ath9k: remove unused ATH_PCI_VERSION
[wandboard.git] / drivers / net / wireless / ath / ath9k / main.c
blob75ddb2acb6447e7f4789e60099f7a4d83d132905
1 /*
2 * Copyright (c) 2008-2009 Atheros Communications Inc.
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 #include <linux/nl80211.h>
18 #include "ath9k.h"
20 static char *dev_info = "ath9k";
22 MODULE_AUTHOR("Atheros Communications");
23 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
24 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
25 MODULE_LICENSE("Dual BSD/GPL");
27 static int modparam_nohwcrypt;
28 module_param_named(nohwcrypt, modparam_nohwcrypt, int, 0444);
29 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
31 /* We use the hw_value as an index into our private channel structure */
33 #define CHAN2G(_freq, _idx) { \
34 .center_freq = (_freq), \
35 .hw_value = (_idx), \
36 .max_power = 20, \
39 #define CHAN5G(_freq, _idx) { \
40 .band = IEEE80211_BAND_5GHZ, \
41 .center_freq = (_freq), \
42 .hw_value = (_idx), \
43 .max_power = 20, \
46 /* Some 2 GHz radios are actually tunable on 2312-2732
47 * on 5 MHz steps, we support the channels which we know
48 * we have calibration data for all cards though to make
49 * this static */
50 static struct ieee80211_channel ath9k_2ghz_chantable[] = {
51 CHAN2G(2412, 0), /* Channel 1 */
52 CHAN2G(2417, 1), /* Channel 2 */
53 CHAN2G(2422, 2), /* Channel 3 */
54 CHAN2G(2427, 3), /* Channel 4 */
55 CHAN2G(2432, 4), /* Channel 5 */
56 CHAN2G(2437, 5), /* Channel 6 */
57 CHAN2G(2442, 6), /* Channel 7 */
58 CHAN2G(2447, 7), /* Channel 8 */
59 CHAN2G(2452, 8), /* Channel 9 */
60 CHAN2G(2457, 9), /* Channel 10 */
61 CHAN2G(2462, 10), /* Channel 11 */
62 CHAN2G(2467, 11), /* Channel 12 */
63 CHAN2G(2472, 12), /* Channel 13 */
64 CHAN2G(2484, 13), /* Channel 14 */
67 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
68 * on 5 MHz steps, we support the channels which we know
69 * we have calibration data for all cards though to make
70 * this static */
71 static struct ieee80211_channel ath9k_5ghz_chantable[] = {
72 /* _We_ call this UNII 1 */
73 CHAN5G(5180, 14), /* Channel 36 */
74 CHAN5G(5200, 15), /* Channel 40 */
75 CHAN5G(5220, 16), /* Channel 44 */
76 CHAN5G(5240, 17), /* Channel 48 */
77 /* _We_ call this UNII 2 */
78 CHAN5G(5260, 18), /* Channel 52 */
79 CHAN5G(5280, 19), /* Channel 56 */
80 CHAN5G(5300, 20), /* Channel 60 */
81 CHAN5G(5320, 21), /* Channel 64 */
82 /* _We_ call this "Middle band" */
83 CHAN5G(5500, 22), /* Channel 100 */
84 CHAN5G(5520, 23), /* Channel 104 */
85 CHAN5G(5540, 24), /* Channel 108 */
86 CHAN5G(5560, 25), /* Channel 112 */
87 CHAN5G(5580, 26), /* Channel 116 */
88 CHAN5G(5600, 27), /* Channel 120 */
89 CHAN5G(5620, 28), /* Channel 124 */
90 CHAN5G(5640, 29), /* Channel 128 */
91 CHAN5G(5660, 30), /* Channel 132 */
92 CHAN5G(5680, 31), /* Channel 136 */
93 CHAN5G(5700, 32), /* Channel 140 */
94 /* _We_ call this UNII 3 */
95 CHAN5G(5745, 33), /* Channel 149 */
96 CHAN5G(5765, 34), /* Channel 153 */
97 CHAN5G(5785, 35), /* Channel 157 */
98 CHAN5G(5805, 36), /* Channel 161 */
99 CHAN5G(5825, 37), /* Channel 165 */
102 static void ath_cache_conf_rate(struct ath_softc *sc,
103 struct ieee80211_conf *conf)
105 switch (conf->channel->band) {
106 case IEEE80211_BAND_2GHZ:
107 if (conf_is_ht20(conf))
108 sc->cur_rate_table =
109 sc->hw_rate_table[ATH9K_MODE_11NG_HT20];
110 else if (conf_is_ht40_minus(conf))
111 sc->cur_rate_table =
112 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS];
113 else if (conf_is_ht40_plus(conf))
114 sc->cur_rate_table =
115 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS];
116 else
117 sc->cur_rate_table =
118 sc->hw_rate_table[ATH9K_MODE_11G];
119 break;
120 case IEEE80211_BAND_5GHZ:
121 if (conf_is_ht20(conf))
122 sc->cur_rate_table =
123 sc->hw_rate_table[ATH9K_MODE_11NA_HT20];
124 else if (conf_is_ht40_minus(conf))
125 sc->cur_rate_table =
126 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS];
127 else if (conf_is_ht40_plus(conf))
128 sc->cur_rate_table =
129 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS];
130 else
131 sc->cur_rate_table =
132 sc->hw_rate_table[ATH9K_MODE_11A];
133 break;
134 default:
135 BUG_ON(1);
136 break;
140 static void ath_update_txpow(struct ath_softc *sc)
142 struct ath_hw *ah = sc->sc_ah;
143 u32 txpow;
145 if (sc->curtxpow != sc->config.txpowlimit) {
146 ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit);
147 /* read back in case value is clamped */
148 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
149 sc->curtxpow = txpow;
153 static u8 parse_mpdudensity(u8 mpdudensity)
156 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
157 * 0 for no restriction
158 * 1 for 1/4 us
159 * 2 for 1/2 us
160 * 3 for 1 us
161 * 4 for 2 us
162 * 5 for 4 us
163 * 6 for 8 us
164 * 7 for 16 us
166 switch (mpdudensity) {
167 case 0:
168 return 0;
169 case 1:
170 case 2:
171 case 3:
172 /* Our lower layer calculations limit our precision to
173 1 microsecond */
174 return 1;
175 case 4:
176 return 2;
177 case 5:
178 return 4;
179 case 6:
180 return 8;
181 case 7:
182 return 16;
183 default:
184 return 0;
188 static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
190 const struct ath_rate_table *rate_table = NULL;
191 struct ieee80211_supported_band *sband;
192 struct ieee80211_rate *rate;
193 int i, maxrates;
195 switch (band) {
196 case IEEE80211_BAND_2GHZ:
197 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
198 break;
199 case IEEE80211_BAND_5GHZ:
200 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
201 break;
202 default:
203 break;
206 if (rate_table == NULL)
207 return;
209 sband = &sc->sbands[band];
210 rate = sc->rates[band];
212 if (rate_table->rate_cnt > ATH_RATE_MAX)
213 maxrates = ATH_RATE_MAX;
214 else
215 maxrates = rate_table->rate_cnt;
217 for (i = 0; i < maxrates; i++) {
218 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
219 rate[i].hw_value = rate_table->info[i].ratecode;
220 if (rate_table->info[i].short_preamble) {
221 rate[i].hw_value_short = rate_table->info[i].ratecode |
222 rate_table->info[i].short_preamble;
223 rate[i].flags = IEEE80211_RATE_SHORT_PREAMBLE;
225 sband->n_bitrates++;
227 DPRINTF(sc, ATH_DBG_CONFIG, "Rate: %2dMbps, ratecode: %2d\n",
228 rate[i].bitrate / 10, rate[i].hw_value);
232 static struct ath9k_channel *ath_get_curchannel(struct ath_softc *sc,
233 struct ieee80211_hw *hw)
235 struct ieee80211_channel *curchan = hw->conf.channel;
236 struct ath9k_channel *channel;
237 u8 chan_idx;
239 chan_idx = curchan->hw_value;
240 channel = &sc->sc_ah->channels[chan_idx];
241 ath9k_update_ichannel(sc, hw, channel);
242 return channel;
246 * Set/change channels. If the channel is really being changed, it's done
247 * by reseting the chip. To accomplish this we must first cleanup any pending
248 * DMA, then restart stuff.
250 int ath_set_channel(struct ath_softc *sc, struct ieee80211_hw *hw,
251 struct ath9k_channel *hchan)
253 struct ath_hw *ah = sc->sc_ah;
254 bool fastcc = true, stopped;
255 struct ieee80211_channel *channel = hw->conf.channel;
256 int r;
258 if (sc->sc_flags & SC_OP_INVALID)
259 return -EIO;
261 ath9k_ps_wakeup(sc);
264 * This is only performed if the channel settings have
265 * actually changed.
267 * To switch channels clear any pending DMA operations;
268 * wait long enough for the RX fifo to drain, reset the
269 * hardware at the new frequency, and then re-enable
270 * the relevant bits of the h/w.
272 ath9k_hw_set_interrupts(ah, 0);
273 ath_drain_all_txq(sc, false);
274 stopped = ath_stoprecv(sc);
276 /* XXX: do not flush receive queue here. We don't want
277 * to flush data frames already in queue because of
278 * changing channel. */
280 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
281 fastcc = false;
283 DPRINTF(sc, ATH_DBG_CONFIG,
284 "(%u MHz) -> (%u MHz), chanwidth: %d\n",
285 sc->sc_ah->curchan->channel,
286 channel->center_freq, sc->tx_chan_width);
288 spin_lock_bh(&sc->sc_resetlock);
290 r = ath9k_hw_reset(ah, hchan, fastcc);
291 if (r) {
292 DPRINTF(sc, ATH_DBG_FATAL,
293 "Unable to reset channel (%u Mhz) "
294 "reset status %d\n",
295 channel->center_freq, r);
296 spin_unlock_bh(&sc->sc_resetlock);
297 goto ps_restore;
299 spin_unlock_bh(&sc->sc_resetlock);
301 sc->sc_flags &= ~SC_OP_FULL_RESET;
303 if (ath_startrecv(sc) != 0) {
304 DPRINTF(sc, ATH_DBG_FATAL,
305 "Unable to restart recv logic\n");
306 r = -EIO;
307 goto ps_restore;
310 ath_cache_conf_rate(sc, &hw->conf);
311 ath_update_txpow(sc);
312 ath9k_hw_set_interrupts(ah, sc->imask);
314 ps_restore:
315 ath9k_ps_restore(sc);
316 return r;
320 * This routine performs the periodic noise floor calibration function
321 * that is used to adjust and optimize the chip performance. This
322 * takes environmental changes (location, temperature) into account.
323 * When the task is complete, it reschedules itself depending on the
324 * appropriate interval that was calculated.
326 static void ath_ani_calibrate(unsigned long data)
328 struct ath_softc *sc = (struct ath_softc *)data;
329 struct ath_hw *ah = sc->sc_ah;
330 bool longcal = false;
331 bool shortcal = false;
332 bool aniflag = false;
333 unsigned int timestamp = jiffies_to_msecs(jiffies);
334 u32 cal_interval, short_cal_interval;
336 short_cal_interval = (ah->opmode == NL80211_IFTYPE_AP) ?
337 ATH_AP_SHORT_CALINTERVAL : ATH_STA_SHORT_CALINTERVAL;
340 * don't calibrate when we're scanning.
341 * we are most likely not on our home channel.
343 spin_lock(&sc->ani_lock);
344 if (sc->sc_flags & SC_OP_SCANNING)
345 goto set_timer;
347 /* Only calibrate if awake */
348 if (sc->sc_ah->power_mode != ATH9K_PM_AWAKE)
349 goto set_timer;
351 ath9k_ps_wakeup(sc);
353 /* Long calibration runs independently of short calibration. */
354 if ((timestamp - sc->ani.longcal_timer) >= ATH_LONG_CALINTERVAL) {
355 longcal = true;
356 DPRINTF(sc, ATH_DBG_ANI, "longcal @%lu\n", jiffies);
357 sc->ani.longcal_timer = timestamp;
360 /* Short calibration applies only while caldone is false */
361 if (!sc->ani.caldone) {
362 if ((timestamp - sc->ani.shortcal_timer) >= short_cal_interval) {
363 shortcal = true;
364 DPRINTF(sc, ATH_DBG_ANI, "shortcal @%lu\n", jiffies);
365 sc->ani.shortcal_timer = timestamp;
366 sc->ani.resetcal_timer = timestamp;
368 } else {
369 if ((timestamp - sc->ani.resetcal_timer) >=
370 ATH_RESTART_CALINTERVAL) {
371 sc->ani.caldone = ath9k_hw_reset_calvalid(ah);
372 if (sc->ani.caldone)
373 sc->ani.resetcal_timer = timestamp;
377 /* Verify whether we must check ANI */
378 if ((timestamp - sc->ani.checkani_timer) >= ATH_ANI_POLLINTERVAL) {
379 aniflag = true;
380 sc->ani.checkani_timer = timestamp;
383 /* Skip all processing if there's nothing to do. */
384 if (longcal || shortcal || aniflag) {
385 /* Call ANI routine if necessary */
386 if (aniflag)
387 ath9k_hw_ani_monitor(ah, &sc->nodestats, ah->curchan);
389 /* Perform calibration if necessary */
390 if (longcal || shortcal) {
391 sc->ani.caldone = ath9k_hw_calibrate(ah, ah->curchan,
392 sc->rx_chainmask, longcal);
394 if (longcal)
395 sc->ani.noise_floor = ath9k_hw_getchan_noise(ah,
396 ah->curchan);
398 DPRINTF(sc, ATH_DBG_ANI," calibrate chan %u/%x nf: %d\n",
399 ah->curchan->channel, ah->curchan->channelFlags,
400 sc->ani.noise_floor);
404 ath9k_ps_restore(sc);
406 set_timer:
407 spin_unlock(&sc->ani_lock);
409 * Set timer interval based on previous results.
410 * The interval must be the shortest necessary to satisfy ANI,
411 * short calibration and long calibration.
413 cal_interval = ATH_LONG_CALINTERVAL;
414 if (sc->sc_ah->config.enable_ani)
415 cal_interval = min(cal_interval, (u32)ATH_ANI_POLLINTERVAL);
416 if (!sc->ani.caldone)
417 cal_interval = min(cal_interval, (u32)short_cal_interval);
419 mod_timer(&sc->ani.timer, jiffies + msecs_to_jiffies(cal_interval));
422 static void ath_start_ani(struct ath_softc *sc)
424 unsigned long timestamp = jiffies_to_msecs(jiffies);
426 sc->ani.longcal_timer = timestamp;
427 sc->ani.shortcal_timer = timestamp;
428 sc->ani.checkani_timer = timestamp;
430 mod_timer(&sc->ani.timer,
431 jiffies + msecs_to_jiffies(ATH_ANI_POLLINTERVAL));
435 * Update tx/rx chainmask. For legacy association,
436 * hard code chainmask to 1x1, for 11n association, use
437 * the chainmask configuration, for bt coexistence, use
438 * the chainmask configuration even in legacy mode.
440 void ath_update_chainmask(struct ath_softc *sc, int is_ht)
442 if (is_ht ||
443 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)) {
444 sc->tx_chainmask = sc->sc_ah->caps.tx_chainmask;
445 sc->rx_chainmask = sc->sc_ah->caps.rx_chainmask;
446 } else {
447 sc->tx_chainmask = 1;
448 sc->rx_chainmask = 1;
451 DPRINTF(sc, ATH_DBG_CONFIG, "tx chmask: %d, rx chmask: %d\n",
452 sc->tx_chainmask, sc->rx_chainmask);
455 static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
457 struct ath_node *an;
459 an = (struct ath_node *)sta->drv_priv;
461 if (sc->sc_flags & SC_OP_TXAGGR) {
462 ath_tx_node_init(sc, an);
463 an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
464 sta->ht_cap.ampdu_factor);
465 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
466 an->last_rssi = ATH_RSSI_DUMMY_MARKER;
470 static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
472 struct ath_node *an = (struct ath_node *)sta->drv_priv;
474 if (sc->sc_flags & SC_OP_TXAGGR)
475 ath_tx_node_cleanup(sc, an);
478 static void ath9k_tasklet(unsigned long data)
480 struct ath_softc *sc = (struct ath_softc *)data;
481 u32 status = sc->intrstatus;
483 ath9k_ps_wakeup(sc);
485 if (status & ATH9K_INT_FATAL) {
486 ath_reset(sc, false);
487 ath9k_ps_restore(sc);
488 return;
491 if (status & (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
492 spin_lock_bh(&sc->rx.rxflushlock);
493 ath_rx_tasklet(sc, 0);
494 spin_unlock_bh(&sc->rx.rxflushlock);
497 if (status & ATH9K_INT_TX)
498 ath_tx_tasklet(sc);
500 if ((status & ATH9K_INT_TSFOOR) && sc->ps_enabled) {
502 * TSF sync does not look correct; remain awake to sync with
503 * the next Beacon.
505 DPRINTF(sc, ATH_DBG_PS, "TSFOOR - Sync with next Beacon\n");
506 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON | SC_OP_BEACON_SYNC;
509 /* re-enable hardware interrupt */
510 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
511 ath9k_ps_restore(sc);
514 irqreturn_t ath_isr(int irq, void *dev)
516 #define SCHED_INTR ( \
517 ATH9K_INT_FATAL | \
518 ATH9K_INT_RXORN | \
519 ATH9K_INT_RXEOL | \
520 ATH9K_INT_RX | \
521 ATH9K_INT_TX | \
522 ATH9K_INT_BMISS | \
523 ATH9K_INT_CST | \
524 ATH9K_INT_TSFOOR)
526 struct ath_softc *sc = dev;
527 struct ath_hw *ah = sc->sc_ah;
528 enum ath9k_int status;
529 bool sched = false;
532 * The hardware is not ready/present, don't
533 * touch anything. Note this can happen early
534 * on if the IRQ is shared.
536 if (sc->sc_flags & SC_OP_INVALID)
537 return IRQ_NONE;
540 /* shared irq, not for us */
542 if (!ath9k_hw_intrpend(ah))
543 return IRQ_NONE;
546 * Figure out the reason(s) for the interrupt. Note
547 * that the hal returns a pseudo-ISR that may include
548 * bits we haven't explicitly enabled so we mask the
549 * value to insure we only process bits we requested.
551 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
552 status &= sc->imask; /* discard unasked-for bits */
555 * If there are no status bits set, then this interrupt was not
556 * for me (should have been caught above).
558 if (!status)
559 return IRQ_NONE;
561 /* Cache the status */
562 sc->intrstatus = status;
564 if (status & SCHED_INTR)
565 sched = true;
568 * If a FATAL or RXORN interrupt is received, we have to reset the
569 * chip immediately.
571 if (status & (ATH9K_INT_FATAL | ATH9K_INT_RXORN))
572 goto chip_reset;
574 if (status & ATH9K_INT_SWBA)
575 tasklet_schedule(&sc->bcon_tasklet);
577 if (status & ATH9K_INT_TXURN)
578 ath9k_hw_updatetxtriglevel(ah, true);
580 if (status & ATH9K_INT_MIB) {
582 * Disable interrupts until we service the MIB
583 * interrupt; otherwise it will continue to
584 * fire.
586 ath9k_hw_set_interrupts(ah, 0);
588 * Let the hal handle the event. We assume
589 * it will clear whatever condition caused
590 * the interrupt.
592 ath9k_hw_procmibevent(ah, &sc->nodestats);
593 ath9k_hw_set_interrupts(ah, sc->imask);
596 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
597 if (status & ATH9K_INT_TIM_TIMER) {
598 /* Clear RxAbort bit so that we can
599 * receive frames */
600 ath9k_hw_setpower(ah, ATH9K_PM_AWAKE);
601 ath9k_hw_setrxabort(sc->sc_ah, 0);
602 sc->sc_flags |= SC_OP_WAIT_FOR_BEACON;
605 chip_reset:
607 ath_debug_stat_interrupt(sc, status);
609 if (sched) {
610 /* turn off every interrupt except SWBA */
611 ath9k_hw_set_interrupts(ah, (sc->imask & ATH9K_INT_SWBA));
612 tasklet_schedule(&sc->intr_tq);
615 return IRQ_HANDLED;
617 #undef SCHED_INTR
620 static u32 ath_get_extchanmode(struct ath_softc *sc,
621 struct ieee80211_channel *chan,
622 enum nl80211_channel_type channel_type)
624 u32 chanmode = 0;
626 switch (chan->band) {
627 case IEEE80211_BAND_2GHZ:
628 switch(channel_type) {
629 case NL80211_CHAN_NO_HT:
630 case NL80211_CHAN_HT20:
631 chanmode = CHANNEL_G_HT20;
632 break;
633 case NL80211_CHAN_HT40PLUS:
634 chanmode = CHANNEL_G_HT40PLUS;
635 break;
636 case NL80211_CHAN_HT40MINUS:
637 chanmode = CHANNEL_G_HT40MINUS;
638 break;
640 break;
641 case IEEE80211_BAND_5GHZ:
642 switch(channel_type) {
643 case NL80211_CHAN_NO_HT:
644 case NL80211_CHAN_HT20:
645 chanmode = CHANNEL_A_HT20;
646 break;
647 case NL80211_CHAN_HT40PLUS:
648 chanmode = CHANNEL_A_HT40PLUS;
649 break;
650 case NL80211_CHAN_HT40MINUS:
651 chanmode = CHANNEL_A_HT40MINUS;
652 break;
654 break;
655 default:
656 break;
659 return chanmode;
662 static int ath_setkey_tkip(struct ath_softc *sc, u16 keyix, const u8 *key,
663 struct ath9k_keyval *hk, const u8 *addr,
664 bool authenticator)
666 const u8 *key_rxmic;
667 const u8 *key_txmic;
669 key_txmic = key + NL80211_TKIP_DATA_OFFSET_TX_MIC_KEY;
670 key_rxmic = key + NL80211_TKIP_DATA_OFFSET_RX_MIC_KEY;
672 if (addr == NULL) {
674 * Group key installation - only two key cache entries are used
675 * regardless of splitmic capability since group key is only
676 * used either for TX or RX.
678 if (authenticator) {
679 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
680 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_mic));
681 } else {
682 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
683 memcpy(hk->kv_txmic, key_rxmic, sizeof(hk->kv_mic));
685 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
687 if (!sc->splitmic) {
688 /* TX and RX keys share the same key cache entry. */
689 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
690 memcpy(hk->kv_txmic, key_txmic, sizeof(hk->kv_txmic));
691 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, addr);
694 /* Separate key cache entries for TX and RX */
696 /* TX key goes at first index, RX key at +32. */
697 memcpy(hk->kv_mic, key_txmic, sizeof(hk->kv_mic));
698 if (!ath9k_hw_set_keycache_entry(sc->sc_ah, keyix, hk, NULL)) {
699 /* TX MIC entry failed. No need to proceed further */
700 DPRINTF(sc, ATH_DBG_FATAL,
701 "Setting TX MIC Key Failed\n");
702 return 0;
705 memcpy(hk->kv_mic, key_rxmic, sizeof(hk->kv_mic));
706 /* XXX delete tx key on failure? */
707 return ath9k_hw_set_keycache_entry(sc->sc_ah, keyix + 32, hk, addr);
710 static int ath_reserve_key_cache_slot_tkip(struct ath_softc *sc)
712 int i;
714 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
715 if (test_bit(i, sc->keymap) ||
716 test_bit(i + 64, sc->keymap))
717 continue; /* At least one part of TKIP key allocated */
718 if (sc->splitmic &&
719 (test_bit(i + 32, sc->keymap) ||
720 test_bit(i + 64 + 32, sc->keymap)))
721 continue; /* At least one part of TKIP key allocated */
723 /* Found a free slot for a TKIP key */
724 return i;
726 return -1;
729 static int ath_reserve_key_cache_slot(struct ath_softc *sc)
731 int i;
733 /* First, try to find slots that would not be available for TKIP. */
734 if (sc->splitmic) {
735 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 4; i++) {
736 if (!test_bit(i, sc->keymap) &&
737 (test_bit(i + 32, sc->keymap) ||
738 test_bit(i + 64, sc->keymap) ||
739 test_bit(i + 64 + 32, sc->keymap)))
740 return i;
741 if (!test_bit(i + 32, sc->keymap) &&
742 (test_bit(i, sc->keymap) ||
743 test_bit(i + 64, sc->keymap) ||
744 test_bit(i + 64 + 32, sc->keymap)))
745 return i + 32;
746 if (!test_bit(i + 64, sc->keymap) &&
747 (test_bit(i , sc->keymap) ||
748 test_bit(i + 32, sc->keymap) ||
749 test_bit(i + 64 + 32, sc->keymap)))
750 return i + 64;
751 if (!test_bit(i + 64 + 32, sc->keymap) &&
752 (test_bit(i, sc->keymap) ||
753 test_bit(i + 32, sc->keymap) ||
754 test_bit(i + 64, sc->keymap)))
755 return i + 64 + 32;
757 } else {
758 for (i = IEEE80211_WEP_NKID; i < sc->keymax / 2; i++) {
759 if (!test_bit(i, sc->keymap) &&
760 test_bit(i + 64, sc->keymap))
761 return i;
762 if (test_bit(i, sc->keymap) &&
763 !test_bit(i + 64, sc->keymap))
764 return i + 64;
768 /* No partially used TKIP slots, pick any available slot */
769 for (i = IEEE80211_WEP_NKID; i < sc->keymax; i++) {
770 /* Do not allow slots that could be needed for TKIP group keys
771 * to be used. This limitation could be removed if we know that
772 * TKIP will not be used. */
773 if (i >= 64 && i < 64 + IEEE80211_WEP_NKID)
774 continue;
775 if (sc->splitmic) {
776 if (i >= 32 && i < 32 + IEEE80211_WEP_NKID)
777 continue;
778 if (i >= 64 + 32 && i < 64 + 32 + IEEE80211_WEP_NKID)
779 continue;
782 if (!test_bit(i, sc->keymap))
783 return i; /* Found a free slot for a key */
786 /* No free slot found */
787 return -1;
790 static int ath_key_config(struct ath_softc *sc,
791 struct ieee80211_vif *vif,
792 struct ieee80211_sta *sta,
793 struct ieee80211_key_conf *key)
795 struct ath9k_keyval hk;
796 const u8 *mac = NULL;
797 int ret = 0;
798 int idx;
800 memset(&hk, 0, sizeof(hk));
802 switch (key->alg) {
803 case ALG_WEP:
804 hk.kv_type = ATH9K_CIPHER_WEP;
805 break;
806 case ALG_TKIP:
807 hk.kv_type = ATH9K_CIPHER_TKIP;
808 break;
809 case ALG_CCMP:
810 hk.kv_type = ATH9K_CIPHER_AES_CCM;
811 break;
812 default:
813 return -EOPNOTSUPP;
816 hk.kv_len = key->keylen;
817 memcpy(hk.kv_val, key->key, key->keylen);
819 if (!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)) {
820 /* For now, use the default keys for broadcast keys. This may
821 * need to change with virtual interfaces. */
822 idx = key->keyidx;
823 } else if (key->keyidx) {
824 if (WARN_ON(!sta))
825 return -EOPNOTSUPP;
826 mac = sta->addr;
828 if (vif->type != NL80211_IFTYPE_AP) {
829 /* Only keyidx 0 should be used with unicast key, but
830 * allow this for client mode for now. */
831 idx = key->keyidx;
832 } else
833 return -EIO;
834 } else {
835 if (WARN_ON(!sta))
836 return -EOPNOTSUPP;
837 mac = sta->addr;
839 if (key->alg == ALG_TKIP)
840 idx = ath_reserve_key_cache_slot_tkip(sc);
841 else
842 idx = ath_reserve_key_cache_slot(sc);
843 if (idx < 0)
844 return -ENOSPC; /* no free key cache entries */
847 if (key->alg == ALG_TKIP)
848 ret = ath_setkey_tkip(sc, idx, key->key, &hk, mac,
849 vif->type == NL80211_IFTYPE_AP);
850 else
851 ret = ath9k_hw_set_keycache_entry(sc->sc_ah, idx, &hk, mac);
853 if (!ret)
854 return -EIO;
856 set_bit(idx, sc->keymap);
857 if (key->alg == ALG_TKIP) {
858 set_bit(idx + 64, sc->keymap);
859 if (sc->splitmic) {
860 set_bit(idx + 32, sc->keymap);
861 set_bit(idx + 64 + 32, sc->keymap);
865 return idx;
868 static void ath_key_delete(struct ath_softc *sc, struct ieee80211_key_conf *key)
870 ath9k_hw_keyreset(sc->sc_ah, key->hw_key_idx);
871 if (key->hw_key_idx < IEEE80211_WEP_NKID)
872 return;
874 clear_bit(key->hw_key_idx, sc->keymap);
875 if (key->alg != ALG_TKIP)
876 return;
878 clear_bit(key->hw_key_idx + 64, sc->keymap);
879 if (sc->splitmic) {
880 clear_bit(key->hw_key_idx + 32, sc->keymap);
881 clear_bit(key->hw_key_idx + 64 + 32, sc->keymap);
885 static void setup_ht_cap(struct ath_softc *sc,
886 struct ieee80211_sta_ht_cap *ht_info)
888 u8 tx_streams, rx_streams;
890 ht_info->ht_supported = true;
891 ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
892 IEEE80211_HT_CAP_SM_PS |
893 IEEE80211_HT_CAP_SGI_40 |
894 IEEE80211_HT_CAP_DSSSCCK40;
896 ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
897 ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
899 /* set up supported mcs set */
900 memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
901 tx_streams = !(sc->tx_chainmask & (sc->tx_chainmask - 1)) ? 1 : 2;
902 rx_streams = !(sc->rx_chainmask & (sc->rx_chainmask - 1)) ? 1 : 2;
904 if (tx_streams != rx_streams) {
905 DPRINTF(sc, ATH_DBG_CONFIG, "TX streams %d, RX streams: %d\n",
906 tx_streams, rx_streams);
907 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
908 ht_info->mcs.tx_params |= ((tx_streams - 1) <<
909 IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
912 ht_info->mcs.rx_mask[0] = 0xff;
913 if (rx_streams >= 2)
914 ht_info->mcs.rx_mask[1] = 0xff;
916 ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
919 static void ath9k_bss_assoc_info(struct ath_softc *sc,
920 struct ieee80211_vif *vif,
921 struct ieee80211_bss_conf *bss_conf)
924 if (bss_conf->assoc) {
925 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info ASSOC %d, bssid: %pM\n",
926 bss_conf->aid, sc->curbssid);
928 /* New association, store aid */
929 sc->curaid = bss_conf->aid;
930 ath9k_hw_write_associd(sc);
933 * Request a re-configuration of Beacon related timers
934 * on the receipt of the first Beacon frame (i.e.,
935 * after time sync with the AP).
937 sc->sc_flags |= SC_OP_BEACON_SYNC;
939 /* Configure the beacon */
940 ath_beacon_config(sc, vif);
942 /* Reset rssi stats */
943 sc->nodestats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
944 sc->nodestats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
945 sc->nodestats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
946 sc->nodestats.ns_avgtxrate = ATH_RATE_DUMMY_MARKER;
948 ath_start_ani(sc);
949 } else {
950 DPRINTF(sc, ATH_DBG_CONFIG, "Bss Info DISASSOC\n");
951 sc->curaid = 0;
952 /* Stop ANI */
953 del_timer_sync(&sc->ani.timer);
957 /********************************/
958 /* LED functions */
959 /********************************/
961 static void ath_led_blink_work(struct work_struct *work)
963 struct ath_softc *sc = container_of(work, struct ath_softc,
964 ath_led_blink_work.work);
966 if (!(sc->sc_flags & SC_OP_LED_ASSOCIATED))
967 return;
969 if ((sc->led_on_duration == ATH_LED_ON_DURATION_IDLE) ||
970 (sc->led_off_duration == ATH_LED_OFF_DURATION_IDLE))
971 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
972 else
973 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
974 (sc->sc_flags & SC_OP_LED_ON) ? 1 : 0);
976 queue_delayed_work(sc->hw->workqueue, &sc->ath_led_blink_work,
977 (sc->sc_flags & SC_OP_LED_ON) ?
978 msecs_to_jiffies(sc->led_off_duration) :
979 msecs_to_jiffies(sc->led_on_duration));
981 sc->led_on_duration = sc->led_on_cnt ?
982 max((ATH_LED_ON_DURATION_IDLE - sc->led_on_cnt), 25) :
983 ATH_LED_ON_DURATION_IDLE;
984 sc->led_off_duration = sc->led_off_cnt ?
985 max((ATH_LED_OFF_DURATION_IDLE - sc->led_off_cnt), 10) :
986 ATH_LED_OFF_DURATION_IDLE;
987 sc->led_on_cnt = sc->led_off_cnt = 0;
988 if (sc->sc_flags & SC_OP_LED_ON)
989 sc->sc_flags &= ~SC_OP_LED_ON;
990 else
991 sc->sc_flags |= SC_OP_LED_ON;
994 static void ath_led_brightness(struct led_classdev *led_cdev,
995 enum led_brightness brightness)
997 struct ath_led *led = container_of(led_cdev, struct ath_led, led_cdev);
998 struct ath_softc *sc = led->sc;
1000 switch (brightness) {
1001 case LED_OFF:
1002 if (led->led_type == ATH_LED_ASSOC ||
1003 led->led_type == ATH_LED_RADIO) {
1004 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN,
1005 (led->led_type == ATH_LED_RADIO));
1006 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1007 if (led->led_type == ATH_LED_RADIO)
1008 sc->sc_flags &= ~SC_OP_LED_ON;
1009 } else {
1010 sc->led_off_cnt++;
1012 break;
1013 case LED_FULL:
1014 if (led->led_type == ATH_LED_ASSOC) {
1015 sc->sc_flags |= SC_OP_LED_ASSOCIATED;
1016 queue_delayed_work(sc->hw->workqueue,
1017 &sc->ath_led_blink_work, 0);
1018 } else if (led->led_type == ATH_LED_RADIO) {
1019 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 0);
1020 sc->sc_flags |= SC_OP_LED_ON;
1021 } else {
1022 sc->led_on_cnt++;
1024 break;
1025 default:
1026 break;
1030 static int ath_register_led(struct ath_softc *sc, struct ath_led *led,
1031 char *trigger)
1033 int ret;
1035 led->sc = sc;
1036 led->led_cdev.name = led->name;
1037 led->led_cdev.default_trigger = trigger;
1038 led->led_cdev.brightness_set = ath_led_brightness;
1040 ret = led_classdev_register(wiphy_dev(sc->hw->wiphy), &led->led_cdev);
1041 if (ret)
1042 DPRINTF(sc, ATH_DBG_FATAL,
1043 "Failed to register led:%s", led->name);
1044 else
1045 led->registered = 1;
1046 return ret;
1049 static void ath_unregister_led(struct ath_led *led)
1051 if (led->registered) {
1052 led_classdev_unregister(&led->led_cdev);
1053 led->registered = 0;
1057 static void ath_deinit_leds(struct ath_softc *sc)
1059 cancel_delayed_work_sync(&sc->ath_led_blink_work);
1060 ath_unregister_led(&sc->assoc_led);
1061 sc->sc_flags &= ~SC_OP_LED_ASSOCIATED;
1062 ath_unregister_led(&sc->tx_led);
1063 ath_unregister_led(&sc->rx_led);
1064 ath_unregister_led(&sc->radio_led);
1065 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1068 static void ath_init_leds(struct ath_softc *sc)
1070 char *trigger;
1071 int ret;
1073 /* Configure gpio 1 for output */
1074 ath9k_hw_cfg_output(sc->sc_ah, ATH_LED_PIN,
1075 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1076 /* LED off, active low */
1077 ath9k_hw_set_gpio(sc->sc_ah, ATH_LED_PIN, 1);
1079 INIT_DELAYED_WORK(&sc->ath_led_blink_work, ath_led_blink_work);
1081 trigger = ieee80211_get_radio_led_name(sc->hw);
1082 snprintf(sc->radio_led.name, sizeof(sc->radio_led.name),
1083 "ath9k-%s::radio", wiphy_name(sc->hw->wiphy));
1084 ret = ath_register_led(sc, &sc->radio_led, trigger);
1085 sc->radio_led.led_type = ATH_LED_RADIO;
1086 if (ret)
1087 goto fail;
1089 trigger = ieee80211_get_assoc_led_name(sc->hw);
1090 snprintf(sc->assoc_led.name, sizeof(sc->assoc_led.name),
1091 "ath9k-%s::assoc", wiphy_name(sc->hw->wiphy));
1092 ret = ath_register_led(sc, &sc->assoc_led, trigger);
1093 sc->assoc_led.led_type = ATH_LED_ASSOC;
1094 if (ret)
1095 goto fail;
1097 trigger = ieee80211_get_tx_led_name(sc->hw);
1098 snprintf(sc->tx_led.name, sizeof(sc->tx_led.name),
1099 "ath9k-%s::tx", wiphy_name(sc->hw->wiphy));
1100 ret = ath_register_led(sc, &sc->tx_led, trigger);
1101 sc->tx_led.led_type = ATH_LED_TX;
1102 if (ret)
1103 goto fail;
1105 trigger = ieee80211_get_rx_led_name(sc->hw);
1106 snprintf(sc->rx_led.name, sizeof(sc->rx_led.name),
1107 "ath9k-%s::rx", wiphy_name(sc->hw->wiphy));
1108 ret = ath_register_led(sc, &sc->rx_led, trigger);
1109 sc->rx_led.led_type = ATH_LED_RX;
1110 if (ret)
1111 goto fail;
1113 return;
1115 fail:
1116 ath_deinit_leds(sc);
1119 void ath_radio_enable(struct ath_softc *sc)
1121 struct ath_hw *ah = sc->sc_ah;
1122 struct ieee80211_channel *channel = sc->hw->conf.channel;
1123 int r;
1125 ath9k_ps_wakeup(sc);
1126 ath9k_hw_configpcipowersave(ah, 0);
1128 if (!ah->curchan)
1129 ah->curchan = ath_get_curchannel(sc, sc->hw);
1131 spin_lock_bh(&sc->sc_resetlock);
1132 r = ath9k_hw_reset(ah, ah->curchan, false);
1133 if (r) {
1134 DPRINTF(sc, ATH_DBG_FATAL,
1135 "Unable to reset channel %u (%uMhz) ",
1136 "reset status %d\n",
1137 channel->center_freq, r);
1139 spin_unlock_bh(&sc->sc_resetlock);
1141 ath_update_txpow(sc);
1142 if (ath_startrecv(sc) != 0) {
1143 DPRINTF(sc, ATH_DBG_FATAL,
1144 "Unable to restart recv logic\n");
1145 return;
1148 if (sc->sc_flags & SC_OP_BEACONS)
1149 ath_beacon_config(sc, NULL); /* restart beacons */
1151 /* Re-Enable interrupts */
1152 ath9k_hw_set_interrupts(ah, sc->imask);
1154 /* Enable LED */
1155 ath9k_hw_cfg_output(ah, ATH_LED_PIN,
1156 AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1157 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 0);
1159 ieee80211_wake_queues(sc->hw);
1160 ath9k_ps_restore(sc);
1163 void ath_radio_disable(struct ath_softc *sc)
1165 struct ath_hw *ah = sc->sc_ah;
1166 struct ieee80211_channel *channel = sc->hw->conf.channel;
1167 int r;
1169 ath9k_ps_wakeup(sc);
1170 ieee80211_stop_queues(sc->hw);
1172 /* Disable LED */
1173 ath9k_hw_set_gpio(ah, ATH_LED_PIN, 1);
1174 ath9k_hw_cfg_gpio_input(ah, ATH_LED_PIN);
1176 /* Disable interrupts */
1177 ath9k_hw_set_interrupts(ah, 0);
1179 ath_drain_all_txq(sc, false); /* clear pending tx frames */
1180 ath_stoprecv(sc); /* turn off frame recv */
1181 ath_flushrecv(sc); /* flush recv queue */
1183 if (!ah->curchan)
1184 ah->curchan = ath_get_curchannel(sc, sc->hw);
1186 spin_lock_bh(&sc->sc_resetlock);
1187 r = ath9k_hw_reset(ah, ah->curchan, false);
1188 if (r) {
1189 DPRINTF(sc, ATH_DBG_FATAL,
1190 "Unable to reset channel %u (%uMhz) "
1191 "reset status %d\n",
1192 channel->center_freq, r);
1194 spin_unlock_bh(&sc->sc_resetlock);
1196 ath9k_hw_phy_disable(ah);
1197 ath9k_hw_configpcipowersave(ah, 1);
1198 ath9k_ps_restore(sc);
1199 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1202 /*******************/
1203 /* Rfkill */
1204 /*******************/
1206 static bool ath_is_rfkill_set(struct ath_softc *sc)
1208 struct ath_hw *ah = sc->sc_ah;
1210 return ath9k_hw_gpio_get(ah, ah->rfkill_gpio) ==
1211 ah->rfkill_polarity;
1214 static void ath9k_rfkill_poll_state(struct ieee80211_hw *hw)
1216 struct ath_wiphy *aphy = hw->priv;
1217 struct ath_softc *sc = aphy->sc;
1218 bool blocked = !!ath_is_rfkill_set(sc);
1220 wiphy_rfkill_set_hw_state(hw->wiphy, blocked);
1222 if (blocked)
1223 ath_radio_disable(sc);
1224 else
1225 ath_radio_enable(sc);
1228 static void ath_start_rfkill_poll(struct ath_softc *sc)
1230 struct ath_hw *ah = sc->sc_ah;
1232 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1233 wiphy_rfkill_start_polling(sc->hw->wiphy);
1236 void ath_cleanup(struct ath_softc *sc)
1238 ath_detach(sc);
1239 free_irq(sc->irq, sc);
1240 ath_bus_cleanup(sc);
1241 kfree(sc->sec_wiphy);
1242 ieee80211_free_hw(sc->hw);
1245 void ath_detach(struct ath_softc *sc)
1247 struct ieee80211_hw *hw = sc->hw;
1248 int i = 0;
1250 ath9k_ps_wakeup(sc);
1252 DPRINTF(sc, ATH_DBG_CONFIG, "Detach ATH hw\n");
1254 ath_deinit_leds(sc);
1255 cancel_work_sync(&sc->chan_work);
1256 cancel_delayed_work_sync(&sc->wiphy_work);
1257 cancel_delayed_work_sync(&sc->tx_complete_work);
1259 for (i = 0; i < sc->num_sec_wiphy; i++) {
1260 struct ath_wiphy *aphy = sc->sec_wiphy[i];
1261 if (aphy == NULL)
1262 continue;
1263 sc->sec_wiphy[i] = NULL;
1264 ieee80211_unregister_hw(aphy->hw);
1265 ieee80211_free_hw(aphy->hw);
1267 ieee80211_unregister_hw(hw);
1268 ath_rx_cleanup(sc);
1269 ath_tx_cleanup(sc);
1271 tasklet_kill(&sc->intr_tq);
1272 tasklet_kill(&sc->bcon_tasklet);
1274 if (!(sc->sc_flags & SC_OP_INVALID))
1275 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
1277 /* cleanup tx queues */
1278 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1279 if (ATH_TXQ_SETUP(sc, i))
1280 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1282 ath9k_hw_detach(sc->sc_ah);
1283 ath9k_exit_debug(sc);
1286 static int ath9k_reg_notifier(struct wiphy *wiphy,
1287 struct regulatory_request *request)
1289 struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
1290 struct ath_wiphy *aphy = hw->priv;
1291 struct ath_softc *sc = aphy->sc;
1292 struct ath_regulatory *reg = &sc->sc_ah->regulatory;
1294 return ath_reg_notifier_apply(wiphy, request, reg);
1297 static int ath_init(u16 devid, struct ath_softc *sc)
1299 struct ath_hw *ah = NULL;
1300 int status;
1301 int error = 0, i;
1302 int csz = 0;
1304 /* XXX: hardware will not be ready until ath_open() being called */
1305 sc->sc_flags |= SC_OP_INVALID;
1307 if (ath9k_init_debug(sc) < 0)
1308 printk(KERN_ERR "Unable to create debugfs files\n");
1310 spin_lock_init(&sc->wiphy_lock);
1311 spin_lock_init(&sc->sc_resetlock);
1312 spin_lock_init(&sc->sc_serial_rw);
1313 spin_lock_init(&sc->ani_lock);
1314 spin_lock_init(&sc->sc_pm_lock);
1315 mutex_init(&sc->mutex);
1316 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1317 tasklet_init(&sc->bcon_tasklet, ath_beacon_tasklet,
1318 (unsigned long)sc);
1321 * Cache line size is used to size and align various
1322 * structures used to communicate with the hardware.
1324 ath_read_cachesize(sc, &csz);
1325 /* XXX assert csz is non-zero */
1326 sc->cachelsz = csz << 2; /* convert to bytes */
1328 ah = ath9k_hw_attach(devid, sc, &status);
1329 if (ah == NULL) {
1330 DPRINTF(sc, ATH_DBG_FATAL,
1331 "Unable to attach hardware; HAL status %d\n", status);
1332 error = -ENXIO;
1333 goto bad;
1335 sc->sc_ah = ah;
1337 /* Get the hardware key cache size. */
1338 sc->keymax = ah->caps.keycache_size;
1339 if (sc->keymax > ATH_KEYMAX) {
1340 DPRINTF(sc, ATH_DBG_ANY,
1341 "Warning, using only %u entries in %u key cache\n",
1342 ATH_KEYMAX, sc->keymax);
1343 sc->keymax = ATH_KEYMAX;
1347 * Reset the key cache since some parts do not
1348 * reset the contents on initial power up.
1350 for (i = 0; i < sc->keymax; i++)
1351 ath9k_hw_keyreset(ah, (u16) i);
1353 if (error)
1354 goto bad;
1356 /* default to MONITOR mode */
1357 sc->sc_ah->opmode = NL80211_IFTYPE_MONITOR;
1359 /* Setup rate tables */
1361 ath_rate_attach(sc);
1362 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1363 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1366 * Allocate hardware transmit queues: one queue for
1367 * beacon frames and one data queue for each QoS
1368 * priority. Note that the hal handles reseting
1369 * these queues at the needed time.
1371 sc->beacon.beaconq = ath_beaconq_setup(ah);
1372 if (sc->beacon.beaconq == -1) {
1373 DPRINTF(sc, ATH_DBG_FATAL,
1374 "Unable to setup a beacon xmit queue\n");
1375 error = -EIO;
1376 goto bad2;
1378 sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1379 if (sc->beacon.cabq == NULL) {
1380 DPRINTF(sc, ATH_DBG_FATAL,
1381 "Unable to setup CAB xmit queue\n");
1382 error = -EIO;
1383 goto bad2;
1386 sc->config.cabqReadytime = ATH_CABQ_READY_TIME;
1387 ath_cabq_update(sc);
1389 for (i = 0; i < ARRAY_SIZE(sc->tx.hwq_map); i++)
1390 sc->tx.hwq_map[i] = -1;
1392 /* Setup data queues */
1393 /* NB: ensure BK queue is the lowest priority h/w queue */
1394 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1395 DPRINTF(sc, ATH_DBG_FATAL,
1396 "Unable to setup xmit queue for BK traffic\n");
1397 error = -EIO;
1398 goto bad2;
1401 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1402 DPRINTF(sc, ATH_DBG_FATAL,
1403 "Unable to setup xmit queue for BE traffic\n");
1404 error = -EIO;
1405 goto bad2;
1407 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1408 DPRINTF(sc, ATH_DBG_FATAL,
1409 "Unable to setup xmit queue for VI traffic\n");
1410 error = -EIO;
1411 goto bad2;
1413 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1414 DPRINTF(sc, ATH_DBG_FATAL,
1415 "Unable to setup xmit queue for VO traffic\n");
1416 error = -EIO;
1417 goto bad2;
1420 /* Initializes the noise floor to a reasonable default value.
1421 * Later on this will be updated during ANI processing. */
1423 sc->ani.noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1424 setup_timer(&sc->ani.timer, ath_ani_calibrate, (unsigned long)sc);
1426 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1427 ATH9K_CIPHER_TKIP, NULL)) {
1429 * Whether we should enable h/w TKIP MIC.
1430 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1431 * report WMM capable, so it's always safe to turn on
1432 * TKIP MIC in this case.
1434 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1435 0, 1, NULL);
1439 * Check whether the separate key cache entries
1440 * are required to handle both tx+rx MIC keys.
1441 * With split mic keys the number of stations is limited
1442 * to 27 otherwise 59.
1444 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1445 ATH9K_CIPHER_TKIP, NULL)
1446 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1447 ATH9K_CIPHER_MIC, NULL)
1448 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1449 0, NULL))
1450 sc->splitmic = 1;
1452 /* turn on mcast key search if possible */
1453 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1454 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1455 1, NULL);
1457 sc->config.txpowlimit = ATH_TXPOWER_MAX;
1459 /* 11n Capabilities */
1460 if (ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1461 sc->sc_flags |= SC_OP_TXAGGR;
1462 sc->sc_flags |= SC_OP_RXAGGR;
1465 sc->tx_chainmask = ah->caps.tx_chainmask;
1466 sc->rx_chainmask = ah->caps.rx_chainmask;
1468 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1469 sc->rx.defant = ath9k_hw_getdefantenna(ah);
1471 if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
1472 memcpy(sc->bssidmask, ath_bcast_mac, ETH_ALEN);
1474 sc->beacon.slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1476 /* initialize beacon slots */
1477 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
1478 sc->beacon.bslot[i] = NULL;
1479 sc->beacon.bslot_aphy[i] = NULL;
1482 /* setup channels and rates */
1484 sc->sbands[IEEE80211_BAND_2GHZ].channels = ath9k_2ghz_chantable;
1485 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1486 sc->rates[IEEE80211_BAND_2GHZ];
1487 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1488 sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
1489 ARRAY_SIZE(ath9k_2ghz_chantable);
1491 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes)) {
1492 sc->sbands[IEEE80211_BAND_5GHZ].channels = ath9k_5ghz_chantable;
1493 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1494 sc->rates[IEEE80211_BAND_5GHZ];
1495 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1496 sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
1497 ARRAY_SIZE(ath9k_5ghz_chantable);
1500 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BT_COEX)
1501 ath9k_hw_btcoex_enable(sc->sc_ah);
1503 return 0;
1504 bad2:
1505 /* cleanup tx queues */
1506 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1507 if (ATH_TXQ_SETUP(sc, i))
1508 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1509 bad:
1510 if (ah)
1511 ath9k_hw_detach(ah);
1512 ath9k_exit_debug(sc);
1514 return error;
1517 void ath_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
1519 hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
1520 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1521 IEEE80211_HW_SIGNAL_DBM |
1522 IEEE80211_HW_AMPDU_AGGREGATION |
1523 IEEE80211_HW_SUPPORTS_PS |
1524 IEEE80211_HW_PS_NULLFUNC_STACK |
1525 IEEE80211_HW_SPECTRUM_MGMT;
1527 if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || modparam_nohwcrypt)
1528 hw->flags |= IEEE80211_HW_MFP_CAPABLE;
1530 hw->wiphy->interface_modes =
1531 BIT(NL80211_IFTYPE_AP) |
1532 BIT(NL80211_IFTYPE_STATION) |
1533 BIT(NL80211_IFTYPE_ADHOC) |
1534 BIT(NL80211_IFTYPE_MESH_POINT);
1536 hw->queues = 4;
1537 hw->max_rates = 4;
1538 hw->channel_change_time = 5000;
1539 hw->max_listen_interval = 10;
1540 /* Hardware supports 10 but we use 4 */
1541 hw->max_rate_tries = 4;
1542 hw->sta_data_size = sizeof(struct ath_node);
1543 hw->vif_data_size = sizeof(struct ath_vif);
1545 hw->rate_control_algorithm = "ath9k_rate_control";
1547 hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
1548 &sc->sbands[IEEE80211_BAND_2GHZ];
1549 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1550 hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1551 &sc->sbands[IEEE80211_BAND_5GHZ];
1554 int ath_attach(u16 devid, struct ath_softc *sc)
1556 struct ieee80211_hw *hw = sc->hw;
1557 int error = 0, i;
1558 struct ath_regulatory *reg;
1560 DPRINTF(sc, ATH_DBG_CONFIG, "Attach ATH hw\n");
1562 error = ath_init(devid, sc);
1563 if (error != 0)
1564 return error;
1566 /* get mac address from hardware and set in mac80211 */
1568 SET_IEEE80211_PERM_ADDR(hw, sc->sc_ah->macaddr);
1570 ath_set_hw_capab(sc, hw);
1572 error = ath_regd_init(&sc->sc_ah->regulatory, sc->hw->wiphy,
1573 ath9k_reg_notifier);
1574 if (error)
1575 return error;
1577 reg = &sc->sc_ah->regulatory;
1579 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1580 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
1581 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->caps.wireless_modes))
1582 setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
1585 /* initialize tx/rx engine */
1586 error = ath_tx_init(sc, ATH_TXBUF);
1587 if (error != 0)
1588 goto error_attach;
1590 error = ath_rx_init(sc, ATH_RXBUF);
1591 if (error != 0)
1592 goto error_attach;
1594 INIT_WORK(&sc->chan_work, ath9k_wiphy_chan_work);
1595 INIT_DELAYED_WORK(&sc->wiphy_work, ath9k_wiphy_work);
1596 sc->wiphy_scheduler_int = msecs_to_jiffies(500);
1598 error = ieee80211_register_hw(hw);
1600 if (!ath_is_world_regd(reg)) {
1601 error = regulatory_hint(hw->wiphy, reg->alpha2);
1602 if (error)
1603 goto error_attach;
1606 /* Initialize LED control */
1607 ath_init_leds(sc);
1609 ath_start_rfkill_poll(sc);
1611 return 0;
1613 error_attach:
1614 /* cleanup tx queues */
1615 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1616 if (ATH_TXQ_SETUP(sc, i))
1617 ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1619 ath9k_hw_detach(sc->sc_ah);
1620 ath9k_exit_debug(sc);
1622 return error;
1625 int ath_reset(struct ath_softc *sc, bool retry_tx)
1627 struct ath_hw *ah = sc->sc_ah;
1628 struct ieee80211_hw *hw = sc->hw;
1629 int r;
1631 ath9k_hw_set_interrupts(ah, 0);
1632 ath_drain_all_txq(sc, retry_tx);
1633 ath_stoprecv(sc);
1634 ath_flushrecv(sc);
1636 spin_lock_bh(&sc->sc_resetlock);
1637 r = ath9k_hw_reset(ah, sc->sc_ah->curchan, false);
1638 if (r)
1639 DPRINTF(sc, ATH_DBG_FATAL,
1640 "Unable to reset hardware; reset status %d\n", r);
1641 spin_unlock_bh(&sc->sc_resetlock);
1643 if (ath_startrecv(sc) != 0)
1644 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1647 * We may be doing a reset in response to a request
1648 * that changes the channel so update any state that
1649 * might change as a result.
1651 ath_cache_conf_rate(sc, &hw->conf);
1653 ath_update_txpow(sc);
1655 if (sc->sc_flags & SC_OP_BEACONS)
1656 ath_beacon_config(sc, NULL); /* restart beacons */
1658 ath9k_hw_set_interrupts(ah, sc->imask);
1660 if (retry_tx) {
1661 int i;
1662 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1663 if (ATH_TXQ_SETUP(sc, i)) {
1664 spin_lock_bh(&sc->tx.txq[i].axq_lock);
1665 ath_txq_schedule(sc, &sc->tx.txq[i]);
1666 spin_unlock_bh(&sc->tx.txq[i].axq_lock);
1671 return r;
1675 * This function will allocate both the DMA descriptor structure, and the
1676 * buffers it contains. These are used to contain the descriptors used
1677 * by the system.
1679 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1680 struct list_head *head, const char *name,
1681 int nbuf, int ndesc)
1683 #define DS2PHYS(_dd, _ds) \
1684 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1685 #define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1686 #define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1688 struct ath_desc *ds;
1689 struct ath_buf *bf;
1690 int i, bsize, error;
1692 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA: %u buffers %u desc/buf\n",
1693 name, nbuf, ndesc);
1695 INIT_LIST_HEAD(head);
1696 /* ath_desc must be a multiple of DWORDs */
1697 if ((sizeof(struct ath_desc) % 4) != 0) {
1698 DPRINTF(sc, ATH_DBG_FATAL, "ath_desc not DWORD aligned\n");
1699 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1700 error = -ENOMEM;
1701 goto fail;
1704 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1707 * Need additional DMA memory because we can't use
1708 * descriptors that cross the 4K page boundary. Assume
1709 * one skipped descriptor per 4K page.
1711 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1712 u32 ndesc_skipped =
1713 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1714 u32 dma_len;
1716 while (ndesc_skipped) {
1717 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1718 dd->dd_desc_len += dma_len;
1720 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1724 /* allocate descriptors */
1725 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
1726 &dd->dd_desc_paddr, GFP_KERNEL);
1727 if (dd->dd_desc == NULL) {
1728 error = -ENOMEM;
1729 goto fail;
1731 ds = dd->dd_desc;
1732 DPRINTF(sc, ATH_DBG_CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
1733 name, ds, (u32) dd->dd_desc_len,
1734 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1736 /* allocate buffers */
1737 bsize = sizeof(struct ath_buf) * nbuf;
1738 bf = kzalloc(bsize, GFP_KERNEL);
1739 if (bf == NULL) {
1740 error = -ENOMEM;
1741 goto fail2;
1743 dd->dd_bufptr = bf;
1745 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1746 bf->bf_desc = ds;
1747 bf->bf_daddr = DS2PHYS(dd, ds);
1749 if (!(sc->sc_ah->caps.hw_caps &
1750 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1752 * Skip descriptor addresses which can cause 4KB
1753 * boundary crossing (addr + length) with a 32 dword
1754 * descriptor fetch.
1756 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1757 ASSERT((caddr_t) bf->bf_desc <
1758 ((caddr_t) dd->dd_desc +
1759 dd->dd_desc_len));
1761 ds += ndesc;
1762 bf->bf_desc = ds;
1763 bf->bf_daddr = DS2PHYS(dd, ds);
1766 list_add_tail(&bf->list, head);
1768 return 0;
1769 fail2:
1770 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1771 dd->dd_desc_paddr);
1772 fail:
1773 memset(dd, 0, sizeof(*dd));
1774 return error;
1775 #undef ATH_DESC_4KB_BOUND_CHECK
1776 #undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1777 #undef DS2PHYS
1780 void ath_descdma_cleanup(struct ath_softc *sc,
1781 struct ath_descdma *dd,
1782 struct list_head *head)
1784 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
1785 dd->dd_desc_paddr);
1787 INIT_LIST_HEAD(head);
1788 kfree(dd->dd_bufptr);
1789 memset(dd, 0, sizeof(*dd));
1792 int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1794 int qnum;
1796 switch (queue) {
1797 case 0:
1798 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VO];
1799 break;
1800 case 1:
1801 qnum = sc->tx.hwq_map[ATH9K_WME_AC_VI];
1802 break;
1803 case 2:
1804 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1805 break;
1806 case 3:
1807 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BK];
1808 break;
1809 default:
1810 qnum = sc->tx.hwq_map[ATH9K_WME_AC_BE];
1811 break;
1814 return qnum;
1817 int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1819 int qnum;
1821 switch (queue) {
1822 case ATH9K_WME_AC_VO:
1823 qnum = 0;
1824 break;
1825 case ATH9K_WME_AC_VI:
1826 qnum = 1;
1827 break;
1828 case ATH9K_WME_AC_BE:
1829 qnum = 2;
1830 break;
1831 case ATH9K_WME_AC_BK:
1832 qnum = 3;
1833 break;
1834 default:
1835 qnum = -1;
1836 break;
1839 return qnum;
1842 /* XXX: Remove me once we don't depend on ath9k_channel for all
1843 * this redundant data */
1844 void ath9k_update_ichannel(struct ath_softc *sc, struct ieee80211_hw *hw,
1845 struct ath9k_channel *ichan)
1847 struct ieee80211_channel *chan = hw->conf.channel;
1848 struct ieee80211_conf *conf = &hw->conf;
1850 ichan->channel = chan->center_freq;
1851 ichan->chan = chan;
1853 if (chan->band == IEEE80211_BAND_2GHZ) {
1854 ichan->chanmode = CHANNEL_G;
1855 ichan->channelFlags = CHANNEL_2GHZ | CHANNEL_OFDM;
1856 } else {
1857 ichan->chanmode = CHANNEL_A;
1858 ichan->channelFlags = CHANNEL_5GHZ | CHANNEL_OFDM;
1861 sc->tx_chan_width = ATH9K_HT_MACMODE_20;
1863 if (conf_is_ht(conf)) {
1864 if (conf_is_ht40(conf))
1865 sc->tx_chan_width = ATH9K_HT_MACMODE_2040;
1867 ichan->chanmode = ath_get_extchanmode(sc, chan,
1868 conf->channel_type);
1872 /**********************/
1873 /* mac80211 callbacks */
1874 /**********************/
1876 static int ath9k_start(struct ieee80211_hw *hw)
1878 struct ath_wiphy *aphy = hw->priv;
1879 struct ath_softc *sc = aphy->sc;
1880 struct ieee80211_channel *curchan = hw->conf.channel;
1881 struct ath9k_channel *init_channel;
1882 int r;
1884 DPRINTF(sc, ATH_DBG_CONFIG, "Starting driver with "
1885 "initial channel: %d MHz\n", curchan->center_freq);
1887 mutex_lock(&sc->mutex);
1889 if (ath9k_wiphy_started(sc)) {
1890 if (sc->chan_idx == curchan->hw_value) {
1892 * Already on the operational channel, the new wiphy
1893 * can be marked active.
1895 aphy->state = ATH_WIPHY_ACTIVE;
1896 ieee80211_wake_queues(hw);
1897 } else {
1899 * Another wiphy is on another channel, start the new
1900 * wiphy in paused state.
1902 aphy->state = ATH_WIPHY_PAUSED;
1903 ieee80211_stop_queues(hw);
1905 mutex_unlock(&sc->mutex);
1906 return 0;
1908 aphy->state = ATH_WIPHY_ACTIVE;
1910 /* setup initial channel */
1912 sc->chan_idx = curchan->hw_value;
1914 init_channel = ath_get_curchannel(sc, hw);
1916 /* Reset SERDES registers */
1917 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1920 * The basic interface to setting the hardware in a good
1921 * state is ``reset''. On return the hardware is known to
1922 * be powered up and with interrupts disabled. This must
1923 * be followed by initialization of the appropriate bits
1924 * and then setup of the interrupt mask.
1926 spin_lock_bh(&sc->sc_resetlock);
1927 r = ath9k_hw_reset(sc->sc_ah, init_channel, false);
1928 if (r) {
1929 DPRINTF(sc, ATH_DBG_FATAL,
1930 "Unable to reset hardware; reset status %d "
1931 "(freq %u MHz)\n", r,
1932 curchan->center_freq);
1933 spin_unlock_bh(&sc->sc_resetlock);
1934 goto mutex_unlock;
1936 spin_unlock_bh(&sc->sc_resetlock);
1939 * This is needed only to setup initial state
1940 * but it's best done after a reset.
1942 ath_update_txpow(sc);
1945 * Setup the hardware after reset:
1946 * The receive engine is set going.
1947 * Frame transmit is handled entirely
1948 * in the frame output path; there's nothing to do
1949 * here except setup the interrupt mask.
1951 if (ath_startrecv(sc) != 0) {
1952 DPRINTF(sc, ATH_DBG_FATAL, "Unable to start recv logic\n");
1953 r = -EIO;
1954 goto mutex_unlock;
1957 /* Setup our intr mask. */
1958 sc->imask = ATH9K_INT_RX | ATH9K_INT_TX
1959 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1960 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1962 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_GTT)
1963 sc->imask |= ATH9K_INT_GTT;
1965 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
1966 sc->imask |= ATH9K_INT_CST;
1968 ath_cache_conf_rate(sc, &hw->conf);
1970 sc->sc_flags &= ~SC_OP_INVALID;
1972 /* Disable BMISS interrupt when we're not associated */
1973 sc->imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1974 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
1976 ieee80211_wake_queues(hw);
1978 queue_delayed_work(sc->hw->workqueue, &sc->tx_complete_work, 0);
1980 mutex_unlock:
1981 mutex_unlock(&sc->mutex);
1983 return r;
1986 static int ath9k_tx(struct ieee80211_hw *hw,
1987 struct sk_buff *skb)
1989 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1990 struct ath_wiphy *aphy = hw->priv;
1991 struct ath_softc *sc = aphy->sc;
1992 struct ath_tx_control txctl;
1993 int hdrlen, padsize;
1995 if (aphy->state != ATH_WIPHY_ACTIVE && aphy->state != ATH_WIPHY_SCAN) {
1996 printk(KERN_DEBUG "ath9k: %s: TX in unexpected wiphy state "
1997 "%d\n", wiphy_name(hw->wiphy), aphy->state);
1998 goto exit;
2001 if (sc->ps_enabled) {
2002 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2004 * mac80211 does not set PM field for normal data frames, so we
2005 * need to update that based on the current PS mode.
2007 if (ieee80211_is_data(hdr->frame_control) &&
2008 !ieee80211_is_nullfunc(hdr->frame_control) &&
2009 !ieee80211_has_pm(hdr->frame_control)) {
2010 DPRINTF(sc, ATH_DBG_PS, "Add PM=1 for a TX frame "
2011 "while in PS mode\n");
2012 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_PM);
2016 if (unlikely(sc->sc_ah->power_mode != ATH9K_PM_AWAKE)) {
2018 * We are using PS-Poll and mac80211 can request TX while in
2019 * power save mode. Need to wake up hardware for the TX to be
2020 * completed and if needed, also for RX of buffered frames.
2022 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2023 ath9k_ps_wakeup(sc);
2024 ath9k_hw_setrxabort(sc->sc_ah, 0);
2025 if (ieee80211_is_pspoll(hdr->frame_control)) {
2026 DPRINTF(sc, ATH_DBG_PS, "Sending PS-Poll to pick a "
2027 "buffered frame\n");
2028 sc->sc_flags |= SC_OP_WAIT_FOR_PSPOLL_DATA;
2029 } else {
2030 DPRINTF(sc, ATH_DBG_PS, "Wake up to complete TX\n");
2031 sc->sc_flags |= SC_OP_WAIT_FOR_TX_ACK;
2034 * The actual restore operation will happen only after
2035 * the sc_flags bit is cleared. We are just dropping
2036 * the ps_usecount here.
2038 ath9k_ps_restore(sc);
2041 memset(&txctl, 0, sizeof(struct ath_tx_control));
2044 * As a temporary workaround, assign seq# here; this will likely need
2045 * to be cleaned up to work better with Beacon transmission and virtual
2046 * BSSes.
2048 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
2049 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2050 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2051 sc->tx.seq_no += 0x10;
2052 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2053 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
2056 /* Add the padding after the header if this is not already done */
2057 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
2058 if (hdrlen & 3) {
2059 padsize = hdrlen % 4;
2060 if (skb_headroom(skb) < padsize)
2061 return -1;
2062 skb_push(skb, padsize);
2063 memmove(skb->data, skb->data + padsize, hdrlen);
2066 /* Check if a tx queue is available */
2068 txctl.txq = ath_test_get_txq(sc, skb);
2069 if (!txctl.txq)
2070 goto exit;
2072 DPRINTF(sc, ATH_DBG_XMIT, "transmitting packet, skb: %p\n", skb);
2074 if (ath_tx_start(hw, skb, &txctl) != 0) {
2075 DPRINTF(sc, ATH_DBG_XMIT, "TX failed\n");
2076 goto exit;
2079 return 0;
2080 exit:
2081 dev_kfree_skb_any(skb);
2082 return 0;
2085 static void ath9k_stop(struct ieee80211_hw *hw)
2087 struct ath_wiphy *aphy = hw->priv;
2088 struct ath_softc *sc = aphy->sc;
2090 aphy->state = ATH_WIPHY_INACTIVE;
2092 if (sc->sc_flags & SC_OP_INVALID) {
2093 DPRINTF(sc, ATH_DBG_ANY, "Device not present\n");
2094 return;
2097 mutex_lock(&sc->mutex);
2099 if (ath9k_wiphy_started(sc)) {
2100 mutex_unlock(&sc->mutex);
2101 return; /* another wiphy still in use */
2104 /* make sure h/w will not generate any interrupt
2105 * before setting the invalid flag. */
2106 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2108 if (!(sc->sc_flags & SC_OP_INVALID)) {
2109 ath_drain_all_txq(sc, false);
2110 ath_stoprecv(sc);
2111 ath9k_hw_phy_disable(sc->sc_ah);
2112 } else
2113 sc->rx.rxlink = NULL;
2115 wiphy_rfkill_stop_polling(sc->hw->wiphy);
2117 /* disable HAL and put h/w to sleep */
2118 ath9k_hw_disable(sc->sc_ah);
2119 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2121 sc->sc_flags |= SC_OP_INVALID;
2123 mutex_unlock(&sc->mutex);
2125 DPRINTF(sc, ATH_DBG_CONFIG, "Driver halt\n");
2128 static int ath9k_add_interface(struct ieee80211_hw *hw,
2129 struct ieee80211_if_init_conf *conf)
2131 struct ath_wiphy *aphy = hw->priv;
2132 struct ath_softc *sc = aphy->sc;
2133 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2134 enum nl80211_iftype ic_opmode = NL80211_IFTYPE_UNSPECIFIED;
2135 int ret = 0;
2137 mutex_lock(&sc->mutex);
2139 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) &&
2140 sc->nvifs > 0) {
2141 ret = -ENOBUFS;
2142 goto out;
2145 switch (conf->type) {
2146 case NL80211_IFTYPE_STATION:
2147 ic_opmode = NL80211_IFTYPE_STATION;
2148 break;
2149 case NL80211_IFTYPE_ADHOC:
2150 case NL80211_IFTYPE_AP:
2151 case NL80211_IFTYPE_MESH_POINT:
2152 if (sc->nbcnvifs >= ATH_BCBUF) {
2153 ret = -ENOBUFS;
2154 goto out;
2156 ic_opmode = conf->type;
2157 break;
2158 default:
2159 DPRINTF(sc, ATH_DBG_FATAL,
2160 "Interface type %d not yet supported\n", conf->type);
2161 ret = -EOPNOTSUPP;
2162 goto out;
2165 DPRINTF(sc, ATH_DBG_CONFIG, "Attach a VIF of type: %d\n", ic_opmode);
2167 /* Set the VIF opmode */
2168 avp->av_opmode = ic_opmode;
2169 avp->av_bslot = -1;
2171 sc->nvifs++;
2173 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
2174 ath9k_set_bssid_mask(hw);
2176 if (sc->nvifs > 1)
2177 goto out; /* skip global settings for secondary vif */
2179 if (ic_opmode == NL80211_IFTYPE_AP) {
2180 ath9k_hw_set_tsfadjust(sc->sc_ah, 1);
2181 sc->sc_flags |= SC_OP_TSF_RESET;
2184 /* Set the device opmode */
2185 sc->sc_ah->opmode = ic_opmode;
2188 * Enable MIB interrupts when there are hardware phy counters.
2189 * Note we only do this (at the moment) for station mode.
2191 if ((conf->type == NL80211_IFTYPE_STATION) ||
2192 (conf->type == NL80211_IFTYPE_ADHOC) ||
2193 (conf->type == NL80211_IFTYPE_MESH_POINT)) {
2194 if (ath9k_hw_phycounters(sc->sc_ah))
2195 sc->imask |= ATH9K_INT_MIB;
2196 sc->imask |= ATH9K_INT_TSFOOR;
2199 ath9k_hw_set_interrupts(sc->sc_ah, sc->imask);
2201 if (conf->type == NL80211_IFTYPE_AP ||
2202 conf->type == NL80211_IFTYPE_ADHOC ||
2203 conf->type == NL80211_IFTYPE_MONITOR)
2204 ath_start_ani(sc);
2206 out:
2207 mutex_unlock(&sc->mutex);
2208 return ret;
2211 static void ath9k_remove_interface(struct ieee80211_hw *hw,
2212 struct ieee80211_if_init_conf *conf)
2214 struct ath_wiphy *aphy = hw->priv;
2215 struct ath_softc *sc = aphy->sc;
2216 struct ath_vif *avp = (void *)conf->vif->drv_priv;
2217 int i;
2219 DPRINTF(sc, ATH_DBG_CONFIG, "Detach Interface\n");
2221 mutex_lock(&sc->mutex);
2223 /* Stop ANI */
2224 del_timer_sync(&sc->ani.timer);
2226 /* Reclaim beacon resources */
2227 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
2228 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC) ||
2229 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT)) {
2230 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2231 ath_beacon_return(sc, avp);
2234 sc->sc_flags &= ~SC_OP_BEACONS;
2236 for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++) {
2237 if (sc->beacon.bslot[i] == conf->vif) {
2238 printk(KERN_DEBUG "%s: vif had allocated beacon "
2239 "slot\n", __func__);
2240 sc->beacon.bslot[i] = NULL;
2241 sc->beacon.bslot_aphy[i] = NULL;
2245 sc->nvifs--;
2247 mutex_unlock(&sc->mutex);
2250 static int ath9k_config(struct ieee80211_hw *hw, u32 changed)
2252 struct ath_wiphy *aphy = hw->priv;
2253 struct ath_softc *sc = aphy->sc;
2254 struct ieee80211_conf *conf = &hw->conf;
2255 struct ath_hw *ah = sc->sc_ah;
2256 bool all_wiphys_idle = false, disable_radio = false;
2258 mutex_lock(&sc->mutex);
2260 /* Leave this as the first check */
2261 if (changed & IEEE80211_CONF_CHANGE_IDLE) {
2263 spin_lock_bh(&sc->wiphy_lock);
2264 all_wiphys_idle = ath9k_all_wiphys_idle(sc);
2265 spin_unlock_bh(&sc->wiphy_lock);
2267 if (conf->flags & IEEE80211_CONF_IDLE){
2268 if (all_wiphys_idle)
2269 disable_radio = true;
2271 else if (all_wiphys_idle) {
2272 ath_radio_enable(sc);
2273 DPRINTF(sc, ATH_DBG_CONFIG,
2274 "not-idle: enabling radio\n");
2278 if (changed & IEEE80211_CONF_CHANGE_PS) {
2279 if (conf->flags & IEEE80211_CONF_PS) {
2280 if (!(ah->caps.hw_caps &
2281 ATH9K_HW_CAP_AUTOSLEEP)) {
2282 if ((sc->imask & ATH9K_INT_TIM_TIMER) == 0) {
2283 sc->imask |= ATH9K_INT_TIM_TIMER;
2284 ath9k_hw_set_interrupts(sc->sc_ah,
2285 sc->imask);
2287 ath9k_hw_setrxabort(sc->sc_ah, 1);
2289 sc->ps_enabled = true;
2290 } else {
2291 sc->ps_enabled = false;
2292 ath9k_hw_setpower(sc->sc_ah, ATH9K_PM_AWAKE);
2293 if (!(ah->caps.hw_caps &
2294 ATH9K_HW_CAP_AUTOSLEEP)) {
2295 ath9k_hw_setrxabort(sc->sc_ah, 0);
2296 sc->sc_flags &= ~(SC_OP_WAIT_FOR_BEACON |
2297 SC_OP_WAIT_FOR_CAB |
2298 SC_OP_WAIT_FOR_PSPOLL_DATA |
2299 SC_OP_WAIT_FOR_TX_ACK);
2300 if (sc->imask & ATH9K_INT_TIM_TIMER) {
2301 sc->imask &= ~ATH9K_INT_TIM_TIMER;
2302 ath9k_hw_set_interrupts(sc->sc_ah,
2303 sc->imask);
2309 if (changed & IEEE80211_CONF_CHANGE_CHANNEL) {
2310 struct ieee80211_channel *curchan = hw->conf.channel;
2311 int pos = curchan->hw_value;
2313 aphy->chan_idx = pos;
2314 aphy->chan_is_ht = conf_is_ht(conf);
2316 if (aphy->state == ATH_WIPHY_SCAN ||
2317 aphy->state == ATH_WIPHY_ACTIVE)
2318 ath9k_wiphy_pause_all_forced(sc, aphy);
2319 else {
2321 * Do not change operational channel based on a paused
2322 * wiphy changes.
2324 goto skip_chan_change;
2327 DPRINTF(sc, ATH_DBG_CONFIG, "Set channel: %d MHz\n",
2328 curchan->center_freq);
2330 /* XXX: remove me eventualy */
2331 ath9k_update_ichannel(sc, hw, &sc->sc_ah->channels[pos]);
2333 ath_update_chainmask(sc, conf_is_ht(conf));
2335 if (ath_set_channel(sc, hw, &sc->sc_ah->channels[pos]) < 0) {
2336 DPRINTF(sc, ATH_DBG_FATAL, "Unable to set channel\n");
2337 mutex_unlock(&sc->mutex);
2338 return -EINVAL;
2342 skip_chan_change:
2343 if (changed & IEEE80211_CONF_CHANGE_POWER)
2344 sc->config.txpowlimit = 2 * conf->power_level;
2346 if (disable_radio) {
2347 DPRINTF(sc, ATH_DBG_CONFIG, "idle: disabling radio\n");
2348 ath_radio_disable(sc);
2351 mutex_unlock(&sc->mutex);
2353 return 0;
2356 #define SUPPORTED_FILTERS \
2357 (FIF_PROMISC_IN_BSS | \
2358 FIF_ALLMULTI | \
2359 FIF_CONTROL | \
2360 FIF_OTHER_BSS | \
2361 FIF_BCN_PRBRESP_PROMISC | \
2362 FIF_FCSFAIL)
2364 /* FIXME: sc->sc_full_reset ? */
2365 static void ath9k_configure_filter(struct ieee80211_hw *hw,
2366 unsigned int changed_flags,
2367 unsigned int *total_flags,
2368 int mc_count,
2369 struct dev_mc_list *mclist)
2371 struct ath_wiphy *aphy = hw->priv;
2372 struct ath_softc *sc = aphy->sc;
2373 u32 rfilt;
2375 changed_flags &= SUPPORTED_FILTERS;
2376 *total_flags &= SUPPORTED_FILTERS;
2378 sc->rx.rxfilter = *total_flags;
2379 ath9k_ps_wakeup(sc);
2380 rfilt = ath_calcrxfilter(sc);
2381 ath9k_hw_setrxfilter(sc->sc_ah, rfilt);
2382 ath9k_ps_restore(sc);
2384 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW RX filter: 0x%x\n", sc->rx.rxfilter);
2387 static void ath9k_sta_notify(struct ieee80211_hw *hw,
2388 struct ieee80211_vif *vif,
2389 enum sta_notify_cmd cmd,
2390 struct ieee80211_sta *sta)
2392 struct ath_wiphy *aphy = hw->priv;
2393 struct ath_softc *sc = aphy->sc;
2395 switch (cmd) {
2396 case STA_NOTIFY_ADD:
2397 ath_node_attach(sc, sta);
2398 break;
2399 case STA_NOTIFY_REMOVE:
2400 ath_node_detach(sc, sta);
2401 break;
2402 default:
2403 break;
2407 static int ath9k_conf_tx(struct ieee80211_hw *hw, u16 queue,
2408 const struct ieee80211_tx_queue_params *params)
2410 struct ath_wiphy *aphy = hw->priv;
2411 struct ath_softc *sc = aphy->sc;
2412 struct ath9k_tx_queue_info qi;
2413 int ret = 0, qnum;
2415 if (queue >= WME_NUM_AC)
2416 return 0;
2418 mutex_lock(&sc->mutex);
2420 memset(&qi, 0, sizeof(struct ath9k_tx_queue_info));
2422 qi.tqi_aifs = params->aifs;
2423 qi.tqi_cwmin = params->cw_min;
2424 qi.tqi_cwmax = params->cw_max;
2425 qi.tqi_burstTime = params->txop;
2426 qnum = ath_get_hal_qnum(queue, sc);
2428 DPRINTF(sc, ATH_DBG_CONFIG,
2429 "Configure tx [queue/halq] [%d/%d], "
2430 "aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
2431 queue, qnum, params->aifs, params->cw_min,
2432 params->cw_max, params->txop);
2434 ret = ath_txq_update(sc, qnum, &qi);
2435 if (ret)
2436 DPRINTF(sc, ATH_DBG_FATAL, "TXQ Update failed\n");
2438 mutex_unlock(&sc->mutex);
2440 return ret;
2443 static int ath9k_set_key(struct ieee80211_hw *hw,
2444 enum set_key_cmd cmd,
2445 struct ieee80211_vif *vif,
2446 struct ieee80211_sta *sta,
2447 struct ieee80211_key_conf *key)
2449 struct ath_wiphy *aphy = hw->priv;
2450 struct ath_softc *sc = aphy->sc;
2451 int ret = 0;
2453 if (modparam_nohwcrypt)
2454 return -ENOSPC;
2456 mutex_lock(&sc->mutex);
2457 ath9k_ps_wakeup(sc);
2458 DPRINTF(sc, ATH_DBG_CONFIG, "Set HW Key\n");
2460 switch (cmd) {
2461 case SET_KEY:
2462 ret = ath_key_config(sc, vif, sta, key);
2463 if (ret >= 0) {
2464 key->hw_key_idx = ret;
2465 /* push IV and Michael MIC generation to stack */
2466 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
2467 if (key->alg == ALG_TKIP)
2468 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC;
2469 if (sc->sc_ah->sw_mgmt_crypto && key->alg == ALG_CCMP)
2470 key->flags |= IEEE80211_KEY_FLAG_SW_MGMT;
2471 ret = 0;
2473 break;
2474 case DISABLE_KEY:
2475 ath_key_delete(sc, key);
2476 break;
2477 default:
2478 ret = -EINVAL;
2481 ath9k_ps_restore(sc);
2482 mutex_unlock(&sc->mutex);
2484 return ret;
2487 static void ath9k_bss_info_changed(struct ieee80211_hw *hw,
2488 struct ieee80211_vif *vif,
2489 struct ieee80211_bss_conf *bss_conf,
2490 u32 changed)
2492 struct ath_wiphy *aphy = hw->priv;
2493 struct ath_softc *sc = aphy->sc;
2494 struct ath_hw *ah = sc->sc_ah;
2495 struct ath_vif *avp = (void *)vif->drv_priv;
2496 u32 rfilt = 0;
2497 int error, i;
2499 mutex_lock(&sc->mutex);
2502 * TODO: Need to decide which hw opmode to use for
2503 * multi-interface cases
2504 * XXX: This belongs into add_interface!
2506 if (vif->type == NL80211_IFTYPE_AP &&
2507 ah->opmode != NL80211_IFTYPE_AP) {
2508 ah->opmode = NL80211_IFTYPE_STATION;
2509 ath9k_hw_setopmode(ah);
2510 memcpy(sc->curbssid, sc->sc_ah->macaddr, ETH_ALEN);
2511 sc->curaid = 0;
2512 ath9k_hw_write_associd(sc);
2513 /* Request full reset to get hw opmode changed properly */
2514 sc->sc_flags |= SC_OP_FULL_RESET;
2517 if ((changed & BSS_CHANGED_BSSID) &&
2518 !is_zero_ether_addr(bss_conf->bssid)) {
2519 switch (vif->type) {
2520 case NL80211_IFTYPE_STATION:
2521 case NL80211_IFTYPE_ADHOC:
2522 case NL80211_IFTYPE_MESH_POINT:
2523 /* Set BSSID */
2524 memcpy(sc->curbssid, bss_conf->bssid, ETH_ALEN);
2525 memcpy(avp->bssid, bss_conf->bssid, ETH_ALEN);
2526 sc->curaid = 0;
2527 ath9k_hw_write_associd(sc);
2529 /* Set aggregation protection mode parameters */
2530 sc->config.ath_aggr_prot = 0;
2532 DPRINTF(sc, ATH_DBG_CONFIG,
2533 "RX filter 0x%x bssid %pM aid 0x%x\n",
2534 rfilt, sc->curbssid, sc->curaid);
2536 /* need to reconfigure the beacon */
2537 sc->sc_flags &= ~SC_OP_BEACONS ;
2539 break;
2540 default:
2541 break;
2545 if ((vif->type == NL80211_IFTYPE_ADHOC) ||
2546 (vif->type == NL80211_IFTYPE_AP) ||
2547 (vif->type == NL80211_IFTYPE_MESH_POINT)) {
2548 if ((changed & BSS_CHANGED_BEACON) ||
2549 (changed & BSS_CHANGED_BEACON_ENABLED &&
2550 bss_conf->enable_beacon)) {
2552 * Allocate and setup the beacon frame.
2554 * Stop any previous beacon DMA. This may be
2555 * necessary, for example, when an ibss merge
2556 * causes reconfiguration; we may be called
2557 * with beacon transmission active.
2559 ath9k_hw_stoptxdma(sc->sc_ah, sc->beacon.beaconq);
2561 error = ath_beacon_alloc(aphy, vif);
2562 if (!error)
2563 ath_beacon_config(sc, vif);
2567 /* Check for WLAN_CAPABILITY_PRIVACY ? */
2568 if ((avp->av_opmode != NL80211_IFTYPE_STATION)) {
2569 for (i = 0; i < IEEE80211_WEP_NKID; i++)
2570 if (ath9k_hw_keyisvalid(sc->sc_ah, (u16)i))
2571 ath9k_hw_keysetmac(sc->sc_ah,
2572 (u16)i,
2573 sc->curbssid);
2576 /* Only legacy IBSS for now */
2577 if (vif->type == NL80211_IFTYPE_ADHOC)
2578 ath_update_chainmask(sc, 0);
2580 if (changed & BSS_CHANGED_ERP_PREAMBLE) {
2581 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed PREAMBLE %d\n",
2582 bss_conf->use_short_preamble);
2583 if (bss_conf->use_short_preamble)
2584 sc->sc_flags |= SC_OP_PREAMBLE_SHORT;
2585 else
2586 sc->sc_flags &= ~SC_OP_PREAMBLE_SHORT;
2589 if (changed & BSS_CHANGED_ERP_CTS_PROT) {
2590 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed CTS PROT %d\n",
2591 bss_conf->use_cts_prot);
2592 if (bss_conf->use_cts_prot &&
2593 hw->conf.channel->band != IEEE80211_BAND_5GHZ)
2594 sc->sc_flags |= SC_OP_PROTECT_ENABLE;
2595 else
2596 sc->sc_flags &= ~SC_OP_PROTECT_ENABLE;
2599 if (changed & BSS_CHANGED_ASSOC) {
2600 DPRINTF(sc, ATH_DBG_CONFIG, "BSS Changed ASSOC %d\n",
2601 bss_conf->assoc);
2602 ath9k_bss_assoc_info(sc, vif, bss_conf);
2606 * The HW TSF has to be reset when the beacon interval changes.
2607 * We set the flag here, and ath_beacon_config_ap() would take this
2608 * into account when it gets called through the subsequent
2609 * config_interface() call - with IFCC_BEACON in the changed field.
2612 if (changed & BSS_CHANGED_BEACON_INT) {
2613 sc->sc_flags |= SC_OP_TSF_RESET;
2614 sc->beacon_interval = bss_conf->beacon_int;
2617 mutex_unlock(&sc->mutex);
2620 static u64 ath9k_get_tsf(struct ieee80211_hw *hw)
2622 u64 tsf;
2623 struct ath_wiphy *aphy = hw->priv;
2624 struct ath_softc *sc = aphy->sc;
2626 mutex_lock(&sc->mutex);
2627 tsf = ath9k_hw_gettsf64(sc->sc_ah);
2628 mutex_unlock(&sc->mutex);
2630 return tsf;
2633 static void ath9k_set_tsf(struct ieee80211_hw *hw, u64 tsf)
2635 struct ath_wiphy *aphy = hw->priv;
2636 struct ath_softc *sc = aphy->sc;
2638 mutex_lock(&sc->mutex);
2639 ath9k_hw_settsf64(sc->sc_ah, tsf);
2640 mutex_unlock(&sc->mutex);
2643 static void ath9k_reset_tsf(struct ieee80211_hw *hw)
2645 struct ath_wiphy *aphy = hw->priv;
2646 struct ath_softc *sc = aphy->sc;
2648 mutex_lock(&sc->mutex);
2649 ath9k_hw_reset_tsf(sc->sc_ah);
2650 mutex_unlock(&sc->mutex);
2653 static int ath9k_ampdu_action(struct ieee80211_hw *hw,
2654 enum ieee80211_ampdu_mlme_action action,
2655 struct ieee80211_sta *sta,
2656 u16 tid, u16 *ssn)
2658 struct ath_wiphy *aphy = hw->priv;
2659 struct ath_softc *sc = aphy->sc;
2660 int ret = 0;
2662 switch (action) {
2663 case IEEE80211_AMPDU_RX_START:
2664 if (!(sc->sc_flags & SC_OP_RXAGGR))
2665 ret = -ENOTSUPP;
2666 break;
2667 case IEEE80211_AMPDU_RX_STOP:
2668 break;
2669 case IEEE80211_AMPDU_TX_START:
2670 ath_tx_aggr_start(sc, sta, tid, ssn);
2671 ieee80211_start_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2672 break;
2673 case IEEE80211_AMPDU_TX_STOP:
2674 ath_tx_aggr_stop(sc, sta, tid);
2675 ieee80211_stop_tx_ba_cb_irqsafe(hw, sta->addr, tid);
2676 break;
2677 case IEEE80211_AMPDU_TX_OPERATIONAL:
2678 ath_tx_aggr_resume(sc, sta, tid);
2679 break;
2680 default:
2681 DPRINTF(sc, ATH_DBG_FATAL, "Unknown AMPDU action\n");
2684 return ret;
2687 static void ath9k_sw_scan_start(struct ieee80211_hw *hw)
2689 struct ath_wiphy *aphy = hw->priv;
2690 struct ath_softc *sc = aphy->sc;
2692 if (ath9k_wiphy_scanning(sc)) {
2693 printk(KERN_DEBUG "ath9k: Two wiphys trying to scan at the "
2694 "same time\n");
2696 * Do not allow the concurrent scanning state for now. This
2697 * could be improved with scanning control moved into ath9k.
2699 return;
2702 aphy->state = ATH_WIPHY_SCAN;
2703 ath9k_wiphy_pause_all_forced(sc, aphy);
2705 spin_lock_bh(&sc->ani_lock);
2706 sc->sc_flags |= SC_OP_SCANNING;
2707 spin_unlock_bh(&sc->ani_lock);
2710 static void ath9k_sw_scan_complete(struct ieee80211_hw *hw)
2712 struct ath_wiphy *aphy = hw->priv;
2713 struct ath_softc *sc = aphy->sc;
2715 spin_lock_bh(&sc->ani_lock);
2716 aphy->state = ATH_WIPHY_ACTIVE;
2717 sc->sc_flags &= ~SC_OP_SCANNING;
2718 sc->sc_flags |= SC_OP_FULL_RESET;
2719 spin_unlock_bh(&sc->ani_lock);
2722 struct ieee80211_ops ath9k_ops = {
2723 .tx = ath9k_tx,
2724 .start = ath9k_start,
2725 .stop = ath9k_stop,
2726 .add_interface = ath9k_add_interface,
2727 .remove_interface = ath9k_remove_interface,
2728 .config = ath9k_config,
2729 .configure_filter = ath9k_configure_filter,
2730 .sta_notify = ath9k_sta_notify,
2731 .conf_tx = ath9k_conf_tx,
2732 .bss_info_changed = ath9k_bss_info_changed,
2733 .set_key = ath9k_set_key,
2734 .get_tsf = ath9k_get_tsf,
2735 .set_tsf = ath9k_set_tsf,
2736 .reset_tsf = ath9k_reset_tsf,
2737 .ampdu_action = ath9k_ampdu_action,
2738 .sw_scan_start = ath9k_sw_scan_start,
2739 .sw_scan_complete = ath9k_sw_scan_complete,
2740 .rfkill_poll = ath9k_rfkill_poll_state,
2743 static struct {
2744 u32 version;
2745 const char * name;
2746 } ath_mac_bb_names[] = {
2747 { AR_SREV_VERSION_5416_PCI, "5416" },
2748 { AR_SREV_VERSION_5416_PCIE, "5418" },
2749 { AR_SREV_VERSION_9100, "9100" },
2750 { AR_SREV_VERSION_9160, "9160" },
2751 { AR_SREV_VERSION_9280, "9280" },
2752 { AR_SREV_VERSION_9285, "9285" },
2753 { AR_SREV_VERSION_9287, "9287" }
2756 static struct {
2757 u16 version;
2758 const char * name;
2759 } ath_rf_names[] = {
2760 { 0, "5133" },
2761 { AR_RAD5133_SREV_MAJOR, "5133" },
2762 { AR_RAD5122_SREV_MAJOR, "5122" },
2763 { AR_RAD2133_SREV_MAJOR, "2133" },
2764 { AR_RAD2122_SREV_MAJOR, "2122" }
2768 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2770 const char *
2771 ath_mac_bb_name(u32 mac_bb_version)
2773 int i;
2775 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2776 if (ath_mac_bb_names[i].version == mac_bb_version) {
2777 return ath_mac_bb_names[i].name;
2781 return "????";
2785 * Return the RF name. "????" is returned if the RF is unknown.
2787 const char *
2788 ath_rf_name(u16 rf_version)
2790 int i;
2792 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2793 if (ath_rf_names[i].version == rf_version) {
2794 return ath_rf_names[i].name;
2798 return "????";
2801 static int __init ath9k_init(void)
2803 int error;
2805 /* Register rate control algorithm */
2806 error = ath_rate_control_register();
2807 if (error != 0) {
2808 printk(KERN_ERR
2809 "ath9k: Unable to register rate control "
2810 "algorithm: %d\n",
2811 error);
2812 goto err_out;
2815 error = ath9k_debug_create_root();
2816 if (error) {
2817 printk(KERN_ERR
2818 "ath9k: Unable to create debugfs root: %d\n",
2819 error);
2820 goto err_rate_unregister;
2823 error = ath_pci_init();
2824 if (error < 0) {
2825 printk(KERN_ERR
2826 "ath9k: No PCI devices found, driver not installed.\n");
2827 error = -ENODEV;
2828 goto err_remove_root;
2831 error = ath_ahb_init();
2832 if (error < 0) {
2833 error = -ENODEV;
2834 goto err_pci_exit;
2837 return 0;
2839 err_pci_exit:
2840 ath_pci_exit();
2842 err_remove_root:
2843 ath9k_debug_remove_root();
2844 err_rate_unregister:
2845 ath_rate_control_unregister();
2846 err_out:
2847 return error;
2849 module_init(ath9k_init);
2851 static void __exit ath9k_exit(void)
2853 ath_ahb_exit();
2854 ath_pci_exit();
2855 ath9k_debug_remove_root();
2856 ath_rate_control_unregister();
2857 printk(KERN_INFO "%s: Driver unloaded\n", dev_info);
2859 module_exit(ath9k_exit);