2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The User Datagram Protocol (UDP).
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
11 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
12 * Hirokazu Takahashi, <taka@valinux.co.jp>
15 * Alan Cox : verify_area() calls
16 * Alan Cox : stopped close while in use off icmp
17 * messages. Not a fix but a botch that
18 * for udp at least is 'valid'.
19 * Alan Cox : Fixed icmp handling properly
20 * Alan Cox : Correct error for oversized datagrams
21 * Alan Cox : Tidied select() semantics.
22 * Alan Cox : udp_err() fixed properly, also now
23 * select and read wake correctly on errors
24 * Alan Cox : udp_send verify_area moved to avoid mem leak
25 * Alan Cox : UDP can count its memory
26 * Alan Cox : send to an unknown connection causes
27 * an ECONNREFUSED off the icmp, but
29 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
30 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
31 * bug no longer crashes it.
32 * Fred Van Kempen : Net2e support for sk->broadcast.
33 * Alan Cox : Uses skb_free_datagram
34 * Alan Cox : Added get/set sockopt support.
35 * Alan Cox : Broadcasting without option set returns EACCES.
36 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
37 * Alan Cox : Use ip_tos and ip_ttl
38 * Alan Cox : SNMP Mibs
39 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
40 * Matt Dillon : UDP length checks.
41 * Alan Cox : Smarter af_inet used properly.
42 * Alan Cox : Use new kernel side addressing.
43 * Alan Cox : Incorrect return on truncated datagram receive.
44 * Arnt Gulbrandsen : New udp_send and stuff
45 * Alan Cox : Cache last socket
46 * Alan Cox : Route cache
47 * Jon Peatfield : Minor efficiency fix to sendto().
48 * Mike Shaver : RFC1122 checks.
49 * Alan Cox : Nonblocking error fix.
50 * Willy Konynenberg : Transparent proxying support.
51 * Mike McLagan : Routing by source
52 * David S. Miller : New socket lookup architecture.
53 * Last socket cache retained as it
54 * does have a high hit rate.
55 * Olaf Kirch : Don't linearise iovec on sendmsg.
56 * Andi Kleen : Some cleanups, cache destination entry
58 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
59 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
60 * return ENOTCONN for unconnected sockets (POSIX)
61 * Janos Farkas : don't deliver multi/broadcasts to a different
62 * bound-to-device socket
63 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * Hirokazu Takahashi : sendfile() on UDP works now.
66 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
67 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
68 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
69 * a single port at the same time.
70 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
71 * James Chapman : Add L2TP encapsulation type.
74 * This program is free software; you can redistribute it and/or
75 * modify it under the terms of the GNU General Public License
76 * as published by the Free Software Foundation; either version
77 * 2 of the License, or (at your option) any later version.
80 #include <asm/system.h>
81 #include <asm/uaccess.h>
82 #include <asm/ioctls.h>
83 #include <linux/bootmem.h>
84 #include <linux/highmem.h>
85 #include <linux/swap.h>
86 #include <linux/types.h>
87 #include <linux/fcntl.h>
88 #include <linux/module.h>
89 #include <linux/socket.h>
90 #include <linux/sockios.h>
91 #include <linux/igmp.h>
93 #include <linux/errno.h>
94 #include <linux/timer.h>
96 #include <linux/inet.h>
97 #include <linux/netdevice.h>
98 #include <net/tcp_states.h>
99 #include <linux/skbuff.h>
100 #include <linux/proc_fs.h>
101 #include <linux/seq_file.h>
102 #include <net/net_namespace.h>
103 #include <net/icmp.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include "udp_impl.h"
109 struct udp_table udp_table __read_mostly
;
110 EXPORT_SYMBOL(udp_table
);
112 int sysctl_udp_mem
[3] __read_mostly
;
113 EXPORT_SYMBOL(sysctl_udp_mem
);
115 int sysctl_udp_rmem_min __read_mostly
;
116 EXPORT_SYMBOL(sysctl_udp_rmem_min
);
118 int sysctl_udp_wmem_min __read_mostly
;
119 EXPORT_SYMBOL(sysctl_udp_wmem_min
);
121 atomic_t udp_memory_allocated
;
122 EXPORT_SYMBOL(udp_memory_allocated
);
124 #define MAX_UDP_PORTS 65536
125 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
127 static int udp_lib_lport_inuse(struct net
*net
, __u16 num
,
128 const struct udp_hslot
*hslot
,
129 unsigned long *bitmap
,
131 int (*saddr_comp
)(const struct sock
*sk1
,
132 const struct sock
*sk2
),
136 struct hlist_nulls_node
*node
;
138 sk_nulls_for_each(sk2
, node
, &hslot
->head
)
139 if (net_eq(sock_net(sk2
), net
) &&
141 (bitmap
|| udp_sk(sk2
)->udp_port_hash
== num
) &&
142 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
143 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
144 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
145 (*saddr_comp
)(sk
, sk2
)) {
147 __set_bit(udp_sk(sk2
)->udp_port_hash
>> log
,
156 * Note: we still hold spinlock of primary hash chain, so no other writer
157 * can insert/delete a socket with local_port == num
159 static int udp_lib_lport_inuse2(struct net
*net
, __u16 num
,
160 struct udp_hslot
*hslot2
,
162 int (*saddr_comp
)(const struct sock
*sk1
,
163 const struct sock
*sk2
))
166 struct hlist_nulls_node
*node
;
169 spin_lock(&hslot2
->lock
);
170 udp_portaddr_for_each_entry(sk2
, node
, &hslot2
->head
)
171 if (net_eq(sock_net(sk2
), net
) &&
173 (udp_sk(sk2
)->udp_port_hash
== num
) &&
174 (!sk2
->sk_reuse
|| !sk
->sk_reuse
) &&
175 (!sk2
->sk_bound_dev_if
|| !sk
->sk_bound_dev_if
||
176 sk2
->sk_bound_dev_if
== sk
->sk_bound_dev_if
) &&
177 (*saddr_comp
)(sk
, sk2
)) {
181 spin_unlock(&hslot2
->lock
);
186 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
188 * @sk: socket struct in question
189 * @snum: port number to look up
190 * @saddr_comp: AF-dependent comparison of bound local IP addresses
191 * @hash2_nulladdr: AF-dependant hash value in secondary hash chains,
194 int udp_lib_get_port(struct sock
*sk
, unsigned short snum
,
195 int (*saddr_comp
)(const struct sock
*sk1
,
196 const struct sock
*sk2
),
197 unsigned int hash2_nulladdr
)
199 struct udp_hslot
*hslot
, *hslot2
;
200 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
202 struct net
*net
= sock_net(sk
);
205 int low
, high
, remaining
;
207 unsigned short first
, last
;
208 DECLARE_BITMAP(bitmap
, PORTS_PER_CHAIN
);
210 inet_get_local_port_range(&low
, &high
);
211 remaining
= (high
- low
) + 1;
214 first
= (((u64
)rand
* remaining
) >> 32) + low
;
216 * force rand to be an odd multiple of UDP_HTABLE_SIZE
218 rand
= (rand
| 1) * (udptable
->mask
+ 1);
219 for (last
= first
+ udptable
->mask
+ 1;
222 hslot
= udp_hashslot(udptable
, net
, first
);
223 bitmap_zero(bitmap
, PORTS_PER_CHAIN
);
224 spin_lock_bh(&hslot
->lock
);
225 udp_lib_lport_inuse(net
, snum
, hslot
, bitmap
, sk
,
226 saddr_comp
, udptable
->log
);
230 * Iterate on all possible values of snum for this hash.
231 * Using steps of an odd multiple of UDP_HTABLE_SIZE
232 * give us randomization and full range coverage.
235 if (low
<= snum
&& snum
<= high
&&
236 !test_bit(snum
>> udptable
->log
, bitmap
))
239 } while (snum
!= first
);
240 spin_unlock_bh(&hslot
->lock
);
244 hslot
= udp_hashslot(udptable
, net
, snum
);
245 spin_lock_bh(&hslot
->lock
);
246 if (hslot
->count
> 10) {
248 unsigned int slot2
= udp_sk(sk
)->udp_portaddr_hash
^ snum
;
250 slot2
&= udptable
->mask
;
251 hash2_nulladdr
&= udptable
->mask
;
253 hslot2
= udp_hashslot2(udptable
, slot2
);
254 if (hslot
->count
< hslot2
->count
)
255 goto scan_primary_hash
;
257 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
259 if (!exist
&& (hash2_nulladdr
!= slot2
)) {
260 hslot2
= udp_hashslot2(udptable
, hash2_nulladdr
);
261 exist
= udp_lib_lport_inuse2(net
, snum
, hslot2
,
270 if (udp_lib_lport_inuse(net
, snum
, hslot
, NULL
, sk
,
275 inet_sk(sk
)->inet_num
= snum
;
276 udp_sk(sk
)->udp_port_hash
= snum
;
277 udp_sk(sk
)->udp_portaddr_hash
^= snum
;
278 if (sk_unhashed(sk
)) {
279 sk_nulls_add_node_rcu(sk
, &hslot
->head
);
281 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, 1);
283 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
284 spin_lock(&hslot2
->lock
);
285 hlist_nulls_add_head_rcu(&udp_sk(sk
)->udp_portaddr_node
,
288 spin_unlock(&hslot2
->lock
);
292 spin_unlock_bh(&hslot
->lock
);
296 EXPORT_SYMBOL(udp_lib_get_port
);
298 static int ipv4_rcv_saddr_equal(const struct sock
*sk1
, const struct sock
*sk2
)
300 struct inet_sock
*inet1
= inet_sk(sk1
), *inet2
= inet_sk(sk2
);
302 return (!ipv6_only_sock(sk2
) &&
303 (!inet1
->inet_rcv_saddr
|| !inet2
->inet_rcv_saddr
||
304 inet1
->inet_rcv_saddr
== inet2
->inet_rcv_saddr
));
307 static unsigned int udp4_portaddr_hash(struct net
*net
, __be32 saddr
,
310 return jhash_1word(saddr
, net_hash_mix(net
)) ^ port
;
313 int udp_v4_get_port(struct sock
*sk
, unsigned short snum
)
315 unsigned int hash2_nulladdr
=
316 udp4_portaddr_hash(sock_net(sk
), INADDR_ANY
, snum
);
317 unsigned int hash2_partial
=
318 udp4_portaddr_hash(sock_net(sk
), inet_sk(sk
)->inet_rcv_saddr
, 0);
320 /* precompute partial secondary hash */
321 udp_sk(sk
)->udp_portaddr_hash
= hash2_partial
;
322 return udp_lib_get_port(sk
, snum
, ipv4_rcv_saddr_equal
, hash2_nulladdr
);
325 static inline int compute_score(struct sock
*sk
, struct net
*net
, __be32 saddr
,
327 __be16 sport
, __be32 daddr
, __be16 dport
, int dif
)
331 if (net_eq(sock_net(sk
), net
) && udp_sk(sk
)->udp_port_hash
== hnum
&&
332 !ipv6_only_sock(sk
)) {
333 struct inet_sock
*inet
= inet_sk(sk
);
335 score
= (sk
->sk_family
== PF_INET
? 1 : 0);
336 if (inet
->inet_rcv_saddr
) {
337 if (inet
->inet_rcv_saddr
!= daddr
)
341 if (inet
->inet_daddr
) {
342 if (inet
->inet_daddr
!= saddr
)
346 if (inet
->inet_dport
) {
347 if (inet
->inet_dport
!= sport
)
351 if (sk
->sk_bound_dev_if
) {
352 if (sk
->sk_bound_dev_if
!= dif
)
361 * In this second variant, we check (daddr, dport) matches (inet_rcv_sadd, inet_num)
363 #define SCORE2_MAX (1 + 2 + 2 + 2)
364 static inline int compute_score2(struct sock
*sk
, struct net
*net
,
365 __be32 saddr
, __be16 sport
,
366 __be32 daddr
, unsigned int hnum
, int dif
)
370 if (net_eq(sock_net(sk
), net
) && !ipv6_only_sock(sk
)) {
371 struct inet_sock
*inet
= inet_sk(sk
);
373 if (inet
->inet_rcv_saddr
!= daddr
)
375 if (inet
->inet_num
!= hnum
)
378 score
= (sk
->sk_family
== PF_INET
? 1 : 0);
379 if (inet
->inet_daddr
) {
380 if (inet
->inet_daddr
!= saddr
)
384 if (inet
->inet_dport
) {
385 if (inet
->inet_dport
!= sport
)
389 if (sk
->sk_bound_dev_if
) {
390 if (sk
->sk_bound_dev_if
!= dif
)
399 /* called with read_rcu_lock() */
400 static struct sock
*udp4_lib_lookup2(struct net
*net
,
401 __be32 saddr
, __be16 sport
,
402 __be32 daddr
, unsigned int hnum
, int dif
,
403 struct udp_hslot
*hslot2
, unsigned int slot2
)
405 struct sock
*sk
, *result
;
406 struct hlist_nulls_node
*node
;
412 udp_portaddr_for_each_entry_rcu(sk
, node
, &hslot2
->head
) {
413 score
= compute_score2(sk
, net
, saddr
, sport
,
415 if (score
> badness
) {
418 if (score
== SCORE2_MAX
)
423 * if the nulls value we got at the end of this lookup is
424 * not the expected one, we must restart lookup.
425 * We probably met an item that was moved to another chain.
427 if (get_nulls_value(node
) != slot2
)
432 if (unlikely(!atomic_inc_not_zero(&result
->sk_refcnt
)))
434 else if (unlikely(compute_score2(result
, net
, saddr
, sport
,
435 daddr
, hnum
, dif
) < badness
)) {
443 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
444 * harder than this. -DaveM
446 static struct sock
*__udp4_lib_lookup(struct net
*net
, __be32 saddr
,
447 __be16 sport
, __be32 daddr
, __be16 dport
,
448 int dif
, struct udp_table
*udptable
)
450 struct sock
*sk
, *result
;
451 struct hlist_nulls_node
*node
;
452 unsigned short hnum
= ntohs(dport
);
453 unsigned int hash2
, slot2
, slot
= udp_hashfn(net
, hnum
, udptable
->mask
);
454 struct udp_hslot
*hslot2
, *hslot
= &udptable
->hash
[slot
];
458 if (hslot
->count
> 10) {
459 hash2
= udp4_portaddr_hash(net
, daddr
, hnum
);
460 slot2
= hash2
& udptable
->mask
;
461 hslot2
= &udptable
->hash2
[slot2
];
462 if (hslot
->count
< hslot2
->count
)
465 result
= udp4_lib_lookup2(net
, saddr
, sport
,
469 hash2
= udp4_portaddr_hash(net
, INADDR_ANY
, hnum
);
470 slot2
= hash2
& udptable
->mask
;
471 hslot2
= &udptable
->hash2
[slot2
];
472 if (hslot
->count
< hslot2
->count
)
475 result
= udp4_lib_lookup2(net
, INADDR_ANY
, sport
,
485 sk_nulls_for_each_rcu(sk
, node
, &hslot
->head
) {
486 score
= compute_score(sk
, net
, saddr
, hnum
, sport
,
488 if (score
> badness
) {
494 * if the nulls value we got at the end of this lookup is
495 * not the expected one, we must restart lookup.
496 * We probably met an item that was moved to another chain.
498 if (get_nulls_value(node
) != slot
)
502 if (unlikely(!atomic_inc_not_zero(&result
->sk_refcnt
)))
504 else if (unlikely(compute_score(result
, net
, saddr
, hnum
, sport
,
505 daddr
, dport
, dif
) < badness
)) {
514 static inline struct sock
*__udp4_lib_lookup_skb(struct sk_buff
*skb
,
515 __be16 sport
, __be16 dport
,
516 struct udp_table
*udptable
)
519 const struct iphdr
*iph
= ip_hdr(skb
);
521 if (unlikely(sk
= skb_steal_sock(skb
)))
524 return __udp4_lib_lookup(dev_net(skb_dst(skb
)->dev
), iph
->saddr
, sport
,
525 iph
->daddr
, dport
, inet_iif(skb
),
529 struct sock
*udp4_lib_lookup(struct net
*net
, __be32 saddr
, __be16 sport
,
530 __be32 daddr
, __be16 dport
, int dif
)
532 return __udp4_lib_lookup(net
, saddr
, sport
, daddr
, dport
, dif
, &udp_table
);
534 EXPORT_SYMBOL_GPL(udp4_lib_lookup
);
536 static inline struct sock
*udp_v4_mcast_next(struct net
*net
, struct sock
*sk
,
537 __be16 loc_port
, __be32 loc_addr
,
538 __be16 rmt_port
, __be32 rmt_addr
,
541 struct hlist_nulls_node
*node
;
543 unsigned short hnum
= ntohs(loc_port
);
545 sk_nulls_for_each_from(s
, node
) {
546 struct inet_sock
*inet
= inet_sk(s
);
548 if (!net_eq(sock_net(s
), net
) ||
549 udp_sk(s
)->udp_port_hash
!= hnum
||
550 (inet
->inet_daddr
&& inet
->inet_daddr
!= rmt_addr
) ||
551 (inet
->inet_dport
!= rmt_port
&& inet
->inet_dport
) ||
552 (inet
->inet_rcv_saddr
&&
553 inet
->inet_rcv_saddr
!= loc_addr
) ||
555 (s
->sk_bound_dev_if
&& s
->sk_bound_dev_if
!= dif
))
557 if (!ip_mc_sf_allow(s
, loc_addr
, rmt_addr
, dif
))
567 * This routine is called by the ICMP module when it gets some
568 * sort of error condition. If err < 0 then the socket should
569 * be closed and the error returned to the user. If err > 0
570 * it's just the icmp type << 8 | icmp code.
571 * Header points to the ip header of the error packet. We move
572 * on past this. Then (as it used to claim before adjustment)
573 * header points to the first 8 bytes of the udp header. We need
574 * to find the appropriate port.
577 void __udp4_lib_err(struct sk_buff
*skb
, u32 info
, struct udp_table
*udptable
)
579 struct inet_sock
*inet
;
580 struct iphdr
*iph
= (struct iphdr
*)skb
->data
;
581 struct udphdr
*uh
= (struct udphdr
*)(skb
->data
+(iph
->ihl
<<2));
582 const int type
= icmp_hdr(skb
)->type
;
583 const int code
= icmp_hdr(skb
)->code
;
587 struct net
*net
= dev_net(skb
->dev
);
589 sk
= __udp4_lib_lookup(net
, iph
->daddr
, uh
->dest
,
590 iph
->saddr
, uh
->source
, skb
->dev
->ifindex
, udptable
);
592 ICMP_INC_STATS_BH(net
, ICMP_MIB_INERRORS
);
593 return; /* No socket for error */
602 case ICMP_TIME_EXCEEDED
:
605 case ICMP_SOURCE_QUENCH
:
607 case ICMP_PARAMETERPROB
:
611 case ICMP_DEST_UNREACH
:
612 if (code
== ICMP_FRAG_NEEDED
) { /* Path MTU discovery */
613 if (inet
->pmtudisc
!= IP_PMTUDISC_DONT
) {
621 if (code
<= NR_ICMP_UNREACH
) {
622 harderr
= icmp_err_convert
[code
].fatal
;
623 err
= icmp_err_convert
[code
].errno
;
629 * RFC1122: OK. Passes ICMP errors back to application, as per
632 if (!inet
->recverr
) {
633 if (!harderr
|| sk
->sk_state
!= TCP_ESTABLISHED
)
636 ip_icmp_error(sk
, skb
, err
, uh
->dest
, info
, (u8
*)(uh
+1));
639 sk
->sk_error_report(sk
);
644 void udp_err(struct sk_buff
*skb
, u32 info
)
646 __udp4_lib_err(skb
, info
, &udp_table
);
650 * Throw away all pending data and cancel the corking. Socket is locked.
652 void udp_flush_pending_frames(struct sock
*sk
)
654 struct udp_sock
*up
= udp_sk(sk
);
659 ip_flush_pending_frames(sk
);
662 EXPORT_SYMBOL(udp_flush_pending_frames
);
665 * udp4_hwcsum_outgoing - handle outgoing HW checksumming
666 * @sk: socket we are sending on
667 * @skb: sk_buff containing the filled-in UDP header
668 * (checksum field must be zeroed out)
670 static void udp4_hwcsum_outgoing(struct sock
*sk
, struct sk_buff
*skb
,
671 __be32 src
, __be32 dst
, int len
)
674 struct udphdr
*uh
= udp_hdr(skb
);
677 if (skb_queue_len(&sk
->sk_write_queue
) == 1) {
679 * Only one fragment on the socket.
681 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
682 skb
->csum_offset
= offsetof(struct udphdr
, check
);
683 uh
->check
= ~csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, 0);
686 * HW-checksum won't work as there are two or more
687 * fragments on the socket so that all csums of sk_buffs
690 offset
= skb_transport_offset(skb
);
691 skb
->csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
693 skb
->ip_summed
= CHECKSUM_NONE
;
695 skb_queue_walk(&sk
->sk_write_queue
, skb
) {
696 csum
= csum_add(csum
, skb
->csum
);
699 uh
->check
= csum_tcpudp_magic(src
, dst
, len
, IPPROTO_UDP
, csum
);
701 uh
->check
= CSUM_MANGLED_0
;
706 * Push out all pending data as one UDP datagram. Socket is locked.
708 static int udp_push_pending_frames(struct sock
*sk
)
710 struct udp_sock
*up
= udp_sk(sk
);
711 struct inet_sock
*inet
= inet_sk(sk
);
712 struct flowi
*fl
= &inet
->cork
.fl
;
716 int is_udplite
= IS_UDPLITE(sk
);
719 /* Grab the skbuff where UDP header space exists. */
720 if ((skb
= skb_peek(&sk
->sk_write_queue
)) == NULL
)
724 * Create a UDP header
727 uh
->source
= fl
->fl_ip_sport
;
728 uh
->dest
= fl
->fl_ip_dport
;
729 uh
->len
= htons(up
->len
);
732 if (is_udplite
) /* UDP-Lite */
733 csum
= udplite_csum_outgoing(sk
, skb
);
735 else if (sk
->sk_no_check
== UDP_CSUM_NOXMIT
) { /* UDP csum disabled */
737 skb
->ip_summed
= CHECKSUM_NONE
;
740 } else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) { /* UDP hardware csum */
742 udp4_hwcsum_outgoing(sk
, skb
, fl
->fl4_src
, fl
->fl4_dst
, up
->len
);
745 } else /* `normal' UDP */
746 csum
= udp_csum_outgoing(sk
, skb
);
748 /* add protocol-dependent pseudo-header */
749 uh
->check
= csum_tcpudp_magic(fl
->fl4_src
, fl
->fl4_dst
, up
->len
,
750 sk
->sk_protocol
, csum
);
752 uh
->check
= CSUM_MANGLED_0
;
755 err
= ip_push_pending_frames(sk
);
757 if (err
== -ENOBUFS
&& !inet
->recverr
) {
758 UDP_INC_STATS_USER(sock_net(sk
),
759 UDP_MIB_SNDBUFERRORS
, is_udplite
);
763 UDP_INC_STATS_USER(sock_net(sk
),
764 UDP_MIB_OUTDATAGRAMS
, is_udplite
);
771 int udp_sendmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
774 struct inet_sock
*inet
= inet_sk(sk
);
775 struct udp_sock
*up
= udp_sk(sk
);
777 struct ipcm_cookie ipc
;
778 struct rtable
*rt
= NULL
;
781 __be32 daddr
, faddr
, saddr
;
784 int err
, is_udplite
= IS_UDPLITE(sk
);
785 int corkreq
= up
->corkflag
|| msg
->msg_flags
&MSG_MORE
;
786 int (*getfrag
)(void *, char *, int, int, int, struct sk_buff
*);
795 if (msg
->msg_flags
& MSG_OOB
) /* Mirror BSD error message compatibility */
803 * There are pending frames.
804 * The socket lock must be held while it's corked.
807 if (likely(up
->pending
)) {
808 if (unlikely(up
->pending
!= AF_INET
)) {
816 ulen
+= sizeof(struct udphdr
);
819 * Get and verify the address.
822 struct sockaddr_in
* usin
= (struct sockaddr_in
*)msg
->msg_name
;
823 if (msg
->msg_namelen
< sizeof(*usin
))
825 if (usin
->sin_family
!= AF_INET
) {
826 if (usin
->sin_family
!= AF_UNSPEC
)
827 return -EAFNOSUPPORT
;
830 daddr
= usin
->sin_addr
.s_addr
;
831 dport
= usin
->sin_port
;
835 if (sk
->sk_state
!= TCP_ESTABLISHED
)
836 return -EDESTADDRREQ
;
837 daddr
= inet
->inet_daddr
;
838 dport
= inet
->inet_dport
;
839 /* Open fast path for connected socket.
840 Route will not be used, if at least one option is set.
844 ipc
.addr
= inet
->inet_saddr
;
846 ipc
.oif
= sk
->sk_bound_dev_if
;
847 err
= sock_tx_timestamp(msg
, sk
, &ipc
.shtx
);
850 if (msg
->msg_controllen
) {
851 err
= ip_cmsg_send(sock_net(sk
), msg
, &ipc
);
862 ipc
.addr
= faddr
= daddr
;
864 if (ipc
.opt
&& ipc
.opt
->srr
) {
867 faddr
= ipc
.opt
->faddr
;
870 tos
= RT_TOS(inet
->tos
);
871 if (sock_flag(sk
, SOCK_LOCALROUTE
) ||
872 (msg
->msg_flags
& MSG_DONTROUTE
) ||
873 (ipc
.opt
&& ipc
.opt
->is_strictroute
)) {
878 if (ipv4_is_multicast(daddr
)) {
880 ipc
.oif
= inet
->mc_index
;
882 saddr
= inet
->mc_addr
;
887 rt
= (struct rtable
*)sk_dst_check(sk
, 0);
890 struct flowi fl
= { .oif
= ipc
.oif
,
896 .proto
= sk
->sk_protocol
,
897 .flags
= inet_sk_flowi_flags(sk
),
899 { .sport
= inet
->inet_sport
,
900 .dport
= dport
} } };
901 struct net
*net
= sock_net(sk
);
903 security_sk_classify_flow(sk
, &fl
);
904 err
= ip_route_output_flow(net
, &rt
, &fl
, sk
, 1);
906 if (err
== -ENETUNREACH
)
907 IP_INC_STATS_BH(net
, IPSTATS_MIB_OUTNOROUTES
);
912 if ((rt
->rt_flags
& RTCF_BROADCAST
) &&
913 !sock_flag(sk
, SOCK_BROADCAST
))
916 sk_dst_set(sk
, dst_clone(&rt
->u
.dst
));
919 if (msg
->msg_flags
&MSG_CONFIRM
)
925 daddr
= ipc
.addr
= rt
->rt_dst
;
928 if (unlikely(up
->pending
)) {
929 /* The socket is already corked while preparing it. */
930 /* ... which is an evident application bug. --ANK */
933 LIMIT_NETDEBUG(KERN_DEBUG
"udp cork app bug 2\n");
938 * Now cork the socket to pend data.
940 inet
->cork
.fl
.fl4_dst
= daddr
;
941 inet
->cork
.fl
.fl_ip_dport
= dport
;
942 inet
->cork
.fl
.fl4_src
= saddr
;
943 inet
->cork
.fl
.fl_ip_sport
= inet
->inet_sport
;
944 up
->pending
= AF_INET
;
948 getfrag
= is_udplite
? udplite_getfrag
: ip_generic_getfrag
;
949 err
= ip_append_data(sk
, getfrag
, msg
->msg_iov
, ulen
,
950 sizeof(struct udphdr
), &ipc
, &rt
,
951 corkreq
? msg
->msg_flags
|MSG_MORE
: msg
->msg_flags
);
953 udp_flush_pending_frames(sk
);
955 err
= udp_push_pending_frames(sk
);
956 else if (unlikely(skb_queue_empty(&sk
->sk_write_queue
)))
967 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
968 * ENOBUFS might not be good (it's not tunable per se), but otherwise
969 * we don't have a good statistic (IpOutDiscards but it can be too many
970 * things). We could add another new stat but at least for now that
971 * seems like overkill.
973 if (err
== -ENOBUFS
|| test_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
)) {
974 UDP_INC_STATS_USER(sock_net(sk
),
975 UDP_MIB_SNDBUFERRORS
, is_udplite
);
980 dst_confirm(&rt
->u
.dst
);
981 if (!(msg
->msg_flags
&MSG_PROBE
) || len
)
982 goto back_from_confirm
;
986 EXPORT_SYMBOL(udp_sendmsg
);
988 int udp_sendpage(struct sock
*sk
, struct page
*page
, int offset
,
989 size_t size
, int flags
)
991 struct udp_sock
*up
= udp_sk(sk
);
995 struct msghdr msg
= { .msg_flags
= flags
|MSG_MORE
};
997 /* Call udp_sendmsg to specify destination address which
998 * sendpage interface can't pass.
999 * This will succeed only when the socket is connected.
1001 ret
= udp_sendmsg(NULL
, sk
, &msg
, 0);
1008 if (unlikely(!up
->pending
)) {
1011 LIMIT_NETDEBUG(KERN_DEBUG
"udp cork app bug 3\n");
1015 ret
= ip_append_page(sk
, page
, offset
, size
, flags
);
1016 if (ret
== -EOPNOTSUPP
) {
1018 return sock_no_sendpage(sk
->sk_socket
, page
, offset
,
1022 udp_flush_pending_frames(sk
);
1027 if (!(up
->corkflag
|| (flags
&MSG_MORE
)))
1028 ret
= udp_push_pending_frames(sk
);
1038 * first_packet_length - return length of first packet in receive queue
1041 * Drops all bad checksum frames, until a valid one is found.
1042 * Returns the length of found skb, or 0 if none is found.
1044 static unsigned int first_packet_length(struct sock
*sk
)
1046 struct sk_buff_head list_kill
, *rcvq
= &sk
->sk_receive_queue
;
1047 struct sk_buff
*skb
;
1050 __skb_queue_head_init(&list_kill
);
1052 spin_lock_bh(&rcvq
->lock
);
1053 while ((skb
= skb_peek(rcvq
)) != NULL
&&
1054 udp_lib_checksum_complete(skb
)) {
1055 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1057 atomic_inc(&sk
->sk_drops
);
1058 __skb_unlink(skb
, rcvq
);
1059 __skb_queue_tail(&list_kill
, skb
);
1061 res
= skb
? skb
->len
: 0;
1062 spin_unlock_bh(&rcvq
->lock
);
1064 if (!skb_queue_empty(&list_kill
)) {
1066 __skb_queue_purge(&list_kill
);
1067 sk_mem_reclaim_partial(sk
);
1074 * IOCTL requests applicable to the UDP protocol
1077 int udp_ioctl(struct sock
*sk
, int cmd
, unsigned long arg
)
1082 int amount
= sk_wmem_alloc_get(sk
);
1084 return put_user(amount
, (int __user
*)arg
);
1089 unsigned int amount
= first_packet_length(sk
);
1093 * We will only return the amount
1094 * of this packet since that is all
1095 * that will be read.
1097 amount
-= sizeof(struct udphdr
);
1099 return put_user(amount
, (int __user
*)arg
);
1103 return -ENOIOCTLCMD
;
1108 EXPORT_SYMBOL(udp_ioctl
);
1111 * This should be easy, if there is something there we
1112 * return it, otherwise we block.
1115 int udp_recvmsg(struct kiocb
*iocb
, struct sock
*sk
, struct msghdr
*msg
,
1116 size_t len
, int noblock
, int flags
, int *addr_len
)
1118 struct inet_sock
*inet
= inet_sk(sk
);
1119 struct sockaddr_in
*sin
= (struct sockaddr_in
*)msg
->msg_name
;
1120 struct sk_buff
*skb
;
1121 unsigned int ulen
, copied
;
1124 int is_udplite
= IS_UDPLITE(sk
);
1127 * Check any passed addresses
1130 *addr_len
= sizeof(*sin
);
1132 if (flags
& MSG_ERRQUEUE
)
1133 return ip_recv_error(sk
, msg
, len
);
1136 skb
= __skb_recv_datagram(sk
, flags
| (noblock
? MSG_DONTWAIT
: 0),
1141 ulen
= skb
->len
- sizeof(struct udphdr
);
1145 else if (copied
< ulen
)
1146 msg
->msg_flags
|= MSG_TRUNC
;
1149 * If checksum is needed at all, try to do it while copying the
1150 * data. If the data is truncated, or if we only want a partial
1151 * coverage checksum (UDP-Lite), do it before the copy.
1154 if (copied
< ulen
|| UDP_SKB_CB(skb
)->partial_cov
) {
1155 if (udp_lib_checksum_complete(skb
))
1159 if (skb_csum_unnecessary(skb
))
1160 err
= skb_copy_datagram_iovec(skb
, sizeof(struct udphdr
),
1161 msg
->msg_iov
, copied
);
1163 err
= skb_copy_and_csum_datagram_iovec(skb
,
1164 sizeof(struct udphdr
),
1175 UDP_INC_STATS_USER(sock_net(sk
),
1176 UDP_MIB_INDATAGRAMS
, is_udplite
);
1178 sock_recv_ts_and_drops(msg
, sk
, skb
);
1180 /* Copy the address. */
1182 sin
->sin_family
= AF_INET
;
1183 sin
->sin_port
= udp_hdr(skb
)->source
;
1184 sin
->sin_addr
.s_addr
= ip_hdr(skb
)->saddr
;
1185 memset(sin
->sin_zero
, 0, sizeof(sin
->sin_zero
));
1187 if (inet
->cmsg_flags
)
1188 ip_cmsg_recv(msg
, skb
);
1191 if (flags
& MSG_TRUNC
)
1195 skb_free_datagram_locked(sk
, skb
);
1201 if (!skb_kill_datagram(sk
, skb
, flags
))
1202 UDP_INC_STATS_USER(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1211 int udp_disconnect(struct sock
*sk
, int flags
)
1213 struct inet_sock
*inet
= inet_sk(sk
);
1215 * 1003.1g - break association.
1218 sk
->sk_state
= TCP_CLOSE
;
1219 inet
->inet_daddr
= 0;
1220 inet
->inet_dport
= 0;
1221 sk
->sk_bound_dev_if
= 0;
1222 if (!(sk
->sk_userlocks
& SOCK_BINDADDR_LOCK
))
1223 inet_reset_saddr(sk
);
1225 if (!(sk
->sk_userlocks
& SOCK_BINDPORT_LOCK
)) {
1226 sk
->sk_prot
->unhash(sk
);
1227 inet
->inet_sport
= 0;
1232 EXPORT_SYMBOL(udp_disconnect
);
1234 void udp_lib_unhash(struct sock
*sk
)
1236 if (sk_hashed(sk
)) {
1237 struct udp_table
*udptable
= sk
->sk_prot
->h
.udp_table
;
1238 struct udp_hslot
*hslot
, *hslot2
;
1240 hslot
= udp_hashslot(udptable
, sock_net(sk
),
1241 udp_sk(sk
)->udp_port_hash
);
1242 hslot2
= udp_hashslot2(udptable
, udp_sk(sk
)->udp_portaddr_hash
);
1244 spin_lock_bh(&hslot
->lock
);
1245 if (sk_nulls_del_node_init_rcu(sk
)) {
1247 inet_sk(sk
)->inet_num
= 0;
1248 sock_prot_inuse_add(sock_net(sk
), sk
->sk_prot
, -1);
1250 spin_lock(&hslot2
->lock
);
1251 hlist_nulls_del_init_rcu(&udp_sk(sk
)->udp_portaddr_node
);
1253 spin_unlock(&hslot2
->lock
);
1255 spin_unlock_bh(&hslot
->lock
);
1258 EXPORT_SYMBOL(udp_lib_unhash
);
1260 static int __udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1262 int rc
= sock_queue_rcv_skb(sk
, skb
);
1265 int is_udplite
= IS_UDPLITE(sk
);
1267 /* Note that an ENOMEM error is charged twice */
1269 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1271 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1283 * >0: "udp encap" protocol resubmission
1285 * Note that in the success and error cases, the skb is assumed to
1286 * have either been requeued or freed.
1288 int udp_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
1290 struct udp_sock
*up
= udp_sk(sk
);
1292 int is_udplite
= IS_UDPLITE(sk
);
1295 * Charge it to the socket, dropping if the queue is full.
1297 if (!xfrm4_policy_check(sk
, XFRM_POLICY_IN
, skb
))
1301 if (up
->encap_type
) {
1303 * This is an encapsulation socket so pass the skb to
1304 * the socket's udp_encap_rcv() hook. Otherwise, just
1305 * fall through and pass this up the UDP socket.
1306 * up->encap_rcv() returns the following value:
1307 * =0 if skb was successfully passed to the encap
1308 * handler or was discarded by it.
1309 * >0 if skb should be passed on to UDP.
1310 * <0 if skb should be resubmitted as proto -N
1313 /* if we're overly short, let UDP handle it */
1314 if (skb
->len
> sizeof(struct udphdr
) &&
1315 up
->encap_rcv
!= NULL
) {
1318 ret
= (*up
->encap_rcv
)(sk
, skb
);
1320 UDP_INC_STATS_BH(sock_net(sk
),
1321 UDP_MIB_INDATAGRAMS
,
1327 /* FALLTHROUGH -- it's a UDP Packet */
1331 * UDP-Lite specific tests, ignored on UDP sockets
1333 if ((is_udplite
& UDPLITE_RECV_CC
) && UDP_SKB_CB(skb
)->partial_cov
) {
1336 * MIB statistics other than incrementing the error count are
1337 * disabled for the following two types of errors: these depend
1338 * on the application settings, not on the functioning of the
1339 * protocol stack as such.
1341 * RFC 3828 here recommends (sec 3.3): "There should also be a
1342 * way ... to ... at least let the receiving application block
1343 * delivery of packets with coverage values less than a value
1344 * provided by the application."
1346 if (up
->pcrlen
== 0) { /* full coverage was set */
1347 LIMIT_NETDEBUG(KERN_WARNING
"UDPLITE: partial coverage "
1348 "%d while full coverage %d requested\n",
1349 UDP_SKB_CB(skb
)->cscov
, skb
->len
);
1352 /* The next case involves violating the min. coverage requested
1353 * by the receiver. This is subtle: if receiver wants x and x is
1354 * greater than the buffersize/MTU then receiver will complain
1355 * that it wants x while sender emits packets of smaller size y.
1356 * Therefore the above ...()->partial_cov statement is essential.
1358 if (UDP_SKB_CB(skb
)->cscov
< up
->pcrlen
) {
1359 LIMIT_NETDEBUG(KERN_WARNING
1360 "UDPLITE: coverage %d too small, need min %d\n",
1361 UDP_SKB_CB(skb
)->cscov
, up
->pcrlen
);
1366 if (sk
->sk_filter
) {
1367 if (udp_lib_checksum_complete(skb
))
1374 if (!sock_owned_by_user(sk
))
1375 rc
= __udp_queue_rcv_skb(sk
, skb
);
1377 sk_add_backlog(sk
, skb
);
1383 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
, is_udplite
);
1384 atomic_inc(&sk
->sk_drops
);
1390 static void flush_stack(struct sock
**stack
, unsigned int count
,
1391 struct sk_buff
*skb
, unsigned int final
)
1394 struct sk_buff
*skb1
= NULL
;
1397 for (i
= 0; i
< count
; i
++) {
1399 if (likely(skb1
== NULL
))
1400 skb1
= (i
== final
) ? skb
: skb_clone(skb
, GFP_ATOMIC
);
1403 atomic_inc(&sk
->sk_drops
);
1404 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_RCVBUFERRORS
,
1406 UDP_INC_STATS_BH(sock_net(sk
), UDP_MIB_INERRORS
,
1410 if (skb1
&& udp_queue_rcv_skb(sk
, skb1
) <= 0)
1418 * Multicasts and broadcasts go to each listener.
1420 * Note: called only from the BH handler context.
1422 static int __udp4_lib_mcast_deliver(struct net
*net
, struct sk_buff
*skb
,
1424 __be32 saddr
, __be32 daddr
,
1425 struct udp_table
*udptable
)
1427 struct sock
*sk
, *stack
[256 / sizeof(struct sock
*)];
1428 struct udp_hslot
*hslot
= udp_hashslot(udptable
, net
, ntohs(uh
->dest
));
1430 unsigned int i
, count
= 0;
1432 spin_lock(&hslot
->lock
);
1433 sk
= sk_nulls_head(&hslot
->head
);
1434 dif
= skb
->dev
->ifindex
;
1435 sk
= udp_v4_mcast_next(net
, sk
, uh
->dest
, daddr
, uh
->source
, saddr
, dif
);
1437 stack
[count
++] = sk
;
1438 sk
= udp_v4_mcast_next(net
, sk_nulls_next(sk
), uh
->dest
,
1439 daddr
, uh
->source
, saddr
, dif
);
1440 if (unlikely(count
== ARRAY_SIZE(stack
))) {
1443 flush_stack(stack
, count
, skb
, ~0);
1448 * before releasing chain lock, we must take a reference on sockets
1450 for (i
= 0; i
< count
; i
++)
1451 sock_hold(stack
[i
]);
1453 spin_unlock(&hslot
->lock
);
1456 * do the slow work with no lock held
1459 flush_stack(stack
, count
, skb
, count
- 1);
1461 for (i
= 0; i
< count
; i
++)
1469 /* Initialize UDP checksum. If exited with zero value (success),
1470 * CHECKSUM_UNNECESSARY means, that no more checks are required.
1471 * Otherwise, csum completion requires chacksumming packet body,
1472 * including udp header and folding it to skb->csum.
1474 static inline int udp4_csum_init(struct sk_buff
*skb
, struct udphdr
*uh
,
1477 const struct iphdr
*iph
;
1480 UDP_SKB_CB(skb
)->partial_cov
= 0;
1481 UDP_SKB_CB(skb
)->cscov
= skb
->len
;
1483 if (proto
== IPPROTO_UDPLITE
) {
1484 err
= udplite_checksum_init(skb
, uh
);
1490 if (uh
->check
== 0) {
1491 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1492 } else if (skb
->ip_summed
== CHECKSUM_COMPLETE
) {
1493 if (!csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, skb
->len
,
1495 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1497 if (!skb_csum_unnecessary(skb
))
1498 skb
->csum
= csum_tcpudp_nofold(iph
->saddr
, iph
->daddr
,
1499 skb
->len
, proto
, 0);
1500 /* Probably, we should checksum udp header (it should be in cache
1501 * in any case) and data in tiny packets (< rx copybreak).
1508 * All we need to do is get the socket, and then do a checksum.
1511 int __udp4_lib_rcv(struct sk_buff
*skb
, struct udp_table
*udptable
,
1516 unsigned short ulen
;
1517 struct rtable
*rt
= skb_rtable(skb
);
1518 __be32 saddr
, daddr
;
1519 struct net
*net
= dev_net(skb
->dev
);
1522 * Validate the packet.
1524 if (!pskb_may_pull(skb
, sizeof(struct udphdr
)))
1525 goto drop
; /* No space for header. */
1528 ulen
= ntohs(uh
->len
);
1529 if (ulen
> skb
->len
)
1532 if (proto
== IPPROTO_UDP
) {
1533 /* UDP validates ulen. */
1534 if (ulen
< sizeof(*uh
) || pskb_trim_rcsum(skb
, ulen
))
1539 if (udp4_csum_init(skb
, uh
, proto
))
1542 saddr
= ip_hdr(skb
)->saddr
;
1543 daddr
= ip_hdr(skb
)->daddr
;
1545 if (rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
))
1546 return __udp4_lib_mcast_deliver(net
, skb
, uh
,
1547 saddr
, daddr
, udptable
);
1549 sk
= __udp4_lib_lookup_skb(skb
, uh
->source
, uh
->dest
, udptable
);
1552 int ret
= udp_queue_rcv_skb(sk
, skb
);
1555 /* a return value > 0 means to resubmit the input, but
1556 * it wants the return to be -protocol, or 0
1563 if (!xfrm4_policy_check(NULL
, XFRM_POLICY_IN
, skb
))
1567 /* No socket. Drop packet silently, if checksum is wrong */
1568 if (udp_lib_checksum_complete(skb
))
1571 UDP_INC_STATS_BH(net
, UDP_MIB_NOPORTS
, proto
== IPPROTO_UDPLITE
);
1572 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_PORT_UNREACH
, 0);
1575 * Hmm. We got an UDP packet to a port to which we
1576 * don't wanna listen. Ignore it.
1582 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
1583 proto
== IPPROTO_UDPLITE
? "-Lite" : "",
1594 * RFC1122: OK. Discards the bad packet silently (as far as
1595 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
1597 LIMIT_NETDEBUG(KERN_DEBUG
"UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
1598 proto
== IPPROTO_UDPLITE
? "-Lite" : "",
1605 UDP_INC_STATS_BH(net
, UDP_MIB_INERRORS
, proto
== IPPROTO_UDPLITE
);
1610 int udp_rcv(struct sk_buff
*skb
)
1612 return __udp4_lib_rcv(skb
, &udp_table
, IPPROTO_UDP
);
1615 void udp_destroy_sock(struct sock
*sk
)
1618 udp_flush_pending_frames(sk
);
1623 * Socket option code for UDP
1625 int udp_lib_setsockopt(struct sock
*sk
, int level
, int optname
,
1626 char __user
*optval
, unsigned int optlen
,
1627 int (*push_pending_frames
)(struct sock
*))
1629 struct udp_sock
*up
= udp_sk(sk
);
1632 int is_udplite
= IS_UDPLITE(sk
);
1634 if (optlen
< sizeof(int))
1637 if (get_user(val
, (int __user
*)optval
))
1647 (*push_pending_frames
)(sk
);
1655 case UDP_ENCAP_ESPINUDP
:
1656 case UDP_ENCAP_ESPINUDP_NON_IKE
:
1657 up
->encap_rcv
= xfrm4_udp_encap_rcv
;
1659 case UDP_ENCAP_L2TPINUDP
:
1660 up
->encap_type
= val
;
1669 * UDP-Lite's partial checksum coverage (RFC 3828).
1671 /* The sender sets actual checksum coverage length via this option.
1672 * The case coverage > packet length is handled by send module. */
1673 case UDPLITE_SEND_CSCOV
:
1674 if (!is_udplite
) /* Disable the option on UDP sockets */
1675 return -ENOPROTOOPT
;
1676 if (val
!= 0 && val
< 8) /* Illegal coverage: use default (8) */
1678 else if (val
> USHORT_MAX
)
1681 up
->pcflag
|= UDPLITE_SEND_CC
;
1684 /* The receiver specifies a minimum checksum coverage value. To make
1685 * sense, this should be set to at least 8 (as done below). If zero is
1686 * used, this again means full checksum coverage. */
1687 case UDPLITE_RECV_CSCOV
:
1688 if (!is_udplite
) /* Disable the option on UDP sockets */
1689 return -ENOPROTOOPT
;
1690 if (val
!= 0 && val
< 8) /* Avoid silly minimal values. */
1692 else if (val
> USHORT_MAX
)
1695 up
->pcflag
|= UDPLITE_RECV_CC
;
1705 EXPORT_SYMBOL(udp_lib_setsockopt
);
1707 int udp_setsockopt(struct sock
*sk
, int level
, int optname
,
1708 char __user
*optval
, unsigned int optlen
)
1710 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1711 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
1712 udp_push_pending_frames
);
1713 return ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
1716 #ifdef CONFIG_COMPAT
1717 int compat_udp_setsockopt(struct sock
*sk
, int level
, int optname
,
1718 char __user
*optval
, unsigned int optlen
)
1720 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1721 return udp_lib_setsockopt(sk
, level
, optname
, optval
, optlen
,
1722 udp_push_pending_frames
);
1723 return compat_ip_setsockopt(sk
, level
, optname
, optval
, optlen
);
1727 int udp_lib_getsockopt(struct sock
*sk
, int level
, int optname
,
1728 char __user
*optval
, int __user
*optlen
)
1730 struct udp_sock
*up
= udp_sk(sk
);
1733 if (get_user(len
, optlen
))
1736 len
= min_t(unsigned int, len
, sizeof(int));
1747 val
= up
->encap_type
;
1750 /* The following two cannot be changed on UDP sockets, the return is
1751 * always 0 (which corresponds to the full checksum coverage of UDP). */
1752 case UDPLITE_SEND_CSCOV
:
1756 case UDPLITE_RECV_CSCOV
:
1761 return -ENOPROTOOPT
;
1764 if (put_user(len
, optlen
))
1766 if (copy_to_user(optval
, &val
, len
))
1770 EXPORT_SYMBOL(udp_lib_getsockopt
);
1772 int udp_getsockopt(struct sock
*sk
, int level
, int optname
,
1773 char __user
*optval
, int __user
*optlen
)
1775 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1776 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
1777 return ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
1780 #ifdef CONFIG_COMPAT
1781 int compat_udp_getsockopt(struct sock
*sk
, int level
, int optname
,
1782 char __user
*optval
, int __user
*optlen
)
1784 if (level
== SOL_UDP
|| level
== SOL_UDPLITE
)
1785 return udp_lib_getsockopt(sk
, level
, optname
, optval
, optlen
);
1786 return compat_ip_getsockopt(sk
, level
, optname
, optval
, optlen
);
1790 * udp_poll - wait for a UDP event.
1791 * @file - file struct
1793 * @wait - poll table
1795 * This is same as datagram poll, except for the special case of
1796 * blocking sockets. If application is using a blocking fd
1797 * and a packet with checksum error is in the queue;
1798 * then it could get return from select indicating data available
1799 * but then block when reading it. Add special case code
1800 * to work around these arguably broken applications.
1802 unsigned int udp_poll(struct file
*file
, struct socket
*sock
, poll_table
*wait
)
1804 unsigned int mask
= datagram_poll(file
, sock
, wait
);
1805 struct sock
*sk
= sock
->sk
;
1807 /* Check for false positives due to checksum errors */
1808 if ((mask
& POLLRDNORM
) && !(file
->f_flags
& O_NONBLOCK
) &&
1809 !(sk
->sk_shutdown
& RCV_SHUTDOWN
) && !first_packet_length(sk
))
1810 mask
&= ~(POLLIN
| POLLRDNORM
);
1815 EXPORT_SYMBOL(udp_poll
);
1817 struct proto udp_prot
= {
1819 .owner
= THIS_MODULE
,
1820 .close
= udp_lib_close
,
1821 .connect
= ip4_datagram_connect
,
1822 .disconnect
= udp_disconnect
,
1824 .destroy
= udp_destroy_sock
,
1825 .setsockopt
= udp_setsockopt
,
1826 .getsockopt
= udp_getsockopt
,
1827 .sendmsg
= udp_sendmsg
,
1828 .recvmsg
= udp_recvmsg
,
1829 .sendpage
= udp_sendpage
,
1830 .backlog_rcv
= __udp_queue_rcv_skb
,
1831 .hash
= udp_lib_hash
,
1832 .unhash
= udp_lib_unhash
,
1833 .get_port
= udp_v4_get_port
,
1834 .memory_allocated
= &udp_memory_allocated
,
1835 .sysctl_mem
= sysctl_udp_mem
,
1836 .sysctl_wmem
= &sysctl_udp_wmem_min
,
1837 .sysctl_rmem
= &sysctl_udp_rmem_min
,
1838 .obj_size
= sizeof(struct udp_sock
),
1839 .slab_flags
= SLAB_DESTROY_BY_RCU
,
1840 .h
.udp_table
= &udp_table
,
1841 #ifdef CONFIG_COMPAT
1842 .compat_setsockopt
= compat_udp_setsockopt
,
1843 .compat_getsockopt
= compat_udp_getsockopt
,
1846 EXPORT_SYMBOL(udp_prot
);
1848 /* ------------------------------------------------------------------------ */
1849 #ifdef CONFIG_PROC_FS
1851 static struct sock
*udp_get_first(struct seq_file
*seq
, int start
)
1854 struct udp_iter_state
*state
= seq
->private;
1855 struct net
*net
= seq_file_net(seq
);
1857 for (state
->bucket
= start
; state
->bucket
<= state
->udp_table
->mask
;
1859 struct hlist_nulls_node
*node
;
1860 struct udp_hslot
*hslot
= &state
->udp_table
->hash
[state
->bucket
];
1862 if (hlist_nulls_empty(&hslot
->head
))
1865 spin_lock_bh(&hslot
->lock
);
1866 sk_nulls_for_each(sk
, node
, &hslot
->head
) {
1867 if (!net_eq(sock_net(sk
), net
))
1869 if (sk
->sk_family
== state
->family
)
1872 spin_unlock_bh(&hslot
->lock
);
1879 static struct sock
*udp_get_next(struct seq_file
*seq
, struct sock
*sk
)
1881 struct udp_iter_state
*state
= seq
->private;
1882 struct net
*net
= seq_file_net(seq
);
1885 sk
= sk_nulls_next(sk
);
1886 } while (sk
&& (!net_eq(sock_net(sk
), net
) || sk
->sk_family
!= state
->family
));
1889 if (state
->bucket
<= state
->udp_table
->mask
)
1890 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
1891 return udp_get_first(seq
, state
->bucket
+ 1);
1896 static struct sock
*udp_get_idx(struct seq_file
*seq
, loff_t pos
)
1898 struct sock
*sk
= udp_get_first(seq
, 0);
1901 while (pos
&& (sk
= udp_get_next(seq
, sk
)) != NULL
)
1903 return pos
? NULL
: sk
;
1906 static void *udp_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1908 struct udp_iter_state
*state
= seq
->private;
1909 state
->bucket
= MAX_UDP_PORTS
;
1911 return *pos
? udp_get_idx(seq
, *pos
-1) : SEQ_START_TOKEN
;
1914 static void *udp_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1918 if (v
== SEQ_START_TOKEN
)
1919 sk
= udp_get_idx(seq
, 0);
1921 sk
= udp_get_next(seq
, v
);
1927 static void udp_seq_stop(struct seq_file
*seq
, void *v
)
1929 struct udp_iter_state
*state
= seq
->private;
1931 if (state
->bucket
<= state
->udp_table
->mask
)
1932 spin_unlock_bh(&state
->udp_table
->hash
[state
->bucket
].lock
);
1935 static int udp_seq_open(struct inode
*inode
, struct file
*file
)
1937 struct udp_seq_afinfo
*afinfo
= PDE(inode
)->data
;
1938 struct udp_iter_state
*s
;
1941 err
= seq_open_net(inode
, file
, &afinfo
->seq_ops
,
1942 sizeof(struct udp_iter_state
));
1946 s
= ((struct seq_file
*)file
->private_data
)->private;
1947 s
->family
= afinfo
->family
;
1948 s
->udp_table
= afinfo
->udp_table
;
1952 /* ------------------------------------------------------------------------ */
1953 int udp_proc_register(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
1955 struct proc_dir_entry
*p
;
1958 afinfo
->seq_fops
.open
= udp_seq_open
;
1959 afinfo
->seq_fops
.read
= seq_read
;
1960 afinfo
->seq_fops
.llseek
= seq_lseek
;
1961 afinfo
->seq_fops
.release
= seq_release_net
;
1963 afinfo
->seq_ops
.start
= udp_seq_start
;
1964 afinfo
->seq_ops
.next
= udp_seq_next
;
1965 afinfo
->seq_ops
.stop
= udp_seq_stop
;
1967 p
= proc_create_data(afinfo
->name
, S_IRUGO
, net
->proc_net
,
1968 &afinfo
->seq_fops
, afinfo
);
1973 EXPORT_SYMBOL(udp_proc_register
);
1975 void udp_proc_unregister(struct net
*net
, struct udp_seq_afinfo
*afinfo
)
1977 proc_net_remove(net
, afinfo
->name
);
1979 EXPORT_SYMBOL(udp_proc_unregister
);
1981 /* ------------------------------------------------------------------------ */
1982 static void udp4_format_sock(struct sock
*sp
, struct seq_file
*f
,
1983 int bucket
, int *len
)
1985 struct inet_sock
*inet
= inet_sk(sp
);
1986 __be32 dest
= inet
->inet_daddr
;
1987 __be32 src
= inet
->inet_rcv_saddr
;
1988 __u16 destp
= ntohs(inet
->inet_dport
);
1989 __u16 srcp
= ntohs(inet
->inet_sport
);
1991 seq_printf(f
, "%5d: %08X:%04X %08X:%04X"
1992 " %02X %08X:%08X %02X:%08lX %08X %5d %8d %lu %d %p %d%n",
1993 bucket
, src
, srcp
, dest
, destp
, sp
->sk_state
,
1994 sk_wmem_alloc_get(sp
),
1995 sk_rmem_alloc_get(sp
),
1996 0, 0L, 0, sock_i_uid(sp
), 0, sock_i_ino(sp
),
1997 atomic_read(&sp
->sk_refcnt
), sp
,
1998 atomic_read(&sp
->sk_drops
), len
);
2001 int udp4_seq_show(struct seq_file
*seq
, void *v
)
2003 if (v
== SEQ_START_TOKEN
)
2004 seq_printf(seq
, "%-127s\n",
2005 " sl local_address rem_address st tx_queue "
2006 "rx_queue tr tm->when retrnsmt uid timeout "
2007 "inode ref pointer drops");
2009 struct udp_iter_state
*state
= seq
->private;
2012 udp4_format_sock(v
, seq
, state
->bucket
, &len
);
2013 seq_printf(seq
, "%*s\n", 127 - len
, "");
2018 /* ------------------------------------------------------------------------ */
2019 static struct udp_seq_afinfo udp4_seq_afinfo
= {
2022 .udp_table
= &udp_table
,
2024 .owner
= THIS_MODULE
,
2027 .show
= udp4_seq_show
,
2031 static int udp4_proc_init_net(struct net
*net
)
2033 return udp_proc_register(net
, &udp4_seq_afinfo
);
2036 static void udp4_proc_exit_net(struct net
*net
)
2038 udp_proc_unregister(net
, &udp4_seq_afinfo
);
2041 static struct pernet_operations udp4_net_ops
= {
2042 .init
= udp4_proc_init_net
,
2043 .exit
= udp4_proc_exit_net
,
2046 int __init
udp4_proc_init(void)
2048 return register_pernet_subsys(&udp4_net_ops
);
2051 void udp4_proc_exit(void)
2053 unregister_pernet_subsys(&udp4_net_ops
);
2055 #endif /* CONFIG_PROC_FS */
2057 static __initdata
unsigned long uhash_entries
;
2058 static int __init
set_uhash_entries(char *str
)
2062 uhash_entries
= simple_strtoul(str
, &str
, 0);
2063 if (uhash_entries
&& uhash_entries
< UDP_HTABLE_SIZE_MIN
)
2064 uhash_entries
= UDP_HTABLE_SIZE_MIN
;
2067 __setup("uhash_entries=", set_uhash_entries
);
2069 void __init
udp_table_init(struct udp_table
*table
, const char *name
)
2073 if (!CONFIG_BASE_SMALL
)
2074 table
->hash
= alloc_large_system_hash(name
,
2075 2 * sizeof(struct udp_hslot
),
2077 21, /* one slot per 2 MB */
2083 * Make sure hash table has the minimum size
2085 if (CONFIG_BASE_SMALL
|| table
->mask
< UDP_HTABLE_SIZE_MIN
- 1) {
2086 table
->hash
= kmalloc(UDP_HTABLE_SIZE_MIN
*
2087 2 * sizeof(struct udp_hslot
), GFP_KERNEL
);
2090 table
->log
= ilog2(UDP_HTABLE_SIZE_MIN
);
2091 table
->mask
= UDP_HTABLE_SIZE_MIN
- 1;
2093 table
->hash2
= table
->hash
+ (table
->mask
+ 1);
2094 for (i
= 0; i
<= table
->mask
; i
++) {
2095 INIT_HLIST_NULLS_HEAD(&table
->hash
[i
].head
, i
);
2096 table
->hash
[i
].count
= 0;
2097 spin_lock_init(&table
->hash
[i
].lock
);
2099 for (i
= 0; i
<= table
->mask
; i
++) {
2100 INIT_HLIST_NULLS_HEAD(&table
->hash2
[i
].head
, i
);
2101 table
->hash2
[i
].count
= 0;
2102 spin_lock_init(&table
->hash2
[i
].lock
);
2106 void __init
udp_init(void)
2108 unsigned long nr_pages
, limit
;
2110 udp_table_init(&udp_table
, "UDP");
2111 /* Set the pressure threshold up by the same strategy of TCP. It is a
2112 * fraction of global memory that is up to 1/2 at 256 MB, decreasing
2113 * toward zero with the amount of memory, with a floor of 128 pages.
2115 nr_pages
= totalram_pages
- totalhigh_pages
;
2116 limit
= min(nr_pages
, 1UL<<(28-PAGE_SHIFT
)) >> (20-PAGE_SHIFT
);
2117 limit
= (limit
* (nr_pages
>> (20-PAGE_SHIFT
))) >> (PAGE_SHIFT
-11);
2118 limit
= max(limit
, 128UL);
2119 sysctl_udp_mem
[0] = limit
/ 4 * 3;
2120 sysctl_udp_mem
[1] = limit
;
2121 sysctl_udp_mem
[2] = sysctl_udp_mem
[0] * 2;
2123 sysctl_udp_rmem_min
= SK_MEM_QUANTUM
;
2124 sysctl_udp_wmem_min
= SK_MEM_QUANTUM
;
2127 int udp4_ufo_send_check(struct sk_buff
*skb
)
2129 const struct iphdr
*iph
;
2132 if (!pskb_may_pull(skb
, sizeof(*uh
)))
2138 uh
->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
, skb
->len
,
2140 skb
->csum_start
= skb_transport_header(skb
) - skb
->head
;
2141 skb
->csum_offset
= offsetof(struct udphdr
, check
);
2142 skb
->ip_summed
= CHECKSUM_PARTIAL
;
2146 struct sk_buff
*udp4_ufo_fragment(struct sk_buff
*skb
, int features
)
2148 struct sk_buff
*segs
= ERR_PTR(-EINVAL
);
2153 mss
= skb_shinfo(skb
)->gso_size
;
2154 if (unlikely(skb
->len
<= mss
))
2157 if (skb_gso_ok(skb
, features
| NETIF_F_GSO_ROBUST
)) {
2158 /* Packet is from an untrusted source, reset gso_segs. */
2159 int type
= skb_shinfo(skb
)->gso_type
;
2161 if (unlikely(type
& ~(SKB_GSO_UDP
| SKB_GSO_DODGY
) ||
2162 !(type
& (SKB_GSO_UDP
))))
2165 skb_shinfo(skb
)->gso_segs
= DIV_ROUND_UP(skb
->len
, mss
);
2171 /* Do software UFO. Complete and fill in the UDP checksum as HW cannot
2172 * do checksum of UDP packets sent as multiple IP fragments.
2174 offset
= skb
->csum_start
- skb_headroom(skb
);
2175 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
2176 offset
+= skb
->csum_offset
;
2177 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
);
2178 skb
->ip_summed
= CHECKSUM_NONE
;
2180 /* Fragment the skb. IP headers of the fragments are updated in
2181 * inet_gso_segment()
2183 segs
= skb_segment(skb
, features
);