1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
32 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
33 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
36 static struct lock_class_key socket_class
;
40 static void queue_con(struct ceph_connection
*con
);
41 static void con_work(struct work_struct
*);
42 static void ceph_fault(struct ceph_connection
*con
);
45 * nicely render a sockaddr as a string.
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str
[MAX_ADDR_STR
][MAX_ADDR_STR_LEN
];
50 static DEFINE_SPINLOCK(addr_str_lock
);
51 static int last_addr_str
;
53 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
57 struct sockaddr_in
*in4
= (void *)ss
;
58 struct sockaddr_in6
*in6
= (void *)ss
;
60 spin_lock(&addr_str_lock
);
62 if (last_addr_str
== MAX_ADDR_STR
)
64 spin_unlock(&addr_str_lock
);
67 switch (ss
->ss_family
) {
69 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%u", &in4
->sin_addr
,
70 (unsigned int)ntohs(in4
->sin_port
));
74 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%u", &in6
->sin6_addr
,
75 (unsigned int)ntohs(in6
->sin6_port
));
79 sprintf(s
, "(unknown sockaddr family %d)", (int)ss
->ss_family
);
84 EXPORT_SYMBOL(ceph_pr_addr
);
86 static void encode_my_addr(struct ceph_messenger
*msgr
)
88 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
89 ceph_encode_addr(&msgr
->my_enc_addr
);
93 * work queue for all reading and writing to/from the socket.
95 struct workqueue_struct
*ceph_msgr_wq
;
97 int ceph_msgr_init(void)
99 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT
, 0);
101 pr_err("msgr_init failed to create workqueue\n");
106 EXPORT_SYMBOL(ceph_msgr_init
);
108 void ceph_msgr_exit(void)
110 destroy_workqueue(ceph_msgr_wq
);
112 EXPORT_SYMBOL(ceph_msgr_exit
);
114 void ceph_msgr_flush(void)
116 flush_workqueue(ceph_msgr_wq
);
118 EXPORT_SYMBOL(ceph_msgr_flush
);
122 * socket callback functions
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock
*sk
, int count_unused
)
128 struct ceph_connection
*con
=
129 (struct ceph_connection
*)sk
->sk_user_data
;
130 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
131 dout("ceph_data_ready on %p state = %lu, queueing work\n",
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock
*sk
)
140 struct ceph_connection
*con
=
141 (struct ceph_connection
*)sk
->sk_user_data
;
143 /* only queue to workqueue if there is data we want to write. */
144 if (test_bit(WRITE_PENDING
, &con
->state
)) {
145 dout("ceph_write_space %p queueing write work\n", con
);
148 dout("ceph_write_space %p nothing to write\n", con
);
151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock
*sk
)
158 struct ceph_connection
*con
=
159 (struct ceph_connection
*)sk
->sk_user_data
;
161 dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 con
, con
->state
, sk
->sk_state
);
164 if (test_bit(CLOSED
, &con
->state
))
167 switch (sk
->sk_state
) {
169 dout("ceph_state_change TCP_CLOSE\n");
171 dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 if (test_and_set_bit(SOCK_CLOSED
, &con
->state
) == 0) {
173 if (test_bit(CONNECTING
, &con
->state
))
174 con
->error_msg
= "connection failed";
176 con
->error_msg
= "socket closed";
180 case TCP_ESTABLISHED
:
181 dout("ceph_state_change TCP_ESTABLISHED\n");
188 * set up socket callbacks
190 static void set_sock_callbacks(struct socket
*sock
,
191 struct ceph_connection
*con
)
193 struct sock
*sk
= sock
->sk
;
194 sk
->sk_user_data
= (void *)con
;
195 sk
->sk_data_ready
= ceph_data_ready
;
196 sk
->sk_write_space
= ceph_write_space
;
197 sk
->sk_state_change
= ceph_state_change
;
206 * initiate connection to a remote socket.
208 static struct socket
*ceph_tcp_connect(struct ceph_connection
*con
)
210 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
215 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
220 sock
->sk
->sk_allocation
= GFP_NOFS
;
222 #ifdef CONFIG_LOCKDEP
223 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
226 set_sock_callbacks(sock
, con
);
228 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
230 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
232 if (ret
== -EINPROGRESS
) {
233 dout("connect %s EINPROGRESS sk_state = %u\n",
234 ceph_pr_addr(&con
->peer_addr
.in_addr
),
239 pr_err("connect %s error %d\n",
240 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
243 con
->error_msg
= "connect error";
251 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
253 struct kvec iov
= {buf
, len
};
254 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
256 return kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
260 * write something. @more is true if caller will be sending more data
263 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
264 size_t kvlen
, size_t len
, int more
)
266 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
269 msg
.msg_flags
|= MSG_MORE
;
271 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
273 return kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
278 * Shutdown/close the socket for the given connection.
280 static int con_close_socket(struct ceph_connection
*con
)
284 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
287 set_bit(SOCK_CLOSED
, &con
->state
);
288 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
289 sock_release(con
->sock
);
291 clear_bit(SOCK_CLOSED
, &con
->state
);
296 * Reset a connection. Discard all incoming and outgoing messages
297 * and clear *_seq state.
299 static void ceph_msg_remove(struct ceph_msg
*msg
)
301 list_del_init(&msg
->list_head
);
304 static void ceph_msg_remove_list(struct list_head
*head
)
306 while (!list_empty(head
)) {
307 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
309 ceph_msg_remove(msg
);
313 static void reset_connection(struct ceph_connection
*con
)
315 /* reset connection, out_queue, msg_ and connect_seq */
316 /* discard existing out_queue and msg_seq */
317 ceph_msg_remove_list(&con
->out_queue
);
318 ceph_msg_remove_list(&con
->out_sent
);
321 ceph_msg_put(con
->in_msg
);
325 con
->connect_seq
= 0;
328 ceph_msg_put(con
->out_msg
);
331 con
->out_keepalive_pending
= false;
333 con
->in_seq_acked
= 0;
337 * mark a peer down. drop any open connections.
339 void ceph_con_close(struct ceph_connection
*con
)
341 dout("con_close %p peer %s\n", con
,
342 ceph_pr_addr(&con
->peer_addr
.in_addr
));
343 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
344 clear_bit(STANDBY
, &con
->state
); /* avoid connect_seq bump */
345 clear_bit(LOSSYTX
, &con
->state
); /* so we retry next connect */
346 clear_bit(KEEPALIVE_PENDING
, &con
->state
);
347 clear_bit(WRITE_PENDING
, &con
->state
);
348 mutex_lock(&con
->mutex
);
349 reset_connection(con
);
350 con
->peer_global_seq
= 0;
351 cancel_delayed_work(&con
->work
);
352 mutex_unlock(&con
->mutex
);
355 EXPORT_SYMBOL(ceph_con_close
);
358 * Reopen a closed connection, with a new peer address.
360 void ceph_con_open(struct ceph_connection
*con
, struct ceph_entity_addr
*addr
)
362 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
363 set_bit(OPENING
, &con
->state
);
364 clear_bit(CLOSED
, &con
->state
);
365 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
366 con
->delay
= 0; /* reset backoff memory */
369 EXPORT_SYMBOL(ceph_con_open
);
372 * return true if this connection ever successfully opened
374 bool ceph_con_opened(struct ceph_connection
*con
)
376 return con
->connect_seq
> 0;
382 struct ceph_connection
*ceph_con_get(struct ceph_connection
*con
)
384 dout("con_get %p nref = %d -> %d\n", con
,
385 atomic_read(&con
->nref
), atomic_read(&con
->nref
) + 1);
386 if (atomic_inc_not_zero(&con
->nref
))
391 void ceph_con_put(struct ceph_connection
*con
)
393 dout("con_put %p nref = %d -> %d\n", con
,
394 atomic_read(&con
->nref
), atomic_read(&con
->nref
) - 1);
395 BUG_ON(atomic_read(&con
->nref
) == 0);
396 if (atomic_dec_and_test(&con
->nref
)) {
403 * initialize a new connection.
405 void ceph_con_init(struct ceph_messenger
*msgr
, struct ceph_connection
*con
)
407 dout("con_init %p\n", con
);
408 memset(con
, 0, sizeof(*con
));
409 atomic_set(&con
->nref
, 1);
411 mutex_init(&con
->mutex
);
412 INIT_LIST_HEAD(&con
->out_queue
);
413 INIT_LIST_HEAD(&con
->out_sent
);
414 INIT_DELAYED_WORK(&con
->work
, con_work
);
416 EXPORT_SYMBOL(ceph_con_init
);
420 * We maintain a global counter to order connection attempts. Get
421 * a unique seq greater than @gt.
423 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
427 spin_lock(&msgr
->global_seq_lock
);
428 if (msgr
->global_seq
< gt
)
429 msgr
->global_seq
= gt
;
430 ret
= ++msgr
->global_seq
;
431 spin_unlock(&msgr
->global_seq_lock
);
437 * Prepare footer for currently outgoing message, and finish things
438 * off. Assumes out_kvec* are already valid.. we just add on to the end.
440 static void prepare_write_message_footer(struct ceph_connection
*con
, int v
)
442 struct ceph_msg
*m
= con
->out_msg
;
444 dout("prepare_write_message_footer %p\n", con
);
445 con
->out_kvec_is_msg
= true;
446 con
->out_kvec
[v
].iov_base
= &m
->footer
;
447 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
448 con
->out_kvec_bytes
+= sizeof(m
->footer
);
449 con
->out_kvec_left
++;
450 con
->out_more
= m
->more_to_follow
;
451 con
->out_msg_done
= true;
455 * Prepare headers for the next outgoing message.
457 static void prepare_write_message(struct ceph_connection
*con
)
462 con
->out_kvec_bytes
= 0;
463 con
->out_kvec_is_msg
= true;
464 con
->out_msg_done
= false;
466 /* Sneak an ack in there first? If we can get it into the same
467 * TCP packet that's a good thing. */
468 if (con
->in_seq
> con
->in_seq_acked
) {
469 con
->in_seq_acked
= con
->in_seq
;
470 con
->out_kvec
[v
].iov_base
= &tag_ack
;
471 con
->out_kvec
[v
++].iov_len
= 1;
472 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
473 con
->out_kvec
[v
].iov_base
= &con
->out_temp_ack
;
474 con
->out_kvec
[v
++].iov_len
= sizeof(con
->out_temp_ack
);
475 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
478 m
= list_first_entry(&con
->out_queue
,
479 struct ceph_msg
, list_head
);
481 if (test_bit(LOSSYTX
, &con
->state
)) {
482 list_del_init(&m
->list_head
);
484 /* put message on sent list */
486 list_move_tail(&m
->list_head
, &con
->out_sent
);
490 * only assign outgoing seq # if we haven't sent this message
491 * yet. if it is requeued, resend with it's original seq.
493 if (m
->needs_out_seq
) {
494 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
495 m
->needs_out_seq
= false;
498 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
499 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
500 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
501 le32_to_cpu(m
->hdr
.data_len
),
503 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
505 /* tag + hdr + front + middle */
506 con
->out_kvec
[v
].iov_base
= &tag_msg
;
507 con
->out_kvec
[v
++].iov_len
= 1;
508 con
->out_kvec
[v
].iov_base
= &m
->hdr
;
509 con
->out_kvec
[v
++].iov_len
= sizeof(m
->hdr
);
510 con
->out_kvec
[v
++] = m
->front
;
512 con
->out_kvec
[v
++] = m
->middle
->vec
;
513 con
->out_kvec_left
= v
;
514 con
->out_kvec_bytes
+= 1 + sizeof(m
->hdr
) + m
->front
.iov_len
+
515 (m
->middle
? m
->middle
->vec
.iov_len
: 0);
516 con
->out_kvec_cur
= con
->out_kvec
;
518 /* fill in crc (except data pages), footer */
519 con
->out_msg
->hdr
.crc
=
520 cpu_to_le32(crc32c(0, (void *)&m
->hdr
,
521 sizeof(m
->hdr
) - sizeof(m
->hdr
.crc
)));
522 con
->out_msg
->footer
.flags
= CEPH_MSG_FOOTER_COMPLETE
;
523 con
->out_msg
->footer
.front_crc
=
524 cpu_to_le32(crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
));
526 con
->out_msg
->footer
.middle_crc
=
527 cpu_to_le32(crc32c(0, m
->middle
->vec
.iov_base
,
528 m
->middle
->vec
.iov_len
));
530 con
->out_msg
->footer
.middle_crc
= 0;
531 con
->out_msg
->footer
.data_crc
= 0;
532 dout("prepare_write_message front_crc %u data_crc %u\n",
533 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
534 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
536 /* is there a data payload? */
537 if (le32_to_cpu(m
->hdr
.data_len
) > 0) {
538 /* initialize page iterator */
539 con
->out_msg_pos
.page
= 0;
541 con
->out_msg_pos
.page_pos
= m
->page_alignment
;
543 con
->out_msg_pos
.page_pos
= 0;
544 con
->out_msg_pos
.data_pos
= 0;
545 con
->out_msg_pos
.did_page_crc
= 0;
546 con
->out_more
= 1; /* data + footer will follow */
548 /* no, queue up footer too and be done */
549 prepare_write_message_footer(con
, v
);
552 set_bit(WRITE_PENDING
, &con
->state
);
558 static void prepare_write_ack(struct ceph_connection
*con
)
560 dout("prepare_write_ack %p %llu -> %llu\n", con
,
561 con
->in_seq_acked
, con
->in_seq
);
562 con
->in_seq_acked
= con
->in_seq
;
564 con
->out_kvec
[0].iov_base
= &tag_ack
;
565 con
->out_kvec
[0].iov_len
= 1;
566 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
567 con
->out_kvec
[1].iov_base
= &con
->out_temp_ack
;
568 con
->out_kvec
[1].iov_len
= sizeof(con
->out_temp_ack
);
569 con
->out_kvec_left
= 2;
570 con
->out_kvec_bytes
= 1 + sizeof(con
->out_temp_ack
);
571 con
->out_kvec_cur
= con
->out_kvec
;
572 con
->out_more
= 1; /* more will follow.. eventually.. */
573 set_bit(WRITE_PENDING
, &con
->state
);
577 * Prepare to write keepalive byte.
579 static void prepare_write_keepalive(struct ceph_connection
*con
)
581 dout("prepare_write_keepalive %p\n", con
);
582 con
->out_kvec
[0].iov_base
= &tag_keepalive
;
583 con
->out_kvec
[0].iov_len
= 1;
584 con
->out_kvec_left
= 1;
585 con
->out_kvec_bytes
= 1;
586 con
->out_kvec_cur
= con
->out_kvec
;
587 set_bit(WRITE_PENDING
, &con
->state
);
591 * Connection negotiation.
594 static void prepare_connect_authorizer(struct ceph_connection
*con
)
598 int auth_protocol
= 0;
600 mutex_unlock(&con
->mutex
);
601 if (con
->ops
->get_authorizer
)
602 con
->ops
->get_authorizer(con
, &auth_buf
, &auth_len
,
603 &auth_protocol
, &con
->auth_reply_buf
,
604 &con
->auth_reply_buf_len
,
606 mutex_lock(&con
->mutex
);
608 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_protocol
);
609 con
->out_connect
.authorizer_len
= cpu_to_le32(auth_len
);
611 con
->out_kvec
[con
->out_kvec_left
].iov_base
= auth_buf
;
612 con
->out_kvec
[con
->out_kvec_left
].iov_len
= auth_len
;
613 con
->out_kvec_left
++;
614 con
->out_kvec_bytes
+= auth_len
;
618 * We connected to a peer and are saying hello.
620 static void prepare_write_banner(struct ceph_messenger
*msgr
,
621 struct ceph_connection
*con
)
623 int len
= strlen(CEPH_BANNER
);
625 con
->out_kvec
[0].iov_base
= CEPH_BANNER
;
626 con
->out_kvec
[0].iov_len
= len
;
627 con
->out_kvec
[1].iov_base
= &msgr
->my_enc_addr
;
628 con
->out_kvec
[1].iov_len
= sizeof(msgr
->my_enc_addr
);
629 con
->out_kvec_left
= 2;
630 con
->out_kvec_bytes
= len
+ sizeof(msgr
->my_enc_addr
);
631 con
->out_kvec_cur
= con
->out_kvec
;
633 set_bit(WRITE_PENDING
, &con
->state
);
636 static void prepare_write_connect(struct ceph_messenger
*msgr
,
637 struct ceph_connection
*con
,
640 unsigned global_seq
= get_global_seq(con
->msgr
, 0);
643 switch (con
->peer_name
.type
) {
644 case CEPH_ENTITY_TYPE_MON
:
645 proto
= CEPH_MONC_PROTOCOL
;
647 case CEPH_ENTITY_TYPE_OSD
:
648 proto
= CEPH_OSDC_PROTOCOL
;
650 case CEPH_ENTITY_TYPE_MDS
:
651 proto
= CEPH_MDSC_PROTOCOL
;
657 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
658 con
->connect_seq
, global_seq
, proto
);
660 con
->out_connect
.features
= cpu_to_le64(msgr
->supported_features
);
661 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
662 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
663 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
664 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
665 con
->out_connect
.flags
= 0;
668 con
->out_kvec_left
= 0;
669 con
->out_kvec_bytes
= 0;
671 con
->out_kvec
[con
->out_kvec_left
].iov_base
= &con
->out_connect
;
672 con
->out_kvec
[con
->out_kvec_left
].iov_len
= sizeof(con
->out_connect
);
673 con
->out_kvec_left
++;
674 con
->out_kvec_bytes
+= sizeof(con
->out_connect
);
675 con
->out_kvec_cur
= con
->out_kvec
;
677 set_bit(WRITE_PENDING
, &con
->state
);
679 prepare_connect_authorizer(con
);
684 * write as much of pending kvecs to the socket as we can.
686 * 0 -> socket full, but more to do
689 static int write_partial_kvec(struct ceph_connection
*con
)
693 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
694 while (con
->out_kvec_bytes
> 0) {
695 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
696 con
->out_kvec_left
, con
->out_kvec_bytes
,
700 con
->out_kvec_bytes
-= ret
;
701 if (con
->out_kvec_bytes
== 0)
704 if (ret
>= con
->out_kvec_cur
->iov_len
) {
705 ret
-= con
->out_kvec_cur
->iov_len
;
707 con
->out_kvec_left
--;
709 con
->out_kvec_cur
->iov_len
-= ret
;
710 con
->out_kvec_cur
->iov_base
+= ret
;
716 con
->out_kvec_left
= 0;
717 con
->out_kvec_is_msg
= false;
720 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
721 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
722 return ret
; /* done! */
726 static void init_bio_iter(struct bio
*bio
, struct bio
**iter
, int *seg
)
737 static void iter_bio_next(struct bio
**bio_iter
, int *seg
)
739 if (*bio_iter
== NULL
)
742 BUG_ON(*seg
>= (*bio_iter
)->bi_vcnt
);
745 if (*seg
== (*bio_iter
)->bi_vcnt
)
746 init_bio_iter((*bio_iter
)->bi_next
, bio_iter
, seg
);
751 * Write as much message data payload as we can. If we finish, queue
753 * 1 -> done, footer is now queued in out_kvec[].
754 * 0 -> socket full, but more to do
757 static int write_partial_msg_pages(struct ceph_connection
*con
)
759 struct ceph_msg
*msg
= con
->out_msg
;
760 unsigned data_len
= le32_to_cpu(msg
->hdr
.data_len
);
762 int crc
= con
->msgr
->nocrc
;
766 size_t trail_len
= (msg
->trail
? msg
->trail
->length
: 0);
768 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
769 con
, con
->out_msg
, con
->out_msg_pos
.page
, con
->out_msg
->nr_pages
,
770 con
->out_msg_pos
.page_pos
);
773 if (msg
->bio
&& !msg
->bio_iter
)
774 init_bio_iter(msg
->bio
, &msg
->bio_iter
, &msg
->bio_seg
);
777 while (data_len
> con
->out_msg_pos
.data_pos
) {
778 struct page
*page
= NULL
;
780 int max_write
= PAGE_SIZE
;
783 total_max_write
= data_len
- trail_len
-
784 con
->out_msg_pos
.data_pos
;
787 * if we are calculating the data crc (the default), we need
788 * to map the page. if our pages[] has been revoked, use the
792 /* have we reached the trail part of the data? */
793 if (con
->out_msg_pos
.data_pos
>= data_len
- trail_len
) {
796 total_max_write
= data_len
- con
->out_msg_pos
.data_pos
;
798 page
= list_first_entry(&msg
->trail
->head
,
802 max_write
= PAGE_SIZE
;
803 } else if (msg
->pages
) {
804 page
= msg
->pages
[con
->out_msg_pos
.page
];
807 } else if (msg
->pagelist
) {
808 page
= list_first_entry(&msg
->pagelist
->head
,
813 } else if (msg
->bio
) {
816 bv
= bio_iovec_idx(msg
->bio_iter
, msg
->bio_seg
);
818 page_shift
= bv
->bv_offset
;
820 kaddr
= kmap(page
) + page_shift
;
821 max_write
= bv
->bv_len
;
824 page
= con
->msgr
->zero_page
;
826 kaddr
= page_address(con
->msgr
->zero_page
);
828 len
= min_t(int, max_write
- con
->out_msg_pos
.page_pos
,
831 if (crc
&& !con
->out_msg_pos
.did_page_crc
) {
832 void *base
= kaddr
+ con
->out_msg_pos
.page_pos
;
833 u32 tmpcrc
= le32_to_cpu(con
->out_msg
->footer
.data_crc
);
835 BUG_ON(kaddr
== NULL
);
836 con
->out_msg
->footer
.data_crc
=
837 cpu_to_le32(crc32c(tmpcrc
, base
, len
));
838 con
->out_msg_pos
.did_page_crc
= 1;
840 ret
= kernel_sendpage(con
->sock
, page
,
841 con
->out_msg_pos
.page_pos
+ page_shift
,
843 MSG_DONTWAIT
| MSG_NOSIGNAL
|
847 (msg
->pages
|| msg
->pagelist
|| msg
->bio
|| in_trail
))
853 con
->out_msg_pos
.data_pos
+= ret
;
854 con
->out_msg_pos
.page_pos
+= ret
;
856 con
->out_msg_pos
.page_pos
= 0;
857 con
->out_msg_pos
.page
++;
858 con
->out_msg_pos
.did_page_crc
= 0;
860 list_move_tail(&page
->lru
,
862 else if (msg
->pagelist
)
863 list_move_tail(&page
->lru
,
864 &msg
->pagelist
->head
);
867 iter_bio_next(&msg
->bio_iter
, &msg
->bio_seg
);
872 dout("write_partial_msg_pages %p msg %p done\n", con
, msg
);
874 /* prepare and queue up footer, too */
876 con
->out_msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
877 con
->out_kvec_bytes
= 0;
878 con
->out_kvec_left
= 0;
879 con
->out_kvec_cur
= con
->out_kvec
;
880 prepare_write_message_footer(con
, 0);
889 static int write_partial_skip(struct ceph_connection
*con
)
893 while (con
->out_skip
> 0) {
895 .iov_base
= page_address(con
->msgr
->zero_page
),
896 .iov_len
= min(con
->out_skip
, (int)PAGE_CACHE_SIZE
)
899 ret
= ceph_tcp_sendmsg(con
->sock
, &iov
, 1, iov
.iov_len
, 1);
902 con
->out_skip
-= ret
;
910 * Prepare to read connection handshake, or an ack.
912 static void prepare_read_banner(struct ceph_connection
*con
)
914 dout("prepare_read_banner %p\n", con
);
915 con
->in_base_pos
= 0;
918 static void prepare_read_connect(struct ceph_connection
*con
)
920 dout("prepare_read_connect %p\n", con
);
921 con
->in_base_pos
= 0;
924 static void prepare_read_ack(struct ceph_connection
*con
)
926 dout("prepare_read_ack %p\n", con
);
927 con
->in_base_pos
= 0;
930 static void prepare_read_tag(struct ceph_connection
*con
)
932 dout("prepare_read_tag %p\n", con
);
933 con
->in_base_pos
= 0;
934 con
->in_tag
= CEPH_MSGR_TAG_READY
;
938 * Prepare to read a message.
940 static int prepare_read_message(struct ceph_connection
*con
)
942 dout("prepare_read_message %p\n", con
);
943 BUG_ON(con
->in_msg
!= NULL
);
944 con
->in_base_pos
= 0;
945 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
950 static int read_partial(struct ceph_connection
*con
,
951 int *to
, int size
, void *object
)
954 while (con
->in_base_pos
< *to
) {
955 int left
= *to
- con
->in_base_pos
;
956 int have
= size
- left
;
957 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
960 con
->in_base_pos
+= ret
;
967 * Read all or part of the connect-side handshake on a new connection
969 static int read_partial_banner(struct ceph_connection
*con
)
973 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
976 ret
= read_partial(con
, &to
, strlen(CEPH_BANNER
), con
->in_banner
);
979 ret
= read_partial(con
, &to
, sizeof(con
->actual_peer_addr
),
980 &con
->actual_peer_addr
);
983 ret
= read_partial(con
, &to
, sizeof(con
->peer_addr_for_me
),
984 &con
->peer_addr_for_me
);
991 static int read_partial_connect(struct ceph_connection
*con
)
995 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
997 ret
= read_partial(con
, &to
, sizeof(con
->in_reply
), &con
->in_reply
);
1000 ret
= read_partial(con
, &to
, le32_to_cpu(con
->in_reply
.authorizer_len
),
1001 con
->auth_reply_buf
);
1005 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1006 con
, (int)con
->in_reply
.tag
,
1007 le32_to_cpu(con
->in_reply
.connect_seq
),
1008 le32_to_cpu(con
->in_reply
.global_seq
));
1015 * Verify the hello banner looks okay.
1017 static int verify_hello(struct ceph_connection
*con
)
1019 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1020 pr_err("connect to %s got bad banner\n",
1021 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1022 con
->error_msg
= "protocol error, bad banner";
1028 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1030 switch (ss
->ss_family
) {
1032 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1035 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1036 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1037 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1038 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1043 static int addr_port(struct sockaddr_storage
*ss
)
1045 switch (ss
->ss_family
) {
1047 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1049 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1054 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1056 switch (ss
->ss_family
) {
1058 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1060 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1065 * Parse an ip[:port] list into an addr array. Use the default
1066 * monitor port if a port isn't specified.
1068 int ceph_parse_ips(const char *c
, const char *end
,
1069 struct ceph_entity_addr
*addr
,
1070 int max_count
, int *count
)
1075 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1076 for (i
= 0; i
< max_count
; i
++) {
1078 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1079 struct sockaddr_in
*in4
= (void *)ss
;
1080 struct sockaddr_in6
*in6
= (void *)ss
;
1089 memset(ss
, 0, sizeof(*ss
));
1090 if (in4_pton(p
, end
- p
, (u8
*)&in4
->sin_addr
.s_addr
,
1092 ss
->ss_family
= AF_INET
;
1093 else if (in6_pton(p
, end
- p
, (u8
*)&in6
->sin6_addr
.s6_addr
,
1095 ss
->ss_family
= AF_INET6
;
1102 dout("missing matching ']'\n");
1109 if (p
< end
&& *p
== ':') {
1112 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1113 port
= (port
* 10) + (*p
- '0');
1116 if (port
> 65535 || port
== 0)
1119 port
= CEPH_MON_PORT
;
1122 addr_set_port(ss
, port
);
1124 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1141 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1144 EXPORT_SYMBOL(ceph_parse_ips
);
1146 static int process_banner(struct ceph_connection
*con
)
1148 dout("process_banner on %p\n", con
);
1150 if (verify_hello(con
) < 0)
1153 ceph_decode_addr(&con
->actual_peer_addr
);
1154 ceph_decode_addr(&con
->peer_addr_for_me
);
1157 * Make sure the other end is who we wanted. note that the other
1158 * end may not yet know their ip address, so if it's 0.0.0.0, give
1159 * them the benefit of the doubt.
1161 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1162 sizeof(con
->peer_addr
)) != 0 &&
1163 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1164 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1165 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1166 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1167 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1168 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1169 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1170 con
->error_msg
= "wrong peer at address";
1175 * did we learn our address?
1177 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1178 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1180 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1181 &con
->peer_addr_for_me
.in_addr
,
1182 sizeof(con
->peer_addr_for_me
.in_addr
));
1183 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1184 encode_my_addr(con
->msgr
);
1185 dout("process_banner learned my addr is %s\n",
1186 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1189 set_bit(NEGOTIATING
, &con
->state
);
1190 prepare_read_connect(con
);
1194 static void fail_protocol(struct ceph_connection
*con
)
1196 reset_connection(con
);
1197 set_bit(CLOSED
, &con
->state
); /* in case there's queued work */
1199 mutex_unlock(&con
->mutex
);
1200 if (con
->ops
->bad_proto
)
1201 con
->ops
->bad_proto(con
);
1202 mutex_lock(&con
->mutex
);
1205 static int process_connect(struct ceph_connection
*con
)
1207 u64 sup_feat
= con
->msgr
->supported_features
;
1208 u64 req_feat
= con
->msgr
->required_features
;
1209 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
1211 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1213 switch (con
->in_reply
.tag
) {
1214 case CEPH_MSGR_TAG_FEATURES
:
1215 pr_err("%s%lld %s feature set mismatch,"
1216 " my %llx < server's %llx, missing %llx\n",
1217 ENTITY_NAME(con
->peer_name
),
1218 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1219 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1220 con
->error_msg
= "missing required protocol features";
1224 case CEPH_MSGR_TAG_BADPROTOVER
:
1225 pr_err("%s%lld %s protocol version mismatch,"
1226 " my %d != server's %d\n",
1227 ENTITY_NAME(con
->peer_name
),
1228 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1229 le32_to_cpu(con
->out_connect
.protocol_version
),
1230 le32_to_cpu(con
->in_reply
.protocol_version
));
1231 con
->error_msg
= "protocol version mismatch";
1235 case CEPH_MSGR_TAG_BADAUTHORIZER
:
1237 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
1239 if (con
->auth_retry
== 2) {
1240 con
->error_msg
= "connect authorization failure";
1241 reset_connection(con
);
1242 set_bit(CLOSED
, &con
->state
);
1245 con
->auth_retry
= 1;
1246 prepare_write_connect(con
->msgr
, con
, 0);
1247 prepare_read_connect(con
);
1250 case CEPH_MSGR_TAG_RESETSESSION
:
1252 * If we connected with a large connect_seq but the peer
1253 * has no record of a session with us (no connection, or
1254 * connect_seq == 0), they will send RESETSESION to indicate
1255 * that they must have reset their session, and may have
1258 dout("process_connect got RESET peer seq %u\n",
1259 le32_to_cpu(con
->in_connect
.connect_seq
));
1260 pr_err("%s%lld %s connection reset\n",
1261 ENTITY_NAME(con
->peer_name
),
1262 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1263 reset_connection(con
);
1264 prepare_write_connect(con
->msgr
, con
, 0);
1265 prepare_read_connect(con
);
1267 /* Tell ceph about it. */
1268 mutex_unlock(&con
->mutex
);
1269 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
1270 if (con
->ops
->peer_reset
)
1271 con
->ops
->peer_reset(con
);
1272 mutex_lock(&con
->mutex
);
1275 case CEPH_MSGR_TAG_RETRY_SESSION
:
1277 * If we sent a smaller connect_seq than the peer has, try
1278 * again with a larger value.
1280 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1281 le32_to_cpu(con
->out_connect
.connect_seq
),
1282 le32_to_cpu(con
->in_connect
.connect_seq
));
1283 con
->connect_seq
= le32_to_cpu(con
->in_connect
.connect_seq
);
1284 prepare_write_connect(con
->msgr
, con
, 0);
1285 prepare_read_connect(con
);
1288 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
1290 * If we sent a smaller global_seq than the peer has, try
1291 * again with a larger value.
1293 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1294 con
->peer_global_seq
,
1295 le32_to_cpu(con
->in_connect
.global_seq
));
1296 get_global_seq(con
->msgr
,
1297 le32_to_cpu(con
->in_connect
.global_seq
));
1298 prepare_write_connect(con
->msgr
, con
, 0);
1299 prepare_read_connect(con
);
1302 case CEPH_MSGR_TAG_READY
:
1303 if (req_feat
& ~server_feat
) {
1304 pr_err("%s%lld %s protocol feature mismatch,"
1305 " my required %llx > server's %llx, need %llx\n",
1306 ENTITY_NAME(con
->peer_name
),
1307 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1308 req_feat
, server_feat
, req_feat
& ~server_feat
);
1309 con
->error_msg
= "missing required protocol features";
1313 clear_bit(CONNECTING
, &con
->state
);
1314 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
1316 con
->peer_features
= server_feat
;
1317 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1318 con
->peer_global_seq
,
1319 le32_to_cpu(con
->in_reply
.connect_seq
),
1321 WARN_ON(con
->connect_seq
!=
1322 le32_to_cpu(con
->in_reply
.connect_seq
));
1324 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
1325 set_bit(LOSSYTX
, &con
->state
);
1327 prepare_read_tag(con
);
1330 case CEPH_MSGR_TAG_WAIT
:
1332 * If there is a connection race (we are opening
1333 * connections to each other), one of us may just have
1334 * to WAIT. This shouldn't happen if we are the
1337 pr_err("process_connect peer connecting WAIT\n");
1340 pr_err("connect protocol error, will retry\n");
1341 con
->error_msg
= "protocol error, garbage tag during connect";
1349 * read (part of) an ack
1351 static int read_partial_ack(struct ceph_connection
*con
)
1355 return read_partial(con
, &to
, sizeof(con
->in_temp_ack
),
1361 * We can finally discard anything that's been acked.
1363 static void process_ack(struct ceph_connection
*con
)
1366 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
1369 while (!list_empty(&con
->out_sent
)) {
1370 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
1372 seq
= le64_to_cpu(m
->hdr
.seq
);
1375 dout("got ack for seq %llu type %d at %p\n", seq
,
1376 le16_to_cpu(m
->hdr
.type
), m
);
1379 prepare_read_tag(con
);
1385 static int read_partial_message_section(struct ceph_connection
*con
,
1386 struct kvec
*section
,
1387 unsigned int sec_len
, u32
*crc
)
1393 while (section
->iov_len
< sec_len
) {
1394 BUG_ON(section
->iov_base
== NULL
);
1395 left
= sec_len
- section
->iov_len
;
1396 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
1397 section
->iov_len
, left
);
1400 section
->iov_len
+= ret
;
1401 if (section
->iov_len
== sec_len
)
1402 *crc
= crc32c(0, section
->iov_base
,
1409 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
1410 struct ceph_msg_header
*hdr
,
1414 static int read_partial_message_pages(struct ceph_connection
*con
,
1415 struct page
**pages
,
1416 unsigned data_len
, int datacrc
)
1422 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1423 (int)(PAGE_SIZE
- con
->in_msg_pos
.page_pos
));
1425 BUG_ON(pages
== NULL
);
1426 p
= kmap(pages
[con
->in_msg_pos
.page
]);
1427 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1429 if (ret
> 0 && datacrc
)
1431 crc32c(con
->in_data_crc
,
1432 p
+ con
->in_msg_pos
.page_pos
, ret
);
1433 kunmap(pages
[con
->in_msg_pos
.page
]);
1436 con
->in_msg_pos
.data_pos
+= ret
;
1437 con
->in_msg_pos
.page_pos
+= ret
;
1438 if (con
->in_msg_pos
.page_pos
== PAGE_SIZE
) {
1439 con
->in_msg_pos
.page_pos
= 0;
1440 con
->in_msg_pos
.page
++;
1447 static int read_partial_message_bio(struct ceph_connection
*con
,
1448 struct bio
**bio_iter
, int *bio_seg
,
1449 unsigned data_len
, int datacrc
)
1451 struct bio_vec
*bv
= bio_iovec_idx(*bio_iter
, *bio_seg
);
1458 left
= min((int)(data_len
- con
->in_msg_pos
.data_pos
),
1459 (int)(bv
->bv_len
- con
->in_msg_pos
.page_pos
));
1461 p
= kmap(bv
->bv_page
) + bv
->bv_offset
;
1463 ret
= ceph_tcp_recvmsg(con
->sock
, p
+ con
->in_msg_pos
.page_pos
,
1465 if (ret
> 0 && datacrc
)
1467 crc32c(con
->in_data_crc
,
1468 p
+ con
->in_msg_pos
.page_pos
, ret
);
1469 kunmap(bv
->bv_page
);
1472 con
->in_msg_pos
.data_pos
+= ret
;
1473 con
->in_msg_pos
.page_pos
+= ret
;
1474 if (con
->in_msg_pos
.page_pos
== bv
->bv_len
) {
1475 con
->in_msg_pos
.page_pos
= 0;
1476 iter_bio_next(bio_iter
, bio_seg
);
1484 * read (part of) a message.
1486 static int read_partial_message(struct ceph_connection
*con
)
1488 struct ceph_msg
*m
= con
->in_msg
;
1491 unsigned front_len
, middle_len
, data_len
;
1492 int datacrc
= con
->msgr
->nocrc
;
1496 dout("read_partial_message con %p msg %p\n", con
, m
);
1499 while (con
->in_base_pos
< sizeof(con
->in_hdr
)) {
1500 left
= sizeof(con
->in_hdr
) - con
->in_base_pos
;
1501 ret
= ceph_tcp_recvmsg(con
->sock
,
1502 (char *)&con
->in_hdr
+ con
->in_base_pos
,
1506 con
->in_base_pos
+= ret
;
1507 if (con
->in_base_pos
== sizeof(con
->in_hdr
)) {
1508 u32 crc
= crc32c(0, (void *)&con
->in_hdr
,
1509 sizeof(con
->in_hdr
) - sizeof(con
->in_hdr
.crc
));
1510 if (crc
!= le32_to_cpu(con
->in_hdr
.crc
)) {
1511 pr_err("read_partial_message bad hdr "
1512 " crc %u != expected %u\n",
1513 crc
, con
->in_hdr
.crc
);
1518 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
1519 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
1521 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
1522 if (middle_len
> CEPH_MSG_MAX_DATA_LEN
)
1524 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
1525 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
1529 seq
= le64_to_cpu(con
->in_hdr
.seq
);
1530 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
1531 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1532 ENTITY_NAME(con
->peer_name
),
1533 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1534 seq
, con
->in_seq
+ 1);
1535 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1537 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1539 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
1540 pr_err("read_partial_message bad seq %lld expected %lld\n",
1541 seq
, con
->in_seq
+ 1);
1542 con
->error_msg
= "bad message sequence # for incoming message";
1546 /* allocate message? */
1548 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
1549 con
->in_hdr
.front_len
, con
->in_hdr
.data_len
);
1551 con
->in_msg
= ceph_alloc_msg(con
, &con
->in_hdr
, &skip
);
1553 /* skip this message */
1554 dout("alloc_msg said skip message\n");
1555 BUG_ON(con
->in_msg
);
1556 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
1558 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1564 "error allocating memory for incoming message";
1568 m
->front
.iov_len
= 0; /* haven't read it yet */
1570 m
->middle
->vec
.iov_len
= 0;
1572 con
->in_msg_pos
.page
= 0;
1574 con
->in_msg_pos
.page_pos
= m
->page_alignment
;
1576 con
->in_msg_pos
.page_pos
= 0;
1577 con
->in_msg_pos
.data_pos
= 0;
1581 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
1582 &con
->in_front_crc
);
1588 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
1590 &con
->in_middle_crc
);
1595 if (m
->bio
&& !m
->bio_iter
)
1596 init_bio_iter(m
->bio
, &m
->bio_iter
, &m
->bio_seg
);
1600 while (con
->in_msg_pos
.data_pos
< data_len
) {
1602 ret
= read_partial_message_pages(con
, m
->pages
,
1607 } else if (m
->bio
) {
1609 ret
= read_partial_message_bio(con
,
1610 &m
->bio_iter
, &m
->bio_seg
,
1621 to
= sizeof(m
->hdr
) + sizeof(m
->footer
);
1622 while (con
->in_base_pos
< to
) {
1623 left
= to
- con
->in_base_pos
;
1624 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)&m
->footer
+
1625 (con
->in_base_pos
- sizeof(m
->hdr
)),
1629 con
->in_base_pos
+= ret
;
1631 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1632 m
, front_len
, m
->footer
.front_crc
, middle_len
,
1633 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
1636 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
1637 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1638 m
, con
->in_front_crc
, m
->footer
.front_crc
);
1641 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
1642 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1643 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
1647 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
1648 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
1649 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
1650 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
1654 return 1; /* done! */
1658 * Process message. This happens in the worker thread. The callback should
1659 * be careful not to do anything that waits on other incoming messages or it
1662 static void process_message(struct ceph_connection
*con
)
1664 struct ceph_msg
*msg
;
1669 /* if first message, set peer_name */
1670 if (con
->peer_name
.type
== 0)
1671 con
->peer_name
= msg
->hdr
.src
;
1674 mutex_unlock(&con
->mutex
);
1676 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1677 msg
, le64_to_cpu(msg
->hdr
.seq
),
1678 ENTITY_NAME(msg
->hdr
.src
),
1679 le16_to_cpu(msg
->hdr
.type
),
1680 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
1681 le32_to_cpu(msg
->hdr
.front_len
),
1682 le32_to_cpu(msg
->hdr
.data_len
),
1683 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
1684 con
->ops
->dispatch(con
, msg
);
1686 mutex_lock(&con
->mutex
);
1687 prepare_read_tag(con
);
1692 * Write something to the socket. Called in a worker thread when the
1693 * socket appears to be writeable and we have something ready to send.
1695 static int try_write(struct ceph_connection
*con
)
1697 struct ceph_messenger
*msgr
= con
->msgr
;
1700 dout("try_write start %p state %lu nref %d\n", con
, con
->state
,
1701 atomic_read(&con
->nref
));
1704 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
1706 /* open the socket first? */
1707 if (con
->sock
== NULL
) {
1709 * if we were STANDBY and are reconnecting _this_
1710 * connection, bump connect_seq now. Always bump
1713 if (test_and_clear_bit(STANDBY
, &con
->state
))
1716 prepare_write_banner(msgr
, con
);
1717 prepare_write_connect(msgr
, con
, 1);
1718 prepare_read_banner(con
);
1719 set_bit(CONNECTING
, &con
->state
);
1720 clear_bit(NEGOTIATING
, &con
->state
);
1722 BUG_ON(con
->in_msg
);
1723 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1724 dout("try_write initiating connect on %p new state %lu\n",
1726 con
->sock
= ceph_tcp_connect(con
);
1727 if (IS_ERR(con
->sock
)) {
1729 con
->error_msg
= "connect error";
1736 /* kvec data queued? */
1737 if (con
->out_skip
) {
1738 ret
= write_partial_skip(con
);
1742 dout("try_write write_partial_skip err %d\n", ret
);
1746 if (con
->out_kvec_left
) {
1747 ret
= write_partial_kvec(con
);
1754 if (con
->out_msg_done
) {
1755 ceph_msg_put(con
->out_msg
);
1756 con
->out_msg
= NULL
; /* we're done with this one */
1760 ret
= write_partial_msg_pages(con
);
1762 goto more_kvec
; /* we need to send the footer, too! */
1766 dout("try_write write_partial_msg_pages err %d\n",
1773 if (!test_bit(CONNECTING
, &con
->state
)) {
1774 /* is anything else pending? */
1775 if (!list_empty(&con
->out_queue
)) {
1776 prepare_write_message(con
);
1779 if (con
->in_seq
> con
->in_seq_acked
) {
1780 prepare_write_ack(con
);
1783 if (test_and_clear_bit(KEEPALIVE_PENDING
, &con
->state
)) {
1784 prepare_write_keepalive(con
);
1789 /* Nothing to do! */
1790 clear_bit(WRITE_PENDING
, &con
->state
);
1791 dout("try_write nothing else to write.\n");
1795 dout("try_write done on %p\n", con
);
1802 * Read what we can from the socket.
1804 static int try_read(struct ceph_connection
*con
)
1811 if (test_bit(STANDBY
, &con
->state
))
1814 dout("try_read start on %p\n", con
);
1817 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
1819 if (test_bit(CONNECTING
, &con
->state
)) {
1820 if (!test_bit(NEGOTIATING
, &con
->state
)) {
1821 dout("try_read connecting\n");
1822 ret
= read_partial_banner(con
);
1825 if (process_banner(con
) < 0) {
1830 ret
= read_partial_connect(con
);
1833 if (process_connect(con
) < 0) {
1840 if (con
->in_base_pos
< 0) {
1842 * skipping + discarding content.
1844 * FIXME: there must be a better way to do this!
1846 static char buf
[1024];
1847 int skip
= min(1024, -con
->in_base_pos
);
1848 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
1849 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
1852 con
->in_base_pos
+= ret
;
1853 if (con
->in_base_pos
)
1856 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
1860 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
1863 dout("try_read got tag %d\n", (int)con
->in_tag
);
1864 switch (con
->in_tag
) {
1865 case CEPH_MSGR_TAG_MSG
:
1866 prepare_read_message(con
);
1868 case CEPH_MSGR_TAG_ACK
:
1869 prepare_read_ack(con
);
1871 case CEPH_MSGR_TAG_CLOSE
:
1872 set_bit(CLOSED
, &con
->state
); /* fixme */
1878 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
1879 ret
= read_partial_message(con
);
1883 con
->error_msg
= "bad crc";
1887 con
->error_msg
= "io error";
1893 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
1895 process_message(con
);
1898 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
) {
1899 ret
= read_partial_ack(con
);
1909 dout("try_read done on %p\n", con
);
1913 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
1914 con
->error_msg
= "protocol error, garbage tag";
1921 * Atomically queue work on a connection. Bump @con reference to
1922 * avoid races with connection teardown.
1924 static void queue_con(struct ceph_connection
*con
)
1926 if (test_bit(DEAD
, &con
->state
)) {
1927 dout("queue_con %p ignoring: DEAD\n",
1932 if (!con
->ops
->get(con
)) {
1933 dout("queue_con %p ref count 0\n", con
);
1937 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, 0)) {
1938 dout("queue_con %p - already queued\n", con
);
1941 dout("queue_con %p\n", con
);
1946 * Do some work on a connection. Drop a connection ref when we're done.
1948 static void con_work(struct work_struct
*work
)
1950 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
1953 mutex_lock(&con
->mutex
);
1955 if (test_bit(CLOSED
, &con
->state
)) { /* e.g. if we are replaced */
1956 dout("con_work CLOSED\n");
1957 con_close_socket(con
);
1960 if (test_and_clear_bit(OPENING
, &con
->state
)) {
1961 /* reopen w/ new peer */
1962 dout("con_work OPENING\n");
1963 con_close_socket(con
);
1966 if (test_and_clear_bit(SOCK_CLOSED
, &con
->state
) ||
1967 try_read(con
) < 0 ||
1968 try_write(con
) < 0) {
1969 mutex_unlock(&con
->mutex
);
1970 ceph_fault(con
); /* error/fault path */
1975 mutex_unlock(&con
->mutex
);
1982 * Generic error/fault handler. A retry mechanism is used with
1983 * exponential backoff
1985 static void ceph_fault(struct ceph_connection
*con
)
1987 pr_err("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
1988 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
1989 dout("fault %p state %lu to peer %s\n",
1990 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
1992 if (test_bit(LOSSYTX
, &con
->state
)) {
1993 dout("fault on LOSSYTX channel\n");
1997 mutex_lock(&con
->mutex
);
1998 if (test_bit(CLOSED
, &con
->state
))
2001 con_close_socket(con
);
2004 ceph_msg_put(con
->in_msg
);
2008 /* Requeue anything that hasn't been acked */
2009 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2011 /* If there are no messages in the queue, place the connection
2012 * in a STANDBY state (i.e., don't try to reconnect just yet). */
2013 if (list_empty(&con
->out_queue
) && !con
->out_keepalive_pending
) {
2014 dout("fault setting STANDBY\n");
2015 set_bit(STANDBY
, &con
->state
);
2017 /* retry after a delay. */
2018 if (con
->delay
== 0)
2019 con
->delay
= BASE_DELAY_INTERVAL
;
2020 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2022 dout("fault queueing %p delay %lu\n", con
, con
->delay
);
2024 if (queue_delayed_work(ceph_msgr_wq
, &con
->work
,
2025 round_jiffies_relative(con
->delay
)) == 0)
2030 mutex_unlock(&con
->mutex
);
2033 * in case we faulted due to authentication, invalidate our
2034 * current tickets so that we can get new ones.
2036 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2037 dout("calling invalidate_authorizer()\n");
2038 con
->ops
->invalidate_authorizer(con
);
2041 if (con
->ops
->fault
)
2042 con
->ops
->fault(con
);
2048 * create a new messenger instance
2050 struct ceph_messenger
*ceph_messenger_create(struct ceph_entity_addr
*myaddr
,
2051 u32 supported_features
,
2052 u32 required_features
)
2054 struct ceph_messenger
*msgr
;
2056 msgr
= kzalloc(sizeof(*msgr
), GFP_KERNEL
);
2058 return ERR_PTR(-ENOMEM
);
2060 msgr
->supported_features
= supported_features
;
2061 msgr
->required_features
= required_features
;
2063 spin_lock_init(&msgr
->global_seq_lock
);
2065 /* the zero page is needed if a request is "canceled" while the message
2066 * is being written over the socket */
2067 msgr
->zero_page
= __page_cache_alloc(GFP_KERNEL
| __GFP_ZERO
);
2068 if (!msgr
->zero_page
) {
2070 return ERR_PTR(-ENOMEM
);
2072 kmap(msgr
->zero_page
);
2075 msgr
->inst
.addr
= *myaddr
;
2077 /* select a random nonce */
2078 msgr
->inst
.addr
.type
= 0;
2079 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2080 encode_my_addr(msgr
);
2082 dout("messenger_create %p\n", msgr
);
2085 EXPORT_SYMBOL(ceph_messenger_create
);
2087 void ceph_messenger_destroy(struct ceph_messenger
*msgr
)
2089 dout("destroy %p\n", msgr
);
2090 kunmap(msgr
->zero_page
);
2091 __free_page(msgr
->zero_page
);
2093 dout("destroyed messenger %p\n", msgr
);
2095 EXPORT_SYMBOL(ceph_messenger_destroy
);
2098 * Queue up an outgoing message on the given connection.
2100 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2102 if (test_bit(CLOSED
, &con
->state
)) {
2103 dout("con_send %p closed, dropping %p\n", con
, msg
);
2109 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2111 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2113 msg
->needs_out_seq
= true;
2116 mutex_lock(&con
->mutex
);
2117 BUG_ON(!list_empty(&msg
->list_head
));
2118 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2119 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2120 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2121 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2122 le32_to_cpu(msg
->hdr
.front_len
),
2123 le32_to_cpu(msg
->hdr
.middle_len
),
2124 le32_to_cpu(msg
->hdr
.data_len
));
2125 mutex_unlock(&con
->mutex
);
2127 /* if there wasn't anything waiting to send before, queue
2129 if (test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2132 EXPORT_SYMBOL(ceph_con_send
);
2135 * Revoke a message that was previously queued for send
2137 void ceph_con_revoke(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2139 mutex_lock(&con
->mutex
);
2140 if (!list_empty(&msg
->list_head
)) {
2141 dout("con_revoke %p msg %p - was on queue\n", con
, msg
);
2142 list_del_init(&msg
->list_head
);
2146 if (con
->out_msg
== msg
) {
2147 dout("con_revoke %p msg %p - was sending\n", con
, msg
);
2148 con
->out_msg
= NULL
;
2149 if (con
->out_kvec_is_msg
) {
2150 con
->out_skip
= con
->out_kvec_bytes
;
2151 con
->out_kvec_is_msg
= false;
2156 mutex_unlock(&con
->mutex
);
2160 * Revoke a message that we may be reading data into
2162 void ceph_con_revoke_message(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2164 mutex_lock(&con
->mutex
);
2165 if (con
->in_msg
&& con
->in_msg
== msg
) {
2166 unsigned front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2167 unsigned middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2168 unsigned data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2170 /* skip rest of message */
2171 dout("con_revoke_pages %p msg %p revoked\n", con
, msg
);
2172 con
->in_base_pos
= con
->in_base_pos
-
2173 sizeof(struct ceph_msg_header
) -
2177 sizeof(struct ceph_msg_footer
);
2178 ceph_msg_put(con
->in_msg
);
2180 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2183 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2184 con
, con
->in_msg
, msg
);
2186 mutex_unlock(&con
->mutex
);
2190 * Queue a keepalive byte to ensure the tcp connection is alive.
2192 void ceph_con_keepalive(struct ceph_connection
*con
)
2194 if (test_and_set_bit(KEEPALIVE_PENDING
, &con
->state
) == 0 &&
2195 test_and_set_bit(WRITE_PENDING
, &con
->state
) == 0)
2198 EXPORT_SYMBOL(ceph_con_keepalive
);
2202 * construct a new message with given type, size
2203 * the new msg has a ref count of 1.
2205 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
)
2209 m
= kmalloc(sizeof(*m
), flags
);
2212 kref_init(&m
->kref
);
2213 INIT_LIST_HEAD(&m
->list_head
);
2216 m
->hdr
.type
= cpu_to_le16(type
);
2217 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
2219 m
->hdr
.front_len
= cpu_to_le32(front_len
);
2220 m
->hdr
.middle_len
= 0;
2221 m
->hdr
.data_len
= 0;
2222 m
->hdr
.data_off
= 0;
2223 m
->hdr
.reserved
= 0;
2224 m
->footer
.front_crc
= 0;
2225 m
->footer
.middle_crc
= 0;
2226 m
->footer
.data_crc
= 0;
2227 m
->footer
.flags
= 0;
2228 m
->front_max
= front_len
;
2229 m
->front_is_vmalloc
= false;
2230 m
->more_to_follow
= false;
2235 if (front_len
> PAGE_CACHE_SIZE
) {
2236 m
->front
.iov_base
= __vmalloc(front_len
, flags
,
2238 m
->front_is_vmalloc
= true;
2240 m
->front
.iov_base
= kmalloc(front_len
, flags
);
2242 if (m
->front
.iov_base
== NULL
) {
2243 pr_err("msg_new can't allocate %d bytes\n",
2248 m
->front
.iov_base
= NULL
;
2250 m
->front
.iov_len
= front_len
;
2257 m
->page_alignment
= 0;
2265 dout("ceph_msg_new %p front %d\n", m
, front_len
);
2271 pr_err("msg_new can't create type %d front %d\n", type
, front_len
);
2274 EXPORT_SYMBOL(ceph_msg_new
);
2277 * Allocate "middle" portion of a message, if it is needed and wasn't
2278 * allocated by alloc_msg. This allows us to read a small fixed-size
2279 * per-type header in the front and then gracefully fail (i.e.,
2280 * propagate the error to the caller based on info in the front) when
2281 * the middle is too large.
2283 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2285 int type
= le16_to_cpu(msg
->hdr
.type
);
2286 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
2288 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
2289 ceph_msg_type_name(type
), middle_len
);
2290 BUG_ON(!middle_len
);
2291 BUG_ON(msg
->middle
);
2293 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
2300 * Generic message allocator, for incoming messages.
2302 static struct ceph_msg
*ceph_alloc_msg(struct ceph_connection
*con
,
2303 struct ceph_msg_header
*hdr
,
2306 int type
= le16_to_cpu(hdr
->type
);
2307 int front_len
= le32_to_cpu(hdr
->front_len
);
2308 int middle_len
= le32_to_cpu(hdr
->middle_len
);
2309 struct ceph_msg
*msg
= NULL
;
2312 if (con
->ops
->alloc_msg
) {
2313 mutex_unlock(&con
->mutex
);
2314 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
2315 mutex_lock(&con
->mutex
);
2321 msg
= ceph_msg_new(type
, front_len
, GFP_NOFS
);
2323 pr_err("unable to allocate msg type %d len %d\n",
2327 msg
->page_alignment
= le16_to_cpu(hdr
->data_off
);
2329 memcpy(&msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
2331 if (middle_len
&& !msg
->middle
) {
2332 ret
= ceph_alloc_middle(con
, msg
);
2344 * Free a generically kmalloc'd message.
2346 void ceph_msg_kfree(struct ceph_msg
*m
)
2348 dout("msg_kfree %p\n", m
);
2349 if (m
->front_is_vmalloc
)
2350 vfree(m
->front
.iov_base
);
2352 kfree(m
->front
.iov_base
);
2357 * Drop a msg ref. Destroy as needed.
2359 void ceph_msg_last_put(struct kref
*kref
)
2361 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
2363 dout("ceph_msg_put last one on %p\n", m
);
2364 WARN_ON(!list_empty(&m
->list_head
));
2366 /* drop middle, data, if any */
2368 ceph_buffer_put(m
->middle
);
2375 ceph_pagelist_release(m
->pagelist
);
2383 ceph_msgpool_put(m
->pool
, m
);
2387 EXPORT_SYMBOL(ceph_msg_last_put
);
2389 void ceph_msg_dump(struct ceph_msg
*msg
)
2391 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg
,
2392 msg
->front_max
, msg
->nr_pages
);
2393 print_hex_dump(KERN_DEBUG
, "header: ",
2394 DUMP_PREFIX_OFFSET
, 16, 1,
2395 &msg
->hdr
, sizeof(msg
->hdr
), true);
2396 print_hex_dump(KERN_DEBUG
, " front: ",
2397 DUMP_PREFIX_OFFSET
, 16, 1,
2398 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
2400 print_hex_dump(KERN_DEBUG
, "middle: ",
2401 DUMP_PREFIX_OFFSET
, 16, 1,
2402 msg
->middle
->vec
.iov_base
,
2403 msg
->middle
->vec
.iov_len
, true);
2404 print_hex_dump(KERN_DEBUG
, "footer: ",
2405 DUMP_PREFIX_OFFSET
, 16, 1,
2406 &msg
->footer
, sizeof(msg
->footer
), true);
2408 EXPORT_SYMBOL(ceph_msg_dump
);