everything works but does not show up in sysfs */
228 /* A list of all slab caches on the system */
229 static DECLARE_RWSEM(slub_lock
);
230 static LIST_HEAD(slab_caches
);
233 * Tracking user of a slab.
236 void *addr
; /* Called from address */
237 int cpu
; /* Was running on cpu */
238 int pid
; /* Pid context */
239 unsigned long when
; /* When did the operation occur */
242 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
244 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
245 static int sysfs_slab_add(struct kmem_cache
*);
246 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
247 static void sysfs_slab_remove(struct kmem_cache
*);
250 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
251 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
253 static inline void sysfs_slab_remove(struct kmem_cache
*s
)
260 static inline void stat(struct kmem_cache_cpu
*c
, enum stat_item si
)
262 #ifdef CONFIG_SLUB_STATS
267 /********************************************************************
268 * Core slab cache functions
269 *******************************************************************/
271 int slab_is_available(void)
273 return slab_state
>= UP
;
276 static inline struct kmem_cache_node
*get_node(struct kmem_cache
*s
, int node
)
279 return s
->node
[node
];
281 return &s
->local_node
;
285 static inline struct kmem_cache_cpu
*get_cpu_slab(struct kmem_cache
*s
, int cpu
)
288 return s
->cpu_slab
[cpu
];
295 * The end pointer in a slab is special. It points to the first object in the
296 * slab but has bit 0 set to mark it.
298 * Note that SLUB relies on page_mapping returning NULL for pages with bit 0
299 * in the mapping set.
301 static inline int is_end(void *addr
)
303 return (unsigned long)addr
& PAGE_MAPPING_ANON
;
306 static void *slab_address(struct page
*page
)
308 return page
->end
- PAGE_MAPPING_ANON
;
311 static inline int check_valid_pointer(struct kmem_cache
*s
,
312 struct page
*page
, const void *object
)
316 if (object
== page
->end
)
319 base
= slab_address(page
);
320 if (object
< base
|| object
>= base
+ s
->objects
* s
->size
||
321 (object
- base
) % s
->size
) {
329 * Slow version of get and set free pointer.
331 * This version requires touching the cache lines of kmem_cache which
332 * we avoid to do in the fast alloc free paths. There we obtain the offset
333 * from the page struct.
335 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
337 return *(void **)(object
+ s
->offset
);
340 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
342 *(void **)(object
+ s
->offset
) = fp
;
345 /* Loop over all objects in a slab */
346 #define for_each_object(__p, __s, __addr) \
347 for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
351 #define for_each_free_object(__p, __s, __free) \
352 for (__p = (__free); (__p) != page->end; __p = get_freepointer((__s),\
355 /* Determine object index from a given position */
356 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
358 return (p
- addr
) / s
->size
;
361 #ifdef CONFIG_SLUB_DEBUG
365 #ifdef CONFIG_SLUB_DEBUG_ON
366 static int slub_debug
= DEBUG_DEFAULT_FLAGS
;
368 static int slub_debug
;
371 static char *slub_debug_slabs
;
376 static void print_section(char *text
, u8
*addr
, unsigned int length
)
384 for (i
= 0; i
< length
; i
++) {
386 printk(KERN_ERR
"%8s 0x%p: ", text
, addr
+ i
);
389 printk(KERN_CONT
" %02x", addr
[i
]);
391 ascii
[offset
] = isgraph(addr
[i
]) ? addr
[i
] : '.';
393 printk(KERN_CONT
" %s\n", ascii
);
400 printk(KERN_CONT
" ");
404 printk(KERN_CONT
" %s\n", ascii
);
408 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
409 enum track_item alloc
)
414 p
= object
+ s
->offset
+ sizeof(void *);
416 p
= object
+ s
->inuse
;
421 static void set_track(struct kmem_cache
*s
, void *object
,
422 enum track_item alloc
, void *addr
)
427 p
= object
+ s
->offset
+ sizeof(void *);
429 p
= object
+ s
->inuse
;
434 p
->cpu
= smp_processor_id();
435 p
->pid
= current
? current
->pid
: -1;
438 memset(p
, 0, sizeof(struct track
));
441 static void init_tracking(struct kmem_cache
*s
, void *object
)
443 if (!(s
->flags
& SLAB_STORE_USER
))
446 set_track(s
, object
, TRACK_FREE
, NULL
);
447 set_track(s
, object
, TRACK_ALLOC
, NULL
);
450 static void print_track(const char *s
, struct track
*t
)
455 printk(KERN_ERR
"INFO: %s in ", s
);
456 __print_symbol("%s", (unsigned long)t
->addr
);
457 printk(" age=%lu cpu=%u pid=%d\n", jiffies
- t
->when
, t
->cpu
, t
->pid
);
460 static void print_tracking(struct kmem_cache
*s
, void *object
)
462 if (!(s
->flags
& SLAB_STORE_USER
))
465 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
466 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
469 static void print_page_info(struct page
*page
)
471 printk(KERN_ERR
"INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
472 page
, page
->inuse
, page
->freelist
, page
->flags
);
476 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
482 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
484 printk(KERN_ERR
"========================================"
485 "=====================================\n");
486 printk(KERN_ERR
"BUG %s: %s\n", s
->name
, buf
);
487 printk(KERN_ERR
"----------------------------------------"
488 "-------------------------------------\n\n");
491 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
497 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
499 printk(KERN_ERR
"FIX %s: %s\n", s
->name
, buf
);
502 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
504 unsigned int off
; /* Offset of last byte */
505 u8
*addr
= slab_address(page
);
507 print_tracking(s
, p
);
509 print_page_info(page
);
511 printk(KERN_ERR
"INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
512 p
, p
- addr
, get_freepointer(s
, p
));
515 print_section("Bytes b4", p
- 16, 16);
517 print_section("Object", p
, min(s
->objsize
, 128));
519 if (s
->flags
& SLAB_RED_ZONE
)
520 print_section("Redzone", p
+ s
->objsize
,
521 s
->inuse
- s
->objsize
);
524 off
= s
->offset
+ sizeof(void *);
528 if (s
->flags
& SLAB_STORE_USER
)
529 off
+= 2 * sizeof(struct track
);
532 /* Beginning of the filler is the free pointer */
533 print_section("Padding", p
+ off
, s
->size
- off
);
538 static void object_err(struct kmem_cache
*s
, struct page
*page
,
539 u8
*object
, char *reason
)
542 print_trailer(s
, page
, object
);
545 static void slab_err(struct kmem_cache
*s
, struct page
*page
, char *fmt
, ...)
551 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
554 print_page_info(page
);
558 static void init_object(struct kmem_cache
*s
, void *object
, int active
)
562 if (s
->flags
& __OBJECT_POISON
) {
563 memset(p
, POISON_FREE
, s
->objsize
- 1);
564 p
[s
->objsize
- 1] = POISON_END
;
567 if (s
->flags
& SLAB_RED_ZONE
)
568 memset(p
+ s
->objsize
,
569 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
,
570 s
->inuse
- s
->objsize
);
573 static u8
*check_bytes(u8
*start
, unsigned int value
, unsigned int bytes
)
576 if (*start
!= (u8
)value
)
584 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
585 void *from
, void *to
)
587 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
588 memset(from
, data
, to
- from
);
591 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
592 u8
*object
, char *what
,
593 u8
*start
, unsigned int value
, unsigned int bytes
)
598 fault
= check_bytes(start
, value
, bytes
);
603 while (end
> fault
&& end
[-1] == value
)
606 slab_bug(s
, "%s overwritten", what
);
607 printk(KERN_ERR
"INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
608 fault
, end
- 1, fault
[0], value
);
609 print_trailer(s
, page
, object
);
611 restore_bytes(s
, what
, value
, fault
, end
);
619 * Bytes of the object to be managed.
620 * If the freepointer may overlay the object then the free
621 * pointer is the first word of the object.
623 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
626 * object + s->objsize
627 * Padding to reach word boundary. This is also used for Redzoning.
628 * Padding is extended by another word if Redzoning is enabled and
631 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
632 * 0xcc (RED_ACTIVE) for objects in use.
635 * Meta data starts here.
637 * A. Free pointer (if we cannot overwrite object on free)
638 * B. Tracking data for SLAB_STORE_USER
639 * C. Padding to reach required alignment boundary or at mininum
640 * one word if debuggin is on to be able to detect writes
641 * before the word boundary.
643 * Padding is done using 0x5a (POISON_INUSE)
646 * Nothing is used beyond s->size.
648 * If slabcaches are merged then the objsize and inuse boundaries are mostly
649 * ignored. And therefore no slab options that rely on these boundaries
650 * may be used with merged slabcaches.
653 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
655 unsigned long off
= s
->inuse
; /* The end of info */
658 /* Freepointer is placed after the object. */
659 off
+= sizeof(void *);
661 if (s
->flags
& SLAB_STORE_USER
)
662 /* We also have user information there */
663 off
+= 2 * sizeof(struct track
);
668 return check_bytes_and_report(s
, page
, p
, "Object padding",
669 p
+ off
, POISON_INUSE
, s
->size
- off
);
672 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
680 if (!(s
->flags
& SLAB_POISON
))
683 start
= slab_address(page
);
684 end
= start
+ (PAGE_SIZE
<< s
->order
);
685 length
= s
->objects
* s
->size
;
686 remainder
= end
- (start
+ length
);
690 fault
= check_bytes(start
+ length
, POISON_INUSE
, remainder
);
693 while (end
> fault
&& end
[-1] == POISON_INUSE
)
696 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
697 print_section("Padding", start
, length
);
699 restore_bytes(s
, "slab padding", POISON_INUSE
, start
, end
);
703 static int check_object(struct kmem_cache
*s
, struct page
*page
,
704 void *object
, int active
)
707 u8
*endobject
= object
+ s
->objsize
;
709 if (s
->flags
& SLAB_RED_ZONE
) {
711 active
? SLUB_RED_ACTIVE
: SLUB_RED_INACTIVE
;
713 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
714 endobject
, red
, s
->inuse
- s
->objsize
))
717 if ((s
->flags
& SLAB_POISON
) && s
->objsize
< s
->inuse
) {
718 check_bytes_and_report(s
, page
, p
, "Alignment padding",
719 endobject
, POISON_INUSE
, s
->inuse
- s
->objsize
);
723 if (s
->flags
& SLAB_POISON
) {
724 if (!active
&& (s
->flags
& __OBJECT_POISON
) &&
725 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
726 POISON_FREE
, s
->objsize
- 1) ||
727 !check_bytes_and_report(s
, page
, p
, "Poison",
728 p
+ s
->objsize
- 1, POISON_END
, 1)))
731 * check_pad_bytes cleans up on its own.
733 check_pad_bytes(s
, page
, p
);
736 if (!s
->offset
&& active
)
738 * Object and freepointer overlap. Cannot check
739 * freepointer while object is allocated.
743 /* Check free pointer validity */
744 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
745 object_err(s
, page
, p
, "Freepointer corrupt");
747 * No choice but to zap it and thus loose the remainder
748 * of the free objects in this slab. May cause
749 * another error because the object count is now wrong.
751 set_freepointer(s
, p
, page
->end
);
757 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
759 VM_BUG_ON(!irqs_disabled());
761 if (!PageSlab(page
)) {
762 slab_err(s
, page
, "Not a valid slab page");
765 if (page
->inuse
> s
->objects
) {
766 slab_err(s
, page
, "inuse %u > max %u",
767 s
->name
, page
->inuse
, s
->objects
);
770 /* Slab_pad_check fixes things up after itself */
771 slab_pad_check(s
, page
);
776 * Determine if a certain object on a page is on the freelist. Must hold the
777 * slab lock to guarantee that the chains are in a consistent state.
779 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
782 void *fp
= page
->freelist
;
785 while (fp
!= page
->end
&& nr
<= s
->objects
) {
788 if (!check_valid_pointer(s
, page
, fp
)) {
790 object_err(s
, page
, object
,
791 "Freechain corrupt");
792 set_freepointer(s
, object
, page
->end
);
795 slab_err(s
, page
, "Freepointer corrupt");
796 page
->freelist
= page
->end
;
797 page
->inuse
= s
->objects
;
798 slab_fix(s
, "Freelist cleared");
804 fp
= get_freepointer(s
, object
);
808 if (page
->inuse
!= s
->objects
- nr
) {
809 slab_err(s
, page
, "Wrong object count. Counter is %d but "
810 "counted were %d", page
->inuse
, s
->objects
- nr
);
811 page
->inuse
= s
->objects
- nr
;
812 slab_fix(s
, "Object count adjusted.");
814 return search
== NULL
;
817 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
, int alloc
)
819 if (s
->flags
& SLAB_TRACE
) {
820 printk(KERN_INFO
"TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
822 alloc
? "alloc" : "free",
827 print_section("Object", (void *)object
, s
->objsize
);
834 * Tracking of fully allocated slabs for debugging purposes.
836 static void add_full(struct kmem_cache_node
*n
, struct page
*page
)
838 spin_lock(&n
->list_lock
);
839 list_add(&page
->lru
, &n
->full
);
840 spin_unlock(&n
->list_lock
);
843 static void remove_full(struct kmem_cache
*s
, struct page
*page
)
845 struct kmem_cache_node
*n
;
847 if (!(s
->flags
& SLAB_STORE_USER
))
850 n
= get_node(s
, page_to_nid(page
));
852 spin_lock(&n
->list_lock
);
853 list_del(&page
->lru
);
854 spin_unlock(&n
->list_lock
);
857 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
860 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
863 init_object(s
, object
, 0);
864 init_tracking(s
, object
);
867 static int alloc_debug_processing(struct kmem_cache
*s
, struct page
*page
,
868 void *object
, void *addr
)
870 if (!check_slab(s
, page
))
873 if (object
&& !on_freelist(s
, page
, object
)) {
874 object_err(s
, page
, object
, "Object already allocated");
878 if (!check_valid_pointer(s
, page
, object
)) {
879 object_err(s
, page
, object
, "Freelist Pointer check fails");
883 if (object
&& !check_object(s
, page
, object
, 0))
886 /* Success perform special debug activities for allocs */
887 if (s
->flags
& SLAB_STORE_USER
)
888 set_track(s
, object
, TRACK_ALLOC
, addr
);
889 trace(s
, page
, object
, 1);
890 init_object(s
, object
, 1);
894 if (PageSlab(page
)) {
896 * If this is a slab page then lets do the best we can
897 * to avoid issues in the future. Marking all objects
898 * as used avoids touching the remaining objects.
900 slab_fix(s
, "Marking all objects used");
901 page
->inuse
= s
->objects
;
902 page
->freelist
= page
->end
;
907 static int free_debug_processing(struct kmem_cache
*s
, struct page
*page
,
908 void *object
, void *addr
)
910 if (!check_slab(s
, page
))
913 if (!check_valid_pointer(s
, page
, object
)) {
914 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
918 if (on_freelist(s
, page
, object
)) {
919 object_err(s
, page
, object
, "Object already free");
923 if (!check_object(s
, page
, object
, 1))
926 if (unlikely(s
!= page
->slab
)) {
927 if (!PageSlab(page
)) {
928 slab_err(s
, page
, "Attempt to free object(0x%p) "
929 "outside of slab", object
);
930 } else if (!page
->slab
) {
932 "SLUB <none>: no slab for object 0x%p.\n",
936 object_err(s
, page
, object
,
937 "page slab pointer corrupt.");
941 /* Special debug activities for freeing objects */
942 if (!SlabFrozen(page
) && page
->freelist
== page
->end
)
943 remove_full(s
, page
);
944 if (s
->flags
& SLAB_STORE_USER
)
945 set_track(s
, object
, TRACK_FREE
, addr
);
946 trace(s
, page
, object
, 0);
947 init_object(s
, object
, 0);
951 slab_fix(s
, "Object at 0x%p not freed", object
);
955 static int __init
setup_slub_debug(char *str
)
957 slub_debug
= DEBUG_DEFAULT_FLAGS
;
958 if (*str
++ != '=' || !*str
)
960 * No options specified. Switch on full debugging.
966 * No options but restriction on slabs. This means full
967 * debugging for slabs matching a pattern.
974 * Switch off all debugging measures.
979 * Determine which debug features should be switched on
981 for (; *str
&& *str
!= ','; str
++) {
982 switch (tolower(*str
)) {
984 slub_debug
|= SLAB_DEBUG_FREE
;
987 slub_debug
|= SLAB_RED_ZONE
;
990 slub_debug
|= SLAB_POISON
;
993 slub_debug
|= SLAB_STORE_USER
;
996 slub_debug
|= SLAB_TRACE
;
999 printk(KERN_ERR
"slub_debug option '%c' "
1000 "unknown. skipped\n", *str
);
1006 slub_debug_slabs
= str
+ 1;
1011 __setup("slub_debug", setup_slub_debug
);
1013 static unsigned long kmem_cache_flags(unsigned long objsize
,
1014 unsigned long flags
, const char *name
,
1015 void (*ctor
)(struct kmem_cache
*, void *))
1018 * The page->offset field is only 16 bit wide. This is an offset
1019 * in units of words from the beginning of an object. If the slab
1020 * size is bigger then we cannot move the free pointer behind the
1023 * On 32 bit platforms the limit is 256k. On 64bit platforms
1024 * the limit is 512k.
1026 * Debugging or ctor may create a need to move the free
1027 * pointer. Fail if this happens.
1029 if (objsize
>= 65535 * sizeof(void *)) {
1030 BUG_ON(flags
& (SLAB_RED_ZONE
| SLAB_POISON
|
1031 SLAB_STORE_USER
| SLAB_DESTROY_BY_RCU
));
1035 * Enable debugging if selected on the kernel commandline.
1037 if (slub_debug
&& (!slub_debug_slabs
||
1038 strncmp(slub_debug_slabs
, name
,
1039 strlen(slub_debug_slabs
)) == 0))
1040 flags
|= slub_debug
;
1046 static inline void setup_object_debug(struct kmem_cache
*s
,
1047 struct page
*page
, void *object
) {}
1049 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1050 struct page
*page
, void *object
, void *addr
) { return 0; }
1052 static inline int free_debug_processing(struct kmem_cache
*s
,
1053 struct page
*page
, void *object
, void *addr
) { return 0; }
1055 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1057 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1058 void *object
, int active
) { return 1; }
1059 static inline void add_full(struct kmem_cache_node
*n
, struct page
*page
) {}
1060 static inline unsigned long kmem_cache_flags(unsigned long objsize
,
1061 unsigned long flags
, const char *name
,
1062 void (*ctor
)(struct kmem_cache
*, void *))
1066 #define slub_debug 0
1069 * Slab allocation and freeing
1071 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1074 int pages
= 1 << s
->order
;
1076 flags
|= s
->allocflags
;
1079 page
= alloc_pages(flags
, s
->order
);
1081 page
= alloc_pages_node(node
, flags
, s
->order
);
1086 mod_zone_page_state(page_zone(page
),
1087 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1088 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1094 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1097 setup_object_debug(s
, page
, object
);
1098 if (unlikely(s
->ctor
))
1102 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1105 struct kmem_cache_node
*n
;
1110 BUG_ON(flags
& GFP_SLAB_BUG_MASK
);
1112 page
= allocate_slab(s
,
1113 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1117 n
= get_node(s
, page_to_nid(page
));
1119 atomic_long_inc(&n
->nr_slabs
);
1121 page
->flags
|= 1 << PG_slab
;
1122 if (s
->flags
& (SLAB_DEBUG_FREE
| SLAB_RED_ZONE
| SLAB_POISON
|
1123 SLAB_STORE_USER
| SLAB_TRACE
))
1126 start
= page_address(page
);
1127 page
->end
= start
+ 1;
1129 if (unlikely(s
->flags
& SLAB_POISON
))
1130 memset(start
, POISON_INUSE
, PAGE_SIZE
<< s
->order
);
1133 for_each_object(p
, s
, start
) {
1134 setup_object(s
, page
, last
);
1135 set_freepointer(s
, last
, p
);
1138 setup_object(s
, page
, last
);
1139 set_freepointer(s
, last
, page
->end
);
1141 page
->freelist
= start
;
1147 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1149 int pages
= 1 << s
->order
;
1151 if (unlikely(SlabDebug(page
))) {
1154 slab_pad_check(s
, page
);
1155 for_each_object(p
, s
, slab_address(page
))
1156 check_object(s
, page
, p
, 0);
1157 ClearSlabDebug(page
);
1160 mod_zone_page_state(page_zone(page
),
1161 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1162 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1165 page
->mapping
= NULL
;
1166 __free_pages(page
, s
->order
);
1169 static void rcu_free_slab(struct rcu_head
*h
)
1173 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1174 __free_slab(page
->slab
, page
);
1177 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1179 if (unlikely(s
->flags
& SLAB_DESTROY_BY_RCU
)) {
1181 * RCU free overloads the RCU head over the LRU
1183 struct rcu_head
*head
= (void *)&page
->lru
;
1185 call_rcu(head
, rcu_free_slab
);
1187 __free_slab(s
, page
);
1190 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1192 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1194 atomic_long_dec(&n
->nr_slabs
);
1195 reset_page_mapcount(page
);
1196 __ClearPageSlab(page
);
1201 * Per slab locking using the pagelock
1203 static __always_inline
void slab_lock(struct page
*page
)
1205 bit_spin_lock(PG_locked
, &page
->flags
);
1208 static __always_inline
void slab_unlock(struct page
*page
)
1210 __bit_spin_unlock(PG_locked
, &page
->flags
);
1213 static __always_inline
int slab_trylock(struct page
*page
)
1217 rc
= bit_spin_trylock(PG_locked
, &page
->flags
);
1222 * Management of partially allocated slabs
1224 static void add_partial(struct kmem_cache_node
*n
,
1225 struct page
*page
, int tail
)
1227 spin_lock(&n
->list_lock
);
1230 list_add_tail(&page
->lru
, &n
->partial
);
1232 list_add(&page
->lru
, &n
->partial
);
1233 spin_unlock(&n
->list_lock
);
1236 static void remove_partial(struct kmem_cache
*s
,
1239 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1241 spin_lock(&n
->list_lock
);
1242 list_del(&page
->lru
);
1244 spin_unlock(&n
->list_lock
);
1248 * Lock slab and remove from the partial list.
1250 * Must hold list_lock.
1252 static inline int lock_and_freeze_slab(struct kmem_cache_node
*n
, struct page
*page
)
1254 if (slab_trylock(page
)) {
1255 list_del(&page
->lru
);
1257 SetSlabFrozen(page
);
1264 * Try to allocate a partial slab from a specific node.
1266 static struct page
*get_partial_node(struct kmem_cache_node
*n
)
1271 * Racy check. If we mistakenly see no partial slabs then we
1272 * just allocate an empty slab. If we mistakenly try to get a
1273 * partial slab and there is none available then get_partials()
1276 if (!n
|| !n
->nr_partial
)
1279 spin_lock(&n
->list_lock
);
1280 list_for_each_entry(page
, &n
->partial
, lru
)
1281 if (lock_and_freeze_slab(n
, page
))
1285 spin_unlock(&n
->list_lock
);
1290 * Get a page from somewhere. Search in increasing NUMA distances.
1292 static struct page
*get_any_partial(struct kmem_cache
*s
, gfp_t flags
)
1295 struct zonelist
*zonelist
;
1300 * The defrag ratio allows a configuration of the tradeoffs between
1301 * inter node defragmentation and node local allocations. A lower
1302 * defrag_ratio increases the tendency to do local allocations
1303 * instead of attempting to obtain partial slabs from other nodes.
1305 * If the defrag_ratio is set to 0 then kmalloc() always
1306 * returns node local objects. If the ratio is higher then kmalloc()
1307 * may return off node objects because partial slabs are obtained
1308 * from other nodes and filled up.
1310 * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1311 * defrag_ratio = 1000) then every (well almost) allocation will
1312 * first attempt to defrag slab caches on other nodes. This means
1313 * scanning over all nodes to look for partial slabs which may be
1314 * expensive if we do it every time we are trying to find a slab
1315 * with available objects.
1317 if (!s
->remote_node_defrag_ratio
||
1318 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1321 zonelist
= &NODE_DATA(
1322 slab_node(current
->mempolicy
))->node_zonelists
[gfp_zone(flags
)];
1323 for (z
= zonelist
->zones
; *z
; z
++) {
1324 struct kmem_cache_node
*n
;
1326 n
= get_node(s
, zone_to_nid(*z
));
1328 if (n
&& cpuset_zone_allowed_hardwall(*z
, flags
) &&
1329 n
->nr_partial
> MIN_PARTIAL
) {
1330 page
= get_partial_node(n
);
1340 * Get a partial page, lock it and return it.
1342 static struct page
*get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
)
1345 int searchnode
= (node
== -1) ? numa_node_id() : node
;
1347 page
= get_partial_node(get_node(s
, searchnode
));
1348 if (page
|| (flags
& __GFP_THISNODE
))
1351 return get_any_partial(s
, flags
);
1355 * Move a page back to the lists.
1357 * Must be called with the slab lock held.
1359 * On exit the slab lock will have been dropped.
1361 static void unfreeze_slab(struct kmem_cache
*s
, struct page
*page
, int tail
)
1363 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1364 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, smp_processor_id());
1366 ClearSlabFrozen(page
);
1369 if (page
->freelist
!= page
->end
) {
1370 add_partial(n
, page
, tail
);
1371 stat(c
, tail
? DEACTIVATE_TO_TAIL
: DEACTIVATE_TO_HEAD
);
1373 stat(c
, DEACTIVATE_FULL
);
1374 if (SlabDebug(page
) && (s
->flags
& SLAB_STORE_USER
))
1379 stat(c
, DEACTIVATE_EMPTY
);
1380 if (n
->nr_partial
< MIN_PARTIAL
) {
1382 * Adding an empty slab to the partial slabs in order
1383 * to avoid page allocator overhead. This slab needs
1384 * to come after the other slabs with objects in
1385 * order to fill them up. That way the size of the
1386 * partial list stays small. kmem_cache_shrink can
1387 * reclaim empty slabs from the partial list.
1389 add_partial(n
, page
, 1);
1393 stat(get_cpu_slab(s
, raw_smp_processor_id()), FREE_SLAB
);
1394 discard_slab(s
, page
);
1400 * Remove the cpu slab
1402 static void deactivate_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1404 struct page
*page
= c
->page
;
1408 stat(c
, DEACTIVATE_REMOTE_FREES
);
1410 * Merge cpu freelist into freelist. Typically we get here
1411 * because both freelists are empty. So this is unlikely
1414 * We need to use _is_end here because deactivate slab may
1415 * be called for a debug slab. Then c->freelist may contain
1418 while (unlikely(!is_end(c
->freelist
))) {
1421 tail
= 0; /* Hot objects. Put the slab first */
1423 /* Retrieve object from cpu_freelist */
1424 object
= c
->freelist
;
1425 c
->freelist
= c
->freelist
[c
->offset
];
1427 /* And put onto the regular freelist */
1428 object
[c
->offset
] = page
->freelist
;
1429 page
->freelist
= object
;
1433 unfreeze_slab(s
, page
, tail
);
1436 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
1438 stat(c
, CPUSLAB_FLUSH
);
1440 deactivate_slab(s
, c
);
1445 * Called from IPI handler with interrupts disabled.
1447 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
1449 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1451 if (likely(c
&& c
->page
))
1455 static void flush_cpu_slab(void *d
)
1457 struct kmem_cache
*s
= d
;
1459 __flush_cpu_slab(s
, smp_processor_id());
1462 static void flush_all(struct kmem_cache
*s
)
1465 on_each_cpu(flush_cpu_slab
, s
, 1, 1);
1467 unsigned long flags
;
1469 local_irq_save(flags
);
1471 local_irq_restore(flags
);
1476 * Check if the objects in a per cpu structure fit numa
1477 * locality expectations.
1479 static inline int node_match(struct kmem_cache_cpu
*c
, int node
)
1482 if (node
!= -1 && c
->node
!= node
)
1489 * Slow path. The lockless freelist is empty or we need to perform
1492 * Interrupts are disabled.
1494 * Processing is still very fast if new objects have been freed to the
1495 * regular freelist. In that case we simply take over the regular freelist
1496 * as the lockless freelist and zap the regular freelist.
1498 * If that is not working then we fall back to the partial lists. We take the
1499 * first element of the freelist as the object to allocate now and move the
1500 * rest of the freelist to the lockless freelist.
1502 * And if we were unable to get a new slab from the partial slab lists then
1503 * we need to allocate a new slab. This is slowest path since we may sleep.
1505 static void *__slab_alloc(struct kmem_cache
*s
,
1506 gfp_t gfpflags
, int node
, void *addr
, struct kmem_cache_cpu
*c
)
1515 if (unlikely(!node_match(c
, node
)))
1517 stat(c
, ALLOC_REFILL
);
1519 object
= c
->page
->freelist
;
1520 if (unlikely(object
== c
->page
->end
))
1522 if (unlikely(SlabDebug(c
->page
)))
1525 object
= c
->page
->freelist
;
1526 c
->freelist
= object
[c
->offset
];
1527 c
->page
->inuse
= s
->objects
;
1528 c
->page
->freelist
= c
->page
->end
;
1529 c
->node
= page_to_nid(c
->page
);
1531 slab_unlock(c
->page
);
1532 stat(c
, ALLOC_SLOWPATH
);
1536 deactivate_slab(s
, c
);
1539 new = get_partial(s
, gfpflags
, node
);
1542 stat(c
, ALLOC_FROM_PARTIAL
);
1546 if (gfpflags
& __GFP_WAIT
)
1549 new = new_slab(s
, gfpflags
, node
);
1551 if (gfpflags
& __GFP_WAIT
)
1552 local_irq_disable();
1555 c
= get_cpu_slab(s
, smp_processor_id());
1556 stat(c
, ALLOC_SLAB
);
1566 * No memory available.
1568 * If the slab uses higher order allocs but the object is
1569 * smaller than a page size then we can fallback in emergencies
1570 * to the page allocator via kmalloc_large. The page allocator may
1571 * have failed to obtain a higher order page and we can try to
1572 * allocate a single page if the object fits into a single page.
1573 * That is only possible if certain conditions are met that are being
1574 * checked when a slab is created.
1576 if (!(gfpflags
& __GFP_NORETRY
) && (s
->flags
& __PAGE_ALLOC_FALLBACK
))
1577 return kmalloc_large(s
->objsize
, gfpflags
);
1581 object
= c
->page
->freelist
;
1582 if (!alloc_debug_processing(s
, c
->page
, object
, addr
))
1586 c
->page
->freelist
= object
[c
->offset
];
1592 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1593 * have the fastpath folded into their functions. So no function call
1594 * overhead for requests that can be satisfied on the fastpath.
1596 * The fastpath works by first checking if the lockless freelist can be used.
1597 * If not then __slab_alloc is called for slow processing.
1599 * Otherwise we can simply pick the next object from the lockless free list.
1601 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
1602 gfp_t gfpflags
, int node
, void *addr
)
1605 struct kmem_cache_cpu
*c
;
1606 unsigned long flags
;
1608 local_irq_save(flags
);
1609 c
= get_cpu_slab(s
, smp_processor_id());
1610 if (unlikely(is_end(c
->freelist
) || !node_match(c
, node
)))
1612 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
1615 object
= c
->freelist
;
1616 c
->freelist
= object
[c
->offset
];
1617 stat(c
, ALLOC_FASTPATH
);
1619 local_irq_restore(flags
);
1621 if (unlikely((gfpflags
& __GFP_ZERO
) && object
))
1622 memset(object
, 0, c
->objsize
);
1627 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
1629 return slab_alloc(s
, gfpflags
, -1, __builtin_return_address(0));
1631 EXPORT_SYMBOL(kmem_cache_alloc
);
1634 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
1636 return slab_alloc(s
, gfpflags
, node
, __builtin_return_address(0));
1638 EXPORT_SYMBOL(kmem_cache_alloc_node
);
1642 * Slow patch handling. This may still be called frequently since objects
1643 * have a longer lifetime than the cpu slabs in most processing loads.
1645 * So we still attempt to reduce cache line usage. Just take the slab
1646 * lock and free the item. If there is no additional partial page
1647 * handling required then we can return immediately.
1649 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
1650 void *x
, void *addr
, unsigned int offset
)
1653 void **object
= (void *)x
;
1654 struct kmem_cache_cpu
*c
;
1656 c
= get_cpu_slab(s
, raw_smp_processor_id());
1657 stat(c
, FREE_SLOWPATH
);
1660 if (unlikely(SlabDebug(page
)))
1663 prior
= object
[offset
] = page
->freelist
;
1664 page
->freelist
= object
;
1667 if (unlikely(SlabFrozen(page
))) {
1668 stat(c
, FREE_FROZEN
);
1672 if (unlikely(!page
->inuse
))
1676 * Objects left in the slab. If it
1677 * was not on the partial list before
1680 if (unlikely(prior
== page
->end
)) {
1681 add_partial(get_node(s
, page_to_nid(page
)), page
, 1);
1682 stat(c
, FREE_ADD_PARTIAL
);
1690 if (prior
!= page
->end
) {
1692 * Slab still on the partial list.
1694 remove_partial(s
, page
);
1695 stat(c
, FREE_REMOVE_PARTIAL
);
1699 discard_slab(s
, page
);
1703 if (!free_debug_processing(s
, page
, x
, addr
))
1709 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1710 * can perform fastpath freeing without additional function calls.
1712 * The fastpath is only possible if we are freeing to the current cpu slab
1713 * of this processor. This typically the case if we have just allocated
1716 * If fastpath is not possible then fall back to __slab_free where we deal
1717 * with all sorts of special processing.
1719 static __always_inline
void slab_free(struct kmem_cache
*s
,
1720 struct page
*page
, void *x
, void *addr
)
1722 void **object
= (void *)x
;
1723 struct kmem_cache_cpu
*c
;
1724 unsigned long flags
;
1726 local_irq_save(flags
);
1727 debug_check_no_locks_freed(object
, s
->objsize
);
1728 c
= get_cpu_slab(s
, smp_processor_id());
1729 if (likely(page
== c
->page
&& c
->node
>= 0)) {
1730 object
[c
->offset
] = c
->freelist
;
1731 c
->freelist
= object
;
1732 stat(c
, FREE_FASTPATH
);
1734 __slab_free(s
, page
, x
, addr
, c
->offset
);
1736 local_irq_restore(flags
);
1739 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
1743 page
= virt_to_head_page(x
);
1745 slab_free(s
, page
, x
, __builtin_return_address(0));
1747 EXPORT_SYMBOL(kmem_cache_free
);
1749 /* Figure out on which slab object the object resides */
1750 static struct page
*get_object_page(const void *x
)
1752 struct page
*page
= virt_to_head_page(x
);
1754 if (!PageSlab(page
))
1761 * Object placement in a slab is made very easy because we always start at
1762 * offset 0. If we tune the size of the object to the alignment then we can
1763 * get the required alignment by putting one properly sized object after
1766 * Notice that the allocation order determines the sizes of the per cpu
1767 * caches. Each processor has always one slab available for allocations.
1768 * Increasing the allocation order reduces the number of times that slabs
1769 * must be moved on and off the partial lists and is therefore a factor in
1774 * Mininum / Maximum order of slab pages. This influences locking overhead
1775 * and slab fragmentation. A higher order reduces the number of partial slabs
1776 * and increases the number of allocations possible without having to
1777 * take the list_lock.
1779 static int slub_min_order
;
1780 static int slub_max_order
= DEFAULT_MAX_ORDER
;
1781 static int slub_min_objects
= DEFAULT_MIN_OBJECTS
;
1784 * Merge control. If this is set then no merging of slab caches will occur.
1785 * (Could be removed. This was introduced to pacify the merge skeptics.)
1787 static int slub_nomerge
;
1790 * Calculate the order of allocation given an slab object size.
1792 * The order of allocation has significant impact on performance and other
1793 * system components. Generally order 0 allocations should be preferred since
1794 * order 0 does not cause fragmentation in the page allocator. Larger objects
1795 * be problematic to put into order 0 slabs because there may be too much
1796 * unused space left. We go to a higher order if more than 1/8th of the slab
1799 * In order to reach satisfactory performance we must ensure that a minimum
1800 * number of objects is in one slab. Otherwise we may generate too much
1801 * activity on the partial lists which requires taking the list_lock. This is
1802 * less a concern for large slabs though which are rarely used.
1804 * slub_max_order specifies the order where we begin to stop considering the
1805 * number of objects in a slab as critical. If we reach slub_max_order then
1806 * we try to keep the page order as low as possible. So we accept more waste
1807 * of space in favor of a small page order.
1809 * Higher order allocations also allow the placement of more objects in a
1810 * slab and thereby reduce object handling overhead. If the user has
1811 * requested a higher mininum order then we start with that one instead of
1812 * the smallest order which will fit the object.
1814 static inline int slab_order(int size
, int min_objects
,
1815 int max_order
, int fract_leftover
)
1819 int min_order
= slub_min_order
;
1821 for (order
= max(min_order
,
1822 fls(min_objects
* size
- 1) - PAGE_SHIFT
);
1823 order
<= max_order
; order
++) {
1825 unsigned long slab_size
= PAGE_SIZE
<< order
;
1827 if (slab_size
< min_objects
* size
)
1830 rem
= slab_size
% size
;
1832 if (rem
<= slab_size
/ fract_leftover
)
1840 static inline int calculate_order(int size
)
1847 * Attempt to find best configuration for a slab. This
1848 * works by first attempting to generate a layout with
1849 * the best configuration and backing off gradually.
1851 * First we reduce the acceptable waste in a slab. Then
1852 * we reduce the minimum objects required in a slab.
1854 min_objects
= slub_min_objects
;
1855 while (min_objects
> 1) {
1857 while (fraction
>= 4) {
1858 order
= slab_order(size
, min_objects
,
1859 slub_max_order
, fraction
);
1860 if (order
<= slub_max_order
)
1868 * We were unable to place multiple objects in a slab. Now
1869 * lets see if we can place a single object there.
1871 order
= slab_order(size
, 1, slub_max_order
, 1);
1872 if (order
<= slub_max_order
)
1876 * Doh this slab cannot be placed using slub_max_order.
1878 order
= slab_order(size
, 1, MAX_ORDER
, 1);
1879 if (order
<= MAX_ORDER
)
1885 * Figure out what the alignment of the objects will be.
1887 static unsigned long calculate_alignment(unsigned long flags
,
1888 unsigned long align
, unsigned long size
)
1891 * If the user wants hardware cache aligned objects then
1892 * follow that suggestion if the object is sufficiently
1895 * The hardware cache alignment cannot override the
1896 * specified alignment though. If that is greater
1899 if ((flags
& SLAB_HWCACHE_ALIGN
) &&
1900 size
> cache_line_size() / 2)
1901 return max_t(unsigned long, align
, cache_line_size());
1903 if (align
< ARCH_SLAB_MINALIGN
)
1904 return ARCH_SLAB_MINALIGN
;
1906 return ALIGN(align
, sizeof(void *));
1909 static void init_kmem_cache_cpu(struct kmem_cache
*s
,
1910 struct kmem_cache_cpu
*c
)
1913 c
->freelist
= (void *)PAGE_MAPPING_ANON
;
1915 c
->offset
= s
->offset
/ sizeof(void *);
1916 c
->objsize
= s
->objsize
;
1919 static void init_kmem_cache_node(struct kmem_cache_node
*n
)
1922 atomic_long_set(&n
->nr_slabs
, 0);
1923 spin_lock_init(&n
->list_lock
);
1924 INIT_LIST_HEAD(&n
->partial
);
1925 #ifdef CONFIG_SLUB_DEBUG
1926 INIT_LIST_HEAD(&n
->full
);
1932 * Per cpu array for per cpu structures.
1934 * The per cpu array places all kmem_cache_cpu structures from one processor
1935 * close together meaning that it becomes possible that multiple per cpu
1936 * structures are contained in one cacheline. This may be particularly
1937 * beneficial for the kmalloc caches.
1939 * A desktop system typically has around 60-80 slabs. With 100 here we are
1940 * likely able to get per cpu structures for all caches from the array defined
1941 * here. We must be able to cover all kmalloc caches during bootstrap.
1943 * If the per cpu array is exhausted then fall back to kmalloc
1944 * of individual cachelines. No sharing is possible then.
1946 #define NR_KMEM_CACHE_CPU 100
1948 static DEFINE_PER_CPU(struct kmem_cache_cpu
,
1949 kmem_cache_cpu
)[NR_KMEM_CACHE_CPU
];
1951 static DEFINE_PER_CPU(struct kmem_cache_cpu
*, kmem_cache_cpu_free
);
1952 static cpumask_t kmem_cach_cpu_free_init_once
= CPU_MASK_NONE
;
1954 static struct kmem_cache_cpu
*alloc_kmem_cache_cpu(struct kmem_cache
*s
,
1955 int cpu
, gfp_t flags
)
1957 struct kmem_cache_cpu
*c
= per_cpu(kmem_cache_cpu_free
, cpu
);
1960 per_cpu(kmem_cache_cpu_free
, cpu
) =
1961 (void *)c
->freelist
;
1963 /* Table overflow: So allocate ourselves */
1965 ALIGN(sizeof(struct kmem_cache_cpu
), cache_line_size()),
1966 flags
, cpu_to_node(cpu
));
1971 init_kmem_cache_cpu(s
, c
);
1975 static void free_kmem_cache_cpu(struct kmem_cache_cpu
*c
, int cpu
)
1977 if (c
< per_cpu(kmem_cache_cpu
, cpu
) ||
1978 c
> per_cpu(kmem_cache_cpu
, cpu
) + NR_KMEM_CACHE_CPU
) {
1982 c
->freelist
= (void *)per_cpu(kmem_cache_cpu_free
, cpu
);
1983 per_cpu(kmem_cache_cpu_free
, cpu
) = c
;
1986 static void free_kmem_cache_cpus(struct kmem_cache
*s
)
1990 for_each_online_cpu(cpu
) {
1991 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
1994 s
->cpu_slab
[cpu
] = NULL
;
1995 free_kmem_cache_cpu(c
, cpu
);
2000 static int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2004 for_each_online_cpu(cpu
) {
2005 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
2010 c
= alloc_kmem_cache_cpu(s
, cpu
, flags
);
2012 free_kmem_cache_cpus(s
);
2015 s
->cpu_slab
[cpu
] = c
;
2021 * Initialize the per cpu array.
2023 static void init_alloc_cpu_cpu(int cpu
)
2027 if (cpu_isset(cpu
, kmem_cach_cpu_free_init_once
))
2030 for (i
= NR_KMEM_CACHE_CPU
- 1; i
>= 0; i
--)
2031 free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu
, cpu
)[i
], cpu
);
2033 cpu_set(cpu
, kmem_cach_cpu_free_init_once
);
2036 static void __init
init_alloc_cpu(void)
2040 for_each_online_cpu(cpu
)
2041 init_alloc_cpu_cpu(cpu
);
2045 static inline void free_kmem_cache_cpus(struct kmem_cache
*s
) {}
2046 static inline void init_alloc_cpu(void) {}
2048 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
, gfp_t flags
)
2050 init_kmem_cache_cpu(s
, &s
->cpu_slab
);
2057 * No kmalloc_node yet so do it by hand. We know that this is the first
2058 * slab on the node for this slabcache. There are no concurrent accesses
2061 * Note that this function only works on the kmalloc_node_cache
2062 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2063 * memory on a fresh node that has no slab structures yet.
2065 static struct kmem_cache_node
*early_kmem_cache_node_alloc(gfp_t gfpflags
,
2069 struct kmem_cache_node
*n
;
2070 unsigned long flags
;
2072 BUG_ON(kmalloc_caches
->size
< sizeof(struct kmem_cache_node
));
2074 page
= new_slab(kmalloc_caches
, gfpflags
, node
);
2077 if (page_to_nid(page
) != node
) {
2078 printk(KERN_ERR
"SLUB: Unable to allocate memory from "
2080 printk(KERN_ERR
"SLUB: Allocating a useless per node structure "
2081 "in order to be able to continue\n");
2086 page
->freelist
= get_freepointer(kmalloc_caches
, n
);
2088 kmalloc_caches
->node
[node
] = n
;
2089 #ifdef CONFIG_SLUB_DEBUG
2090 init_object(kmalloc_caches
, n
, 1);
2091 init_tracking(kmalloc_caches
, n
);
2093 init_kmem_cache_node(n
);
2094 atomic_long_inc(&n
->nr_slabs
);
2096 * lockdep requires consistent irq usage for each lock
2097 * so even though there cannot be a race this early in
2098 * the boot sequence, we still disable irqs.
2100 local_irq_save(flags
);
2101 add_partial(n
, page
, 0);
2102 local_irq_restore(flags
);
2106 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2110 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2111 struct kmem_cache_node
*n
= s
->node
[node
];
2112 if (n
&& n
!= &s
->local_node
)
2113 kmem_cache_free(kmalloc_caches
, n
);
2114 s
->node
[node
] = NULL
;
2118 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2123 if (slab_state
>= UP
)
2124 local_node
= page_to_nid(virt_to_page(s
));
2128 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2129 struct kmem_cache_node
*n
;
2131 if (local_node
== node
)
2134 if (slab_state
== DOWN
) {
2135 n
= early_kmem_cache_node_alloc(gfpflags
,
2139 n
= kmem_cache_alloc_node(kmalloc_caches
,
2143 free_kmem_cache_nodes(s
);
2149 init_kmem_cache_node(n
);
2154 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
2158 static int init_kmem_cache_nodes(struct kmem_cache
*s
, gfp_t gfpflags
)
2160 init_kmem_cache_node(&s
->local_node
);
2166 * calculate_sizes() determines the order and the distribution of data within
2169 static int calculate_sizes(struct kmem_cache
*s
)
2171 unsigned long flags
= s
->flags
;
2172 unsigned long size
= s
->objsize
;
2173 unsigned long align
= s
->align
;
2176 * Determine if we can poison the object itself. If the user of
2177 * the slab may touch the object after free or before allocation
2178 * then we should never poison the object itself.
2180 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_DESTROY_BY_RCU
) &&
2182 s
->flags
|= __OBJECT_POISON
;
2184 s
->flags
&= ~__OBJECT_POISON
;
2187 * Round up object size to the next word boundary. We can only
2188 * place the free pointer at word boundaries and this determines
2189 * the possible location of the free pointer.
2191 size
= ALIGN(size
, sizeof(void *));
2193 #ifdef CONFIG_SLUB_DEBUG
2195 * If we are Redzoning then check if there is some space between the
2196 * end of the object and the free pointer. If not then add an
2197 * additional word to have some bytes to store Redzone information.
2199 if ((flags
& SLAB_RED_ZONE
) && size
== s
->objsize
)
2200 size
+= sizeof(void *);
2204 * With that we have determined the number of bytes in actual use
2205 * by the object. This is the potential offset to the free pointer.
2209 if (((flags
& (SLAB_DESTROY_BY_RCU
| SLAB_POISON
)) ||
2212 * Relocate free pointer after the object if it is not
2213 * permitted to overwrite the first word of the object on
2216 * This is the case if we do RCU, have a constructor or
2217 * destructor or are poisoning the objects.
2220 size
+= sizeof(void *);
2223 #ifdef CONFIG_SLUB_DEBUG
2224 if (flags
& SLAB_STORE_USER
)
2226 * Need to store information about allocs and frees after
2229 size
+= 2 * sizeof(struct track
);
2231 if (flags
& SLAB_RED_ZONE
)
2233 * Add some empty padding so that we can catch
2234 * overwrites from earlier objects rather than let
2235 * tracking information or the free pointer be
2236 * corrupted if an user writes before the start
2239 size
+= sizeof(void *);
2243 * Determine the alignment based on various parameters that the
2244 * user specified and the dynamic determination of cache line size
2247 align
= calculate_alignment(flags
, align
, s
->objsize
);
2250 * SLUB stores one object immediately after another beginning from
2251 * offset 0. In order to align the objects we have to simply size
2252 * each object to conform to the alignment.
2254 size
= ALIGN(size
, align
);
2257 if ((flags
& __KMALLOC_CACHE
) &&
2258 PAGE_SIZE
/ size
< slub_min_objects
) {
2260 * Kmalloc cache that would not have enough objects in
2261 * an order 0 page. Kmalloc slabs can fallback to
2262 * page allocator order 0 allocs so take a reasonably large
2263 * order that will allows us a good number of objects.
2265 s
->order
= max(slub_max_order
, PAGE_ALLOC_COSTLY_ORDER
);
2266 s
->flags
|= __PAGE_ALLOC_FALLBACK
;
2267 s
->allocflags
|= __GFP_NOWARN
;
2269 s
->order
= calculate_order(size
);
2276 s
->allocflags
|= __GFP_COMP
;
2278 if (s
->flags
& SLAB_CACHE_DMA
)
2279 s
->allocflags
|= SLUB_DMA
;
2281 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
2282 s
->allocflags
|= __GFP_RECLAIMABLE
;
2285 * Determine the number of objects per slab
2287 s
->objects
= (PAGE_SIZE
<< s
->order
) / size
;
2289 return !!s
->objects
;
2293 static int kmem_cache_open(struct kmem_cache
*s
, gfp_t gfpflags
,
2294 const char *name
, size_t size
,
2295 size_t align
, unsigned long flags
,
2296 void (*ctor
)(struct kmem_cache
*, void *))
2298 memset(s
, 0, kmem_size
);
2303 s
->flags
= kmem_cache_flags(size
, flags
, name
, ctor
);
2305 if (!calculate_sizes(s
))
2310 s
->remote_node_defrag_ratio
= 100;
2312 if (!init_kmem_cache_nodes(s
, gfpflags
& ~SLUB_DMA
))
2315 if (alloc_kmem_cache_cpus(s
, gfpflags
& ~SLUB_DMA
))
2317 free_kmem_cache_nodes(s
);
2319 if (flags
& SLAB_PANIC
)
2320 panic("Cannot create slab %s size=%lu realsize=%u "
2321 "order=%u offset=%u flags=%lx\n",
2322 s
->name
, (unsigned long)size
, s
->size
, s
->order
,
2328 * Check if a given pointer is valid
2330 int kmem_ptr_validate(struct kmem_cache
*s
, const void *object
)
2334 page
= get_object_page(object
);
2336 if (!page
|| s
!= page
->slab
)
2337 /* No slab or wrong slab */
2340 if (!check_valid_pointer(s
, page
, object
))
2344 * We could also check if the object is on the slabs freelist.
2345 * But this would be too expensive and it seems that the main
2346 * purpose of kmem_ptr_valid is to check if the object belongs
2347 * to a certain slab.
2351 EXPORT_SYMBOL(kmem_ptr_validate
);
2354 * Determine the size of a slab object
2356 unsigned int kmem_cache_size(struct kmem_cache
*s
)
2360 EXPORT_SYMBOL(kmem_cache_size
);
2362 const char *kmem_cache_name(struct kmem_cache
*s
)
2366 EXPORT_SYMBOL(kmem_cache_name
);
2369 * Attempt to free all slabs on a node. Return the number of slabs we
2370 * were unable to free.
2372 static int free_list(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
2373 struct list_head
*list
)
2375 int slabs_inuse
= 0;
2376 unsigned long flags
;
2377 struct page
*page
, *h
;
2379 spin_lock_irqsave(&n
->list_lock
, flags
);
2380 list_for_each_entry_safe(page
, h
, list
, lru
)
2382 list_del(&page
->lru
);
2383 discard_slab(s
, page
);
2386 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2391 * Release all resources used by a slab cache.
2393 static inline int kmem_cache_close(struct kmem_cache
*s
)
2399 /* Attempt to free all objects */
2400 free_kmem_cache_cpus(s
);
2401 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2402 struct kmem_cache_node
*n
= get_node(s
, node
);
2404 n
->nr_partial
-= free_list(s
, n
, &n
->partial
);
2405 if (atomic_long_read(&n
->nr_slabs
))
2408 free_kmem_cache_nodes(s
);
2413 * Close a cache and release the kmem_cache structure
2414 * (must be used for caches created using kmem_cache_create)
2416 void kmem_cache_destroy(struct kmem_cache
*s
)
2418 down_write(&slub_lock
);
2422 up_write(&slub_lock
);
2423 if (kmem_cache_close(s
))
2425 sysfs_slab_remove(s
);
2427 up_write(&slub_lock
);
2429 EXPORT_SYMBOL(kmem_cache_destroy
);
2431 /********************************************************************
2433 *******************************************************************/
2435 struct kmem_cache kmalloc_caches
[PAGE_SHIFT
+ 1] __cacheline_aligned
;
2436 EXPORT_SYMBOL(kmalloc_caches
);
2438 #ifdef CONFIG_ZONE_DMA
2439 static struct kmem_cache
*kmalloc_caches_dma
[PAGE_SHIFT
+ 1];
2442 static int __init
setup_slub_min_order(char *str
)
2444 get_option(&str
, &slub_min_order
);
2449 __setup("slub_min_order=", setup_slub_min_order
);
2451 static int __init
setup_slub_max_order(char *str
)
2453 get_option(&str
, &slub_max_order
);
2458 __setup("slub_max_order=", setup_slub_max_order
);
2460 static int __init
setup_slub_min_objects(char *str
)
2462 get_option(&str
, &slub_min_objects
);
2467 __setup("slub_min_objects=", setup_slub_min_objects
);
2469 static int __init
setup_slub_nomerge(char *str
)
2475 __setup("slub_nomerge", setup_slub_nomerge
);
2477 static struct kmem_cache
*create_kmalloc_cache(struct kmem_cache
*s
,
2478 const char *name
, int size
, gfp_t gfp_flags
)
2480 unsigned int flags
= 0;
2482 if (gfp_flags
& SLUB_DMA
)
2483 flags
= SLAB_CACHE_DMA
;
2485 down_write(&slub_lock
);
2486 if (!kmem_cache_open(s
, gfp_flags
, name
, size
, ARCH_KMALLOC_MINALIGN
,
2487 flags
| __KMALLOC_CACHE
, NULL
))
2490 list_add(&s
->list
, &slab_caches
);
2491 up_write(&slub_lock
);
2492 if (sysfs_slab_add(s
))
2497 panic("Creation of kmalloc slab %s size=%d failed.\n", name
, size
);
2500 #ifdef CONFIG_ZONE_DMA
2502 static void sysfs_add_func(struct work_struct
*w
)
2504 struct kmem_cache
*s
;
2506 down_write(&slub_lock
);
2507 list_for_each_entry(s
, &slab_caches
, list
) {
2508 if (s
->flags
& __SYSFS_ADD_DEFERRED
) {
2509 s
->flags
&= ~__SYSFS_ADD_DEFERRED
;
2513 up_write(&slub_lock
);
2516 static DECLARE_WORK(sysfs_add_work
, sysfs_add_func
);
2518 static noinline
struct kmem_cache
*dma_kmalloc_cache(int index
, gfp_t flags
)
2520 struct kmem_cache
*s
;
2524 s
= kmalloc_caches_dma
[index
];
2528 /* Dynamically create dma cache */
2529 if (flags
& __GFP_WAIT
)
2530 down_write(&slub_lock
);
2532 if (!down_write_trylock(&slub_lock
))
2536 if (kmalloc_caches_dma
[index
])
2539 realsize
= kmalloc_caches
[index
].objsize
;
2540 text
= kasprintf(flags
& ~SLUB_DMA
, "kmalloc_dma-%d",
2541 (unsigned int)realsize
);
2542 s
= kmalloc(kmem_size
, flags
& ~SLUB_DMA
);
2544 if (!s
|| !text
|| !kmem_cache_open(s
, flags
, text
,
2545 realsize
, ARCH_KMALLOC_MINALIGN
,
2546 SLAB_CACHE_DMA
|__SYSFS_ADD_DEFERRED
, NULL
)) {
2552 list_add(&s
->list
, &slab_caches
);
2553 kmalloc_caches_dma
[index
] = s
;
2555 schedule_work(&sysfs_add_work
);
2558 up_write(&slub_lock
);
2560 return kmalloc_caches_dma
[index
];
2565 * Conversion table for small slabs sizes / 8 to the index in the
2566 * kmalloc array. This is necessary for slabs < 192 since we have non power
2567 * of two cache sizes there. The size of larger slabs can be determined using
2570 static s8 size_index
[24] = {
2597 static struct kmem_cache
*get_slab(size_t size
, gfp_t flags
)
2603 return ZERO_SIZE_PTR
;
2605 index
= size_index
[(size
- 1) / 8];
2607 index
= fls(size
- 1);
2609 #ifdef CONFIG_ZONE_DMA
2610 if (unlikely((flags
& SLUB_DMA
)))
2611 return dma_kmalloc_cache(index
, flags
);
2614 return &kmalloc_caches
[index
];
2617 void *__kmalloc(size_t size
, gfp_t flags
)
2619 struct kmem_cache
*s
;
2621 if (unlikely(size
> PAGE_SIZE
))
2622 return kmalloc_large(size
, flags
);
2624 s
= get_slab(size
, flags
);
2626 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2629 return slab_alloc(s
, flags
, -1, __builtin_return_address(0));
2631 EXPORT_SYMBOL(__kmalloc
);
2634 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
2636 struct kmem_cache
*s
;
2638 if (unlikely(size
> PAGE_SIZE
))
2639 return kmalloc_large(size
, flags
);
2641 s
= get_slab(size
, flags
);
2643 if (unlikely(ZERO_OR_NULL_PTR(s
)))
2646 return slab_alloc(s
, flags
, node
, __builtin_return_address(0));
2648 EXPORT_SYMBOL(__kmalloc_node
);
2651 size_t ksize(const void *object
)
2654 struct kmem_cache
*s
;
2657 if (unlikely(object
== ZERO_SIZE_PTR
))
2660 page
= virt_to_head_page(object
);
2663 if (unlikely(!PageSlab(page
)))
2664 return PAGE_SIZE
<< compound_order(page
);
2670 * Debugging requires use of the padding between object
2671 * and whatever may come after it.
2673 if (s
->flags
& (SLAB_RED_ZONE
| SLAB_POISON
))
2677 * If we have the need to store the freelist pointer
2678 * back there or track user information then we can
2679 * only use the space before that information.
2681 if (s
->flags
& (SLAB_DESTROY_BY_RCU
| SLAB_STORE_USER
))
2685 * Else we can use all the padding etc for the allocation
2689 EXPORT_SYMBOL(ksize
);
2691 void kfree(const void *x
)
2694 void *object
= (void *)x
;
2696 if (unlikely(ZERO_OR_NULL_PTR(x
)))
2699 page
= virt_to_head_page(x
);
2700 if (unlikely(!PageSlab(page
))) {
2704 slab_free(page
->slab
, page
, object
, __builtin_return_address(0));
2706 EXPORT_SYMBOL(kfree
);
2708 static unsigned long count_partial(struct kmem_cache_node
*n
)
2710 unsigned long flags
;
2711 unsigned long x
= 0;
2714 spin_lock_irqsave(&n
->list_lock
, flags
);
2715 list_for_each_entry(page
, &n
->partial
, lru
)
2717 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2722 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2723 * the remaining slabs by the number of items in use. The slabs with the
2724 * most items in use come first. New allocations will then fill those up
2725 * and thus they can be removed from the partial lists.
2727 * The slabs with the least items are placed last. This results in them
2728 * being allocated from last increasing the chance that the last objects
2729 * are freed in them.
2731 int kmem_cache_shrink(struct kmem_cache
*s
)
2735 struct kmem_cache_node
*n
;
2738 struct list_head
*slabs_by_inuse
=
2739 kmalloc(sizeof(struct list_head
) * s
->objects
, GFP_KERNEL
);
2740 unsigned long flags
;
2742 if (!slabs_by_inuse
)
2746 for_each_node_state(node
, N_NORMAL_MEMORY
) {
2747 n
= get_node(s
, node
);
2752 for (i
= 0; i
< s
->objects
; i
++)
2753 INIT_LIST_HEAD(slabs_by_inuse
+ i
);
2755 spin_lock_irqsave(&n
->list_lock
, flags
);
2758 * Build lists indexed by the items in use in each slab.
2760 * Note that concurrent frees may occur while we hold the
2761 * list_lock. page->inuse here is the upper limit.
2763 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
2764 if (!page
->inuse
&& slab_trylock(page
)) {
2766 * Must hold slab lock here because slab_free
2767 * may have freed the last object and be
2768 * waiting to release the slab.
2770 list_del(&page
->lru
);
2773 discard_slab(s
, page
);
2775 list_move(&page
->lru
,
2776 slabs_by_inuse
+ page
->inuse
);
2781 * Rebuild the partial list with the slabs filled up most
2782 * first and the least used slabs at the end.
2784 for (i
= s
->objects
- 1; i
>= 0; i
--)
2785 list_splice(slabs_by_inuse
+ i
, n
->partial
.prev
);
2787 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2790 kfree(slabs_by_inuse
);
2793 EXPORT_SYMBOL(kmem_cache_shrink
);
2795 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2796 static int slab_mem_going_offline_callback(void *arg
)
2798 struct kmem_cache
*s
;
2800 down_read(&slub_lock
);
2801 list_for_each_entry(s
, &slab_caches
, list
)
2802 kmem_cache_shrink(s
);
2803 up_read(&slub_lock
);
2808 static void slab_mem_offline_callback(void *arg
)
2810 struct kmem_cache_node
*n
;
2811 struct kmem_cache
*s
;
2812 struct memory_notify
*marg
= arg
;
2815 offline_node
= marg
->status_change_nid
;
2818 * If the node still has available memory. we need kmem_cache_node
2821 if (offline_node
< 0)
2824 down_read(&slub_lock
);
2825 list_for_each_entry(s
, &slab_caches
, list
) {
2826 n
= get_node(s
, offline_node
);
2829 * if n->nr_slabs > 0, slabs still exist on the node
2830 * that is going down. We were unable to free them,
2831 * and offline_pages() function shoudn't call this
2832 * callback. So, we must fail.
2834 BUG_ON(atomic_long_read(&n
->nr_slabs
));
2836 s
->node
[offline_node
] = NULL
;
2837 kmem_cache_free(kmalloc_caches
, n
);
2840 up_read(&slub_lock
);
2843 static int slab_mem_going_online_callback(void *arg
)
2845 struct kmem_cache_node
*n
;
2846 struct kmem_cache
*s
;
2847 struct memory_notify
*marg
= arg
;
2848 int nid
= marg
->status_change_nid
;
2852 * If the node's memory is already available, then kmem_cache_node is
2853 * already created. Nothing to do.
2859 * We are bringing a node online. No memory is availabe yet. We must
2860 * allocate a kmem_cache_node structure in order to bring the node
2863 down_read(&slub_lock
);
2864 list_for_each_entry(s
, &slab_caches
, list
) {
2866 * XXX: kmem_cache_alloc_node will fallback to other nodes
2867 * since memory is not yet available from the node that
2870 n
= kmem_cache_alloc(kmalloc_caches
, GFP_KERNEL
);
2875 init_kmem_cache_node(n
);
2879 up_read(&slub_lock
);
2883 static int slab_memory_callback(struct notifier_block
*self
,
2884 unsigned long action
, void *arg
)
2889 case MEM_GOING_ONLINE
:
2890 ret
= slab_mem_going_online_callback(arg
);
2892 case MEM_GOING_OFFLINE
:
2893 ret
= slab_mem_going_offline_callback(arg
);
2896 case MEM_CANCEL_ONLINE
:
2897 slab_mem_offline_callback(arg
);
2900 case MEM_CANCEL_OFFLINE
:
2904 ret
= notifier_from_errno(ret
);
2908 #endif /* CONFIG_MEMORY_HOTPLUG */
2910 /********************************************************************
2911 * Basic setup of slabs
2912 *******************************************************************/
2914 void __init
kmem_cache_init(void)
2923 * Must first have the slab cache available for the allocations of the
2924 * struct kmem_cache_node's. There is special bootstrap code in
2925 * kmem_cache_open for slab_state == DOWN.
2927 create_kmalloc_cache(&kmalloc_caches
[0], "kmem_cache_node",
2928 sizeof(struct kmem_cache_node
), GFP_KERNEL
);
2929 kmalloc_caches
[0].refcount
= -1;
2932 hotplug_memory_notifier(slab_memory_callback
, 1);
2935 /* Able to allocate the per node structures */
2936 slab_state
= PARTIAL
;
2938 /* Caches that are not of the two-to-the-power-of size */
2939 if (KMALLOC_MIN_SIZE
<= 64) {
2940 create_kmalloc_cache(&kmalloc_caches
[1],
2941 "kmalloc-96", 96, GFP_KERNEL
);
2944 if (KMALLOC_MIN_SIZE
<= 128) {
2945 create_kmalloc_cache(&kmalloc_caches
[2],
2946 "kmalloc-192", 192, GFP_KERNEL
);
2950 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++) {
2951 create_kmalloc_cache(&kmalloc_caches
[i
],
2952 "kmalloc", 1 << i
, GFP_KERNEL
);
2958 * Patch up the size_index table if we have strange large alignment
2959 * requirements for the kmalloc array. This is only the case for
2960 * mips it seems. The standard arches will not generate any code here.
2962 * Largest permitted alignment is 256 bytes due to the way we
2963 * handle the index determination for the smaller caches.
2965 * Make sure that nothing crazy happens if someone starts tinkering
2966 * around with ARCH_KMALLOC_MINALIGN
2968 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
2969 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
2971 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8)
2972 size_index
[(i
- 1) / 8] = KMALLOC_SHIFT_LOW
;
2976 /* Provide the correct kmalloc names now that the caches are up */
2977 for (i
= KMALLOC_SHIFT_LOW
; i
<= PAGE_SHIFT
; i
++)
2978 kmalloc_caches
[i
]. name
=
2979 kasprintf(GFP_KERNEL
, "kmalloc-%d", 1 << i
);
2982 register_cpu_notifier(&slab_notifier
);
2983 kmem_size
= offsetof(struct kmem_cache
, cpu_slab
) +
2984 nr_cpu_ids
* sizeof(struct kmem_cache_cpu
*);
2986 kmem_size
= sizeof(struct kmem_cache
);
2991 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2992 " CPUs=%d, Nodes=%d\n",
2993 caches
, cache_line_size(),
2994 slub_min_order
, slub_max_order
, slub_min_objects
,
2995 nr_cpu_ids
, nr_node_ids
);
2999 * Find a mergeable slab cache
3001 static int slab_unmergeable(struct kmem_cache
*s
)
3003 if (slub_nomerge
|| (s
->flags
& SLUB_NEVER_MERGE
))
3006 if ((s
->flags
& __PAGE_ALLOC_FALLBACK
))
3013 * We may have set a slab to be unmergeable during bootstrap.
3015 if (s
->refcount
< 0)
3021 static struct kmem_cache
*find_mergeable(size_t size
,
3022 size_t align
, unsigned long flags
, const char *name
,
3023 void (*ctor
)(struct kmem_cache
*, void *))
3025 struct kmem_cache
*s
;
3027 if (slub_nomerge
|| (flags
& SLUB_NEVER_MERGE
))
3033 size
= ALIGN(size
, sizeof(void *));
3034 align
= calculate_alignment(flags
, align
, size
);
3035 size
= ALIGN(size
, align
);
3036 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
3038 list_for_each_entry(s
, &slab_caches
, list
) {
3039 if (slab_unmergeable(s
))
3045 if ((flags
& SLUB_MERGE_SAME
) != (s
->flags
& SLUB_MERGE_SAME
))
3048 * Check if alignment is compatible.
3049 * Courtesy of Adrian Drzewiecki
3051 if ((s
->size
& ~(align
- 1)) != s
->size
)
3054 if (s
->size
- size
>= sizeof(void *))
3062 struct kmem_cache
*kmem_cache_create(const char *name
, size_t size
,
3063 size_t align
, unsigned long flags
,
3064 void (*ctor
)(struct kmem_cache
*, void *))
3066 struct kmem_cache
*s
;
3068 down_write(&slub_lock
);
3069 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
3075 * Adjust the object sizes so that we clear
3076 * the complete object on kzalloc.
3078 s
->objsize
= max(s
->objsize
, (int)size
);
3081 * And then we need to update the object size in the
3082 * per cpu structures
3084 for_each_online_cpu(cpu
)
3085 get_cpu_slab(s
, cpu
)->objsize
= s
->objsize
;
3086 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
3087 up_write(&slub_lock
);
3088 if (sysfs_slab_alias(s
, name
))
3092 s
= kmalloc(kmem_size
, GFP_KERNEL
);
3094 if (kmem_cache_open(s
, GFP_KERNEL
, name
,
3095 size
, align
, flags
, ctor
)) {
3096 list_add(&s
->list
, &slab_caches
);
3097 up_write(&slub_lock
);
3098 if (sysfs_slab_add(s
))
3104 up_write(&slub_lock
);
3107 if (flags
& SLAB_PANIC
)
3108 panic("Cannot create slabcache %s\n", name
);
3113 EXPORT_SYMBOL(kmem_cache_create
);
3117 * Use the cpu notifier to insure that the cpu slabs are flushed when
3120 static int __cpuinit
slab_cpuup_callback(struct notifier_block
*nfb
,
3121 unsigned long action
, void *hcpu
)
3123 long cpu
= (long)hcpu
;
3124 struct kmem_cache
*s
;
3125 unsigned long flags
;
3128 case CPU_UP_PREPARE
:
3129 case CPU_UP_PREPARE_FROZEN
:
3130 init_alloc_cpu_cpu(cpu
);
3131 down_read(&slub_lock
);
3132 list_for_each_entry(s
, &slab_caches
, list
)
3133 s
->cpu_slab
[cpu
] = alloc_kmem_cache_cpu(s
, cpu
,
3135 up_read(&slub_lock
);
3138 case CPU_UP_CANCELED
:
3139 case CPU_UP_CANCELED_FROZEN
:
3141 case CPU_DEAD_FROZEN
:
3142 down_read(&slub_lock
);
3143 list_for_each_entry(s
, &slab_caches
, list
) {
3144 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3146 local_irq_save(flags
);
3147 __flush_cpu_slab(s
, cpu
);
3148 local_irq_restore(flags
);
3149 free_kmem_cache_cpu(c
, cpu
);
3150 s
->cpu_slab
[cpu
] = NULL
;
3152 up_read(&slub_lock
);
3160 static struct notifier_block __cpuinitdata slab_notifier
= {
3161 .notifier_call
= slab_cpuup_callback
3166 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, void *caller
)
3168 struct kmem_cache
*s
;
3170 if (unlikely(size
> PAGE_SIZE
))
3171 return kmalloc_large(size
, gfpflags
);
3173 s
= get_slab(size
, gfpflags
);
3175 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3178 return slab_alloc(s
, gfpflags
, -1, caller
);
3181 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
3182 int node
, void *caller
)
3184 struct kmem_cache
*s
;
3186 if (unlikely(size
> PAGE_SIZE
))
3187 return kmalloc_large(size
, gfpflags
);
3189 s
= get_slab(size
, gfpflags
);
3191 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3194 return slab_alloc(s
, gfpflags
, node
, caller
);
3197 #if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3198 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
3202 void *addr
= slab_address(page
);
3204 if (!check_slab(s
, page
) ||
3205 !on_freelist(s
, page
, NULL
))
3208 /* Now we know that a valid freelist exists */
3209 bitmap_zero(map
, s
->objects
);
3211 for_each_free_object(p
, s
, page
->freelist
) {
3212 set_bit(slab_index(p
, s
, addr
), map
);
3213 if (!check_object(s
, page
, p
, 0))
3217 for_each_object(p
, s
, addr
)
3218 if (!test_bit(slab_index(p
, s
, addr
), map
))
3219 if (!check_object(s
, page
, p
, 1))
3224 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
3227 if (slab_trylock(page
)) {
3228 validate_slab(s
, page
, map
);
3231 printk(KERN_INFO
"SLUB %s: Skipped busy slab 0x%p\n",
3234 if (s
->flags
& DEBUG_DEFAULT_FLAGS
) {
3235 if (!SlabDebug(page
))
3236 printk(KERN_ERR
"SLUB %s: SlabDebug not set "
3237 "on slab 0x%p\n", s
->name
, page
);
3239 if (SlabDebug(page
))
3240 printk(KERN_ERR
"SLUB %s: SlabDebug set on "
3241 "slab 0x%p\n", s
->name
, page
);
3245 static int validate_slab_node(struct kmem_cache
*s
,
3246 struct kmem_cache_node
*n
, unsigned long *map
)
3248 unsigned long count
= 0;
3250 unsigned long flags
;
3252 spin_lock_irqsave(&n
->list_lock
, flags
);
3254 list_for_each_entry(page
, &n
->partial
, lru
) {
3255 validate_slab_slab(s
, page
, map
);
3258 if (count
!= n
->nr_partial
)
3259 printk(KERN_ERR
"SLUB %s: %ld partial slabs counted but "
3260 "counter=%ld\n", s
->name
, count
, n
->nr_partial
);
3262 if (!(s
->flags
& SLAB_STORE_USER
))
3265 list_for_each_entry(page
, &n
->full
, lru
) {
3266 validate_slab_slab(s
, page
, map
);
3269 if (count
!= atomic_long_read(&n
->nr_slabs
))
3270 printk(KERN_ERR
"SLUB: %s %ld slabs counted but "
3271 "counter=%ld\n", s
->name
, count
,
3272 atomic_long_read(&n
->nr_slabs
));
3275 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3279 static long validate_slab_cache(struct kmem_cache
*s
)
3282 unsigned long count
= 0;
3283 unsigned long *map
= kmalloc(BITS_TO_LONGS(s
->objects
) *
3284 sizeof(unsigned long), GFP_KERNEL
);
3290 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3291 struct kmem_cache_node
*n
= get_node(s
, node
);
3293 count
+= validate_slab_node(s
, n
, map
);
3299 #ifdef SLUB_RESILIENCY_TEST
3300 static void resiliency_test(void)
3304 printk(KERN_ERR
"SLUB resiliency testing\n");
3305 printk(KERN_ERR
"-----------------------\n");
3306 printk(KERN_ERR
"A. Corruption after allocation\n");
3308 p
= kzalloc(16, GFP_KERNEL
);
3310 printk(KERN_ERR
"\n1. kmalloc-16: Clobber Redzone/next pointer"
3311 " 0x12->0x%p\n\n", p
+ 16);
3313 validate_slab_cache(kmalloc_caches
+ 4);
3315 /* Hmmm... The next two are dangerous */
3316 p
= kzalloc(32, GFP_KERNEL
);
3317 p
[32 + sizeof(void *)] = 0x34;
3318 printk(KERN_ERR
"\n2. kmalloc-32: Clobber next pointer/next slab"
3319 " 0x34 -> -0x%p\n", p
);
3321 "If allocated object is overwritten then not detectable\n\n");
3323 validate_slab_cache(kmalloc_caches
+ 5);
3324 p
= kzalloc(64, GFP_KERNEL
);
3325 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
3327 printk(KERN_ERR
"\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3330 "If allocated object is overwritten then not detectable\n\n");
3331 validate_slab_cache(kmalloc_caches
+ 6);
3333 printk(KERN_ERR
"\nB. Corruption after free\n");
3334 p
= kzalloc(128, GFP_KERNEL
);
3337 printk(KERN_ERR
"1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
3338 validate_slab_cache(kmalloc_caches
+ 7);
3340 p
= kzalloc(256, GFP_KERNEL
);
3343 printk(KERN_ERR
"\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3345 validate_slab_cache(kmalloc_caches
+ 8);
3347 p
= kzalloc(512, GFP_KERNEL
);
3350 printk(KERN_ERR
"\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
3351 validate_slab_cache(kmalloc_caches
+ 9);
3354 static void resiliency_test(void) {};
3358 * Generate lists of code addresses where slabcache objects are allocated
3363 unsigned long count
;
3376 unsigned long count
;
3377 struct location
*loc
;
3380 static void free_loc_track(struct loc_track
*t
)
3383 free_pages((unsigned long)t
->loc
,
3384 get_order(sizeof(struct location
) * t
->max
));
3387 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
3392 order
= get_order(sizeof(struct location
) * max
);
3394 l
= (void *)__get_free_pages(flags
, order
);
3399 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
3407 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
3408 const struct track
*track
)
3410 long start
, end
, pos
;
3413 unsigned long age
= jiffies
- track
->when
;
3419 pos
= start
+ (end
- start
+ 1) / 2;
3422 * There is nothing at "end". If we end up there
3423 * we need to add something to before end.
3428 caddr
= t
->loc
[pos
].addr
;
3429 if (track
->addr
== caddr
) {
3435 if (age
< l
->min_time
)
3437 if (age
> l
->max_time
)
3440 if (track
->pid
< l
->min_pid
)
3441 l
->min_pid
= track
->pid
;
3442 if (track
->pid
> l
->max_pid
)
3443 l
->max_pid
= track
->pid
;
3445 cpu_set(track
->cpu
, l
->cpus
);
3447 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3451 if (track
->addr
< caddr
)
3458 * Not found. Insert new tracking element.
3460 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
3466 (t
->count
- pos
) * sizeof(struct location
));
3469 l
->addr
= track
->addr
;
3473 l
->min_pid
= track
->pid
;
3474 l
->max_pid
= track
->pid
;
3475 cpus_clear(l
->cpus
);
3476 cpu_set(track
->cpu
, l
->cpus
);
3477 nodes_clear(l
->nodes
);
3478 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
3482 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
3483 struct page
*page
, enum track_item alloc
)
3485 void *addr
= slab_address(page
);
3486 DECLARE_BITMAP(map
, s
->objects
);
3489 bitmap_zero(map
, s
->objects
);
3490 for_each_free_object(p
, s
, page
->freelist
)
3491 set_bit(slab_index(p
, s
, addr
), map
);
3493 for_each_object(p
, s
, addr
)
3494 if (!test_bit(slab_index(p
, s
, addr
), map
))
3495 add_location(t
, s
, get_track(s
, p
, alloc
));
3498 static int list_locations(struct kmem_cache
*s
, char *buf
,
3499 enum track_item alloc
)
3503 struct loc_track t
= { 0, 0, NULL
};
3506 if (!alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
3508 return sprintf(buf
, "Out of memory\n");
3510 /* Push back cpu slabs */
3513 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3514 struct kmem_cache_node
*n
= get_node(s
, node
);
3515 unsigned long flags
;
3518 if (!atomic_long_read(&n
->nr_slabs
))
3521 spin_lock_irqsave(&n
->list_lock
, flags
);
3522 list_for_each_entry(page
, &n
->partial
, lru
)
3523 process_slab(&t
, s
, page
, alloc
);
3524 list_for_each_entry(page
, &n
->full
, lru
)
3525 process_slab(&t
, s
, page
, alloc
);
3526 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3529 for (i
= 0; i
< t
.count
; i
++) {
3530 struct location
*l
= &t
.loc
[i
];
3532 if (len
> PAGE_SIZE
- 100)
3534 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
3537 len
+= sprint_symbol(buf
+ len
, (unsigned long)l
->addr
);
3539 len
+= sprintf(buf
+ len
, "<not-available>");
3541 if (l
->sum_time
!= l
->min_time
) {
3542 unsigned long remainder
;
3544 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
3546 div_long_long_rem(l
->sum_time
, l
->count
, &remainder
),
3549 len
+= sprintf(buf
+ len
, " age=%ld",
3552 if (l
->min_pid
!= l
->max_pid
)
3553 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
3554 l
->min_pid
, l
->max_pid
);
3556 len
+= sprintf(buf
+ len
, " pid=%ld",
3559 if (num_online_cpus() > 1 && !cpus_empty(l
->cpus
) &&
3560 len
< PAGE_SIZE
- 60) {
3561 len
+= sprintf(buf
+ len
, " cpus=");
3562 len
+= cpulist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3566 if (num_online_nodes() > 1 && !nodes_empty(l
->nodes
) &&
3567 len
< PAGE_SIZE
- 60) {
3568 len
+= sprintf(buf
+ len
, " nodes=");
3569 len
+= nodelist_scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
3573 len
+= sprintf(buf
+ len
, "\n");
3578 len
+= sprintf(buf
, "No data\n");
3582 enum slab_stat_type
{
3589 #define SO_FULL (1 << SL_FULL)
3590 #define SO_PARTIAL (1 << SL_PARTIAL)
3591 #define SO_CPU (1 << SL_CPU)
3592 #define SO_OBJECTS (1 << SL_OBJECTS)
3594 static unsigned long slab_objects(struct kmem_cache
*s
,
3595 char *buf
, unsigned long flags
)
3597 unsigned long total
= 0;
3601 unsigned long *nodes
;
3602 unsigned long *per_cpu
;
3604 nodes
= kzalloc(2 * sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
3605 per_cpu
= nodes
+ nr_node_ids
;
3607 for_each_possible_cpu(cpu
) {
3609 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3619 if (flags
& SO_CPU
) {
3620 if (flags
& SO_OBJECTS
)
3631 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3632 struct kmem_cache_node
*n
= get_node(s
, node
);
3634 if (flags
& SO_PARTIAL
) {
3635 if (flags
& SO_OBJECTS
)
3636 x
= count_partial(n
);
3643 if (flags
& SO_FULL
) {
3644 int full_slabs
= atomic_long_read(&n
->nr_slabs
)
3648 if (flags
& SO_OBJECTS
)
3649 x
= full_slabs
* s
->objects
;
3657 x
= sprintf(buf
, "%lu", total
);
3659 for_each_node_state(node
, N_NORMAL_MEMORY
)
3661 x
+= sprintf(buf
+ x
, " N%d=%lu",
3665 return x
+ sprintf(buf
+ x
, "\n");
3668 static int any_slab_objects(struct kmem_cache
*s
)
3673 for_each_possible_cpu(cpu
) {
3674 struct kmem_cache_cpu
*c
= get_cpu_slab(s
, cpu
);
3680 for_each_online_node(node
) {
3681 struct kmem_cache_node
*n
= get_node(s
, node
);
3686 if (n
->nr_partial
|| atomic_long_read(&n
->nr_slabs
))
3692 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3693 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3695 struct slab_attribute
{
3696 struct attribute attr
;
3697 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
3698 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
3701 #define SLAB_ATTR_RO(_name) \
3702 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3704 #define SLAB_ATTR(_name) \
3705 static struct slab_attribute _name##_attr = \
3706 __ATTR(_name, 0644, _name##_show, _name##_store)
3708 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
3710 return sprintf(buf
, "%d\n", s
->size
);
3712 SLAB_ATTR_RO(slab_size
);
3714 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
3716 return sprintf(buf
, "%d\n", s
->align
);
3718 SLAB_ATTR_RO(align
);
3720 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
3722 return sprintf(buf
, "%d\n", s
->objsize
);
3724 SLAB_ATTR_RO(object_size
);
3726 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
3728 return sprintf(buf
, "%d\n", s
->objects
);
3730 SLAB_ATTR_RO(objs_per_slab
);
3732 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
3734 return sprintf(buf
, "%d\n", s
->order
);
3736 SLAB_ATTR_RO(order
);
3738 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
3741 int n
= sprint_symbol(buf
, (unsigned long)s
->ctor
);
3743 return n
+ sprintf(buf
+ n
, "\n");
3749 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
3751 return sprintf(buf
, "%d\n", s
->refcount
- 1);
3753 SLAB_ATTR_RO(aliases
);
3755 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
3757 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
);
3759 SLAB_ATTR_RO(slabs
);
3761 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
3763 return slab_objects(s
, buf
, SO_PARTIAL
);
3765 SLAB_ATTR_RO(partial
);
3767 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
3769 return slab_objects(s
, buf
, SO_CPU
);
3771 SLAB_ATTR_RO(cpu_slabs
);
3773 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
3775 return slab_objects(s
, buf
, SO_FULL
|SO_PARTIAL
|SO_CPU
|SO_OBJECTS
);
3777 SLAB_ATTR_RO(objects
);
3779 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
3781 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DEBUG_FREE
));
3784 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
3785 const char *buf
, size_t length
)
3787 s
->flags
&= ~SLAB_DEBUG_FREE
;
3789 s
->flags
|= SLAB_DEBUG_FREE
;
3792 SLAB_ATTR(sanity_checks
);
3794 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
3796 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
3799 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
3802 s
->flags
&= ~SLAB_TRACE
;
3804 s
->flags
|= SLAB_TRACE
;
3809 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
3811 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
3814 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
3815 const char *buf
, size_t length
)
3817 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
3819 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
3822 SLAB_ATTR(reclaim_account
);
3824 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
3826 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
3828 SLAB_ATTR_RO(hwcache_align
);
3830 #ifdef CONFIG_ZONE_DMA
3831 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
3833 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
3835 SLAB_ATTR_RO(cache_dma
);
3838 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
3840 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_DESTROY_BY_RCU
));
3842 SLAB_ATTR_RO(destroy_by_rcu
);
3844 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
3846 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
3849 static ssize_t
red_zone_store(struct kmem_cache
*s
,
3850 const char *buf
, size_t length
)
3852 if (any_slab_objects(s
))
3855 s
->flags
&= ~SLAB_RED_ZONE
;
3857 s
->flags
|= SLAB_RED_ZONE
;
3861 SLAB_ATTR(red_zone
);
3863 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
3865 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
3868 static ssize_t
poison_store(struct kmem_cache
*s
,
3869 const char *buf
, size_t length
)
3871 if (any_slab_objects(s
))
3874 s
->flags
&= ~SLAB_POISON
;
3876 s
->flags
|= SLAB_POISON
;
3882 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
3884 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
3887 static ssize_t
store_user_store(struct kmem_cache
*s
,
3888 const char *buf
, size_t length
)
3890 if (any_slab_objects(s
))
3893 s
->flags
&= ~SLAB_STORE_USER
;
3895 s
->flags
|= SLAB_STORE_USER
;
3899 SLAB_ATTR(store_user
);
3901 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
3906 static ssize_t
validate_store(struct kmem_cache
*s
,
3907 const char *buf
, size_t length
)
3911 if (buf
[0] == '1') {
3912 ret
= validate_slab_cache(s
);
3918 SLAB_ATTR(validate
);
3920 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
3925 static ssize_t
shrink_store(struct kmem_cache
*s
,
3926 const char *buf
, size_t length
)
3928 if (buf
[0] == '1') {
3929 int rc
= kmem_cache_shrink(s
);
3939 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
3941 if (!(s
->flags
& SLAB_STORE_USER
))
3943 return list_locations(s
, buf
, TRACK_ALLOC
);
3945 SLAB_ATTR_RO(alloc_calls
);
3947 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
3949 if (!(s
->flags
& SLAB_STORE_USER
))
3951 return list_locations(s
, buf
, TRACK_FREE
);
3953 SLAB_ATTR_RO(free_calls
);
3956 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
3958 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
3961 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
3962 const char *buf
, size_t length
)
3964 int n
= simple_strtoul(buf
, NULL
, 10);
3967 s
->remote_node_defrag_ratio
= n
* 10;
3970 SLAB_ATTR(remote_node_defrag_ratio
);
3973 #ifdef CONFIG_SLUB_STATS
3975 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
3977 unsigned long sum
= 0;
3980 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
3985 for_each_online_cpu(cpu
) {
3986 unsigned x
= get_cpu_slab(s
, cpu
)->stat
[si
];
3992 len
= sprintf(buf
, "%lu", sum
);
3994 for_each_online_cpu(cpu
) {
3995 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
3996 len
+= sprintf(buf
+ len
, " c%d=%u", cpu
, data
[cpu
]);
3999 return len
+ sprintf(buf
+ len
, "\n");
4002 #define STAT_ATTR(si, text) \
4003 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4005 return show_stat(s, buf, si); \
4007 SLAB_ATTR_RO(text); \
4009 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4010 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
4011 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
4012 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
4013 STAT_ATTR(FREE_FROZEN
, free_frozen
);
4014 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
4015 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
4016 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
4017 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
4018 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
4019 STAT_ATTR(FREE_SLAB
, free_slab
);
4020 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
4021 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
4022 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
4023 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
4024 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
4025 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
4029 static struct attribute
*slab_attrs
[] = {
4030 &slab_size_attr
.attr
,
4031 &object_size_attr
.attr
,
4032 &objs_per_slab_attr
.attr
,
4037 &cpu_slabs_attr
.attr
,
4041 &sanity_checks_attr
.attr
,
4043 &hwcache_align_attr
.attr
,
4044 &reclaim_account_attr
.attr
,
4045 &destroy_by_rcu_attr
.attr
,
4046 &red_zone_attr
.attr
,
4048 &store_user_attr
.attr
,
4049 &validate_attr
.attr
,
4051 &alloc_calls_attr
.attr
,
4052 &free_calls_attr
.attr
,
4053 #ifdef CONFIG_ZONE_DMA
4054 &cache_dma_attr
.attr
,
4057 &remote_node_defrag_ratio_attr
.attr
,
4059 #ifdef CONFIG_SLUB_STATS
4060 &alloc_fastpath_attr
.attr
,
4061 &alloc_slowpath_attr
.attr
,
4062 &free_fastpath_attr
.attr
,
4063 &free_slowpath_attr
.attr
,
4064 &free_frozen_attr
.attr
,
4065 &free_add_partial_attr
.attr
,
4066 &free_remove_partial_attr
.attr
,
4067 &alloc_from_partial_attr
.attr
,
4068 &alloc_slab_attr
.attr
,
4069 &alloc_refill_attr
.attr
,
4070 &free_slab_attr
.attr
,
4071 &cpuslab_flush_attr
.attr
,
4072 &deactivate_full_attr
.attr
,
4073 &deactivate_empty_attr
.attr
,
4074 &deactivate_to_head_attr
.attr
,
4075 &deactivate_to_tail_attr
.attr
,
4076 &deactivate_remote_frees_attr
.attr
,
4081 static struct attribute_group slab_attr_group
= {
4082 .attrs
= slab_attrs
,
4085 static ssize_t
slab_attr_show(struct kobject
*kobj
,
4086 struct attribute
*attr
,
4089 struct slab_attribute
*attribute
;
4090 struct kmem_cache
*s
;
4093 attribute
= to_slab_attr(attr
);
4096 if (!attribute
->show
)
4099 err
= attribute
->show(s
, buf
);
4104 static ssize_t
slab_attr_store(struct kobject
*kobj
,
4105 struct attribute
*attr
,
4106 const char *buf
, size_t len
)
4108 struct slab_attribute
*attribute
;
4109 struct kmem_cache
*s
;
4112 attribute
= to_slab_attr(attr
);
4115 if (!attribute
->store
)
4118 err
= attribute
->store(s
, buf
, len
);
4123 static void kmem_cache_release(struct kobject
*kobj
)
4125 struct kmem_cache
*s
= to_slab(kobj
);
4130 static struct sysfs_ops slab_sysfs_ops
= {
4131 .show
= slab_attr_show
,
4132 .store
= slab_attr_store
,
4135 static struct kobj_type slab_ktype
= {
4136 .sysfs_ops
= &slab_sysfs_ops
,
4137 .release
= kmem_cache_release
4140 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
4142 struct kobj_type
*ktype
= get_ktype(kobj
);
4144 if (ktype
== &slab_ktype
)
4149 static struct kset_uevent_ops slab_uevent_ops
= {
4150 .filter
= uevent_filter
,
4153 static struct kset
*slab_kset
;
4155 #define ID_STR_LENGTH 64
4157 /* Create a unique string id for a slab cache:
4159 * :[flags-]size:[memory address of kmemcache]
4161 static char *create_unique_id(struct kmem_cache
*s
)
4163 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
4170 * First flags affecting slabcache operations. We will only
4171 * get here for aliasable slabs so we do not need to support
4172 * too many flags. The flags here must cover all flags that
4173 * are matched during merging to guarantee that the id is
4176 if (s
->flags
& SLAB_CACHE_DMA
)
4178 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
4180 if (s
->flags
& SLAB_DEBUG_FREE
)
4184 p
+= sprintf(p
, "%07d", s
->size
);
4185 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
4189 static int sysfs_slab_add(struct kmem_cache
*s
)
4195 if (slab_state
< SYSFS
)
4196 /* Defer until later */
4199 unmergeable
= slab_unmergeable(s
);
4202 * Slabcache can never be merged so we can use the name proper.
4203 * This is typically the case for debug situations. In that
4204 * case we can catch duplicate names easily.
4206 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
4210 * Create a unique name for the slab as a target
4213 name
= create_unique_id(s
);
4216 s
->kobj
.kset
= slab_kset
;
4217 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, name
);
4219 kobject_put(&s
->kobj
);
4223 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
4226 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
4228 /* Setup first alias */
4229 sysfs_slab_alias(s
, s
->name
);
4235 static void sysfs_slab_remove(struct kmem_cache
*s
)
4237 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
4238 kobject_del(&s
->kobj
);
4239 kobject_put(&s
->kobj
);
4243 * Need to buffer aliases during bootup until sysfs becomes
4244 * available lest we loose that information.
4246 struct saved_alias
{
4247 struct kmem_cache
*s
;
4249 struct saved_alias
*next
;
4252 static struct saved_alias
*alias_list
;
4254 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
4256 struct saved_alias
*al
;
4258 if (slab_state
== SYSFS
) {
4260 * If we have a leftover link then remove it.
4262 sysfs_remove_link(&slab_kset
->kobj
, name
);
4263 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
4266 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
4272 al
->next
= alias_list
;
4277 static int __init
slab_sysfs_init(void)
4279 struct kmem_cache
*s
;
4282 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
4284 printk(KERN_ERR
"Cannot register slab subsystem.\n");
4290 list_for_each_entry(s
, &slab_caches
, list
) {
4291 err
= sysfs_slab_add(s
);
4293 printk(KERN_ERR
"SLUB: Unable to add boot slab %s"
4294 " to sysfs\n", s
->name
);
4297 while (alias_list
) {
4298 struct saved_alias
*al
= alias_list
;
4300 alias_list
= alias_list
->next
;
4301 err
= sysfs_slab_alias(al
->s
, al
->name
);
4303 printk(KERN_ERR
"SLUB: Unable to add boot slab alias"
4304 " %s to sysfs\n", s
->name
);
4312 __initcall(slab_sysfs_init
);
4316 * The /proc/slabinfo ABI
4318 #ifdef CONFIG_SLABINFO
4320 ssize_t
slabinfo_write(struct file
*file
, const char __user
* buffer
,
4321 size_t count
, loff_t
*ppos
)
4327 static void print_slabinfo_header(struct seq_file
*m
)
4329 seq_puts(m
, "slabinfo - version: 2.1\n");
4330 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> "
4331 "<objperslab> <pagesperslab>");
4332 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
4333 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4337 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
4341 down_read(&slub_lock
);
4343 print_slabinfo_header(m
);
4345 return seq_list_start(&slab_caches
, *pos
);
4348 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
4350 return seq_list_next(p
, &slab_caches
, pos
);
4353 static void s_stop(struct seq_file
*m
, void *p
)
4355 up_read(&slub_lock
);
4358 static int s_show(struct seq_file
*m
, void *p
)
4360 unsigned long nr_partials
= 0;
4361 unsigned long nr_slabs
= 0;
4362 unsigned long nr_inuse
= 0;
4363 unsigned long nr_objs
;
4364 struct kmem_cache
*s
;
4367 s
= list_entry(p
, struct kmem_cache
, list
);
4369 for_each_online_node(node
) {
4370 struct kmem_cache_node
*n
= get_node(s
, node
);
4375 nr_partials
+= n
->nr_partial
;
4376 nr_slabs
+= atomic_long_read(&n
->nr_slabs
);
4377 nr_inuse
+= count_partial(n
);
4380 nr_objs
= nr_slabs
* s
->objects
;
4381 nr_inuse
+= (nr_slabs
- nr_partials
) * s
->objects
;
4383 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d", s
->name
, nr_inuse
,
4384 nr_objs
, s
->size
, s
->objects
, (1 << s
->order
));
4385 seq_printf(m
, " : tunables %4u %4u %4u", 0, 0, 0);
4386 seq_printf(m
, " : slabdata %6lu %6lu %6lu", nr_slabs
, nr_slabs
,
4392 const struct seq_operations slabinfo_op
= {
4399 #endif /* CONFIG_SLABINFO */