2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <rdma/rdma_cm.h>
41 static struct kmem_cache
*rds_iw_incoming_slab
;
42 static struct kmem_cache
*rds_iw_frag_slab
;
43 static atomic_t rds_iw_allocation
= ATOMIC_INIT(0);
45 static void rds_iw_frag_drop_page(struct rds_page_frag
*frag
)
47 rdsdebug("frag %p page %p\n", frag
, frag
->f_page
);
48 __free_page(frag
->f_page
);
52 static void rds_iw_frag_free(struct rds_page_frag
*frag
)
54 rdsdebug("frag %p page %p\n", frag
, frag
->f_page
);
55 BUG_ON(frag
->f_page
!= NULL
);
56 kmem_cache_free(rds_iw_frag_slab
, frag
);
60 * We map a page at a time. Its fragments are posted in order. This
61 * is called in fragment order as the fragments get send completion events.
62 * Only the last frag in the page performs the unmapping.
64 * It's OK for ring cleanup to call this in whatever order it likes because
65 * DMA is not in flight and so we can unmap while other ring entries still
66 * hold page references in their frags.
68 static void rds_iw_recv_unmap_page(struct rds_iw_connection
*ic
,
69 struct rds_iw_recv_work
*recv
)
71 struct rds_page_frag
*frag
= recv
->r_frag
;
73 rdsdebug("recv %p frag %p page %p\n", recv
, frag
, frag
->f_page
);
75 ib_dma_unmap_page(ic
->i_cm_id
->device
,
77 RDS_FRAG_SIZE
, DMA_FROM_DEVICE
);
81 void rds_iw_recv_init_ring(struct rds_iw_connection
*ic
)
83 struct rds_iw_recv_work
*recv
;
86 for (i
= 0, recv
= ic
->i_recvs
; i
< ic
->i_recv_ring
.w_nr
; i
++, recv
++) {
92 recv
->r_wr
.next
= NULL
;
94 recv
->r_wr
.sg_list
= recv
->r_sge
;
95 recv
->r_wr
.num_sge
= RDS_IW_RECV_SGE
;
97 sge
= rds_iw_data_sge(ic
, recv
->r_sge
);
99 sge
->length
= RDS_FRAG_SIZE
;
102 sge
= rds_iw_header_sge(ic
, recv
->r_sge
);
103 sge
->addr
= ic
->i_recv_hdrs_dma
+ (i
* sizeof(struct rds_header
));
104 sge
->length
= sizeof(struct rds_header
);
109 static void rds_iw_recv_clear_one(struct rds_iw_connection
*ic
,
110 struct rds_iw_recv_work
*recv
)
113 rds_inc_put(&recv
->r_iwinc
->ii_inc
);
114 recv
->r_iwinc
= NULL
;
117 rds_iw_recv_unmap_page(ic
, recv
);
118 if (recv
->r_frag
->f_page
)
119 rds_iw_frag_drop_page(recv
->r_frag
);
120 rds_iw_frag_free(recv
->r_frag
);
125 void rds_iw_recv_clear_ring(struct rds_iw_connection
*ic
)
129 for (i
= 0; i
< ic
->i_recv_ring
.w_nr
; i
++)
130 rds_iw_recv_clear_one(ic
, &ic
->i_recvs
[i
]);
132 if (ic
->i_frag
.f_page
)
133 rds_iw_frag_drop_page(&ic
->i_frag
);
136 static int rds_iw_recv_refill_one(struct rds_connection
*conn
,
137 struct rds_iw_recv_work
*recv
,
138 gfp_t kptr_gfp
, gfp_t page_gfp
)
140 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
145 if (recv
->r_iwinc
== NULL
) {
146 if (!atomic_add_unless(&rds_iw_allocation
, 1, rds_iw_sysctl_max_recv_allocation
)) {
147 rds_iw_stats_inc(s_iw_rx_alloc_limit
);
150 recv
->r_iwinc
= kmem_cache_alloc(rds_iw_incoming_slab
,
152 if (recv
->r_iwinc
== NULL
) {
153 atomic_dec(&rds_iw_allocation
);
156 INIT_LIST_HEAD(&recv
->r_iwinc
->ii_frags
);
157 rds_inc_init(&recv
->r_iwinc
->ii_inc
, conn
, conn
->c_faddr
);
160 if (recv
->r_frag
== NULL
) {
161 recv
->r_frag
= kmem_cache_alloc(rds_iw_frag_slab
, kptr_gfp
);
162 if (recv
->r_frag
== NULL
)
164 INIT_LIST_HEAD(&recv
->r_frag
->f_item
);
165 recv
->r_frag
->f_page
= NULL
;
168 if (ic
->i_frag
.f_page
== NULL
) {
169 ic
->i_frag
.f_page
= alloc_page(page_gfp
);
170 if (ic
->i_frag
.f_page
== NULL
)
172 ic
->i_frag
.f_offset
= 0;
175 dma_addr
= ib_dma_map_page(ic
->i_cm_id
->device
,
180 if (ib_dma_mapping_error(ic
->i_cm_id
->device
, dma_addr
))
184 * Once we get the RDS_PAGE_LAST_OFF frag then rds_iw_frag_unmap()
185 * must be called on this recv. This happens as completions hit
186 * in order or on connection shutdown.
188 recv
->r_frag
->f_page
= ic
->i_frag
.f_page
;
189 recv
->r_frag
->f_offset
= ic
->i_frag
.f_offset
;
190 recv
->r_frag
->f_mapped
= dma_addr
;
192 sge
= rds_iw_data_sge(ic
, recv
->r_sge
);
193 sge
->addr
= dma_addr
;
194 sge
->length
= RDS_FRAG_SIZE
;
196 sge
= rds_iw_header_sge(ic
, recv
->r_sge
);
197 sge
->addr
= ic
->i_recv_hdrs_dma
+ (recv
- ic
->i_recvs
) * sizeof(struct rds_header
);
198 sge
->length
= sizeof(struct rds_header
);
200 get_page(recv
->r_frag
->f_page
);
202 if (ic
->i_frag
.f_offset
< RDS_PAGE_LAST_OFF
) {
203 ic
->i_frag
.f_offset
+= RDS_FRAG_SIZE
;
205 put_page(ic
->i_frag
.f_page
);
206 ic
->i_frag
.f_page
= NULL
;
207 ic
->i_frag
.f_offset
= 0;
216 * This tries to allocate and post unused work requests after making sure that
217 * they have all the allocations they need to queue received fragments into
218 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
219 * pairs don't go unmatched.
221 * -1 is returned if posting fails due to temporary resource exhaustion.
223 int rds_iw_recv_refill(struct rds_connection
*conn
, gfp_t kptr_gfp
,
224 gfp_t page_gfp
, int prefill
)
226 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
227 struct rds_iw_recv_work
*recv
;
228 struct ib_recv_wr
*failed_wr
;
229 unsigned int posted
= 0;
233 while ((prefill
|| rds_conn_up(conn
)) &&
234 rds_iw_ring_alloc(&ic
->i_recv_ring
, 1, &pos
)) {
235 if (pos
>= ic
->i_recv_ring
.w_nr
) {
236 printk(KERN_NOTICE
"Argh - ring alloc returned pos=%u\n",
242 recv
= &ic
->i_recvs
[pos
];
243 ret
= rds_iw_recv_refill_one(conn
, recv
, kptr_gfp
, page_gfp
);
249 /* XXX when can this fail? */
250 ret
= ib_post_recv(ic
->i_cm_id
->qp
, &recv
->r_wr
, &failed_wr
);
251 rdsdebug("recv %p iwinc %p page %p addr %lu ret %d\n", recv
,
252 recv
->r_iwinc
, recv
->r_frag
->f_page
,
253 (long) recv
->r_frag
->f_mapped
, ret
);
255 rds_iw_conn_error(conn
, "recv post on "
256 "%pI4 returned %d, disconnecting and "
257 "reconnecting\n", &conn
->c_faddr
,
266 /* We're doing flow control - update the window. */
267 if (ic
->i_flowctl
&& posted
)
268 rds_iw_advertise_credits(conn
, posted
);
271 rds_iw_ring_unalloc(&ic
->i_recv_ring
, 1);
275 void rds_iw_inc_purge(struct rds_incoming
*inc
)
277 struct rds_iw_incoming
*iwinc
;
278 struct rds_page_frag
*frag
;
279 struct rds_page_frag
*pos
;
281 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
282 rdsdebug("purging iwinc %p inc %p\n", iwinc
, inc
);
284 list_for_each_entry_safe(frag
, pos
, &iwinc
->ii_frags
, f_item
) {
285 list_del_init(&frag
->f_item
);
286 rds_iw_frag_drop_page(frag
);
287 rds_iw_frag_free(frag
);
291 void rds_iw_inc_free(struct rds_incoming
*inc
)
293 struct rds_iw_incoming
*iwinc
;
295 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
297 rds_iw_inc_purge(inc
);
298 rdsdebug("freeing iwinc %p inc %p\n", iwinc
, inc
);
299 BUG_ON(!list_empty(&iwinc
->ii_frags
));
300 kmem_cache_free(rds_iw_incoming_slab
, iwinc
);
301 atomic_dec(&rds_iw_allocation
);
302 BUG_ON(atomic_read(&rds_iw_allocation
) < 0);
305 int rds_iw_inc_copy_to_user(struct rds_incoming
*inc
, struct iovec
*first_iov
,
308 struct rds_iw_incoming
*iwinc
;
309 struct rds_page_frag
*frag
;
310 struct iovec
*iov
= first_iov
;
311 unsigned long to_copy
;
312 unsigned long frag_off
= 0;
313 unsigned long iov_off
= 0;
318 iwinc
= container_of(inc
, struct rds_iw_incoming
, ii_inc
);
319 frag
= list_entry(iwinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
320 len
= be32_to_cpu(inc
->i_hdr
.h_len
);
322 while (copied
< size
&& copied
< len
) {
323 if (frag_off
== RDS_FRAG_SIZE
) {
324 frag
= list_entry(frag
->f_item
.next
,
325 struct rds_page_frag
, f_item
);
328 while (iov_off
== iov
->iov_len
) {
333 to_copy
= min(iov
->iov_len
- iov_off
, RDS_FRAG_SIZE
- frag_off
);
334 to_copy
= min_t(size_t, to_copy
, size
- copied
);
335 to_copy
= min_t(unsigned long, to_copy
, len
- copied
);
337 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339 to_copy
, iov
->iov_base
, iov
->iov_len
, iov_off
,
340 frag
->f_page
, frag
->f_offset
, frag_off
);
342 /* XXX needs + offset for multiple recvs per page */
343 ret
= rds_page_copy_to_user(frag
->f_page
,
344 frag
->f_offset
+ frag_off
,
345 iov
->iov_base
+ iov_off
,
360 /* ic starts out kzalloc()ed */
361 void rds_iw_recv_init_ack(struct rds_iw_connection
*ic
)
363 struct ib_send_wr
*wr
= &ic
->i_ack_wr
;
364 struct ib_sge
*sge
= &ic
->i_ack_sge
;
366 sge
->addr
= ic
->i_ack_dma
;
367 sge
->length
= sizeof(struct rds_header
);
368 sge
->lkey
= rds_iw_local_dma_lkey(ic
);
372 wr
->opcode
= IB_WR_SEND
;
373 wr
->wr_id
= RDS_IW_ACK_WR_ID
;
374 wr
->send_flags
= IB_SEND_SIGNALED
| IB_SEND_SOLICITED
;
378 * You'd think that with reliable IB connections you wouldn't need to ack
379 * messages that have been received. The problem is that IB hardware generates
380 * an ack message before it has DMAed the message into memory. This creates a
381 * potential message loss if the HCA is disabled for any reason between when it
382 * sends the ack and before the message is DMAed and processed. This is only a
383 * potential issue if another HCA is available for fail-over.
385 * When the remote host receives our ack they'll free the sent message from
386 * their send queue. To decrease the latency of this we always send an ack
387 * immediately after we've received messages.
389 * For simplicity, we only have one ack in flight at a time. This puts
390 * pressure on senders to have deep enough send queues to absorb the latency of
391 * a single ack frame being in flight. This might not be good enough.
393 * This is implemented by have a long-lived send_wr and sge which point to a
394 * statically allocated ack frame. This ack wr does not fall under the ring
395 * accounting that the tx and rx wrs do. The QP attribute specifically makes
396 * room for it beyond the ring size. Send completion notices its special
397 * wr_id and avoids working with the ring in that case.
399 #ifndef KERNEL_HAS_ATOMIC64
400 static void rds_iw_set_ack(struct rds_iw_connection
*ic
, u64 seq
,
405 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
406 ic
->i_ack_next
= seq
;
408 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
409 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
412 static u64
rds_iw_get_ack(struct rds_iw_connection
*ic
)
417 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
419 spin_lock_irqsave(&ic
->i_ack_lock
, flags
);
420 seq
= ic
->i_ack_next
;
421 spin_unlock_irqrestore(&ic
->i_ack_lock
, flags
);
426 static void rds_iw_set_ack(struct rds_iw_connection
*ic
, u64 seq
,
429 atomic64_set(&ic
->i_ack_next
, seq
);
431 smp_mb__before_clear_bit();
432 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
436 static u64
rds_iw_get_ack(struct rds_iw_connection
*ic
)
438 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
439 smp_mb__after_clear_bit();
441 return atomic64_read(&ic
->i_ack_next
);
446 static void rds_iw_send_ack(struct rds_iw_connection
*ic
, unsigned int adv_credits
)
448 struct rds_header
*hdr
= ic
->i_ack
;
449 struct ib_send_wr
*failed_wr
;
453 seq
= rds_iw_get_ack(ic
);
455 rdsdebug("send_ack: ic %p ack %llu\n", ic
, (unsigned long long) seq
);
456 rds_message_populate_header(hdr
, 0, 0, 0);
457 hdr
->h_ack
= cpu_to_be64(seq
);
458 hdr
->h_credit
= adv_credits
;
459 rds_message_make_checksum(hdr
);
460 ic
->i_ack_queued
= jiffies
;
462 ret
= ib_post_send(ic
->i_cm_id
->qp
, &ic
->i_ack_wr
, &failed_wr
);
464 /* Failed to send. Release the WR, and
467 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
468 set_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
470 rds_iw_stats_inc(s_iw_ack_send_failure
);
471 /* Need to finesse this later. */
474 rds_iw_stats_inc(s_iw_ack_sent
);
478 * There are 3 ways of getting acknowledgements to the peer:
479 * 1. We call rds_iw_attempt_ack from the recv completion handler
480 * to send an ACK-only frame.
481 * However, there can be only one such frame in the send queue
482 * at any time, so we may have to postpone it.
483 * 2. When another (data) packet is transmitted while there's
484 * an ACK in the queue, we piggyback the ACK sequence number
485 * on the data packet.
486 * 3. If the ACK WR is done sending, we get called from the
487 * send queue completion handler, and check whether there's
488 * another ACK pending (postponed because the WR was on the
489 * queue). If so, we transmit it.
491 * We maintain 2 variables:
492 * - i_ack_flags, which keeps track of whether the ACK WR
493 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
494 * - i_ack_next, which is the last sequence number we received
496 * Potentially, send queue and receive queue handlers can run concurrently.
497 * It would be nice to not have to use a spinlock to synchronize things,
498 * but the one problem that rules this out is that 64bit updates are
499 * not atomic on all platforms. Things would be a lot simpler if
500 * we had atomic64 or maybe cmpxchg64 everywhere.
502 * Reconnecting complicates this picture just slightly. When we
503 * reconnect, we may be seeing duplicate packets. The peer
504 * is retransmitting them, because it hasn't seen an ACK for
505 * them. It is important that we ACK these.
507 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
508 * this flag set *MUST* be acknowledged immediately.
512 * When we get here, we're called from the recv queue handler.
513 * Check whether we ought to transmit an ACK.
515 void rds_iw_attempt_ack(struct rds_iw_connection
*ic
)
517 unsigned int adv_credits
;
519 if (!test_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
522 if (test_and_set_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
)) {
523 rds_iw_stats_inc(s_iw_ack_send_delayed
);
527 /* Can we get a send credit? */
528 if (!rds_iw_send_grab_credits(ic
, 1, &adv_credits
, 0, RDS_MAX_ADV_CREDIT
)) {
529 rds_iw_stats_inc(s_iw_tx_throttle
);
530 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
534 clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
);
535 rds_iw_send_ack(ic
, adv_credits
);
539 * We get here from the send completion handler, when the
540 * adapter tells us the ACK frame was sent.
542 void rds_iw_ack_send_complete(struct rds_iw_connection
*ic
)
544 clear_bit(IB_ACK_IN_FLIGHT
, &ic
->i_ack_flags
);
545 rds_iw_attempt_ack(ic
);
549 * This is called by the regular xmit code when it wants to piggyback
550 * an ACK on an outgoing frame.
552 u64
rds_iw_piggyb_ack(struct rds_iw_connection
*ic
)
554 if (test_and_clear_bit(IB_ACK_REQUESTED
, &ic
->i_ack_flags
))
555 rds_iw_stats_inc(s_iw_ack_send_piggybacked
);
556 return rds_iw_get_ack(ic
);
560 * It's kind of lame that we're copying from the posted receive pages into
561 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
562 * them. But receiving new congestion bitmaps should be a *rare* event, so
563 * hopefully we won't need to invest that complexity in making it more
564 * efficient. By copying we can share a simpler core with TCP which has to
567 static void rds_iw_cong_recv(struct rds_connection
*conn
,
568 struct rds_iw_incoming
*iwinc
)
570 struct rds_cong_map
*map
;
571 unsigned int map_off
;
572 unsigned int map_page
;
573 struct rds_page_frag
*frag
;
574 unsigned long frag_off
;
575 unsigned long to_copy
;
576 unsigned long copied
;
577 uint64_t uncongested
= 0;
580 /* catch completely corrupt packets */
581 if (be32_to_cpu(iwinc
->ii_inc
.i_hdr
.h_len
) != RDS_CONG_MAP_BYTES
)
588 frag
= list_entry(iwinc
->ii_frags
.next
, struct rds_page_frag
, f_item
);
593 while (copied
< RDS_CONG_MAP_BYTES
) {
597 to_copy
= min(RDS_FRAG_SIZE
- frag_off
, PAGE_SIZE
- map_off
);
598 BUG_ON(to_copy
& 7); /* Must be 64bit aligned. */
600 addr
= kmap_atomic(frag
->f_page
, KM_SOFTIRQ0
);
602 src
= addr
+ frag_off
;
603 dst
= (void *)map
->m_page_addrs
[map_page
] + map_off
;
604 for (k
= 0; k
< to_copy
; k
+= 8) {
605 /* Record ports that became uncongested, ie
606 * bits that changed from 0 to 1. */
607 uncongested
|= ~(*src
) & *dst
;
610 kunmap_atomic(addr
, KM_SOFTIRQ0
);
615 if (map_off
== PAGE_SIZE
) {
621 if (frag_off
== RDS_FRAG_SIZE
) {
622 frag
= list_entry(frag
->f_item
.next
,
623 struct rds_page_frag
, f_item
);
628 /* the congestion map is in little endian order */
629 uncongested
= le64_to_cpu(uncongested
);
631 rds_cong_map_updated(map
, uncongested
);
635 * Rings are posted with all the allocations they'll need to queue the
636 * incoming message to the receiving socket so this can't fail.
637 * All fragments start with a header, so we can make sure we're not receiving
638 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
640 struct rds_iw_ack_state
{
643 unsigned int ack_required
:1;
644 unsigned int ack_next_valid
:1;
645 unsigned int ack_recv_valid
:1;
648 static void rds_iw_process_recv(struct rds_connection
*conn
,
649 struct rds_iw_recv_work
*recv
, u32 byte_len
,
650 struct rds_iw_ack_state
*state
)
652 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
653 struct rds_iw_incoming
*iwinc
= ic
->i_iwinc
;
654 struct rds_header
*ihdr
, *hdr
;
656 /* XXX shut down the connection if port 0,0 are seen? */
658 rdsdebug("ic %p iwinc %p recv %p byte len %u\n", ic
, iwinc
, recv
,
661 if (byte_len
< sizeof(struct rds_header
)) {
662 rds_iw_conn_error(conn
, "incoming message "
663 "from %pI4 didn't inclue a "
664 "header, disconnecting and "
669 byte_len
-= sizeof(struct rds_header
);
671 ihdr
= &ic
->i_recv_hdrs
[recv
- ic
->i_recvs
];
673 /* Validate the checksum. */
674 if (!rds_message_verify_checksum(ihdr
)) {
675 rds_iw_conn_error(conn
, "incoming message "
676 "from %pI4 has corrupted header - "
677 "forcing a reconnect\n",
679 rds_stats_inc(s_recv_drop_bad_checksum
);
683 /* Process the ACK sequence which comes with every packet */
684 state
->ack_recv
= be64_to_cpu(ihdr
->h_ack
);
685 state
->ack_recv_valid
= 1;
687 /* Process the credits update if there was one */
689 rds_iw_send_add_credits(conn
, ihdr
->h_credit
);
691 if (ihdr
->h_sport
== 0 && ihdr
->h_dport
== 0 && byte_len
== 0) {
692 /* This is an ACK-only packet. The fact that it gets
693 * special treatment here is that historically, ACKs
694 * were rather special beasts.
696 rds_iw_stats_inc(s_iw_ack_received
);
699 * Usually the frags make their way on to incs and are then freed as
700 * the inc is freed. We don't go that route, so we have to drop the
701 * page ref ourselves. We can't just leave the page on the recv
702 * because that confuses the dma mapping of pages and each recv's use
703 * of a partial page. We can leave the frag, though, it will be
706 * FIXME: Fold this into the code path below.
708 rds_iw_frag_drop_page(recv
->r_frag
);
713 * If we don't already have an inc on the connection then this
714 * fragment has a header and starts a message.. copy its header
715 * into the inc and save the inc so we can hang upcoming fragments
719 iwinc
= recv
->r_iwinc
;
720 recv
->r_iwinc
= NULL
;
723 hdr
= &iwinc
->ii_inc
.i_hdr
;
724 memcpy(hdr
, ihdr
, sizeof(*hdr
));
725 ic
->i_recv_data_rem
= be32_to_cpu(hdr
->h_len
);
727 rdsdebug("ic %p iwinc %p rem %u flag 0x%x\n", ic
, iwinc
,
728 ic
->i_recv_data_rem
, hdr
->h_flags
);
730 hdr
= &iwinc
->ii_inc
.i_hdr
;
731 /* We can't just use memcmp here; fragments of a
732 * single message may carry different ACKs */
733 if (hdr
->h_sequence
!= ihdr
->h_sequence
||
734 hdr
->h_len
!= ihdr
->h_len
||
735 hdr
->h_sport
!= ihdr
->h_sport
||
736 hdr
->h_dport
!= ihdr
->h_dport
) {
737 rds_iw_conn_error(conn
,
738 "fragment header mismatch; forcing reconnect\n");
743 list_add_tail(&recv
->r_frag
->f_item
, &iwinc
->ii_frags
);
746 if (ic
->i_recv_data_rem
> RDS_FRAG_SIZE
)
747 ic
->i_recv_data_rem
-= RDS_FRAG_SIZE
;
749 ic
->i_recv_data_rem
= 0;
752 if (iwinc
->ii_inc
.i_hdr
.h_flags
== RDS_FLAG_CONG_BITMAP
)
753 rds_iw_cong_recv(conn
, iwinc
);
755 rds_recv_incoming(conn
, conn
->c_faddr
, conn
->c_laddr
,
756 &iwinc
->ii_inc
, GFP_ATOMIC
,
758 state
->ack_next
= be64_to_cpu(hdr
->h_sequence
);
759 state
->ack_next_valid
= 1;
762 /* Evaluate the ACK_REQUIRED flag *after* we received
763 * the complete frame, and after bumping the next_rx
765 if (hdr
->h_flags
& RDS_FLAG_ACK_REQUIRED
) {
766 rds_stats_inc(s_recv_ack_required
);
767 state
->ack_required
= 1;
770 rds_inc_put(&iwinc
->ii_inc
);
775 * Plucking the oldest entry from the ring can be done concurrently with
776 * the thread refilling the ring. Each ring operation is protected by
777 * spinlocks and the transient state of refilling doesn't change the
778 * recording of which entry is oldest.
780 * This relies on IB only calling one cq comp_handler for each cq so that
781 * there will only be one caller of rds_recv_incoming() per RDS connection.
783 void rds_iw_recv_cq_comp_handler(struct ib_cq
*cq
, void *context
)
785 struct rds_connection
*conn
= context
;
786 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
788 rdsdebug("conn %p cq %p\n", conn
, cq
);
790 rds_iw_stats_inc(s_iw_rx_cq_call
);
792 tasklet_schedule(&ic
->i_recv_tasklet
);
795 static inline void rds_poll_cq(struct rds_iw_connection
*ic
,
796 struct rds_iw_ack_state
*state
)
798 struct rds_connection
*conn
= ic
->conn
;
800 struct rds_iw_recv_work
*recv
;
802 while (ib_poll_cq(ic
->i_recv_cq
, 1, &wc
) > 0) {
803 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
804 (unsigned long long)wc
.wr_id
, wc
.status
, wc
.byte_len
,
805 be32_to_cpu(wc
.ex
.imm_data
));
806 rds_iw_stats_inc(s_iw_rx_cq_event
);
808 recv
= &ic
->i_recvs
[rds_iw_ring_oldest(&ic
->i_recv_ring
)];
810 rds_iw_recv_unmap_page(ic
, recv
);
813 * Also process recvs in connecting state because it is possible
814 * to get a recv completion _before_ the rdmacm ESTABLISHED
815 * event is processed.
817 if (rds_conn_up(conn
) || rds_conn_connecting(conn
)) {
818 /* We expect errors as the qp is drained during shutdown */
819 if (wc
.status
== IB_WC_SUCCESS
) {
820 rds_iw_process_recv(conn
, recv
, wc
.byte_len
, state
);
822 rds_iw_conn_error(conn
, "recv completion on "
823 "%pI4 had status %u, disconnecting and "
824 "reconnecting\n", &conn
->c_faddr
,
829 rds_iw_ring_free(&ic
->i_recv_ring
, 1);
833 void rds_iw_recv_tasklet_fn(unsigned long data
)
835 struct rds_iw_connection
*ic
= (struct rds_iw_connection
*) data
;
836 struct rds_connection
*conn
= ic
->conn
;
837 struct rds_iw_ack_state state
= { 0, };
839 rds_poll_cq(ic
, &state
);
840 ib_req_notify_cq(ic
->i_recv_cq
, IB_CQ_SOLICITED
);
841 rds_poll_cq(ic
, &state
);
843 if (state
.ack_next_valid
)
844 rds_iw_set_ack(ic
, state
.ack_next
, state
.ack_required
);
845 if (state
.ack_recv_valid
&& state
.ack_recv
> ic
->i_ack_recv
) {
846 rds_send_drop_acked(conn
, state
.ack_recv
, NULL
);
847 ic
->i_ack_recv
= state
.ack_recv
;
849 if (rds_conn_up(conn
))
850 rds_iw_attempt_ack(ic
);
852 /* If we ever end up with a really empty receive ring, we're
853 * in deep trouble, as the sender will definitely see RNR
855 if (rds_iw_ring_empty(&ic
->i_recv_ring
))
856 rds_iw_stats_inc(s_iw_rx_ring_empty
);
859 * If the ring is running low, then schedule the thread to refill.
861 if (rds_iw_ring_low(&ic
->i_recv_ring
))
862 queue_delayed_work(rds_wq
, &conn
->c_recv_w
, 0);
865 int rds_iw_recv(struct rds_connection
*conn
)
867 struct rds_iw_connection
*ic
= conn
->c_transport_data
;
870 rdsdebug("conn %p\n", conn
);
873 * If we get a temporary posting failure in this context then
874 * we're really low and we want the caller to back off for a bit.
876 mutex_lock(&ic
->i_recv_mutex
);
877 if (rds_iw_recv_refill(conn
, GFP_KERNEL
, GFP_HIGHUSER
, 0))
880 rds_iw_stats_inc(s_iw_rx_refill_from_thread
);
881 mutex_unlock(&ic
->i_recv_mutex
);
883 if (rds_conn_up(conn
))
884 rds_iw_attempt_ack(ic
);
889 int __init
rds_iw_recv_init(void)
894 /* Default to 30% of all available RAM for recv memory */
896 rds_iw_sysctl_max_recv_allocation
= si
.totalram
/ 3 * PAGE_SIZE
/ RDS_FRAG_SIZE
;
898 rds_iw_incoming_slab
= kmem_cache_create("rds_iw_incoming",
899 sizeof(struct rds_iw_incoming
),
901 if (rds_iw_incoming_slab
== NULL
)
904 rds_iw_frag_slab
= kmem_cache_create("rds_iw_frag",
905 sizeof(struct rds_page_frag
),
907 if (rds_iw_frag_slab
== NULL
)
908 kmem_cache_destroy(rds_iw_incoming_slab
);
915 void rds_iw_recv_exit(void)
917 kmem_cache_destroy(rds_iw_incoming_slab
);
918 kmem_cache_destroy(rds_iw_frag_slab
);