V4L/DVB: cpia_usb: remove unneeded variable
[wandboard.git] / kernel / sched.c
blobf52a8801b7a285fb252ecc6935b55f525813881b
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103 * Helpers for converting nanosecond timing to jiffy resolution
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111 * These are the 'tuning knobs' of the scheduler:
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
116 #define DEF_TIMESLICE (100 * HZ / 1000)
119 * single value that denotes runtime == period, ie unlimited time.
121 #define RUNTIME_INF ((u64)~0ULL)
123 static inline int rt_policy(int policy)
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
130 static inline int task_has_rt_policy(struct task_struct *p)
132 return rt_policy(p->policy);
136 * This is the priority-queue data structure of the RT scheduling class:
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
151 static struct rt_bandwidth def_rt_bandwidth;
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167 if (!overrun)
168 break;
170 idle = do_sched_rt_period_timer(rt_b, overrun);
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 static inline int rt_bandwidth_enabled(void)
191 return sysctl_sched_rt_runtime >= 0;
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 ktime_t now;
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 hrtimer_cancel(&rt_b->rt_period_timer);
229 #endif
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
235 static DEFINE_MUTEX(sched_domains_mutex);
237 #ifdef CONFIG_CGROUP_SCHED
239 #include <linux/cgroup.h>
241 struct cfs_rq;
243 static LIST_HEAD(task_groups);
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
261 struct rt_bandwidth rt_bandwidth;
262 #endif
264 struct rcu_head rcu;
265 struct list_head list;
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
272 #define root_task_group init_task_group
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
277 static DEFINE_SPINLOCK(task_group_lock);
279 #ifdef CONFIG_FAIR_GROUP_SCHED
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
284 return list_empty(&root_task_group.children);
286 #endif
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
307 struct task_group init_task_group;
309 #endif /* CONFIG_CGROUP_SCHED */
311 /* CFS-related fields in a runqueue */
312 struct cfs_rq {
313 struct load_weight load;
314 unsigned long nr_running;
316 u64 exec_clock;
317 u64 min_vruntime;
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
322 struct list_head tasks;
323 struct list_head *balance_iterator;
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
329 struct sched_entity *curr, *next, *last;
331 unsigned int nr_spread_over;
333 #ifdef CONFIG_FAIR_GROUP_SCHED
334 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
338 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
339 * (like users, containers etc.)
341 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
342 * list is used during load balance.
344 struct list_head leaf_cfs_rq_list;
345 struct task_group *tg; /* group that "owns" this runqueue */
347 #ifdef CONFIG_SMP
349 * the part of load.weight contributed by tasks
351 unsigned long task_weight;
354 * h_load = weight * f(tg)
356 * Where f(tg) is the recursive weight fraction assigned to
357 * this group.
359 unsigned long h_load;
362 * this cpu's part of tg->shares
364 unsigned long shares;
367 * load.weight at the time we set shares
369 unsigned long rq_weight;
370 #endif
371 #endif
374 /* Real-Time classes' related field in a runqueue: */
375 struct rt_rq {
376 struct rt_prio_array active;
377 unsigned long rt_nr_running;
378 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
379 struct {
380 int curr; /* highest queued rt task prio */
381 #ifdef CONFIG_SMP
382 int next; /* next highest */
383 #endif
384 } highest_prio;
385 #endif
386 #ifdef CONFIG_SMP
387 unsigned long rt_nr_migratory;
388 unsigned long rt_nr_total;
389 int overloaded;
390 struct plist_head pushable_tasks;
391 #endif
392 int rt_throttled;
393 u64 rt_time;
394 u64 rt_runtime;
395 /* Nests inside the rq lock: */
396 raw_spinlock_t rt_runtime_lock;
398 #ifdef CONFIG_RT_GROUP_SCHED
399 unsigned long rt_nr_boosted;
401 struct rq *rq;
402 struct list_head leaf_rt_rq_list;
403 struct task_group *tg;
404 #endif
407 #ifdef CONFIG_SMP
410 * We add the notion of a root-domain which will be used to define per-domain
411 * variables. Each exclusive cpuset essentially defines an island domain by
412 * fully partitioning the member cpus from any other cpuset. Whenever a new
413 * exclusive cpuset is created, we also create and attach a new root-domain
414 * object.
417 struct root_domain {
418 atomic_t refcount;
419 cpumask_var_t span;
420 cpumask_var_t online;
423 * The "RT overload" flag: it gets set if a CPU has more than
424 * one runnable RT task.
426 cpumask_var_t rto_mask;
427 atomic_t rto_count;
428 #ifdef CONFIG_SMP
429 struct cpupri cpupri;
430 #endif
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
437 static struct root_domain def_root_domain;
439 #endif
442 * This is the main, per-CPU runqueue data structure.
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char in_nohz_recently;
462 #endif
463 unsigned int skip_clock_update;
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
470 struct cfs_rq cfs;
471 struct rt_rq rt;
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
487 unsigned long nr_uninterruptible;
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
493 u64 clock;
495 atomic_t nr_iowait;
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
501 unsigned long cpu_power;
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
513 unsigned long avg_load_per_task;
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
571 static inline int cpu_of(struct rq *rq)
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
601 #ifdef CONFIG_CGROUP_SCHED
604 * Return the group to which this tasks belongs.
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
611 static inline struct task_group *task_group(struct task_struct *p)
613 struct cgroup_subsys_state *css;
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
634 #else /* CONFIG_CGROUP_SCHED */
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
639 return NULL;
642 #endif /* CONFIG_CGROUP_SCHED */
644 inline void update_rq_clock(struct rq *rq)
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
660 * runqueue_is_locked
661 * @cpu: the processor in question.
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
667 int runqueue_is_locked(int cpu)
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
673 * Debugging: various feature bits
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
679 enum {
680 #include "sched_features.h"
683 #undef SCHED_FEAT
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
692 #undef SCHED_FEAT
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
703 #undef SCHED_FEAT
705 static int sched_feat_show(struct seq_file *m, void *v)
707 int i;
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
714 seq_puts(m, "\n");
716 return 0;
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
728 if (cnt > 63)
729 cnt = 63;
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
734 buf[cnt] = 0;
736 if (strncmp(buf, "NO_", 3) == 0) {
737 neg = 1;
738 cmp += 3;
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
753 if (!sched_feat_names[i])
754 return -EINVAL;
756 *ppos += cnt;
758 return cnt;
761 static int sched_feat_open(struct inode *inode, struct file *filp)
763 return single_open(filp, sched_feat_show, NULL);
766 static const struct file_operations sched_feat_fops = {
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
774 static __init int sched_init_debug(void)
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
779 return 0;
781 late_initcall(sched_init_debug);
783 #endif
785 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
791 const_debug unsigned int sysctl_sched_nr_migrate = 32;
794 * ratelimit for updating the group shares.
795 * default: 0.25ms
797 unsigned int sysctl_sched_shares_ratelimit = 250000;
798 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
805 unsigned int sysctl_sched_shares_thresh = 4;
808 * period over which we average the RT time consumption, measured
809 * in ms.
811 * default: 1s
813 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
819 unsigned int sysctl_sched_rt_period = 1000000;
821 static __read_mostly int scheduler_running;
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
827 int sysctl_sched_rt_runtime = 950000;
829 static inline u64 global_rt_period(void)
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
834 static inline u64 global_rt_runtime(void)
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
849 static inline int task_current(struct rq *rq, struct task_struct *p)
851 return rq->curr == p;
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
857 return task_current(rq, p);
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877 raw_spin_unlock_irq(&rq->lock);
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 #ifdef CONFIG_SMP
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 raw_spin_unlock_irq(&rq->lock);
902 #else
903 raw_spin_unlock(&rq->lock);
904 #endif
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 #ifdef CONFIG_SMP
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
928 static inline int task_is_waking(struct task_struct *p)
930 return unlikely(p->state == TASK_WAKING);
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
940 struct rq *rq;
942 for (;;) {
943 rq = task_rq(p);
944 raw_spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
947 raw_spin_unlock(&rq->lock);
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(rq->lock)
959 struct rq *rq;
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
971 static void __task_rq_unlock(struct rq *rq)
972 __releases(rq->lock)
974 raw_spin_unlock(&rq->lock);
977 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
978 __releases(rq->lock)
980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
984 * this_rq_lock - lock this runqueue and disable interrupts.
986 static struct rq *this_rq_lock(void)
987 __acquires(rq->lock)
989 struct rq *rq;
991 local_irq_disable();
992 rq = this_rq();
993 raw_spin_lock(&rq->lock);
995 return rq;
998 #ifdef CONFIG_SCHED_HRTICK
1000 * Use HR-timers to deliver accurate preemption points.
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1015 static inline int hrtick_enabled(struct rq *rq)
1017 if (!sched_feat(HRTICK))
1018 return 0;
1019 if (!cpu_active(cpu_of(rq)))
1020 return 0;
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1024 static void hrtick_clear(struct rq *rq)
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1034 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1040 raw_spin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043 raw_spin_unlock(&rq->lock);
1045 return HRTIMER_NORESTART;
1048 #ifdef CONFIG_SMP
1050 * called from hardirq (IPI) context
1052 static void __hrtick_start(void *arg)
1054 struct rq *rq = arg;
1056 raw_spin_lock(&rq->lock);
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
1059 raw_spin_unlock(&rq->lock);
1063 * Called to set the hrtick timer state.
1065 * called with rq->lock held and irqs disabled
1067 static void hrtick_start(struct rq *rq, u64 delay)
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1072 hrtimer_set_expires(timer, time);
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 rq->hrtick_csd_pending = 1;
1082 static int
1083 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1085 int cpu = (int)(long)hcpu;
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
1094 hrtick_clear(cpu_rq(cpu));
1095 return NOTIFY_OK;
1098 return NOTIFY_DONE;
1101 static __init void init_hrtick(void)
1103 hotcpu_notifier(hotplug_hrtick, 0);
1105 #else
1107 * Called to set the hrtick timer state.
1109 * called with rq->lock held and irqs disabled
1111 static void hrtick_start(struct rq *rq, u64 delay)
1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114 HRTIMER_MODE_REL_PINNED, 0);
1117 static inline void init_hrtick(void)
1120 #endif /* CONFIG_SMP */
1122 static void init_rq_hrtick(struct rq *rq)
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1135 #else /* CONFIG_SCHED_HRTICK */
1136 static inline void hrtick_clear(struct rq *rq)
1140 static inline void init_rq_hrtick(struct rq *rq)
1144 static inline void init_hrtick(void)
1147 #endif /* CONFIG_SCHED_HRTICK */
1150 * resched_task - mark a task 'to be rescheduled now'.
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1156 #ifdef CONFIG_SMP
1158 #ifndef tsk_is_polling
1159 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160 #endif
1162 static void resched_task(struct task_struct *p)
1164 int cpu;
1166 assert_raw_spin_locked(&task_rq(p)->lock);
1168 if (test_tsk_need_resched(p))
1169 return;
1171 set_tsk_need_resched(p);
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1183 static void resched_cpu(int cpu)
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1189 return;
1190 resched_task(cpu_curr(cpu));
1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
1194 #ifdef CONFIG_NO_HZ
1196 * When add_timer_on() enqueues a timer into the timer wheel of an
1197 * idle CPU then this timer might expire before the next timer event
1198 * which is scheduled to wake up that CPU. In case of a completely
1199 * idle system the next event might even be infinite time into the
1200 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1201 * leaves the inner idle loop so the newly added timer is taken into
1202 * account when the CPU goes back to idle and evaluates the timer
1203 * wheel for the next timer event.
1205 void wake_up_idle_cpu(int cpu)
1207 struct rq *rq = cpu_rq(cpu);
1209 if (cpu == smp_processor_id())
1210 return;
1213 * This is safe, as this function is called with the timer
1214 * wheel base lock of (cpu) held. When the CPU is on the way
1215 * to idle and has not yet set rq->curr to idle then it will
1216 * be serialized on the timer wheel base lock and take the new
1217 * timer into account automatically.
1219 if (rq->curr != rq->idle)
1220 return;
1223 * We can set TIF_RESCHED on the idle task of the other CPU
1224 * lockless. The worst case is that the other CPU runs the
1225 * idle task through an additional NOOP schedule()
1227 set_tsk_need_resched(rq->idle);
1229 /* NEED_RESCHED must be visible before we test polling */
1230 smp_mb();
1231 if (!tsk_is_polling(rq->idle))
1232 smp_send_reschedule(cpu);
1235 int nohz_ratelimit(int cpu)
1237 struct rq *rq = cpu_rq(cpu);
1238 u64 diff = rq->clock - rq->nohz_stamp;
1240 rq->nohz_stamp = rq->clock;
1242 return diff < (NSEC_PER_SEC / HZ) >> 1;
1245 #endif /* CONFIG_NO_HZ */
1247 static u64 sched_avg_period(void)
1249 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1252 static void sched_avg_update(struct rq *rq)
1254 s64 period = sched_avg_period();
1256 while ((s64)(rq->clock - rq->age_stamp) > period) {
1258 * Inline assembly required to prevent the compiler
1259 * optimising this loop into a divmod call.
1260 * See __iter_div_u64_rem() for another example of this.
1262 asm("" : "+rm" (rq->age_stamp));
1263 rq->age_stamp += period;
1264 rq->rt_avg /= 2;
1268 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 rq->rt_avg += rt_delta;
1271 sched_avg_update(rq);
1274 #else /* !CONFIG_SMP */
1275 static void resched_task(struct task_struct *p)
1277 assert_raw_spin_locked(&task_rq(p)->lock);
1278 set_tsk_need_resched(p);
1281 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 #endif /* CONFIG_SMP */
1286 #if BITS_PER_LONG == 32
1287 # define WMULT_CONST (~0UL)
1288 #else
1289 # define WMULT_CONST (1UL << 32)
1290 #endif
1292 #define WMULT_SHIFT 32
1295 * Shift right and round:
1297 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300 * delta *= weight / lw
1302 static unsigned long
1303 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1304 struct load_weight *lw)
1306 u64 tmp;
1308 if (!lw->inv_weight) {
1309 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1310 lw->inv_weight = 1;
1311 else
1312 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1313 / (lw->weight+1);
1316 tmp = (u64)delta_exec * weight;
1318 * Check whether we'd overflow the 64-bit multiplication:
1320 if (unlikely(tmp > WMULT_CONST))
1321 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1322 WMULT_SHIFT/2);
1323 else
1324 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 lw->weight += inc;
1332 lw->inv_weight = 0;
1335 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 lw->weight -= dec;
1338 lw->inv_weight = 0;
1342 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1343 * of tasks with abnormal "nice" values across CPUs the contribution that
1344 * each task makes to its run queue's load is weighted according to its
1345 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1346 * scaled version of the new time slice allocation that they receive on time
1347 * slice expiry etc.
1350 #define WEIGHT_IDLEPRIO 3
1351 #define WMULT_IDLEPRIO 1431655765
1354 * Nice levels are multiplicative, with a gentle 10% change for every
1355 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1356 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1357 * that remained on nice 0.
1359 * The "10% effect" is relative and cumulative: from _any_ nice level,
1360 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1361 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1362 * If a task goes up by ~10% and another task goes down by ~10% then
1363 * the relative distance between them is ~25%.)
1365 static const int prio_to_weight[40] = {
1366 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1367 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1368 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1369 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1370 /* 0 */ 1024, 820, 655, 526, 423,
1371 /* 5 */ 335, 272, 215, 172, 137,
1372 /* 10 */ 110, 87, 70, 56, 45,
1373 /* 15 */ 36, 29, 23, 18, 15,
1377 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 * In cases where the weight does not change often, we can use the
1380 * precalculated inverse to speed up arithmetics by turning divisions
1381 * into multiplications:
1383 static const u32 prio_to_wmult[40] = {
1384 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1385 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1386 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1387 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1388 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1389 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1390 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1391 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 /* Time spent by the tasks of the cpu accounting group executing in ... */
1395 enum cpuacct_stat_index {
1396 CPUACCT_STAT_USER, /* ... user mode */
1397 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1399 CPUACCT_STAT_NSTATS,
1402 #ifdef CONFIG_CGROUP_CPUACCT
1403 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1404 static void cpuacct_update_stats(struct task_struct *tsk,
1405 enum cpuacct_stat_index idx, cputime_t val);
1406 #else
1407 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1408 static inline void cpuacct_update_stats(struct task_struct *tsk,
1409 enum cpuacct_stat_index idx, cputime_t val) {}
1410 #endif
1412 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1414 update_load_add(&rq->load, load);
1417 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1419 update_load_sub(&rq->load, load);
1422 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1423 typedef int (*tg_visitor)(struct task_group *, void *);
1426 * Iterate the full tree, calling @down when first entering a node and @up when
1427 * leaving it for the final time.
1429 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1431 struct task_group *parent, *child;
1432 int ret;
1434 rcu_read_lock();
1435 parent = &root_task_group;
1436 down:
1437 ret = (*down)(parent, data);
1438 if (ret)
1439 goto out_unlock;
1440 list_for_each_entry_rcu(child, &parent->children, siblings) {
1441 parent = child;
1442 goto down;
1445 continue;
1447 ret = (*up)(parent, data);
1448 if (ret)
1449 goto out_unlock;
1451 child = parent;
1452 parent = parent->parent;
1453 if (parent)
1454 goto up;
1455 out_unlock:
1456 rcu_read_unlock();
1458 return ret;
1461 static int tg_nop(struct task_group *tg, void *data)
1463 return 0;
1465 #endif
1467 #ifdef CONFIG_SMP
1468 /* Used instead of source_load when we know the type == 0 */
1469 static unsigned long weighted_cpuload(const int cpu)
1471 return cpu_rq(cpu)->load.weight;
1475 * Return a low guess at the load of a migration-source cpu weighted
1476 * according to the scheduling class and "nice" value.
1478 * We want to under-estimate the load of migration sources, to
1479 * balance conservatively.
1481 static unsigned long source_load(int cpu, int type)
1483 struct rq *rq = cpu_rq(cpu);
1484 unsigned long total = weighted_cpuload(cpu);
1486 if (type == 0 || !sched_feat(LB_BIAS))
1487 return total;
1489 return min(rq->cpu_load[type-1], total);
1493 * Return a high guess at the load of a migration-target cpu weighted
1494 * according to the scheduling class and "nice" value.
1496 static unsigned long target_load(int cpu, int type)
1498 struct rq *rq = cpu_rq(cpu);
1499 unsigned long total = weighted_cpuload(cpu);
1501 if (type == 0 || !sched_feat(LB_BIAS))
1502 return total;
1504 return max(rq->cpu_load[type-1], total);
1507 static unsigned long power_of(int cpu)
1509 return cpu_rq(cpu)->cpu_power;
1512 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1514 static unsigned long cpu_avg_load_per_task(int cpu)
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1519 if (nr_running)
1520 rq->avg_load_per_task = rq->load.weight / nr_running;
1521 else
1522 rq->avg_load_per_task = 0;
1524 return rq->avg_load_per_task;
1527 #ifdef CONFIG_FAIR_GROUP_SCHED
1529 static __read_mostly unsigned long __percpu *update_shares_data;
1531 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1534 * Calculate and set the cpu's group shares.
1536 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1537 unsigned long sd_shares,
1538 unsigned long sd_rq_weight,
1539 unsigned long *usd_rq_weight)
1541 unsigned long shares, rq_weight;
1542 int boost = 0;
1544 rq_weight = usd_rq_weight[cpu];
1545 if (!rq_weight) {
1546 boost = 1;
1547 rq_weight = NICE_0_LOAD;
1551 * \Sum_j shares_j * rq_weight_i
1552 * shares_i = -----------------------------
1553 * \Sum_j rq_weight_j
1555 shares = (sd_shares * rq_weight) / sd_rq_weight;
1556 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1558 if (abs(shares - tg->se[cpu]->load.weight) >
1559 sysctl_sched_shares_thresh) {
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long flags;
1563 raw_spin_lock_irqsave(&rq->lock, flags);
1564 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1565 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1566 __set_se_shares(tg->se[cpu], shares);
1567 raw_spin_unlock_irqrestore(&rq->lock, flags);
1572 * Re-compute the task group their per cpu shares over the given domain.
1573 * This needs to be done in a bottom-up fashion because the rq weight of a
1574 * parent group depends on the shares of its child groups.
1576 static int tg_shares_up(struct task_group *tg, void *data)
1578 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1579 unsigned long *usd_rq_weight;
1580 struct sched_domain *sd = data;
1581 unsigned long flags;
1582 int i;
1584 if (!tg->se[0])
1585 return 0;
1587 local_irq_save(flags);
1588 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1590 for_each_cpu(i, sched_domain_span(sd)) {
1591 weight = tg->cfs_rq[i]->load.weight;
1592 usd_rq_weight[i] = weight;
1594 rq_weight += weight;
1596 * If there are currently no tasks on the cpu pretend there
1597 * is one of average load so that when a new task gets to
1598 * run here it will not get delayed by group starvation.
1600 if (!weight)
1601 weight = NICE_0_LOAD;
1603 sum_weight += weight;
1604 shares += tg->cfs_rq[i]->shares;
1607 if (!rq_weight)
1608 rq_weight = sum_weight;
1610 if ((!shares && rq_weight) || shares > tg->shares)
1611 shares = tg->shares;
1613 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1614 shares = tg->shares;
1616 for_each_cpu(i, sched_domain_span(sd))
1617 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1619 local_irq_restore(flags);
1621 return 0;
1625 * Compute the cpu's hierarchical load factor for each task group.
1626 * This needs to be done in a top-down fashion because the load of a child
1627 * group is a fraction of its parents load.
1629 static int tg_load_down(struct task_group *tg, void *data)
1631 unsigned long load;
1632 long cpu = (long)data;
1634 if (!tg->parent) {
1635 load = cpu_rq(cpu)->load.weight;
1636 } else {
1637 load = tg->parent->cfs_rq[cpu]->h_load;
1638 load *= tg->cfs_rq[cpu]->shares;
1639 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1642 tg->cfs_rq[cpu]->h_load = load;
1644 return 0;
1647 static void update_shares(struct sched_domain *sd)
1649 s64 elapsed;
1650 u64 now;
1652 if (root_task_group_empty())
1653 return;
1655 now = cpu_clock(raw_smp_processor_id());
1656 elapsed = now - sd->last_update;
1658 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1659 sd->last_update = now;
1660 walk_tg_tree(tg_nop, tg_shares_up, sd);
1664 static void update_h_load(long cpu)
1666 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1669 #else
1671 static inline void update_shares(struct sched_domain *sd)
1675 #endif
1677 #ifdef CONFIG_PREEMPT
1679 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1682 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1683 * way at the expense of forcing extra atomic operations in all
1684 * invocations. This assures that the double_lock is acquired using the
1685 * same underlying policy as the spinlock_t on this architecture, which
1686 * reduces latency compared to the unfair variant below. However, it
1687 * also adds more overhead and therefore may reduce throughput.
1689 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1690 __releases(this_rq->lock)
1691 __acquires(busiest->lock)
1692 __acquires(this_rq->lock)
1694 raw_spin_unlock(&this_rq->lock);
1695 double_rq_lock(this_rq, busiest);
1697 return 1;
1700 #else
1702 * Unfair double_lock_balance: Optimizes throughput at the expense of
1703 * latency by eliminating extra atomic operations when the locks are
1704 * already in proper order on entry. This favors lower cpu-ids and will
1705 * grant the double lock to lower cpus over higher ids under contention,
1706 * regardless of entry order into the function.
1708 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1709 __releases(this_rq->lock)
1710 __acquires(busiest->lock)
1711 __acquires(this_rq->lock)
1713 int ret = 0;
1715 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1716 if (busiest < this_rq) {
1717 raw_spin_unlock(&this_rq->lock);
1718 raw_spin_lock(&busiest->lock);
1719 raw_spin_lock_nested(&this_rq->lock,
1720 SINGLE_DEPTH_NESTING);
1721 ret = 1;
1722 } else
1723 raw_spin_lock_nested(&busiest->lock,
1724 SINGLE_DEPTH_NESTING);
1726 return ret;
1729 #endif /* CONFIG_PREEMPT */
1732 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1734 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1736 if (unlikely(!irqs_disabled())) {
1737 /* printk() doesn't work good under rq->lock */
1738 raw_spin_unlock(&this_rq->lock);
1739 BUG_ON(1);
1742 return _double_lock_balance(this_rq, busiest);
1745 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1746 __releases(busiest->lock)
1748 raw_spin_unlock(&busiest->lock);
1749 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1753 * double_rq_lock - safely lock two runqueues
1755 * Note this does not disable interrupts like task_rq_lock,
1756 * you need to do so manually before calling.
1758 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1759 __acquires(rq1->lock)
1760 __acquires(rq2->lock)
1762 BUG_ON(!irqs_disabled());
1763 if (rq1 == rq2) {
1764 raw_spin_lock(&rq1->lock);
1765 __acquire(rq2->lock); /* Fake it out ;) */
1766 } else {
1767 if (rq1 < rq2) {
1768 raw_spin_lock(&rq1->lock);
1769 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1770 } else {
1771 raw_spin_lock(&rq2->lock);
1772 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1778 * double_rq_unlock - safely unlock two runqueues
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1794 #endif
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1803 #endif
1805 static void calc_load_account_idle(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1823 static const struct sched_class rt_sched_class;
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1829 #include "sched_stats.h"
1831 static void inc_nr_running(struct rq *rq)
1833 rq->nr_running++;
1836 static void dec_nr_running(struct rq *rq)
1838 rq->nr_running--;
1841 static void set_load_weight(struct task_struct *p)
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = 0;
1845 p->se.load.inv_weight = WMULT_CONST;
1846 return;
1850 * SCHED_IDLE tasks get minimal weight:
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1862 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1864 update_rq_clock(rq);
1865 sched_info_queued(p);
1866 p->sched_class->enqueue_task(rq, p, flags);
1867 p->se.on_rq = 1;
1870 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1872 update_rq_clock(rq);
1873 sched_info_dequeued(p);
1874 p->sched_class->dequeue_task(rq, p, flags);
1875 p->se.on_rq = 0;
1879 * activate_task - move a task to the runqueue.
1881 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1883 if (task_contributes_to_load(p))
1884 rq->nr_uninterruptible--;
1886 enqueue_task(rq, p, flags);
1887 inc_nr_running(rq);
1891 * deactivate_task - remove a task from the runqueue.
1893 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible++;
1898 dequeue_task(rq, p, flags);
1899 dec_nr_running(rq);
1902 #include "sched_idletask.c"
1903 #include "sched_fair.c"
1904 #include "sched_rt.c"
1905 #ifdef CONFIG_SCHED_DEBUG
1906 # include "sched_debug.c"
1907 #endif
1910 * __normal_prio - return the priority that is based on the static prio
1912 static inline int __normal_prio(struct task_struct *p)
1914 return p->static_prio;
1918 * Calculate the expected normal priority: i.e. priority
1919 * without taking RT-inheritance into account. Might be
1920 * boosted by interactivity modifiers. Changes upon fork,
1921 * setprio syscalls, and whenever the interactivity
1922 * estimator recalculates.
1924 static inline int normal_prio(struct task_struct *p)
1926 int prio;
1928 if (task_has_rt_policy(p))
1929 prio = MAX_RT_PRIO-1 - p->rt_priority;
1930 else
1931 prio = __normal_prio(p);
1932 return prio;
1936 * Calculate the current priority, i.e. the priority
1937 * taken into account by the scheduler. This value might
1938 * be boosted by RT tasks, or might be boosted by
1939 * interactivity modifiers. Will be RT if the task got
1940 * RT-boosted. If not then it returns p->normal_prio.
1942 static int effective_prio(struct task_struct *p)
1944 p->normal_prio = normal_prio(p);
1946 * If we are RT tasks or we were boosted to RT priority,
1947 * keep the priority unchanged. Otherwise, update priority
1948 * to the normal priority:
1950 if (!rt_prio(p->prio))
1951 return p->normal_prio;
1952 return p->prio;
1956 * task_curr - is this task currently executing on a CPU?
1957 * @p: the task in question.
1959 inline int task_curr(const struct task_struct *p)
1961 return cpu_curr(task_cpu(p)) == p;
1964 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1965 const struct sched_class *prev_class,
1966 int oldprio, int running)
1968 if (prev_class != p->sched_class) {
1969 if (prev_class->switched_from)
1970 prev_class->switched_from(rq, p, running);
1971 p->sched_class->switched_to(rq, p, running);
1972 } else
1973 p->sched_class->prio_changed(rq, p, oldprio, running);
1976 #ifdef CONFIG_SMP
1978 * Is this task likely cache-hot:
1980 static int
1981 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1983 s64 delta;
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1989 * Buddy candidates are cache hot:
1991 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
1992 (&p->se == cfs_rq_of(&p->se)->next ||
1993 &p->se == cfs_rq_of(&p->se)->last))
1994 return 1;
1996 if (sysctl_sched_migration_cost == -1)
1997 return 1;
1998 if (sysctl_sched_migration_cost == 0)
1999 return 0;
2001 delta = now - p->se.exec_start;
2003 return delta < (s64)sysctl_sched_migration_cost;
2006 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2008 #ifdef CONFIG_SCHED_DEBUG
2010 * We should never call set_task_cpu() on a blocked task,
2011 * ttwu() will sort out the placement.
2013 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2014 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2015 #endif
2017 trace_sched_migrate_task(p, new_cpu);
2019 if (task_cpu(p) != new_cpu) {
2020 p->se.nr_migrations++;
2021 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2024 __set_task_cpu(p, new_cpu);
2027 struct migration_arg {
2028 struct task_struct *task;
2029 int dest_cpu;
2032 static int migration_cpu_stop(void *data);
2035 * The task's runqueue lock must be held.
2036 * Returns true if you have to wait for migration thread.
2038 static bool migrate_task(struct task_struct *p, int dest_cpu)
2040 struct rq *rq = task_rq(p);
2043 * If the task is not on a runqueue (and not running), then
2044 * the next wake-up will properly place the task.
2046 return p->se.on_rq || task_running(rq, p);
2050 * wait_task_inactive - wait for a thread to unschedule.
2052 * If @match_state is nonzero, it's the @p->state value just checked and
2053 * not expected to change. If it changes, i.e. @p might have woken up,
2054 * then return zero. When we succeed in waiting for @p to be off its CPU,
2055 * we return a positive number (its total switch count). If a second call
2056 * a short while later returns the same number, the caller can be sure that
2057 * @p has remained unscheduled the whole time.
2059 * The caller must ensure that the task *will* unschedule sometime soon,
2060 * else this function might spin for a *long* time. This function can't
2061 * be called with interrupts off, or it may introduce deadlock with
2062 * smp_call_function() if an IPI is sent by the same process we are
2063 * waiting to become inactive.
2065 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2067 unsigned long flags;
2068 int running, on_rq;
2069 unsigned long ncsw;
2070 struct rq *rq;
2072 for (;;) {
2074 * We do the initial early heuristics without holding
2075 * any task-queue locks at all. We'll only try to get
2076 * the runqueue lock when things look like they will
2077 * work out!
2079 rq = task_rq(p);
2082 * If the task is actively running on another CPU
2083 * still, just relax and busy-wait without holding
2084 * any locks.
2086 * NOTE! Since we don't hold any locks, it's not
2087 * even sure that "rq" stays as the right runqueue!
2088 * But we don't care, since "task_running()" will
2089 * return false if the runqueue has changed and p
2090 * is actually now running somewhere else!
2092 while (task_running(rq, p)) {
2093 if (match_state && unlikely(p->state != match_state))
2094 return 0;
2095 cpu_relax();
2099 * Ok, time to look more closely! We need the rq
2100 * lock now, to be *sure*. If we're wrong, we'll
2101 * just go back and repeat.
2103 rq = task_rq_lock(p, &flags);
2104 trace_sched_wait_task(p);
2105 running = task_running(rq, p);
2106 on_rq = p->se.on_rq;
2107 ncsw = 0;
2108 if (!match_state || p->state == match_state)
2109 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2110 task_rq_unlock(rq, &flags);
2113 * If it changed from the expected state, bail out now.
2115 if (unlikely(!ncsw))
2116 break;
2119 * Was it really running after all now that we
2120 * checked with the proper locks actually held?
2122 * Oops. Go back and try again..
2124 if (unlikely(running)) {
2125 cpu_relax();
2126 continue;
2130 * It's not enough that it's not actively running,
2131 * it must be off the runqueue _entirely_, and not
2132 * preempted!
2134 * So if it was still runnable (but just not actively
2135 * running right now), it's preempted, and we should
2136 * yield - it could be a while.
2138 if (unlikely(on_rq)) {
2139 schedule_timeout_uninterruptible(1);
2140 continue;
2144 * Ahh, all good. It wasn't running, and it wasn't
2145 * runnable, which means that it will never become
2146 * running in the future either. We're all done!
2148 break;
2151 return ncsw;
2154 /***
2155 * kick_process - kick a running thread to enter/exit the kernel
2156 * @p: the to-be-kicked thread
2158 * Cause a process which is running on another CPU to enter
2159 * kernel-mode, without any delay. (to get signals handled.)
2161 * NOTE: this function doesnt have to take the runqueue lock,
2162 * because all it wants to ensure is that the remote task enters
2163 * the kernel. If the IPI races and the task has been migrated
2164 * to another CPU then no harm is done and the purpose has been
2165 * achieved as well.
2167 void kick_process(struct task_struct *p)
2169 int cpu;
2171 preempt_disable();
2172 cpu = task_cpu(p);
2173 if ((cpu != smp_processor_id()) && task_curr(p))
2174 smp_send_reschedule(cpu);
2175 preempt_enable();
2177 EXPORT_SYMBOL_GPL(kick_process);
2178 #endif /* CONFIG_SMP */
2181 * task_oncpu_function_call - call a function on the cpu on which a task runs
2182 * @p: the task to evaluate
2183 * @func: the function to be called
2184 * @info: the function call argument
2186 * Calls the function @func when the task is currently running. This might
2187 * be on the current CPU, which just calls the function directly
2189 void task_oncpu_function_call(struct task_struct *p,
2190 void (*func) (void *info), void *info)
2192 int cpu;
2194 preempt_disable();
2195 cpu = task_cpu(p);
2196 if (task_curr(p))
2197 smp_call_function_single(cpu, func, info, 1);
2198 preempt_enable();
2201 #ifdef CONFIG_SMP
2203 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2205 static int select_fallback_rq(int cpu, struct task_struct *p)
2207 int dest_cpu;
2208 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2210 /* Look for allowed, online CPU in same node. */
2211 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2212 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2213 return dest_cpu;
2215 /* Any allowed, online CPU? */
2216 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2217 if (dest_cpu < nr_cpu_ids)
2218 return dest_cpu;
2220 /* No more Mr. Nice Guy. */
2221 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2222 dest_cpu = cpuset_cpus_allowed_fallback(p);
2224 * Don't tell them about moving exiting tasks or
2225 * kernel threads (both mm NULL), since they never
2226 * leave kernel.
2228 if (p->mm && printk_ratelimit()) {
2229 printk(KERN_INFO "process %d (%s) no "
2230 "longer affine to cpu%d\n",
2231 task_pid_nr(p), p->comm, cpu);
2235 return dest_cpu;
2239 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2241 static inline
2242 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2244 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2247 * In order not to call set_task_cpu() on a blocking task we need
2248 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2249 * cpu.
2251 * Since this is common to all placement strategies, this lives here.
2253 * [ this allows ->select_task() to simply return task_cpu(p) and
2254 * not worry about this generic constraint ]
2256 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2257 !cpu_online(cpu)))
2258 cpu = select_fallback_rq(task_cpu(p), p);
2260 return cpu;
2263 static void update_avg(u64 *avg, u64 sample)
2265 s64 diff = sample - *avg;
2266 *avg += diff >> 3;
2268 #endif
2270 /***
2271 * try_to_wake_up - wake up a thread
2272 * @p: the to-be-woken-up thread
2273 * @state: the mask of task states that can be woken
2274 * @sync: do a synchronous wakeup?
2276 * Put it on the run-queue if it's not already there. The "current"
2277 * thread is always on the run-queue (except when the actual
2278 * re-schedule is in progress), and as such you're allowed to do
2279 * the simpler "current->state = TASK_RUNNING" to mark yourself
2280 * runnable without the overhead of this.
2282 * returns failure only if the task is already active.
2284 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2285 int wake_flags)
2287 int cpu, orig_cpu, this_cpu, success = 0;
2288 unsigned long flags;
2289 unsigned long en_flags = ENQUEUE_WAKEUP;
2290 struct rq *rq;
2292 this_cpu = get_cpu();
2294 smp_wmb();
2295 rq = task_rq_lock(p, &flags);
2296 if (!(p->state & state))
2297 goto out;
2299 if (p->se.on_rq)
2300 goto out_running;
2302 cpu = task_cpu(p);
2303 orig_cpu = cpu;
2305 #ifdef CONFIG_SMP
2306 if (unlikely(task_running(rq, p)))
2307 goto out_activate;
2310 * In order to handle concurrent wakeups and release the rq->lock
2311 * we put the task in TASK_WAKING state.
2313 * First fix up the nr_uninterruptible count:
2315 if (task_contributes_to_load(p)) {
2316 if (likely(cpu_online(orig_cpu)))
2317 rq->nr_uninterruptible--;
2318 else
2319 this_rq()->nr_uninterruptible--;
2321 p->state = TASK_WAKING;
2323 if (p->sched_class->task_waking) {
2324 p->sched_class->task_waking(rq, p);
2325 en_flags |= ENQUEUE_WAKING;
2328 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2329 if (cpu != orig_cpu)
2330 set_task_cpu(p, cpu);
2331 __task_rq_unlock(rq);
2333 rq = cpu_rq(cpu);
2334 raw_spin_lock(&rq->lock);
2337 * We migrated the task without holding either rq->lock, however
2338 * since the task is not on the task list itself, nobody else
2339 * will try and migrate the task, hence the rq should match the
2340 * cpu we just moved it to.
2342 WARN_ON(task_cpu(p) != cpu);
2343 WARN_ON(p->state != TASK_WAKING);
2345 #ifdef CONFIG_SCHEDSTATS
2346 schedstat_inc(rq, ttwu_count);
2347 if (cpu == this_cpu)
2348 schedstat_inc(rq, ttwu_local);
2349 else {
2350 struct sched_domain *sd;
2351 for_each_domain(this_cpu, sd) {
2352 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2353 schedstat_inc(sd, ttwu_wake_remote);
2354 break;
2358 #endif /* CONFIG_SCHEDSTATS */
2360 out_activate:
2361 #endif /* CONFIG_SMP */
2362 schedstat_inc(p, se.statistics.nr_wakeups);
2363 if (wake_flags & WF_SYNC)
2364 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2365 if (orig_cpu != cpu)
2366 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2367 if (cpu == this_cpu)
2368 schedstat_inc(p, se.statistics.nr_wakeups_local);
2369 else
2370 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2371 activate_task(rq, p, en_flags);
2372 success = 1;
2374 out_running:
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2378 p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2393 #endif
2394 out:
2395 task_rq_unlock(rq, &flags);
2396 put_cpu();
2398 return success;
2402 * wake_up_process - Wake up a specific process
2403 * @p: The process to be woken up.
2405 * Attempt to wake up the nominated process and move it to the set of runnable
2406 * processes. Returns 1 if the process was woken up, 0 if it was already
2407 * running.
2409 * It may be assumed that this function implies a write memory barrier before
2410 * changing the task state if and only if any tasks are woken up.
2412 int wake_up_process(struct task_struct *p)
2414 return try_to_wake_up(p, TASK_ALL, 0);
2416 EXPORT_SYMBOL(wake_up_process);
2418 int wake_up_state(struct task_struct *p, unsigned int state)
2420 return try_to_wake_up(p, state, 0);
2424 * Perform scheduler related setup for a newly forked process p.
2425 * p is forked by current.
2427 * __sched_fork() is basic setup used by init_idle() too:
2429 static void __sched_fork(struct task_struct *p)
2431 p->se.exec_start = 0;
2432 p->se.sum_exec_runtime = 0;
2433 p->se.prev_sum_exec_runtime = 0;
2434 p->se.nr_migrations = 0;
2436 #ifdef CONFIG_SCHEDSTATS
2437 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2438 #endif
2440 INIT_LIST_HEAD(&p->rt.run_list);
2441 p->se.on_rq = 0;
2442 INIT_LIST_HEAD(&p->se.group_node);
2444 #ifdef CONFIG_PREEMPT_NOTIFIERS
2445 INIT_HLIST_HEAD(&p->preempt_notifiers);
2446 #endif
2450 * fork()/clone()-time setup:
2452 void sched_fork(struct task_struct *p, int clone_flags)
2454 int cpu = get_cpu();
2456 __sched_fork(p);
2458 * We mark the process as running here. This guarantees that
2459 * nobody will actually run it, and a signal or other external
2460 * event cannot wake it up and insert it on the runqueue either.
2462 p->state = TASK_RUNNING;
2465 * Revert to default priority/policy on fork if requested.
2467 if (unlikely(p->sched_reset_on_fork)) {
2468 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2469 p->policy = SCHED_NORMAL;
2470 p->normal_prio = p->static_prio;
2473 if (PRIO_TO_NICE(p->static_prio) < 0) {
2474 p->static_prio = NICE_TO_PRIO(0);
2475 p->normal_prio = p->static_prio;
2476 set_load_weight(p);
2480 * We don't need the reset flag anymore after the fork. It has
2481 * fulfilled its duty:
2483 p->sched_reset_on_fork = 0;
2487 * Make sure we do not leak PI boosting priority to the child.
2489 p->prio = current->normal_prio;
2491 if (!rt_prio(p->prio))
2492 p->sched_class = &fair_sched_class;
2494 if (p->sched_class->task_fork)
2495 p->sched_class->task_fork(p);
2498 * The child is not yet in the pid-hash so no cgroup attach races,
2499 * and the cgroup is pinned to this child due to cgroup_fork()
2500 * is ran before sched_fork().
2502 * Silence PROVE_RCU.
2504 rcu_read_lock();
2505 set_task_cpu(p, cpu);
2506 rcu_read_unlock();
2508 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2509 if (likely(sched_info_on()))
2510 memset(&p->sched_info, 0, sizeof(p->sched_info));
2511 #endif
2512 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2513 p->oncpu = 0;
2514 #endif
2515 #ifdef CONFIG_PREEMPT
2516 /* Want to start with kernel preemption disabled. */
2517 task_thread_info(p)->preempt_count = 1;
2518 #endif
2519 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2521 put_cpu();
2525 * wake_up_new_task - wake up a newly created task for the first time.
2527 * This function will do some initial scheduler statistics housekeeping
2528 * that must be done for every newly created context, then puts the task
2529 * on the runqueue and wakes it.
2531 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2533 unsigned long flags;
2534 struct rq *rq;
2535 int cpu __maybe_unused = get_cpu();
2537 #ifdef CONFIG_SMP
2538 rq = task_rq_lock(p, &flags);
2539 p->state = TASK_WAKING;
2542 * Fork balancing, do it here and not earlier because:
2543 * - cpus_allowed can change in the fork path
2544 * - any previously selected cpu might disappear through hotplug
2546 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2547 * without people poking at ->cpus_allowed.
2549 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2550 set_task_cpu(p, cpu);
2552 p->state = TASK_RUNNING;
2553 task_rq_unlock(rq, &flags);
2554 #endif
2556 rq = task_rq_lock(p, &flags);
2557 activate_task(rq, p, 0);
2558 trace_sched_wakeup_new(p, 1);
2559 check_preempt_curr(rq, p, WF_FORK);
2560 #ifdef CONFIG_SMP
2561 if (p->sched_class->task_woken)
2562 p->sched_class->task_woken(rq, p);
2563 #endif
2564 task_rq_unlock(rq, &flags);
2565 put_cpu();
2568 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2572 * @notifier: notifier struct to register
2574 void preempt_notifier_register(struct preempt_notifier *notifier)
2576 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2578 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2581 * preempt_notifier_unregister - no longer interested in preemption notifications
2582 * @notifier: notifier struct to unregister
2584 * This is safe to call from within a preemption notifier.
2586 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2588 hlist_del(&notifier->link);
2590 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2592 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2594 struct preempt_notifier *notifier;
2595 struct hlist_node *node;
2597 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2598 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2601 static void
2602 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2603 struct task_struct *next)
2605 struct preempt_notifier *notifier;
2606 struct hlist_node *node;
2608 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2609 notifier->ops->sched_out(notifier, next);
2612 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2614 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2618 static void
2619 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2620 struct task_struct *next)
2624 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2627 * prepare_task_switch - prepare to switch tasks
2628 * @rq: the runqueue preparing to switch
2629 * @prev: the current task that is being switched out
2630 * @next: the task we are going to switch to.
2632 * This is called with the rq lock held and interrupts off. It must
2633 * be paired with a subsequent finish_task_switch after the context
2634 * switch.
2636 * prepare_task_switch sets up locking and calls architecture specific
2637 * hooks.
2639 static inline void
2640 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2641 struct task_struct *next)
2643 fire_sched_out_preempt_notifiers(prev, next);
2644 prepare_lock_switch(rq, next);
2645 prepare_arch_switch(next);
2649 * finish_task_switch - clean up after a task-switch
2650 * @rq: runqueue associated with task-switch
2651 * @prev: the thread we just switched away from.
2653 * finish_task_switch must be called after the context switch, paired
2654 * with a prepare_task_switch call before the context switch.
2655 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2656 * and do any other architecture-specific cleanup actions.
2658 * Note that we may have delayed dropping an mm in context_switch(). If
2659 * so, we finish that here outside of the runqueue lock. (Doing it
2660 * with the lock held can cause deadlocks; see schedule() for
2661 * details.)
2663 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2664 __releases(rq->lock)
2666 struct mm_struct *mm = rq->prev_mm;
2667 long prev_state;
2669 rq->prev_mm = NULL;
2672 * A task struct has one reference for the use as "current".
2673 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2674 * schedule one last time. The schedule call will never return, and
2675 * the scheduled task must drop that reference.
2676 * The test for TASK_DEAD must occur while the runqueue locks are
2677 * still held, otherwise prev could be scheduled on another cpu, die
2678 * there before we look at prev->state, and then the reference would
2679 * be dropped twice.
2680 * Manfred Spraul <manfred@colorfullife.com>
2682 prev_state = prev->state;
2683 finish_arch_switch(prev);
2684 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2685 local_irq_disable();
2686 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2687 perf_event_task_sched_in(current);
2688 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2689 local_irq_enable();
2690 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2691 finish_lock_switch(rq, prev);
2693 fire_sched_in_preempt_notifiers(current);
2694 if (mm)
2695 mmdrop(mm);
2696 if (unlikely(prev_state == TASK_DEAD)) {
2698 * Remove function-return probe instances associated with this
2699 * task and put them back on the free list.
2701 kprobe_flush_task(prev);
2702 put_task_struct(prev);
2706 #ifdef CONFIG_SMP
2708 /* assumes rq->lock is held */
2709 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2711 if (prev->sched_class->pre_schedule)
2712 prev->sched_class->pre_schedule(rq, prev);
2715 /* rq->lock is NOT held, but preemption is disabled */
2716 static inline void post_schedule(struct rq *rq)
2718 if (rq->post_schedule) {
2719 unsigned long flags;
2721 raw_spin_lock_irqsave(&rq->lock, flags);
2722 if (rq->curr->sched_class->post_schedule)
2723 rq->curr->sched_class->post_schedule(rq);
2724 raw_spin_unlock_irqrestore(&rq->lock, flags);
2726 rq->post_schedule = 0;
2730 #else
2732 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2736 static inline void post_schedule(struct rq *rq)
2740 #endif
2743 * schedule_tail - first thing a freshly forked thread must call.
2744 * @prev: the thread we just switched away from.
2746 asmlinkage void schedule_tail(struct task_struct *prev)
2747 __releases(rq->lock)
2749 struct rq *rq = this_rq();
2751 finish_task_switch(rq, prev);
2754 * FIXME: do we need to worry about rq being invalidated by the
2755 * task_switch?
2757 post_schedule(rq);
2759 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2760 /* In this case, finish_task_switch does not reenable preemption */
2761 preempt_enable();
2762 #endif
2763 if (current->set_child_tid)
2764 put_user(task_pid_vnr(current), current->set_child_tid);
2768 * context_switch - switch to the new MM and the new
2769 * thread's register state.
2771 static inline void
2772 context_switch(struct rq *rq, struct task_struct *prev,
2773 struct task_struct *next)
2775 struct mm_struct *mm, *oldmm;
2777 prepare_task_switch(rq, prev, next);
2778 trace_sched_switch(prev, next);
2779 mm = next->mm;
2780 oldmm = prev->active_mm;
2782 * For paravirt, this is coupled with an exit in switch_to to
2783 * combine the page table reload and the switch backend into
2784 * one hypercall.
2786 arch_start_context_switch(prev);
2788 if (likely(!mm)) {
2789 next->active_mm = oldmm;
2790 atomic_inc(&oldmm->mm_count);
2791 enter_lazy_tlb(oldmm, next);
2792 } else
2793 switch_mm(oldmm, mm, next);
2795 if (likely(!prev->mm)) {
2796 prev->active_mm = NULL;
2797 rq->prev_mm = oldmm;
2800 * Since the runqueue lock will be released by the next
2801 * task (which is an invalid locking op but in the case
2802 * of the scheduler it's an obvious special-case), so we
2803 * do an early lockdep release here:
2805 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2806 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2807 #endif
2809 /* Here we just switch the register state and the stack. */
2810 switch_to(prev, next, prev);
2812 barrier();
2814 * this_rq must be evaluated again because prev may have moved
2815 * CPUs since it called schedule(), thus the 'rq' on its stack
2816 * frame will be invalid.
2818 finish_task_switch(this_rq(), prev);
2822 * nr_running, nr_uninterruptible and nr_context_switches:
2824 * externally visible scheduler statistics: current number of runnable
2825 * threads, current number of uninterruptible-sleeping threads, total
2826 * number of context switches performed since bootup.
2828 unsigned long nr_running(void)
2830 unsigned long i, sum = 0;
2832 for_each_online_cpu(i)
2833 sum += cpu_rq(i)->nr_running;
2835 return sum;
2838 unsigned long nr_uninterruptible(void)
2840 unsigned long i, sum = 0;
2842 for_each_possible_cpu(i)
2843 sum += cpu_rq(i)->nr_uninterruptible;
2846 * Since we read the counters lockless, it might be slightly
2847 * inaccurate. Do not allow it to go below zero though:
2849 if (unlikely((long)sum < 0))
2850 sum = 0;
2852 return sum;
2855 unsigned long long nr_context_switches(void)
2857 int i;
2858 unsigned long long sum = 0;
2860 for_each_possible_cpu(i)
2861 sum += cpu_rq(i)->nr_switches;
2863 return sum;
2866 unsigned long nr_iowait(void)
2868 unsigned long i, sum = 0;
2870 for_each_possible_cpu(i)
2871 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2873 return sum;
2876 unsigned long nr_iowait_cpu(int cpu)
2878 struct rq *this = cpu_rq(cpu);
2879 return atomic_read(&this->nr_iowait);
2882 unsigned long this_cpu_load(void)
2884 struct rq *this = this_rq();
2885 return this->cpu_load[0];
2889 /* Variables and functions for calc_load */
2890 static atomic_long_t calc_load_tasks;
2891 static unsigned long calc_load_update;
2892 unsigned long avenrun[3];
2893 EXPORT_SYMBOL(avenrun);
2895 static long calc_load_fold_active(struct rq *this_rq)
2897 long nr_active, delta = 0;
2899 nr_active = this_rq->nr_running;
2900 nr_active += (long) this_rq->nr_uninterruptible;
2902 if (nr_active != this_rq->calc_load_active) {
2903 delta = nr_active - this_rq->calc_load_active;
2904 this_rq->calc_load_active = nr_active;
2907 return delta;
2910 #ifdef CONFIG_NO_HZ
2912 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2914 * When making the ILB scale, we should try to pull this in as well.
2916 static atomic_long_t calc_load_tasks_idle;
2918 static void calc_load_account_idle(struct rq *this_rq)
2920 long delta;
2922 delta = calc_load_fold_active(this_rq);
2923 if (delta)
2924 atomic_long_add(delta, &calc_load_tasks_idle);
2927 static long calc_load_fold_idle(void)
2929 long delta = 0;
2932 * Its got a race, we don't care...
2934 if (atomic_long_read(&calc_load_tasks_idle))
2935 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2937 return delta;
2939 #else
2940 static void calc_load_account_idle(struct rq *this_rq)
2944 static inline long calc_load_fold_idle(void)
2946 return 0;
2948 #endif
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2956 * These values are estimates at best, so no need for locking.
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2977 void calc_global_load(void)
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2982 if (time_before(jiffies, upd))
2983 return;
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2992 calc_load_update += LOAD_FREQ;
2996 * Called from update_cpu_load() to periodically update this CPU's
2997 * active count.
2999 static void calc_load_account_active(struct rq *this_rq)
3001 long delta;
3003 if (time_before(jiffies, this_rq->calc_load_update))
3004 return;
3006 delta = calc_load_fold_active(this_rq);
3007 delta += calc_load_fold_idle();
3008 if (delta)
3009 atomic_long_add(delta, &calc_load_tasks);
3011 this_rq->calc_load_update += LOAD_FREQ;
3015 * Update rq->cpu_load[] statistics. This function is usually called every
3016 * scheduler tick (TICK_NSEC).
3018 static void update_cpu_load(struct rq *this_rq)
3020 unsigned long this_load = this_rq->load.weight;
3021 int i, scale;
3023 this_rq->nr_load_updates++;
3025 /* Update our load: */
3026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3027 unsigned long old_load, new_load;
3029 /* scale is effectively 1 << i now, and >> i divides by scale */
3031 old_load = this_rq->cpu_load[i];
3032 new_load = this_load;
3034 * Round up the averaging division if load is increasing. This
3035 * prevents us from getting stuck on 9 if the load is 10, for
3036 * example.
3038 if (new_load > old_load)
3039 new_load += scale-1;
3040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3043 calc_load_account_active(this_rq);
3046 #ifdef CONFIG_SMP
3049 * sched_exec - execve() is a valuable balancing opportunity, because at
3050 * this point the task has the smallest effective memory and cache footprint.
3052 void sched_exec(void)
3054 struct task_struct *p = current;
3055 unsigned long flags;
3056 struct rq *rq;
3057 int dest_cpu;
3059 rq = task_rq_lock(p, &flags);
3060 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3061 if (dest_cpu == smp_processor_id())
3062 goto unlock;
3065 * select_task_rq() can race against ->cpus_allowed
3067 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3068 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3069 struct migration_arg arg = { p, dest_cpu };
3071 task_rq_unlock(rq, &flags);
3072 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3073 return;
3075 unlock:
3076 task_rq_unlock(rq, &flags);
3079 #endif
3081 DEFINE_PER_CPU(struct kernel_stat, kstat);
3083 EXPORT_PER_CPU_SYMBOL(kstat);
3086 * Return any ns on the sched_clock that have not yet been accounted in
3087 * @p in case that task is currently running.
3089 * Called with task_rq_lock() held on @rq.
3091 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3093 u64 ns = 0;
3095 if (task_current(rq, p)) {
3096 update_rq_clock(rq);
3097 ns = rq->clock - p->se.exec_start;
3098 if ((s64)ns < 0)
3099 ns = 0;
3102 return ns;
3105 unsigned long long task_delta_exec(struct task_struct *p)
3107 unsigned long flags;
3108 struct rq *rq;
3109 u64 ns = 0;
3111 rq = task_rq_lock(p, &flags);
3112 ns = do_task_delta_exec(p, rq);
3113 task_rq_unlock(rq, &flags);
3115 return ns;
3119 * Return accounted runtime for the task.
3120 * In case the task is currently running, return the runtime plus current's
3121 * pending runtime that have not been accounted yet.
3123 unsigned long long task_sched_runtime(struct task_struct *p)
3125 unsigned long flags;
3126 struct rq *rq;
3127 u64 ns = 0;
3129 rq = task_rq_lock(p, &flags);
3130 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3131 task_rq_unlock(rq, &flags);
3133 return ns;
3137 * Return sum_exec_runtime for the thread group.
3138 * In case the task is currently running, return the sum plus current's
3139 * pending runtime that have not been accounted yet.
3141 * Note that the thread group might have other running tasks as well,
3142 * so the return value not includes other pending runtime that other
3143 * running tasks might have.
3145 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3147 struct task_cputime totals;
3148 unsigned long flags;
3149 struct rq *rq;
3150 u64 ns;
3152 rq = task_rq_lock(p, &flags);
3153 thread_group_cputime(p, &totals);
3154 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3155 task_rq_unlock(rq, &flags);
3157 return ns;
3161 * Account user cpu time to a process.
3162 * @p: the process that the cpu time gets accounted to
3163 * @cputime: the cpu time spent in user space since the last update
3164 * @cputime_scaled: cputime scaled by cpu frequency
3166 void account_user_time(struct task_struct *p, cputime_t cputime,
3167 cputime_t cputime_scaled)
3169 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3170 cputime64_t tmp;
3172 /* Add user time to process. */
3173 p->utime = cputime_add(p->utime, cputime);
3174 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3175 account_group_user_time(p, cputime);
3177 /* Add user time to cpustat. */
3178 tmp = cputime_to_cputime64(cputime);
3179 if (TASK_NICE(p) > 0)
3180 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3181 else
3182 cpustat->user = cputime64_add(cpustat->user, tmp);
3184 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3185 /* Account for user time used */
3186 acct_update_integrals(p);
3190 * Account guest cpu time to a process.
3191 * @p: the process that the cpu time gets accounted to
3192 * @cputime: the cpu time spent in virtual machine since the last update
3193 * @cputime_scaled: cputime scaled by cpu frequency
3195 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3196 cputime_t cputime_scaled)
3198 cputime64_t tmp;
3199 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3201 tmp = cputime_to_cputime64(cputime);
3203 /* Add guest time to process. */
3204 p->utime = cputime_add(p->utime, cputime);
3205 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3206 account_group_user_time(p, cputime);
3207 p->gtime = cputime_add(p->gtime, cputime);
3209 /* Add guest time to cpustat. */
3210 if (TASK_NICE(p) > 0) {
3211 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3212 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3213 } else {
3214 cpustat->user = cputime64_add(cpustat->user, tmp);
3215 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3220 * Account system cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in kernel space since the last update
3224 * @cputime_scaled: cputime scaled by cpu frequency
3226 void account_system_time(struct task_struct *p, int hardirq_offset,
3227 cputime_t cputime, cputime_t cputime_scaled)
3229 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3230 cputime64_t tmp;
3232 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3233 account_guest_time(p, cputime, cputime_scaled);
3234 return;
3237 /* Add system time to process. */
3238 p->stime = cputime_add(p->stime, cputime);
3239 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3240 account_group_system_time(p, cputime);
3242 /* Add system time to cpustat. */
3243 tmp = cputime_to_cputime64(cputime);
3244 if (hardirq_count() - hardirq_offset)
3245 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3246 else if (softirq_count())
3247 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3248 else
3249 cpustat->system = cputime64_add(cpustat->system, tmp);
3251 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3253 /* Account for system time used */
3254 acct_update_integrals(p);
3258 * Account for involuntary wait time.
3259 * @steal: the cpu time spent in involuntary wait
3261 void account_steal_time(cputime_t cputime)
3263 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3264 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3266 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3270 * Account for idle time.
3271 * @cputime: the cpu time spent in idle wait
3273 void account_idle_time(cputime_t cputime)
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3277 struct rq *rq = this_rq();
3279 if (atomic_read(&rq->nr_iowait) > 0)
3280 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3281 else
3282 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3285 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3288 * Account a single tick of cpu time.
3289 * @p: the process that the cpu time gets accounted to
3290 * @user_tick: indicates if the tick is a user or a system tick
3292 void account_process_tick(struct task_struct *p, int user_tick)
3294 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3295 struct rq *rq = this_rq();
3297 if (user_tick)
3298 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3299 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3300 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3301 one_jiffy_scaled);
3302 else
3303 account_idle_time(cputime_one_jiffy);
3307 * Account multiple ticks of steal time.
3308 * @p: the process from which the cpu time has been stolen
3309 * @ticks: number of stolen ticks
3311 void account_steal_ticks(unsigned long ticks)
3313 account_steal_time(jiffies_to_cputime(ticks));
3317 * Account multiple ticks of idle time.
3318 * @ticks: number of stolen ticks
3320 void account_idle_ticks(unsigned long ticks)
3322 account_idle_time(jiffies_to_cputime(ticks));
3325 #endif
3328 * Use precise platform statistics if available:
3330 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3331 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3333 *ut = p->utime;
3334 *st = p->stime;
3337 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3339 struct task_cputime cputime;
3341 thread_group_cputime(p, &cputime);
3343 *ut = cputime.utime;
3344 *st = cputime.stime;
3346 #else
3348 #ifndef nsecs_to_cputime
3349 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3350 #endif
3352 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3354 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3357 * Use CFS's precise accounting:
3359 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3361 if (total) {
3362 u64 temp;
3364 temp = (u64)(rtime * utime);
3365 do_div(temp, total);
3366 utime = (cputime_t)temp;
3367 } else
3368 utime = rtime;
3371 * Compare with previous values, to keep monotonicity:
3373 p->prev_utime = max(p->prev_utime, utime);
3374 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3376 *ut = p->prev_utime;
3377 *st = p->prev_stime;
3381 * Must be called with siglock held.
3383 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3385 struct signal_struct *sig = p->signal;
3386 struct task_cputime cputime;
3387 cputime_t rtime, utime, total;
3389 thread_group_cputime(p, &cputime);
3391 total = cputime_add(cputime.utime, cputime.stime);
3392 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3394 if (total) {
3395 u64 temp;
3397 temp = (u64)(rtime * cputime.utime);
3398 do_div(temp, total);
3399 utime = (cputime_t)temp;
3400 } else
3401 utime = rtime;
3403 sig->prev_utime = max(sig->prev_utime, utime);
3404 sig->prev_stime = max(sig->prev_stime,
3405 cputime_sub(rtime, sig->prev_utime));
3407 *ut = sig->prev_utime;
3408 *st = sig->prev_stime;
3410 #endif
3413 * This function gets called by the timer code, with HZ frequency.
3414 * We call it with interrupts disabled.
3416 * It also gets called by the fork code, when changing the parent's
3417 * timeslices.
3419 void scheduler_tick(void)
3421 int cpu = smp_processor_id();
3422 struct rq *rq = cpu_rq(cpu);
3423 struct task_struct *curr = rq->curr;
3425 sched_clock_tick();
3427 raw_spin_lock(&rq->lock);
3428 update_rq_clock(rq);
3429 update_cpu_load(rq);
3430 curr->sched_class->task_tick(rq, curr, 0);
3431 raw_spin_unlock(&rq->lock);
3433 perf_event_task_tick(curr);
3435 #ifdef CONFIG_SMP
3436 rq->idle_at_tick = idle_cpu(cpu);
3437 trigger_load_balance(rq, cpu);
3438 #endif
3441 notrace unsigned long get_parent_ip(unsigned long addr)
3443 if (in_lock_functions(addr)) {
3444 addr = CALLER_ADDR2;
3445 if (in_lock_functions(addr))
3446 addr = CALLER_ADDR3;
3448 return addr;
3451 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3452 defined(CONFIG_PREEMPT_TRACER))
3454 void __kprobes add_preempt_count(int val)
3456 #ifdef CONFIG_DEBUG_PREEMPT
3458 * Underflow?
3460 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3461 return;
3462 #endif
3463 preempt_count() += val;
3464 #ifdef CONFIG_DEBUG_PREEMPT
3466 * Spinlock count overflowing soon?
3468 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3469 PREEMPT_MASK - 10);
3470 #endif
3471 if (preempt_count() == val)
3472 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3474 EXPORT_SYMBOL(add_preempt_count);
3476 void __kprobes sub_preempt_count(int val)
3478 #ifdef CONFIG_DEBUG_PREEMPT
3480 * Underflow?
3482 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3483 return;
3485 * Is the spinlock portion underflowing?
3487 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3488 !(preempt_count() & PREEMPT_MASK)))
3489 return;
3490 #endif
3492 if (preempt_count() == val)
3493 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3494 preempt_count() -= val;
3496 EXPORT_SYMBOL(sub_preempt_count);
3498 #endif
3501 * Print scheduling while atomic bug:
3503 static noinline void __schedule_bug(struct task_struct *prev)
3505 struct pt_regs *regs = get_irq_regs();
3507 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3508 prev->comm, prev->pid, preempt_count());
3510 debug_show_held_locks(prev);
3511 print_modules();
3512 if (irqs_disabled())
3513 print_irqtrace_events(prev);
3515 if (regs)
3516 show_regs(regs);
3517 else
3518 dump_stack();
3522 * Various schedule()-time debugging checks and statistics:
3524 static inline void schedule_debug(struct task_struct *prev)
3527 * Test if we are atomic. Since do_exit() needs to call into
3528 * schedule() atomically, we ignore that path for now.
3529 * Otherwise, whine if we are scheduling when we should not be.
3531 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3532 __schedule_bug(prev);
3534 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3536 schedstat_inc(this_rq(), sched_count);
3537 #ifdef CONFIG_SCHEDSTATS
3538 if (unlikely(prev->lock_depth >= 0)) {
3539 schedstat_inc(this_rq(), bkl_count);
3540 schedstat_inc(prev, sched_info.bkl_count);
3542 #endif
3545 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3547 if (prev->se.on_rq)
3548 update_rq_clock(rq);
3549 rq->skip_clock_update = 0;
3550 prev->sched_class->put_prev_task(rq, prev);
3554 * Pick up the highest-prio task:
3556 static inline struct task_struct *
3557 pick_next_task(struct rq *rq)
3559 const struct sched_class *class;
3560 struct task_struct *p;
3563 * Optimization: we know that if all tasks are in
3564 * the fair class we can call that function directly:
3566 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3567 p = fair_sched_class.pick_next_task(rq);
3568 if (likely(p))
3569 return p;
3572 class = sched_class_highest;
3573 for ( ; ; ) {
3574 p = class->pick_next_task(rq);
3575 if (p)
3576 return p;
3578 * Will never be NULL as the idle class always
3579 * returns a non-NULL p:
3581 class = class->next;
3586 * schedule() is the main scheduler function.
3588 asmlinkage void __sched schedule(void)
3590 struct task_struct *prev, *next;
3591 unsigned long *switch_count;
3592 struct rq *rq;
3593 int cpu;
3595 need_resched:
3596 preempt_disable();
3597 cpu = smp_processor_id();
3598 rq = cpu_rq(cpu);
3599 rcu_note_context_switch(cpu);
3600 prev = rq->curr;
3601 switch_count = &prev->nivcsw;
3603 release_kernel_lock(prev);
3604 need_resched_nonpreemptible:
3606 schedule_debug(prev);
3608 if (sched_feat(HRTICK))
3609 hrtick_clear(rq);
3611 raw_spin_lock_irq(&rq->lock);
3612 clear_tsk_need_resched(prev);
3614 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3615 if (unlikely(signal_pending_state(prev->state, prev)))
3616 prev->state = TASK_RUNNING;
3617 else
3618 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3619 switch_count = &prev->nvcsw;
3622 pre_schedule(rq, prev);
3624 if (unlikely(!rq->nr_running))
3625 idle_balance(cpu, rq);
3627 put_prev_task(rq, prev);
3628 next = pick_next_task(rq);
3630 if (likely(prev != next)) {
3631 sched_info_switch(prev, next);
3632 perf_event_task_sched_out(prev, next);
3634 rq->nr_switches++;
3635 rq->curr = next;
3636 ++*switch_count;
3638 context_switch(rq, prev, next); /* unlocks the rq */
3640 * the context switch might have flipped the stack from under
3641 * us, hence refresh the local variables.
3643 cpu = smp_processor_id();
3644 rq = cpu_rq(cpu);
3645 } else
3646 raw_spin_unlock_irq(&rq->lock);
3648 post_schedule(rq);
3650 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3651 prev = rq->curr;
3652 switch_count = &prev->nivcsw;
3653 goto need_resched_nonpreemptible;
3656 preempt_enable_no_resched();
3657 if (need_resched())
3658 goto need_resched;
3660 EXPORT_SYMBOL(schedule);
3662 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3664 * Look out! "owner" is an entirely speculative pointer
3665 * access and not reliable.
3667 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3669 unsigned int cpu;
3670 struct rq *rq;
3672 if (!sched_feat(OWNER_SPIN))
3673 return 0;
3675 #ifdef CONFIG_DEBUG_PAGEALLOC
3677 * Need to access the cpu field knowing that
3678 * DEBUG_PAGEALLOC could have unmapped it if
3679 * the mutex owner just released it and exited.
3681 if (probe_kernel_address(&owner->cpu, cpu))
3682 return 0;
3683 #else
3684 cpu = owner->cpu;
3685 #endif
3688 * Even if the access succeeded (likely case),
3689 * the cpu field may no longer be valid.
3691 if (cpu >= nr_cpumask_bits)
3692 return 0;
3695 * We need to validate that we can do a
3696 * get_cpu() and that we have the percpu area.
3698 if (!cpu_online(cpu))
3699 return 0;
3701 rq = cpu_rq(cpu);
3703 for (;;) {
3705 * Owner changed, break to re-assess state.
3707 if (lock->owner != owner)
3708 break;
3711 * Is that owner really running on that cpu?
3713 if (task_thread_info(rq->curr) != owner || need_resched())
3714 return 0;
3716 cpu_relax();
3719 return 1;
3721 #endif
3723 #ifdef CONFIG_PREEMPT
3725 * this is the entry point to schedule() from in-kernel preemption
3726 * off of preempt_enable. Kernel preemptions off return from interrupt
3727 * occur there and call schedule directly.
3729 asmlinkage void __sched preempt_schedule(void)
3731 struct thread_info *ti = current_thread_info();
3734 * If there is a non-zero preempt_count or interrupts are disabled,
3735 * we do not want to preempt the current task. Just return..
3737 if (likely(ti->preempt_count || irqs_disabled()))
3738 return;
3740 do {
3741 add_preempt_count(PREEMPT_ACTIVE);
3742 schedule();
3743 sub_preempt_count(PREEMPT_ACTIVE);
3746 * Check again in case we missed a preemption opportunity
3747 * between schedule and now.
3749 barrier();
3750 } while (need_resched());
3752 EXPORT_SYMBOL(preempt_schedule);
3755 * this is the entry point to schedule() from kernel preemption
3756 * off of irq context.
3757 * Note, that this is called and return with irqs disabled. This will
3758 * protect us against recursive calling from irq.
3760 asmlinkage void __sched preempt_schedule_irq(void)
3762 struct thread_info *ti = current_thread_info();
3764 /* Catch callers which need to be fixed */
3765 BUG_ON(ti->preempt_count || !irqs_disabled());
3767 do {
3768 add_preempt_count(PREEMPT_ACTIVE);
3769 local_irq_enable();
3770 schedule();
3771 local_irq_disable();
3772 sub_preempt_count(PREEMPT_ACTIVE);
3775 * Check again in case we missed a preemption opportunity
3776 * between schedule and now.
3778 barrier();
3779 } while (need_resched());
3782 #endif /* CONFIG_PREEMPT */
3784 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3785 void *key)
3787 return try_to_wake_up(curr->private, mode, wake_flags);
3789 EXPORT_SYMBOL(default_wake_function);
3792 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3793 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3794 * number) then we wake all the non-exclusive tasks and one exclusive task.
3796 * There are circumstances in which we can try to wake a task which has already
3797 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3798 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3800 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3801 int nr_exclusive, int wake_flags, void *key)
3803 wait_queue_t *curr, *next;
3805 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3806 unsigned flags = curr->flags;
3808 if (curr->func(curr, mode, wake_flags, key) &&
3809 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3810 break;
3815 * __wake_up - wake up threads blocked on a waitqueue.
3816 * @q: the waitqueue
3817 * @mode: which threads
3818 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3819 * @key: is directly passed to the wakeup function
3821 * It may be assumed that this function implies a write memory barrier before
3822 * changing the task state if and only if any tasks are woken up.
3824 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3825 int nr_exclusive, void *key)
3827 unsigned long flags;
3829 spin_lock_irqsave(&q->lock, flags);
3830 __wake_up_common(q, mode, nr_exclusive, 0, key);
3831 spin_unlock_irqrestore(&q->lock, flags);
3833 EXPORT_SYMBOL(__wake_up);
3836 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3838 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3840 __wake_up_common(q, mode, 1, 0, NULL);
3842 EXPORT_SYMBOL_GPL(__wake_up_locked);
3844 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3846 __wake_up_common(q, mode, 1, 0, key);
3850 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3851 * @q: the waitqueue
3852 * @mode: which threads
3853 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3854 * @key: opaque value to be passed to wakeup targets
3856 * The sync wakeup differs that the waker knows that it will schedule
3857 * away soon, so while the target thread will be woken up, it will not
3858 * be migrated to another CPU - ie. the two threads are 'synchronized'
3859 * with each other. This can prevent needless bouncing between CPUs.
3861 * On UP it can prevent extra preemption.
3863 * It may be assumed that this function implies a write memory barrier before
3864 * changing the task state if and only if any tasks are woken up.
3866 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3867 int nr_exclusive, void *key)
3869 unsigned long flags;
3870 int wake_flags = WF_SYNC;
3872 if (unlikely(!q))
3873 return;
3875 if (unlikely(!nr_exclusive))
3876 wake_flags = 0;
3878 spin_lock_irqsave(&q->lock, flags);
3879 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3880 spin_unlock_irqrestore(&q->lock, flags);
3882 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3885 * __wake_up_sync - see __wake_up_sync_key()
3887 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3889 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3891 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3894 * complete: - signals a single thread waiting on this completion
3895 * @x: holds the state of this particular completion
3897 * This will wake up a single thread waiting on this completion. Threads will be
3898 * awakened in the same order in which they were queued.
3900 * See also complete_all(), wait_for_completion() and related routines.
3902 * It may be assumed that this function implies a write memory barrier before
3903 * changing the task state if and only if any tasks are woken up.
3905 void complete(struct completion *x)
3907 unsigned long flags;
3909 spin_lock_irqsave(&x->wait.lock, flags);
3910 x->done++;
3911 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3912 spin_unlock_irqrestore(&x->wait.lock, flags);
3914 EXPORT_SYMBOL(complete);
3917 * complete_all: - signals all threads waiting on this completion
3918 * @x: holds the state of this particular completion
3920 * This will wake up all threads waiting on this particular completion event.
3922 * It may be assumed that this function implies a write memory barrier before
3923 * changing the task state if and only if any tasks are woken up.
3925 void complete_all(struct completion *x)
3927 unsigned long flags;
3929 spin_lock_irqsave(&x->wait.lock, flags);
3930 x->done += UINT_MAX/2;
3931 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3932 spin_unlock_irqrestore(&x->wait.lock, flags);
3934 EXPORT_SYMBOL(complete_all);
3936 static inline long __sched
3937 do_wait_for_common(struct completion *x, long timeout, int state)
3939 if (!x->done) {
3940 DECLARE_WAITQUEUE(wait, current);
3942 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3943 do {
3944 if (signal_pending_state(state, current)) {
3945 timeout = -ERESTARTSYS;
3946 break;
3948 __set_current_state(state);
3949 spin_unlock_irq(&x->wait.lock);
3950 timeout = schedule_timeout(timeout);
3951 spin_lock_irq(&x->wait.lock);
3952 } while (!x->done && timeout);
3953 __remove_wait_queue(&x->wait, &wait);
3954 if (!x->done)
3955 return timeout;
3957 x->done--;
3958 return timeout ?: 1;
3961 static long __sched
3962 wait_for_common(struct completion *x, long timeout, int state)
3964 might_sleep();
3966 spin_lock_irq(&x->wait.lock);
3967 timeout = do_wait_for_common(x, timeout, state);
3968 spin_unlock_irq(&x->wait.lock);
3969 return timeout;
3973 * wait_for_completion: - waits for completion of a task
3974 * @x: holds the state of this particular completion
3976 * This waits to be signaled for completion of a specific task. It is NOT
3977 * interruptible and there is no timeout.
3979 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3980 * and interrupt capability. Also see complete().
3982 void __sched wait_for_completion(struct completion *x)
3984 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3986 EXPORT_SYMBOL(wait_for_completion);
3989 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3990 * @x: holds the state of this particular completion
3991 * @timeout: timeout value in jiffies
3993 * This waits for either a completion of a specific task to be signaled or for a
3994 * specified timeout to expire. The timeout is in jiffies. It is not
3995 * interruptible.
3997 unsigned long __sched
3998 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4000 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4002 EXPORT_SYMBOL(wait_for_completion_timeout);
4005 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4006 * @x: holds the state of this particular completion
4008 * This waits for completion of a specific task to be signaled. It is
4009 * interruptible.
4011 int __sched wait_for_completion_interruptible(struct completion *x)
4013 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4014 if (t == -ERESTARTSYS)
4015 return t;
4016 return 0;
4018 EXPORT_SYMBOL(wait_for_completion_interruptible);
4021 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4022 * @x: holds the state of this particular completion
4023 * @timeout: timeout value in jiffies
4025 * This waits for either a completion of a specific task to be signaled or for a
4026 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4028 unsigned long __sched
4029 wait_for_completion_interruptible_timeout(struct completion *x,
4030 unsigned long timeout)
4032 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4034 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4037 * wait_for_completion_killable: - waits for completion of a task (killable)
4038 * @x: holds the state of this particular completion
4040 * This waits to be signaled for completion of a specific task. It can be
4041 * interrupted by a kill signal.
4043 int __sched wait_for_completion_killable(struct completion *x)
4045 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4046 if (t == -ERESTARTSYS)
4047 return t;
4048 return 0;
4050 EXPORT_SYMBOL(wait_for_completion_killable);
4053 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4054 * @x: holds the state of this particular completion
4055 * @timeout: timeout value in jiffies
4057 * This waits for either a completion of a specific task to be
4058 * signaled or for a specified timeout to expire. It can be
4059 * interrupted by a kill signal. The timeout is in jiffies.
4061 unsigned long __sched
4062 wait_for_completion_killable_timeout(struct completion *x,
4063 unsigned long timeout)
4065 return wait_for_common(x, timeout, TASK_KILLABLE);
4067 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4070 * try_wait_for_completion - try to decrement a completion without blocking
4071 * @x: completion structure
4073 * Returns: 0 if a decrement cannot be done without blocking
4074 * 1 if a decrement succeeded.
4076 * If a completion is being used as a counting completion,
4077 * attempt to decrement the counter without blocking. This
4078 * enables us to avoid waiting if the resource the completion
4079 * is protecting is not available.
4081 bool try_wait_for_completion(struct completion *x)
4083 unsigned long flags;
4084 int ret = 1;
4086 spin_lock_irqsave(&x->wait.lock, flags);
4087 if (!x->done)
4088 ret = 0;
4089 else
4090 x->done--;
4091 spin_unlock_irqrestore(&x->wait.lock, flags);
4092 return ret;
4094 EXPORT_SYMBOL(try_wait_for_completion);
4097 * completion_done - Test to see if a completion has any waiters
4098 * @x: completion structure
4100 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4101 * 1 if there are no waiters.
4104 bool completion_done(struct completion *x)
4106 unsigned long flags;
4107 int ret = 1;
4109 spin_lock_irqsave(&x->wait.lock, flags);
4110 if (!x->done)
4111 ret = 0;
4112 spin_unlock_irqrestore(&x->wait.lock, flags);
4113 return ret;
4115 EXPORT_SYMBOL(completion_done);
4117 static long __sched
4118 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4120 unsigned long flags;
4121 wait_queue_t wait;
4123 init_waitqueue_entry(&wait, current);
4125 __set_current_state(state);
4127 spin_lock_irqsave(&q->lock, flags);
4128 __add_wait_queue(q, &wait);
4129 spin_unlock(&q->lock);
4130 timeout = schedule_timeout(timeout);
4131 spin_lock_irq(&q->lock);
4132 __remove_wait_queue(q, &wait);
4133 spin_unlock_irqrestore(&q->lock, flags);
4135 return timeout;
4138 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4140 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4142 EXPORT_SYMBOL(interruptible_sleep_on);
4144 long __sched
4145 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4147 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4149 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4151 void __sched sleep_on(wait_queue_head_t *q)
4153 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4155 EXPORT_SYMBOL(sleep_on);
4157 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4159 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4161 EXPORT_SYMBOL(sleep_on_timeout);
4163 #ifdef CONFIG_RT_MUTEXES
4166 * rt_mutex_setprio - set the current priority of a task
4167 * @p: task
4168 * @prio: prio value (kernel-internal form)
4170 * This function changes the 'effective' priority of a task. It does
4171 * not touch ->normal_prio like __setscheduler().
4173 * Used by the rt_mutex code to implement priority inheritance logic.
4175 void rt_mutex_setprio(struct task_struct *p, int prio)
4177 unsigned long flags;
4178 int oldprio, on_rq, running;
4179 struct rq *rq;
4180 const struct sched_class *prev_class;
4182 BUG_ON(prio < 0 || prio > MAX_PRIO);
4184 rq = task_rq_lock(p, &flags);
4186 oldprio = p->prio;
4187 prev_class = p->sched_class;
4188 on_rq = p->se.on_rq;
4189 running = task_current(rq, p);
4190 if (on_rq)
4191 dequeue_task(rq, p, 0);
4192 if (running)
4193 p->sched_class->put_prev_task(rq, p);
4195 if (rt_prio(prio))
4196 p->sched_class = &rt_sched_class;
4197 else
4198 p->sched_class = &fair_sched_class;
4200 p->prio = prio;
4202 if (running)
4203 p->sched_class->set_curr_task(rq);
4204 if (on_rq) {
4205 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4207 check_class_changed(rq, p, prev_class, oldprio, running);
4209 task_rq_unlock(rq, &flags);
4212 #endif
4214 void set_user_nice(struct task_struct *p, long nice)
4216 int old_prio, delta, on_rq;
4217 unsigned long flags;
4218 struct rq *rq;
4220 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4221 return;
4223 * We have to be careful, if called from sys_setpriority(),
4224 * the task might be in the middle of scheduling on another CPU.
4226 rq = task_rq_lock(p, &flags);
4228 * The RT priorities are set via sched_setscheduler(), but we still
4229 * allow the 'normal' nice value to be set - but as expected
4230 * it wont have any effect on scheduling until the task is
4231 * SCHED_FIFO/SCHED_RR:
4233 if (task_has_rt_policy(p)) {
4234 p->static_prio = NICE_TO_PRIO(nice);
4235 goto out_unlock;
4237 on_rq = p->se.on_rq;
4238 if (on_rq)
4239 dequeue_task(rq, p, 0);
4241 p->static_prio = NICE_TO_PRIO(nice);
4242 set_load_weight(p);
4243 old_prio = p->prio;
4244 p->prio = effective_prio(p);
4245 delta = p->prio - old_prio;
4247 if (on_rq) {
4248 enqueue_task(rq, p, 0);
4250 * If the task increased its priority or is running and
4251 * lowered its priority, then reschedule its CPU:
4253 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4254 resched_task(rq->curr);
4256 out_unlock:
4257 task_rq_unlock(rq, &flags);
4259 EXPORT_SYMBOL(set_user_nice);
4262 * can_nice - check if a task can reduce its nice value
4263 * @p: task
4264 * @nice: nice value
4266 int can_nice(const struct task_struct *p, const int nice)
4268 /* convert nice value [19,-20] to rlimit style value [1,40] */
4269 int nice_rlim = 20 - nice;
4271 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4272 capable(CAP_SYS_NICE));
4275 #ifdef __ARCH_WANT_SYS_NICE
4278 * sys_nice - change the priority of the current process.
4279 * @increment: priority increment
4281 * sys_setpriority is a more generic, but much slower function that
4282 * does similar things.
4284 SYSCALL_DEFINE1(nice, int, increment)
4286 long nice, retval;
4289 * Setpriority might change our priority at the same moment.
4290 * We don't have to worry. Conceptually one call occurs first
4291 * and we have a single winner.
4293 if (increment < -40)
4294 increment = -40;
4295 if (increment > 40)
4296 increment = 40;
4298 nice = TASK_NICE(current) + increment;
4299 if (nice < -20)
4300 nice = -20;
4301 if (nice > 19)
4302 nice = 19;
4304 if (increment < 0 && !can_nice(current, nice))
4305 return -EPERM;
4307 retval = security_task_setnice(current, nice);
4308 if (retval)
4309 return retval;
4311 set_user_nice(current, nice);
4312 return 0;
4315 #endif
4318 * task_prio - return the priority value of a given task.
4319 * @p: the task in question.
4321 * This is the priority value as seen by users in /proc.
4322 * RT tasks are offset by -200. Normal tasks are centered
4323 * around 0, value goes from -16 to +15.
4325 int task_prio(const struct task_struct *p)
4327 return p->prio - MAX_RT_PRIO;
4331 * task_nice - return the nice value of a given task.
4332 * @p: the task in question.
4334 int task_nice(const struct task_struct *p)
4336 return TASK_NICE(p);
4338 EXPORT_SYMBOL(task_nice);
4341 * idle_cpu - is a given cpu idle currently?
4342 * @cpu: the processor in question.
4344 int idle_cpu(int cpu)
4346 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4350 * idle_task - return the idle task for a given cpu.
4351 * @cpu: the processor in question.
4353 struct task_struct *idle_task(int cpu)
4355 return cpu_rq(cpu)->idle;
4359 * find_process_by_pid - find a process with a matching PID value.
4360 * @pid: the pid in question.
4362 static struct task_struct *find_process_by_pid(pid_t pid)
4364 return pid ? find_task_by_vpid(pid) : current;
4367 /* Actually do priority change: must hold rq lock. */
4368 static void
4369 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4371 BUG_ON(p->se.on_rq);
4373 p->policy = policy;
4374 p->rt_priority = prio;
4375 p->normal_prio = normal_prio(p);
4376 /* we are holding p->pi_lock already */
4377 p->prio = rt_mutex_getprio(p);
4378 if (rt_prio(p->prio))
4379 p->sched_class = &rt_sched_class;
4380 else
4381 p->sched_class = &fair_sched_class;
4382 set_load_weight(p);
4386 * check the target process has a UID that matches the current process's
4388 static bool check_same_owner(struct task_struct *p)
4390 const struct cred *cred = current_cred(), *pcred;
4391 bool match;
4393 rcu_read_lock();
4394 pcred = __task_cred(p);
4395 match = (cred->euid == pcred->euid ||
4396 cred->euid == pcred->uid);
4397 rcu_read_unlock();
4398 return match;
4401 static int __sched_setscheduler(struct task_struct *p, int policy,
4402 struct sched_param *param, bool user)
4404 int retval, oldprio, oldpolicy = -1, on_rq, running;
4405 unsigned long flags;
4406 const struct sched_class *prev_class;
4407 struct rq *rq;
4408 int reset_on_fork;
4410 /* may grab non-irq protected spin_locks */
4411 BUG_ON(in_interrupt());
4412 recheck:
4413 /* double check policy once rq lock held */
4414 if (policy < 0) {
4415 reset_on_fork = p->sched_reset_on_fork;
4416 policy = oldpolicy = p->policy;
4417 } else {
4418 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4419 policy &= ~SCHED_RESET_ON_FORK;
4421 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4422 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4423 policy != SCHED_IDLE)
4424 return -EINVAL;
4428 * Valid priorities for SCHED_FIFO and SCHED_RR are
4429 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4430 * SCHED_BATCH and SCHED_IDLE is 0.
4432 if (param->sched_priority < 0 ||
4433 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4434 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4435 return -EINVAL;
4436 if (rt_policy(policy) != (param->sched_priority != 0))
4437 return -EINVAL;
4440 * Allow unprivileged RT tasks to decrease priority:
4442 if (user && !capable(CAP_SYS_NICE)) {
4443 if (rt_policy(policy)) {
4444 unsigned long rlim_rtprio;
4446 if (!lock_task_sighand(p, &flags))
4447 return -ESRCH;
4448 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4449 unlock_task_sighand(p, &flags);
4451 /* can't set/change the rt policy */
4452 if (policy != p->policy && !rlim_rtprio)
4453 return -EPERM;
4455 /* can't increase priority */
4456 if (param->sched_priority > p->rt_priority &&
4457 param->sched_priority > rlim_rtprio)
4458 return -EPERM;
4461 * Like positive nice levels, dont allow tasks to
4462 * move out of SCHED_IDLE either:
4464 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4465 return -EPERM;
4467 /* can't change other user's priorities */
4468 if (!check_same_owner(p))
4469 return -EPERM;
4471 /* Normal users shall not reset the sched_reset_on_fork flag */
4472 if (p->sched_reset_on_fork && !reset_on_fork)
4473 return -EPERM;
4476 if (user) {
4477 retval = security_task_setscheduler(p, policy, param);
4478 if (retval)
4479 return retval;
4483 * make sure no PI-waiters arrive (or leave) while we are
4484 * changing the priority of the task:
4486 raw_spin_lock_irqsave(&p->pi_lock, flags);
4488 * To be able to change p->policy safely, the apropriate
4489 * runqueue lock must be held.
4491 rq = __task_rq_lock(p);
4493 #ifdef CONFIG_RT_GROUP_SCHED
4494 if (user) {
4496 * Do not allow realtime tasks into groups that have no runtime
4497 * assigned.
4499 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4500 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4501 __task_rq_unlock(rq);
4502 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4503 return -EPERM;
4506 #endif
4508 /* recheck policy now with rq lock held */
4509 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4510 policy = oldpolicy = -1;
4511 __task_rq_unlock(rq);
4512 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4513 goto recheck;
4515 on_rq = p->se.on_rq;
4516 running = task_current(rq, p);
4517 if (on_rq)
4518 deactivate_task(rq, p, 0);
4519 if (running)
4520 p->sched_class->put_prev_task(rq, p);
4522 p->sched_reset_on_fork = reset_on_fork;
4524 oldprio = p->prio;
4525 prev_class = p->sched_class;
4526 __setscheduler(rq, p, policy, param->sched_priority);
4528 if (running)
4529 p->sched_class->set_curr_task(rq);
4530 if (on_rq) {
4531 activate_task(rq, p, 0);
4533 check_class_changed(rq, p, prev_class, oldprio, running);
4535 __task_rq_unlock(rq);
4536 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4538 rt_mutex_adjust_pi(p);
4540 return 0;
4544 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4549 * NOTE that the task may be already dead.
4551 int sched_setscheduler(struct task_struct *p, int policy,
4552 struct sched_param *param)
4554 return __sched_setscheduler(p, policy, param, true);
4556 EXPORT_SYMBOL_GPL(sched_setscheduler);
4559 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4560 * @p: the task in question.
4561 * @policy: new policy.
4562 * @param: structure containing the new RT priority.
4564 * Just like sched_setscheduler, only don't bother checking if the
4565 * current context has permission. For example, this is needed in
4566 * stop_machine(): we create temporary high priority worker threads,
4567 * but our caller might not have that capability.
4569 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4570 struct sched_param *param)
4572 return __sched_setscheduler(p, policy, param, false);
4575 static int
4576 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4578 struct sched_param lparam;
4579 struct task_struct *p;
4580 int retval;
4582 if (!param || pid < 0)
4583 return -EINVAL;
4584 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4585 return -EFAULT;
4587 rcu_read_lock();
4588 retval = -ESRCH;
4589 p = find_process_by_pid(pid);
4590 if (p != NULL)
4591 retval = sched_setscheduler(p, policy, &lparam);
4592 rcu_read_unlock();
4594 return retval;
4598 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4599 * @pid: the pid in question.
4600 * @policy: new policy.
4601 * @param: structure containing the new RT priority.
4603 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4604 struct sched_param __user *, param)
4606 /* negative values for policy are not valid */
4607 if (policy < 0)
4608 return -EINVAL;
4610 return do_sched_setscheduler(pid, policy, param);
4614 * sys_sched_setparam - set/change the RT priority of a thread
4615 * @pid: the pid in question.
4616 * @param: structure containing the new RT priority.
4618 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4620 return do_sched_setscheduler(pid, -1, param);
4624 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4625 * @pid: the pid in question.
4627 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4629 struct task_struct *p;
4630 int retval;
4632 if (pid < 0)
4633 return -EINVAL;
4635 retval = -ESRCH;
4636 rcu_read_lock();
4637 p = find_process_by_pid(pid);
4638 if (p) {
4639 retval = security_task_getscheduler(p);
4640 if (!retval)
4641 retval = p->policy
4642 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4644 rcu_read_unlock();
4645 return retval;
4649 * sys_sched_getparam - get the RT priority of a thread
4650 * @pid: the pid in question.
4651 * @param: structure containing the RT priority.
4653 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4655 struct sched_param lp;
4656 struct task_struct *p;
4657 int retval;
4659 if (!param || pid < 0)
4660 return -EINVAL;
4662 rcu_read_lock();
4663 p = find_process_by_pid(pid);
4664 retval = -ESRCH;
4665 if (!p)
4666 goto out_unlock;
4668 retval = security_task_getscheduler(p);
4669 if (retval)
4670 goto out_unlock;
4672 lp.sched_priority = p->rt_priority;
4673 rcu_read_unlock();
4676 * This one might sleep, we cannot do it with a spinlock held ...
4678 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4680 return retval;
4682 out_unlock:
4683 rcu_read_unlock();
4684 return retval;
4687 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4689 cpumask_var_t cpus_allowed, new_mask;
4690 struct task_struct *p;
4691 int retval;
4693 get_online_cpus();
4694 rcu_read_lock();
4696 p = find_process_by_pid(pid);
4697 if (!p) {
4698 rcu_read_unlock();
4699 put_online_cpus();
4700 return -ESRCH;
4703 /* Prevent p going away */
4704 get_task_struct(p);
4705 rcu_read_unlock();
4707 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4708 retval = -ENOMEM;
4709 goto out_put_task;
4711 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4712 retval = -ENOMEM;
4713 goto out_free_cpus_allowed;
4715 retval = -EPERM;
4716 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4717 goto out_unlock;
4719 retval = security_task_setscheduler(p, 0, NULL);
4720 if (retval)
4721 goto out_unlock;
4723 cpuset_cpus_allowed(p, cpus_allowed);
4724 cpumask_and(new_mask, in_mask, cpus_allowed);
4725 again:
4726 retval = set_cpus_allowed_ptr(p, new_mask);
4728 if (!retval) {
4729 cpuset_cpus_allowed(p, cpus_allowed);
4730 if (!cpumask_subset(new_mask, cpus_allowed)) {
4732 * We must have raced with a concurrent cpuset
4733 * update. Just reset the cpus_allowed to the
4734 * cpuset's cpus_allowed
4736 cpumask_copy(new_mask, cpus_allowed);
4737 goto again;
4740 out_unlock:
4741 free_cpumask_var(new_mask);
4742 out_free_cpus_allowed:
4743 free_cpumask_var(cpus_allowed);
4744 out_put_task:
4745 put_task_struct(p);
4746 put_online_cpus();
4747 return retval;
4750 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4751 struct cpumask *new_mask)
4753 if (len < cpumask_size())
4754 cpumask_clear(new_mask);
4755 else if (len > cpumask_size())
4756 len = cpumask_size();
4758 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4762 * sys_sched_setaffinity - set the cpu affinity of a process
4763 * @pid: pid of the process
4764 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4765 * @user_mask_ptr: user-space pointer to the new cpu mask
4767 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4768 unsigned long __user *, user_mask_ptr)
4770 cpumask_var_t new_mask;
4771 int retval;
4773 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4774 return -ENOMEM;
4776 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4777 if (retval == 0)
4778 retval = sched_setaffinity(pid, new_mask);
4779 free_cpumask_var(new_mask);
4780 return retval;
4783 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4785 struct task_struct *p;
4786 unsigned long flags;
4787 struct rq *rq;
4788 int retval;
4790 get_online_cpus();
4791 rcu_read_lock();
4793 retval = -ESRCH;
4794 p = find_process_by_pid(pid);
4795 if (!p)
4796 goto out_unlock;
4798 retval = security_task_getscheduler(p);
4799 if (retval)
4800 goto out_unlock;
4802 rq = task_rq_lock(p, &flags);
4803 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4804 task_rq_unlock(rq, &flags);
4806 out_unlock:
4807 rcu_read_unlock();
4808 put_online_cpus();
4810 return retval;
4814 * sys_sched_getaffinity - get the cpu affinity of a process
4815 * @pid: pid of the process
4816 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4817 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4819 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4820 unsigned long __user *, user_mask_ptr)
4822 int ret;
4823 cpumask_var_t mask;
4825 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4826 return -EINVAL;
4827 if (len & (sizeof(unsigned long)-1))
4828 return -EINVAL;
4830 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4831 return -ENOMEM;
4833 ret = sched_getaffinity(pid, mask);
4834 if (ret == 0) {
4835 size_t retlen = min_t(size_t, len, cpumask_size());
4837 if (copy_to_user(user_mask_ptr, mask, retlen))
4838 ret = -EFAULT;
4839 else
4840 ret = retlen;
4842 free_cpumask_var(mask);
4844 return ret;
4848 * sys_sched_yield - yield the current processor to other threads.
4850 * This function yields the current CPU to other tasks. If there are no
4851 * other threads running on this CPU then this function will return.
4853 SYSCALL_DEFINE0(sched_yield)
4855 struct rq *rq = this_rq_lock();
4857 schedstat_inc(rq, yld_count);
4858 current->sched_class->yield_task(rq);
4861 * Since we are going to call schedule() anyway, there's
4862 * no need to preempt or enable interrupts:
4864 __release(rq->lock);
4865 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4866 do_raw_spin_unlock(&rq->lock);
4867 preempt_enable_no_resched();
4869 schedule();
4871 return 0;
4874 static inline int should_resched(void)
4876 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4879 static void __cond_resched(void)
4881 add_preempt_count(PREEMPT_ACTIVE);
4882 schedule();
4883 sub_preempt_count(PREEMPT_ACTIVE);
4886 int __sched _cond_resched(void)
4888 if (should_resched()) {
4889 __cond_resched();
4890 return 1;
4892 return 0;
4894 EXPORT_SYMBOL(_cond_resched);
4897 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4898 * call schedule, and on return reacquire the lock.
4900 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4901 * operations here to prevent schedule() from being called twice (once via
4902 * spin_unlock(), once by hand).
4904 int __cond_resched_lock(spinlock_t *lock)
4906 int resched = should_resched();
4907 int ret = 0;
4909 lockdep_assert_held(lock);
4911 if (spin_needbreak(lock) || resched) {
4912 spin_unlock(lock);
4913 if (resched)
4914 __cond_resched();
4915 else
4916 cpu_relax();
4917 ret = 1;
4918 spin_lock(lock);
4920 return ret;
4922 EXPORT_SYMBOL(__cond_resched_lock);
4924 int __sched __cond_resched_softirq(void)
4926 BUG_ON(!in_softirq());
4928 if (should_resched()) {
4929 local_bh_enable();
4930 __cond_resched();
4931 local_bh_disable();
4932 return 1;
4934 return 0;
4936 EXPORT_SYMBOL(__cond_resched_softirq);
4939 * yield - yield the current processor to other threads.
4941 * This is a shortcut for kernel-space yielding - it marks the
4942 * thread runnable and calls sys_sched_yield().
4944 void __sched yield(void)
4946 set_current_state(TASK_RUNNING);
4947 sys_sched_yield();
4949 EXPORT_SYMBOL(yield);
4952 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4953 * that process accounting knows that this is a task in IO wait state.
4955 void __sched io_schedule(void)
4957 struct rq *rq = raw_rq();
4959 delayacct_blkio_start();
4960 atomic_inc(&rq->nr_iowait);
4961 current->in_iowait = 1;
4962 schedule();
4963 current->in_iowait = 0;
4964 atomic_dec(&rq->nr_iowait);
4965 delayacct_blkio_end();
4967 EXPORT_SYMBOL(io_schedule);
4969 long __sched io_schedule_timeout(long timeout)
4971 struct rq *rq = raw_rq();
4972 long ret;
4974 delayacct_blkio_start();
4975 atomic_inc(&rq->nr_iowait);
4976 current->in_iowait = 1;
4977 ret = schedule_timeout(timeout);
4978 current->in_iowait = 0;
4979 atomic_dec(&rq->nr_iowait);
4980 delayacct_blkio_end();
4981 return ret;
4985 * sys_sched_get_priority_max - return maximum RT priority.
4986 * @policy: scheduling class.
4988 * this syscall returns the maximum rt_priority that can be used
4989 * by a given scheduling class.
4991 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4993 int ret = -EINVAL;
4995 switch (policy) {
4996 case SCHED_FIFO:
4997 case SCHED_RR:
4998 ret = MAX_USER_RT_PRIO-1;
4999 break;
5000 case SCHED_NORMAL:
5001 case SCHED_BATCH:
5002 case SCHED_IDLE:
5003 ret = 0;
5004 break;
5006 return ret;
5010 * sys_sched_get_priority_min - return minimum RT priority.
5011 * @policy: scheduling class.
5013 * this syscall returns the minimum rt_priority that can be used
5014 * by a given scheduling class.
5016 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5018 int ret = -EINVAL;
5020 switch (policy) {
5021 case SCHED_FIFO:
5022 case SCHED_RR:
5023 ret = 1;
5024 break;
5025 case SCHED_NORMAL:
5026 case SCHED_BATCH:
5027 case SCHED_IDLE:
5028 ret = 0;
5030 return ret;
5034 * sys_sched_rr_get_interval - return the default timeslice of a process.
5035 * @pid: pid of the process.
5036 * @interval: userspace pointer to the timeslice value.
5038 * this syscall writes the default timeslice value of a given process
5039 * into the user-space timespec buffer. A value of '0' means infinity.
5041 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5042 struct timespec __user *, interval)
5044 struct task_struct *p;
5045 unsigned int time_slice;
5046 unsigned long flags;
5047 struct rq *rq;
5048 int retval;
5049 struct timespec t;
5051 if (pid < 0)
5052 return -EINVAL;
5054 retval = -ESRCH;
5055 rcu_read_lock();
5056 p = find_process_by_pid(pid);
5057 if (!p)
5058 goto out_unlock;
5060 retval = security_task_getscheduler(p);
5061 if (retval)
5062 goto out_unlock;
5064 rq = task_rq_lock(p, &flags);
5065 time_slice = p->sched_class->get_rr_interval(rq, p);
5066 task_rq_unlock(rq, &flags);
5068 rcu_read_unlock();
5069 jiffies_to_timespec(time_slice, &t);
5070 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5071 return retval;
5073 out_unlock:
5074 rcu_read_unlock();
5075 return retval;
5078 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5080 void sched_show_task(struct task_struct *p)
5082 unsigned long free = 0;
5083 unsigned state;
5085 state = p->state ? __ffs(p->state) + 1 : 0;
5086 printk(KERN_INFO "%-13.13s %c", p->comm,
5087 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5088 #if BITS_PER_LONG == 32
5089 if (state == TASK_RUNNING)
5090 printk(KERN_CONT " running ");
5091 else
5092 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5093 #else
5094 if (state == TASK_RUNNING)
5095 printk(KERN_CONT " running task ");
5096 else
5097 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5098 #endif
5099 #ifdef CONFIG_DEBUG_STACK_USAGE
5100 free = stack_not_used(p);
5101 #endif
5102 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5103 task_pid_nr(p), task_pid_nr(p->real_parent),
5104 (unsigned long)task_thread_info(p)->flags);
5106 show_stack(p, NULL);
5109 void show_state_filter(unsigned long state_filter)
5111 struct task_struct *g, *p;
5113 #if BITS_PER_LONG == 32
5114 printk(KERN_INFO
5115 " task PC stack pid father\n");
5116 #else
5117 printk(KERN_INFO
5118 " task PC stack pid father\n");
5119 #endif
5120 read_lock(&tasklist_lock);
5121 do_each_thread(g, p) {
5123 * reset the NMI-timeout, listing all files on a slow
5124 * console might take alot of time:
5126 touch_nmi_watchdog();
5127 if (!state_filter || (p->state & state_filter))
5128 sched_show_task(p);
5129 } while_each_thread(g, p);
5131 touch_all_softlockup_watchdogs();
5133 #ifdef CONFIG_SCHED_DEBUG
5134 sysrq_sched_debug_show();
5135 #endif
5136 read_unlock(&tasklist_lock);
5138 * Only show locks if all tasks are dumped:
5140 if (!state_filter)
5141 debug_show_all_locks();
5144 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5146 idle->sched_class = &idle_sched_class;
5150 * init_idle - set up an idle thread for a given CPU
5151 * @idle: task in question
5152 * @cpu: cpu the idle task belongs to
5154 * NOTE: this function does not set the idle thread's NEED_RESCHED
5155 * flag, to make booting more robust.
5157 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5159 struct rq *rq = cpu_rq(cpu);
5160 unsigned long flags;
5162 raw_spin_lock_irqsave(&rq->lock, flags);
5164 __sched_fork(idle);
5165 idle->state = TASK_RUNNING;
5166 idle->se.exec_start = sched_clock();
5168 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5169 __set_task_cpu(idle, cpu);
5171 rq->curr = rq->idle = idle;
5172 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5173 idle->oncpu = 1;
5174 #endif
5175 raw_spin_unlock_irqrestore(&rq->lock, flags);
5177 /* Set the preempt count _outside_ the spinlocks! */
5178 #if defined(CONFIG_PREEMPT)
5179 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5180 #else
5181 task_thread_info(idle)->preempt_count = 0;
5182 #endif
5184 * The idle tasks have their own, simple scheduling class:
5186 idle->sched_class = &idle_sched_class;
5187 ftrace_graph_init_task(idle);
5191 * In a system that switches off the HZ timer nohz_cpu_mask
5192 * indicates which cpus entered this state. This is used
5193 * in the rcu update to wait only for active cpus. For system
5194 * which do not switch off the HZ timer nohz_cpu_mask should
5195 * always be CPU_BITS_NONE.
5197 cpumask_var_t nohz_cpu_mask;
5200 * Increase the granularity value when there are more CPUs,
5201 * because with more CPUs the 'effective latency' as visible
5202 * to users decreases. But the relationship is not linear,
5203 * so pick a second-best guess by going with the log2 of the
5204 * number of CPUs.
5206 * This idea comes from the SD scheduler of Con Kolivas:
5208 static int get_update_sysctl_factor(void)
5210 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5211 unsigned int factor;
5213 switch (sysctl_sched_tunable_scaling) {
5214 case SCHED_TUNABLESCALING_NONE:
5215 factor = 1;
5216 break;
5217 case SCHED_TUNABLESCALING_LINEAR:
5218 factor = cpus;
5219 break;
5220 case SCHED_TUNABLESCALING_LOG:
5221 default:
5222 factor = 1 + ilog2(cpus);
5223 break;
5226 return factor;
5229 static void update_sysctl(void)
5231 unsigned int factor = get_update_sysctl_factor();
5233 #define SET_SYSCTL(name) \
5234 (sysctl_##name = (factor) * normalized_sysctl_##name)
5235 SET_SYSCTL(sched_min_granularity);
5236 SET_SYSCTL(sched_latency);
5237 SET_SYSCTL(sched_wakeup_granularity);
5238 SET_SYSCTL(sched_shares_ratelimit);
5239 #undef SET_SYSCTL
5242 static inline void sched_init_granularity(void)
5244 update_sysctl();
5247 #ifdef CONFIG_SMP
5249 * This is how migration works:
5251 * 1) we invoke migration_cpu_stop() on the target CPU using
5252 * stop_one_cpu().
5253 * 2) stopper starts to run (implicitly forcing the migrated thread
5254 * off the CPU)
5255 * 3) it checks whether the migrated task is still in the wrong runqueue.
5256 * 4) if it's in the wrong runqueue then the migration thread removes
5257 * it and puts it into the right queue.
5258 * 5) stopper completes and stop_one_cpu() returns and the migration
5259 * is done.
5263 * Change a given task's CPU affinity. Migrate the thread to a
5264 * proper CPU and schedule it away if the CPU it's executing on
5265 * is removed from the allowed bitmask.
5267 * NOTE: the caller must have a valid reference to the task, the
5268 * task must not exit() & deallocate itself prematurely. The
5269 * call is not atomic; no spinlocks may be held.
5271 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5273 unsigned long flags;
5274 struct rq *rq;
5275 unsigned int dest_cpu;
5276 int ret = 0;
5279 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5280 * drop the rq->lock and still rely on ->cpus_allowed.
5282 again:
5283 while (task_is_waking(p))
5284 cpu_relax();
5285 rq = task_rq_lock(p, &flags);
5286 if (task_is_waking(p)) {
5287 task_rq_unlock(rq, &flags);
5288 goto again;
5291 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5292 ret = -EINVAL;
5293 goto out;
5296 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5297 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5298 ret = -EINVAL;
5299 goto out;
5302 if (p->sched_class->set_cpus_allowed)
5303 p->sched_class->set_cpus_allowed(p, new_mask);
5304 else {
5305 cpumask_copy(&p->cpus_allowed, new_mask);
5306 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5309 /* Can the task run on the task's current CPU? If so, we're done */
5310 if (cpumask_test_cpu(task_cpu(p), new_mask))
5311 goto out;
5313 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5314 if (migrate_task(p, dest_cpu)) {
5315 struct migration_arg arg = { p, dest_cpu };
5316 /* Need help from migration thread: drop lock and wait. */
5317 task_rq_unlock(rq, &flags);
5318 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5319 tlb_migrate_finish(p->mm);
5320 return 0;
5322 out:
5323 task_rq_unlock(rq, &flags);
5325 return ret;
5327 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5330 * Move (not current) task off this cpu, onto dest cpu. We're doing
5331 * this because either it can't run here any more (set_cpus_allowed()
5332 * away from this CPU, or CPU going down), or because we're
5333 * attempting to rebalance this task on exec (sched_exec).
5335 * So we race with normal scheduler movements, but that's OK, as long
5336 * as the task is no longer on this CPU.
5338 * Returns non-zero if task was successfully migrated.
5340 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5342 struct rq *rq_dest, *rq_src;
5343 int ret = 0;
5345 if (unlikely(!cpu_active(dest_cpu)))
5346 return ret;
5348 rq_src = cpu_rq(src_cpu);
5349 rq_dest = cpu_rq(dest_cpu);
5351 double_rq_lock(rq_src, rq_dest);
5352 /* Already moved. */
5353 if (task_cpu(p) != src_cpu)
5354 goto done;
5355 /* Affinity changed (again). */
5356 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5357 goto fail;
5360 * If we're not on a rq, the next wake-up will ensure we're
5361 * placed properly.
5363 if (p->se.on_rq) {
5364 deactivate_task(rq_src, p, 0);
5365 set_task_cpu(p, dest_cpu);
5366 activate_task(rq_dest, p, 0);
5367 check_preempt_curr(rq_dest, p, 0);
5369 done:
5370 ret = 1;
5371 fail:
5372 double_rq_unlock(rq_src, rq_dest);
5373 return ret;
5377 * migration_cpu_stop - this will be executed by a highprio stopper thread
5378 * and performs thread migration by bumping thread off CPU then
5379 * 'pushing' onto another runqueue.
5381 static int migration_cpu_stop(void *data)
5383 struct migration_arg *arg = data;
5386 * The original target cpu might have gone down and we might
5387 * be on another cpu but it doesn't matter.
5389 local_irq_disable();
5390 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5391 local_irq_enable();
5392 return 0;
5395 #ifdef CONFIG_HOTPLUG_CPU
5397 * Figure out where task on dead CPU should go, use force if necessary.
5399 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5401 struct rq *rq = cpu_rq(dead_cpu);
5402 int needs_cpu, uninitialized_var(dest_cpu);
5403 unsigned long flags;
5405 local_irq_save(flags);
5407 raw_spin_lock(&rq->lock);
5408 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5409 if (needs_cpu)
5410 dest_cpu = select_fallback_rq(dead_cpu, p);
5411 raw_spin_unlock(&rq->lock);
5413 * It can only fail if we race with set_cpus_allowed(),
5414 * in the racer should migrate the task anyway.
5416 if (needs_cpu)
5417 __migrate_task(p, dead_cpu, dest_cpu);
5418 local_irq_restore(flags);
5422 * While a dead CPU has no uninterruptible tasks queued at this point,
5423 * it might still have a nonzero ->nr_uninterruptible counter, because
5424 * for performance reasons the counter is not stricly tracking tasks to
5425 * their home CPUs. So we just add the counter to another CPU's counter,
5426 * to keep the global sum constant after CPU-down:
5428 static void migrate_nr_uninterruptible(struct rq *rq_src)
5430 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5431 unsigned long flags;
5433 local_irq_save(flags);
5434 double_rq_lock(rq_src, rq_dest);
5435 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5436 rq_src->nr_uninterruptible = 0;
5437 double_rq_unlock(rq_src, rq_dest);
5438 local_irq_restore(flags);
5441 /* Run through task list and migrate tasks from the dead cpu. */
5442 static void migrate_live_tasks(int src_cpu)
5444 struct task_struct *p, *t;
5446 read_lock(&tasklist_lock);
5448 do_each_thread(t, p) {
5449 if (p == current)
5450 continue;
5452 if (task_cpu(p) == src_cpu)
5453 move_task_off_dead_cpu(src_cpu, p);
5454 } while_each_thread(t, p);
5456 read_unlock(&tasklist_lock);
5460 * Schedules idle task to be the next runnable task on current CPU.
5461 * It does so by boosting its priority to highest possible.
5462 * Used by CPU offline code.
5464 void sched_idle_next(void)
5466 int this_cpu = smp_processor_id();
5467 struct rq *rq = cpu_rq(this_cpu);
5468 struct task_struct *p = rq->idle;
5469 unsigned long flags;
5471 /* cpu has to be offline */
5472 BUG_ON(cpu_online(this_cpu));
5475 * Strictly not necessary since rest of the CPUs are stopped by now
5476 * and interrupts disabled on the current cpu.
5478 raw_spin_lock_irqsave(&rq->lock, flags);
5480 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5482 activate_task(rq, p, 0);
5484 raw_spin_unlock_irqrestore(&rq->lock, flags);
5488 * Ensures that the idle task is using init_mm right before its cpu goes
5489 * offline.
5491 void idle_task_exit(void)
5493 struct mm_struct *mm = current->active_mm;
5495 BUG_ON(cpu_online(smp_processor_id()));
5497 if (mm != &init_mm)
5498 switch_mm(mm, &init_mm, current);
5499 mmdrop(mm);
5502 /* called under rq->lock with disabled interrupts */
5503 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5505 struct rq *rq = cpu_rq(dead_cpu);
5507 /* Must be exiting, otherwise would be on tasklist. */
5508 BUG_ON(!p->exit_state);
5510 /* Cannot have done final schedule yet: would have vanished. */
5511 BUG_ON(p->state == TASK_DEAD);
5513 get_task_struct(p);
5516 * Drop lock around migration; if someone else moves it,
5517 * that's OK. No task can be added to this CPU, so iteration is
5518 * fine.
5520 raw_spin_unlock_irq(&rq->lock);
5521 move_task_off_dead_cpu(dead_cpu, p);
5522 raw_spin_lock_irq(&rq->lock);
5524 put_task_struct(p);
5527 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5528 static void migrate_dead_tasks(unsigned int dead_cpu)
5530 struct rq *rq = cpu_rq(dead_cpu);
5531 struct task_struct *next;
5533 for ( ; ; ) {
5534 if (!rq->nr_running)
5535 break;
5536 next = pick_next_task(rq);
5537 if (!next)
5538 break;
5539 next->sched_class->put_prev_task(rq, next);
5540 migrate_dead(dead_cpu, next);
5546 * remove the tasks which were accounted by rq from calc_load_tasks.
5548 static void calc_global_load_remove(struct rq *rq)
5550 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5551 rq->calc_load_active = 0;
5553 #endif /* CONFIG_HOTPLUG_CPU */
5555 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5557 static struct ctl_table sd_ctl_dir[] = {
5559 .procname = "sched_domain",
5560 .mode = 0555,
5565 static struct ctl_table sd_ctl_root[] = {
5567 .procname = "kernel",
5568 .mode = 0555,
5569 .child = sd_ctl_dir,
5574 static struct ctl_table *sd_alloc_ctl_entry(int n)
5576 struct ctl_table *entry =
5577 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5579 return entry;
5582 static void sd_free_ctl_entry(struct ctl_table **tablep)
5584 struct ctl_table *entry;
5587 * In the intermediate directories, both the child directory and
5588 * procname are dynamically allocated and could fail but the mode
5589 * will always be set. In the lowest directory the names are
5590 * static strings and all have proc handlers.
5592 for (entry = *tablep; entry->mode; entry++) {
5593 if (entry->child)
5594 sd_free_ctl_entry(&entry->child);
5595 if (entry->proc_handler == NULL)
5596 kfree(entry->procname);
5599 kfree(*tablep);
5600 *tablep = NULL;
5603 static void
5604 set_table_entry(struct ctl_table *entry,
5605 const char *procname, void *data, int maxlen,
5606 mode_t mode, proc_handler *proc_handler)
5608 entry->procname = procname;
5609 entry->data = data;
5610 entry->maxlen = maxlen;
5611 entry->mode = mode;
5612 entry->proc_handler = proc_handler;
5615 static struct ctl_table *
5616 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5618 struct ctl_table *table = sd_alloc_ctl_entry(13);
5620 if (table == NULL)
5621 return NULL;
5623 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5624 sizeof(long), 0644, proc_doulongvec_minmax);
5625 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5626 sizeof(long), 0644, proc_doulongvec_minmax);
5627 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5630 sizeof(int), 0644, proc_dointvec_minmax);
5631 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5632 sizeof(int), 0644, proc_dointvec_minmax);
5633 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5634 sizeof(int), 0644, proc_dointvec_minmax);
5635 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5636 sizeof(int), 0644, proc_dointvec_minmax);
5637 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5638 sizeof(int), 0644, proc_dointvec_minmax);
5639 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5640 sizeof(int), 0644, proc_dointvec_minmax);
5641 set_table_entry(&table[9], "cache_nice_tries",
5642 &sd->cache_nice_tries,
5643 sizeof(int), 0644, proc_dointvec_minmax);
5644 set_table_entry(&table[10], "flags", &sd->flags,
5645 sizeof(int), 0644, proc_dointvec_minmax);
5646 set_table_entry(&table[11], "name", sd->name,
5647 CORENAME_MAX_SIZE, 0444, proc_dostring);
5648 /* &table[12] is terminator */
5650 return table;
5653 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5655 struct ctl_table *entry, *table;
5656 struct sched_domain *sd;
5657 int domain_num = 0, i;
5658 char buf[32];
5660 for_each_domain(cpu, sd)
5661 domain_num++;
5662 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5663 if (table == NULL)
5664 return NULL;
5666 i = 0;
5667 for_each_domain(cpu, sd) {
5668 snprintf(buf, 32, "domain%d", i);
5669 entry->procname = kstrdup(buf, GFP_KERNEL);
5670 entry->mode = 0555;
5671 entry->child = sd_alloc_ctl_domain_table(sd);
5672 entry++;
5673 i++;
5675 return table;
5678 static struct ctl_table_header *sd_sysctl_header;
5679 static void register_sched_domain_sysctl(void)
5681 int i, cpu_num = num_possible_cpus();
5682 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5683 char buf[32];
5685 WARN_ON(sd_ctl_dir[0].child);
5686 sd_ctl_dir[0].child = entry;
5688 if (entry == NULL)
5689 return;
5691 for_each_possible_cpu(i) {
5692 snprintf(buf, 32, "cpu%d", i);
5693 entry->procname = kstrdup(buf, GFP_KERNEL);
5694 entry->mode = 0555;
5695 entry->child = sd_alloc_ctl_cpu_table(i);
5696 entry++;
5699 WARN_ON(sd_sysctl_header);
5700 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5703 /* may be called multiple times per register */
5704 static void unregister_sched_domain_sysctl(void)
5706 if (sd_sysctl_header)
5707 unregister_sysctl_table(sd_sysctl_header);
5708 sd_sysctl_header = NULL;
5709 if (sd_ctl_dir[0].child)
5710 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5712 #else
5713 static void register_sched_domain_sysctl(void)
5716 static void unregister_sched_domain_sysctl(void)
5719 #endif
5721 static void set_rq_online(struct rq *rq)
5723 if (!rq->online) {
5724 const struct sched_class *class;
5726 cpumask_set_cpu(rq->cpu, rq->rd->online);
5727 rq->online = 1;
5729 for_each_class(class) {
5730 if (class->rq_online)
5731 class->rq_online(rq);
5736 static void set_rq_offline(struct rq *rq)
5738 if (rq->online) {
5739 const struct sched_class *class;
5741 for_each_class(class) {
5742 if (class->rq_offline)
5743 class->rq_offline(rq);
5746 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5747 rq->online = 0;
5752 * migration_call - callback that gets triggered when a CPU is added.
5753 * Here we can start up the necessary migration thread for the new CPU.
5755 static int __cpuinit
5756 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5758 int cpu = (long)hcpu;
5759 unsigned long flags;
5760 struct rq *rq = cpu_rq(cpu);
5762 switch (action) {
5764 case CPU_UP_PREPARE:
5765 case CPU_UP_PREPARE_FROZEN:
5766 rq->calc_load_update = calc_load_update;
5767 break;
5769 case CPU_ONLINE:
5770 case CPU_ONLINE_FROZEN:
5771 /* Update our root-domain */
5772 raw_spin_lock_irqsave(&rq->lock, flags);
5773 if (rq->rd) {
5774 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5776 set_rq_online(rq);
5778 raw_spin_unlock_irqrestore(&rq->lock, flags);
5779 break;
5781 #ifdef CONFIG_HOTPLUG_CPU
5782 case CPU_DEAD:
5783 case CPU_DEAD_FROZEN:
5784 migrate_live_tasks(cpu);
5785 /* Idle task back to normal (off runqueue, low prio) */
5786 raw_spin_lock_irq(&rq->lock);
5787 deactivate_task(rq, rq->idle, 0);
5788 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5789 rq->idle->sched_class = &idle_sched_class;
5790 migrate_dead_tasks(cpu);
5791 raw_spin_unlock_irq(&rq->lock);
5792 migrate_nr_uninterruptible(rq);
5793 BUG_ON(rq->nr_running != 0);
5794 calc_global_load_remove(rq);
5795 break;
5797 case CPU_DYING:
5798 case CPU_DYING_FROZEN:
5799 /* Update our root-domain */
5800 raw_spin_lock_irqsave(&rq->lock, flags);
5801 if (rq->rd) {
5802 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5803 set_rq_offline(rq);
5805 raw_spin_unlock_irqrestore(&rq->lock, flags);
5806 break;
5807 #endif
5809 return NOTIFY_OK;
5813 * Register at high priority so that task migration (migrate_all_tasks)
5814 * happens before everything else. This has to be lower priority than
5815 * the notifier in the perf_event subsystem, though.
5817 static struct notifier_block __cpuinitdata migration_notifier = {
5818 .notifier_call = migration_call,
5819 .priority = 10
5822 static int __init migration_init(void)
5824 void *cpu = (void *)(long)smp_processor_id();
5825 int err;
5827 /* Start one for the boot CPU: */
5828 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5829 BUG_ON(err == NOTIFY_BAD);
5830 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5831 register_cpu_notifier(&migration_notifier);
5833 return 0;
5835 early_initcall(migration_init);
5836 #endif
5838 #ifdef CONFIG_SMP
5840 #ifdef CONFIG_SCHED_DEBUG
5842 static __read_mostly int sched_domain_debug_enabled;
5844 static int __init sched_domain_debug_setup(char *str)
5846 sched_domain_debug_enabled = 1;
5848 return 0;
5850 early_param("sched_debug", sched_domain_debug_setup);
5852 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5853 struct cpumask *groupmask)
5855 struct sched_group *group = sd->groups;
5856 char str[256];
5858 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5859 cpumask_clear(groupmask);
5861 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5863 if (!(sd->flags & SD_LOAD_BALANCE)) {
5864 printk("does not load-balance\n");
5865 if (sd->parent)
5866 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5867 " has parent");
5868 return -1;
5871 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5873 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5874 printk(KERN_ERR "ERROR: domain->span does not contain "
5875 "CPU%d\n", cpu);
5877 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5878 printk(KERN_ERR "ERROR: domain->groups does not contain"
5879 " CPU%d\n", cpu);
5882 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5883 do {
5884 if (!group) {
5885 printk("\n");
5886 printk(KERN_ERR "ERROR: group is NULL\n");
5887 break;
5890 if (!group->cpu_power) {
5891 printk(KERN_CONT "\n");
5892 printk(KERN_ERR "ERROR: domain->cpu_power not "
5893 "set\n");
5894 break;
5897 if (!cpumask_weight(sched_group_cpus(group))) {
5898 printk(KERN_CONT "\n");
5899 printk(KERN_ERR "ERROR: empty group\n");
5900 break;
5903 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5904 printk(KERN_CONT "\n");
5905 printk(KERN_ERR "ERROR: repeated CPUs\n");
5906 break;
5909 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5911 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5913 printk(KERN_CONT " %s", str);
5914 if (group->cpu_power != SCHED_LOAD_SCALE) {
5915 printk(KERN_CONT " (cpu_power = %d)",
5916 group->cpu_power);
5919 group = group->next;
5920 } while (group != sd->groups);
5921 printk(KERN_CONT "\n");
5923 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5924 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5926 if (sd->parent &&
5927 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5928 printk(KERN_ERR "ERROR: parent span is not a superset "
5929 "of domain->span\n");
5930 return 0;
5933 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5935 cpumask_var_t groupmask;
5936 int level = 0;
5938 if (!sched_domain_debug_enabled)
5939 return;
5941 if (!sd) {
5942 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5943 return;
5946 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5948 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5949 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5950 return;
5953 for (;;) {
5954 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5955 break;
5956 level++;
5957 sd = sd->parent;
5958 if (!sd)
5959 break;
5961 free_cpumask_var(groupmask);
5963 #else /* !CONFIG_SCHED_DEBUG */
5964 # define sched_domain_debug(sd, cpu) do { } while (0)
5965 #endif /* CONFIG_SCHED_DEBUG */
5967 static int sd_degenerate(struct sched_domain *sd)
5969 if (cpumask_weight(sched_domain_span(sd)) == 1)
5970 return 1;
5972 /* Following flags need at least 2 groups */
5973 if (sd->flags & (SD_LOAD_BALANCE |
5974 SD_BALANCE_NEWIDLE |
5975 SD_BALANCE_FORK |
5976 SD_BALANCE_EXEC |
5977 SD_SHARE_CPUPOWER |
5978 SD_SHARE_PKG_RESOURCES)) {
5979 if (sd->groups != sd->groups->next)
5980 return 0;
5983 /* Following flags don't use groups */
5984 if (sd->flags & (SD_WAKE_AFFINE))
5985 return 0;
5987 return 1;
5990 static int
5991 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5993 unsigned long cflags = sd->flags, pflags = parent->flags;
5995 if (sd_degenerate(parent))
5996 return 1;
5998 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5999 return 0;
6001 /* Flags needing groups don't count if only 1 group in parent */
6002 if (parent->groups == parent->groups->next) {
6003 pflags &= ~(SD_LOAD_BALANCE |
6004 SD_BALANCE_NEWIDLE |
6005 SD_BALANCE_FORK |
6006 SD_BALANCE_EXEC |
6007 SD_SHARE_CPUPOWER |
6008 SD_SHARE_PKG_RESOURCES);
6009 if (nr_node_ids == 1)
6010 pflags &= ~SD_SERIALIZE;
6012 if (~cflags & pflags)
6013 return 0;
6015 return 1;
6018 static void free_rootdomain(struct root_domain *rd)
6020 synchronize_sched();
6022 cpupri_cleanup(&rd->cpupri);
6024 free_cpumask_var(rd->rto_mask);
6025 free_cpumask_var(rd->online);
6026 free_cpumask_var(rd->span);
6027 kfree(rd);
6030 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6032 struct root_domain *old_rd = NULL;
6033 unsigned long flags;
6035 raw_spin_lock_irqsave(&rq->lock, flags);
6037 if (rq->rd) {
6038 old_rd = rq->rd;
6040 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6041 set_rq_offline(rq);
6043 cpumask_clear_cpu(rq->cpu, old_rd->span);
6046 * If we dont want to free the old_rt yet then
6047 * set old_rd to NULL to skip the freeing later
6048 * in this function:
6050 if (!atomic_dec_and_test(&old_rd->refcount))
6051 old_rd = NULL;
6054 atomic_inc(&rd->refcount);
6055 rq->rd = rd;
6057 cpumask_set_cpu(rq->cpu, rd->span);
6058 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6059 set_rq_online(rq);
6061 raw_spin_unlock_irqrestore(&rq->lock, flags);
6063 if (old_rd)
6064 free_rootdomain(old_rd);
6067 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6069 gfp_t gfp = GFP_KERNEL;
6071 memset(rd, 0, sizeof(*rd));
6073 if (bootmem)
6074 gfp = GFP_NOWAIT;
6076 if (!alloc_cpumask_var(&rd->span, gfp))
6077 goto out;
6078 if (!alloc_cpumask_var(&rd->online, gfp))
6079 goto free_span;
6080 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6081 goto free_online;
6083 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6084 goto free_rto_mask;
6085 return 0;
6087 free_rto_mask:
6088 free_cpumask_var(rd->rto_mask);
6089 free_online:
6090 free_cpumask_var(rd->online);
6091 free_span:
6092 free_cpumask_var(rd->span);
6093 out:
6094 return -ENOMEM;
6097 static void init_defrootdomain(void)
6099 init_rootdomain(&def_root_domain, true);
6101 atomic_set(&def_root_domain.refcount, 1);
6104 static struct root_domain *alloc_rootdomain(void)
6106 struct root_domain *rd;
6108 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6109 if (!rd)
6110 return NULL;
6112 if (init_rootdomain(rd, false) != 0) {
6113 kfree(rd);
6114 return NULL;
6117 return rd;
6121 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6122 * hold the hotplug lock.
6124 static void
6125 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6127 struct rq *rq = cpu_rq(cpu);
6128 struct sched_domain *tmp;
6130 for (tmp = sd; tmp; tmp = tmp->parent)
6131 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6133 /* Remove the sched domains which do not contribute to scheduling. */
6134 for (tmp = sd; tmp; ) {
6135 struct sched_domain *parent = tmp->parent;
6136 if (!parent)
6137 break;
6139 if (sd_parent_degenerate(tmp, parent)) {
6140 tmp->parent = parent->parent;
6141 if (parent->parent)
6142 parent->parent->child = tmp;
6143 } else
6144 tmp = tmp->parent;
6147 if (sd && sd_degenerate(sd)) {
6148 sd = sd->parent;
6149 if (sd)
6150 sd->child = NULL;
6153 sched_domain_debug(sd, cpu);
6155 rq_attach_root(rq, rd);
6156 rcu_assign_pointer(rq->sd, sd);
6159 /* cpus with isolated domains */
6160 static cpumask_var_t cpu_isolated_map;
6162 /* Setup the mask of cpus configured for isolated domains */
6163 static int __init isolated_cpu_setup(char *str)
6165 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6166 cpulist_parse(str, cpu_isolated_map);
6167 return 1;
6170 __setup("isolcpus=", isolated_cpu_setup);
6173 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6174 * to a function which identifies what group(along with sched group) a CPU
6175 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6176 * (due to the fact that we keep track of groups covered with a struct cpumask).
6178 * init_sched_build_groups will build a circular linked list of the groups
6179 * covered by the given span, and will set each group's ->cpumask correctly,
6180 * and ->cpu_power to 0.
6182 static void
6183 init_sched_build_groups(const struct cpumask *span,
6184 const struct cpumask *cpu_map,
6185 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6186 struct sched_group **sg,
6187 struct cpumask *tmpmask),
6188 struct cpumask *covered, struct cpumask *tmpmask)
6190 struct sched_group *first = NULL, *last = NULL;
6191 int i;
6193 cpumask_clear(covered);
6195 for_each_cpu(i, span) {
6196 struct sched_group *sg;
6197 int group = group_fn(i, cpu_map, &sg, tmpmask);
6198 int j;
6200 if (cpumask_test_cpu(i, covered))
6201 continue;
6203 cpumask_clear(sched_group_cpus(sg));
6204 sg->cpu_power = 0;
6206 for_each_cpu(j, span) {
6207 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6208 continue;
6210 cpumask_set_cpu(j, covered);
6211 cpumask_set_cpu(j, sched_group_cpus(sg));
6213 if (!first)
6214 first = sg;
6215 if (last)
6216 last->next = sg;
6217 last = sg;
6219 last->next = first;
6222 #define SD_NODES_PER_DOMAIN 16
6224 #ifdef CONFIG_NUMA
6227 * find_next_best_node - find the next node to include in a sched_domain
6228 * @node: node whose sched_domain we're building
6229 * @used_nodes: nodes already in the sched_domain
6231 * Find the next node to include in a given scheduling domain. Simply
6232 * finds the closest node not already in the @used_nodes map.
6234 * Should use nodemask_t.
6236 static int find_next_best_node(int node, nodemask_t *used_nodes)
6238 int i, n, val, min_val, best_node = 0;
6240 min_val = INT_MAX;
6242 for (i = 0; i < nr_node_ids; i++) {
6243 /* Start at @node */
6244 n = (node + i) % nr_node_ids;
6246 if (!nr_cpus_node(n))
6247 continue;
6249 /* Skip already used nodes */
6250 if (node_isset(n, *used_nodes))
6251 continue;
6253 /* Simple min distance search */
6254 val = node_distance(node, n);
6256 if (val < min_val) {
6257 min_val = val;
6258 best_node = n;
6262 node_set(best_node, *used_nodes);
6263 return best_node;
6267 * sched_domain_node_span - get a cpumask for a node's sched_domain
6268 * @node: node whose cpumask we're constructing
6269 * @span: resulting cpumask
6271 * Given a node, construct a good cpumask for its sched_domain to span. It
6272 * should be one that prevents unnecessary balancing, but also spreads tasks
6273 * out optimally.
6275 static void sched_domain_node_span(int node, struct cpumask *span)
6277 nodemask_t used_nodes;
6278 int i;
6280 cpumask_clear(span);
6281 nodes_clear(used_nodes);
6283 cpumask_or(span, span, cpumask_of_node(node));
6284 node_set(node, used_nodes);
6286 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6287 int next_node = find_next_best_node(node, &used_nodes);
6289 cpumask_or(span, span, cpumask_of_node(next_node));
6292 #endif /* CONFIG_NUMA */
6294 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6297 * The cpus mask in sched_group and sched_domain hangs off the end.
6299 * ( See the the comments in include/linux/sched.h:struct sched_group
6300 * and struct sched_domain. )
6302 struct static_sched_group {
6303 struct sched_group sg;
6304 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6307 struct static_sched_domain {
6308 struct sched_domain sd;
6309 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6312 struct s_data {
6313 #ifdef CONFIG_NUMA
6314 int sd_allnodes;
6315 cpumask_var_t domainspan;
6316 cpumask_var_t covered;
6317 cpumask_var_t notcovered;
6318 #endif
6319 cpumask_var_t nodemask;
6320 cpumask_var_t this_sibling_map;
6321 cpumask_var_t this_core_map;
6322 cpumask_var_t send_covered;
6323 cpumask_var_t tmpmask;
6324 struct sched_group **sched_group_nodes;
6325 struct root_domain *rd;
6328 enum s_alloc {
6329 sa_sched_groups = 0,
6330 sa_rootdomain,
6331 sa_tmpmask,
6332 sa_send_covered,
6333 sa_this_core_map,
6334 sa_this_sibling_map,
6335 sa_nodemask,
6336 sa_sched_group_nodes,
6337 #ifdef CONFIG_NUMA
6338 sa_notcovered,
6339 sa_covered,
6340 sa_domainspan,
6341 #endif
6342 sa_none,
6346 * SMT sched-domains:
6348 #ifdef CONFIG_SCHED_SMT
6349 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6350 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6352 static int
6353 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6354 struct sched_group **sg, struct cpumask *unused)
6356 if (sg)
6357 *sg = &per_cpu(sched_groups, cpu).sg;
6358 return cpu;
6360 #endif /* CONFIG_SCHED_SMT */
6363 * multi-core sched-domains:
6365 #ifdef CONFIG_SCHED_MC
6366 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6367 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6368 #endif /* CONFIG_SCHED_MC */
6370 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6371 static int
6372 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6373 struct sched_group **sg, struct cpumask *mask)
6375 int group;
6377 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6378 group = cpumask_first(mask);
6379 if (sg)
6380 *sg = &per_cpu(sched_group_core, group).sg;
6381 return group;
6383 #elif defined(CONFIG_SCHED_MC)
6384 static int
6385 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6386 struct sched_group **sg, struct cpumask *unused)
6388 if (sg)
6389 *sg = &per_cpu(sched_group_core, cpu).sg;
6390 return cpu;
6392 #endif
6394 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6395 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6397 static int
6398 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6399 struct sched_group **sg, struct cpumask *mask)
6401 int group;
6402 #ifdef CONFIG_SCHED_MC
6403 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6404 group = cpumask_first(mask);
6405 #elif defined(CONFIG_SCHED_SMT)
6406 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6407 group = cpumask_first(mask);
6408 #else
6409 group = cpu;
6410 #endif
6411 if (sg)
6412 *sg = &per_cpu(sched_group_phys, group).sg;
6413 return group;
6416 #ifdef CONFIG_NUMA
6418 * The init_sched_build_groups can't handle what we want to do with node
6419 * groups, so roll our own. Now each node has its own list of groups which
6420 * gets dynamically allocated.
6422 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6423 static struct sched_group ***sched_group_nodes_bycpu;
6425 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6426 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6428 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6429 struct sched_group **sg,
6430 struct cpumask *nodemask)
6432 int group;
6434 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6435 group = cpumask_first(nodemask);
6437 if (sg)
6438 *sg = &per_cpu(sched_group_allnodes, group).sg;
6439 return group;
6442 static void init_numa_sched_groups_power(struct sched_group *group_head)
6444 struct sched_group *sg = group_head;
6445 int j;
6447 if (!sg)
6448 return;
6449 do {
6450 for_each_cpu(j, sched_group_cpus(sg)) {
6451 struct sched_domain *sd;
6453 sd = &per_cpu(phys_domains, j).sd;
6454 if (j != group_first_cpu(sd->groups)) {
6456 * Only add "power" once for each
6457 * physical package.
6459 continue;
6462 sg->cpu_power += sd->groups->cpu_power;
6464 sg = sg->next;
6465 } while (sg != group_head);
6468 static int build_numa_sched_groups(struct s_data *d,
6469 const struct cpumask *cpu_map, int num)
6471 struct sched_domain *sd;
6472 struct sched_group *sg, *prev;
6473 int n, j;
6475 cpumask_clear(d->covered);
6476 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6477 if (cpumask_empty(d->nodemask)) {
6478 d->sched_group_nodes[num] = NULL;
6479 goto out;
6482 sched_domain_node_span(num, d->domainspan);
6483 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6485 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6486 GFP_KERNEL, num);
6487 if (!sg) {
6488 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6489 num);
6490 return -ENOMEM;
6492 d->sched_group_nodes[num] = sg;
6494 for_each_cpu(j, d->nodemask) {
6495 sd = &per_cpu(node_domains, j).sd;
6496 sd->groups = sg;
6499 sg->cpu_power = 0;
6500 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6501 sg->next = sg;
6502 cpumask_or(d->covered, d->covered, d->nodemask);
6504 prev = sg;
6505 for (j = 0; j < nr_node_ids; j++) {
6506 n = (num + j) % nr_node_ids;
6507 cpumask_complement(d->notcovered, d->covered);
6508 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6509 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6510 if (cpumask_empty(d->tmpmask))
6511 break;
6512 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6513 if (cpumask_empty(d->tmpmask))
6514 continue;
6515 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6516 GFP_KERNEL, num);
6517 if (!sg) {
6518 printk(KERN_WARNING
6519 "Can not alloc domain group for node %d\n", j);
6520 return -ENOMEM;
6522 sg->cpu_power = 0;
6523 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6524 sg->next = prev->next;
6525 cpumask_or(d->covered, d->covered, d->tmpmask);
6526 prev->next = sg;
6527 prev = sg;
6529 out:
6530 return 0;
6532 #endif /* CONFIG_NUMA */
6534 #ifdef CONFIG_NUMA
6535 /* Free memory allocated for various sched_group structures */
6536 static void free_sched_groups(const struct cpumask *cpu_map,
6537 struct cpumask *nodemask)
6539 int cpu, i;
6541 for_each_cpu(cpu, cpu_map) {
6542 struct sched_group **sched_group_nodes
6543 = sched_group_nodes_bycpu[cpu];
6545 if (!sched_group_nodes)
6546 continue;
6548 for (i = 0; i < nr_node_ids; i++) {
6549 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6551 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6552 if (cpumask_empty(nodemask))
6553 continue;
6555 if (sg == NULL)
6556 continue;
6557 sg = sg->next;
6558 next_sg:
6559 oldsg = sg;
6560 sg = sg->next;
6561 kfree(oldsg);
6562 if (oldsg != sched_group_nodes[i])
6563 goto next_sg;
6565 kfree(sched_group_nodes);
6566 sched_group_nodes_bycpu[cpu] = NULL;
6569 #else /* !CONFIG_NUMA */
6570 static void free_sched_groups(const struct cpumask *cpu_map,
6571 struct cpumask *nodemask)
6574 #endif /* CONFIG_NUMA */
6577 * Initialize sched groups cpu_power.
6579 * cpu_power indicates the capacity of sched group, which is used while
6580 * distributing the load between different sched groups in a sched domain.
6581 * Typically cpu_power for all the groups in a sched domain will be same unless
6582 * there are asymmetries in the topology. If there are asymmetries, group
6583 * having more cpu_power will pickup more load compared to the group having
6584 * less cpu_power.
6586 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6588 struct sched_domain *child;
6589 struct sched_group *group;
6590 long power;
6591 int weight;
6593 WARN_ON(!sd || !sd->groups);
6595 if (cpu != group_first_cpu(sd->groups))
6596 return;
6598 child = sd->child;
6600 sd->groups->cpu_power = 0;
6602 if (!child) {
6603 power = SCHED_LOAD_SCALE;
6604 weight = cpumask_weight(sched_domain_span(sd));
6606 * SMT siblings share the power of a single core.
6607 * Usually multiple threads get a better yield out of
6608 * that one core than a single thread would have,
6609 * reflect that in sd->smt_gain.
6611 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6612 power *= sd->smt_gain;
6613 power /= weight;
6614 power >>= SCHED_LOAD_SHIFT;
6616 sd->groups->cpu_power += power;
6617 return;
6621 * Add cpu_power of each child group to this groups cpu_power.
6623 group = child->groups;
6624 do {
6625 sd->groups->cpu_power += group->cpu_power;
6626 group = group->next;
6627 } while (group != child->groups);
6631 * Initializers for schedule domains
6632 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6635 #ifdef CONFIG_SCHED_DEBUG
6636 # define SD_INIT_NAME(sd, type) sd->name = #type
6637 #else
6638 # define SD_INIT_NAME(sd, type) do { } while (0)
6639 #endif
6641 #define SD_INIT(sd, type) sd_init_##type(sd)
6643 #define SD_INIT_FUNC(type) \
6644 static noinline void sd_init_##type(struct sched_domain *sd) \
6646 memset(sd, 0, sizeof(*sd)); \
6647 *sd = SD_##type##_INIT; \
6648 sd->level = SD_LV_##type; \
6649 SD_INIT_NAME(sd, type); \
6652 SD_INIT_FUNC(CPU)
6653 #ifdef CONFIG_NUMA
6654 SD_INIT_FUNC(ALLNODES)
6655 SD_INIT_FUNC(NODE)
6656 #endif
6657 #ifdef CONFIG_SCHED_SMT
6658 SD_INIT_FUNC(SIBLING)
6659 #endif
6660 #ifdef CONFIG_SCHED_MC
6661 SD_INIT_FUNC(MC)
6662 #endif
6664 static int default_relax_domain_level = -1;
6666 static int __init setup_relax_domain_level(char *str)
6668 unsigned long val;
6670 val = simple_strtoul(str, NULL, 0);
6671 if (val < SD_LV_MAX)
6672 default_relax_domain_level = val;
6674 return 1;
6676 __setup("relax_domain_level=", setup_relax_domain_level);
6678 static void set_domain_attribute(struct sched_domain *sd,
6679 struct sched_domain_attr *attr)
6681 int request;
6683 if (!attr || attr->relax_domain_level < 0) {
6684 if (default_relax_domain_level < 0)
6685 return;
6686 else
6687 request = default_relax_domain_level;
6688 } else
6689 request = attr->relax_domain_level;
6690 if (request < sd->level) {
6691 /* turn off idle balance on this domain */
6692 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6693 } else {
6694 /* turn on idle balance on this domain */
6695 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6699 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6700 const struct cpumask *cpu_map)
6702 switch (what) {
6703 case sa_sched_groups:
6704 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6705 d->sched_group_nodes = NULL;
6706 case sa_rootdomain:
6707 free_rootdomain(d->rd); /* fall through */
6708 case sa_tmpmask:
6709 free_cpumask_var(d->tmpmask); /* fall through */
6710 case sa_send_covered:
6711 free_cpumask_var(d->send_covered); /* fall through */
6712 case sa_this_core_map:
6713 free_cpumask_var(d->this_core_map); /* fall through */
6714 case sa_this_sibling_map:
6715 free_cpumask_var(d->this_sibling_map); /* fall through */
6716 case sa_nodemask:
6717 free_cpumask_var(d->nodemask); /* fall through */
6718 case sa_sched_group_nodes:
6719 #ifdef CONFIG_NUMA
6720 kfree(d->sched_group_nodes); /* fall through */
6721 case sa_notcovered:
6722 free_cpumask_var(d->notcovered); /* fall through */
6723 case sa_covered:
6724 free_cpumask_var(d->covered); /* fall through */
6725 case sa_domainspan:
6726 free_cpumask_var(d->domainspan); /* fall through */
6727 #endif
6728 case sa_none:
6729 break;
6733 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6734 const struct cpumask *cpu_map)
6736 #ifdef CONFIG_NUMA
6737 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6738 return sa_none;
6739 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6740 return sa_domainspan;
6741 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6742 return sa_covered;
6743 /* Allocate the per-node list of sched groups */
6744 d->sched_group_nodes = kcalloc(nr_node_ids,
6745 sizeof(struct sched_group *), GFP_KERNEL);
6746 if (!d->sched_group_nodes) {
6747 printk(KERN_WARNING "Can not alloc sched group node list\n");
6748 return sa_notcovered;
6750 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6751 #endif
6752 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6753 return sa_sched_group_nodes;
6754 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6755 return sa_nodemask;
6756 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6757 return sa_this_sibling_map;
6758 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6759 return sa_this_core_map;
6760 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6761 return sa_send_covered;
6762 d->rd = alloc_rootdomain();
6763 if (!d->rd) {
6764 printk(KERN_WARNING "Cannot alloc root domain\n");
6765 return sa_tmpmask;
6767 return sa_rootdomain;
6770 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6771 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6773 struct sched_domain *sd = NULL;
6774 #ifdef CONFIG_NUMA
6775 struct sched_domain *parent;
6777 d->sd_allnodes = 0;
6778 if (cpumask_weight(cpu_map) >
6779 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6780 sd = &per_cpu(allnodes_domains, i).sd;
6781 SD_INIT(sd, ALLNODES);
6782 set_domain_attribute(sd, attr);
6783 cpumask_copy(sched_domain_span(sd), cpu_map);
6784 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6785 d->sd_allnodes = 1;
6787 parent = sd;
6789 sd = &per_cpu(node_domains, i).sd;
6790 SD_INIT(sd, NODE);
6791 set_domain_attribute(sd, attr);
6792 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6793 sd->parent = parent;
6794 if (parent)
6795 parent->child = sd;
6796 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6797 #endif
6798 return sd;
6801 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6802 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6803 struct sched_domain *parent, int i)
6805 struct sched_domain *sd;
6806 sd = &per_cpu(phys_domains, i).sd;
6807 SD_INIT(sd, CPU);
6808 set_domain_attribute(sd, attr);
6809 cpumask_copy(sched_domain_span(sd), d->nodemask);
6810 sd->parent = parent;
6811 if (parent)
6812 parent->child = sd;
6813 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6814 return sd;
6817 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6818 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6819 struct sched_domain *parent, int i)
6821 struct sched_domain *sd = parent;
6822 #ifdef CONFIG_SCHED_MC
6823 sd = &per_cpu(core_domains, i).sd;
6824 SD_INIT(sd, MC);
6825 set_domain_attribute(sd, attr);
6826 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6827 sd->parent = parent;
6828 parent->child = sd;
6829 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6830 #endif
6831 return sd;
6834 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6835 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6836 struct sched_domain *parent, int i)
6838 struct sched_domain *sd = parent;
6839 #ifdef CONFIG_SCHED_SMT
6840 sd = &per_cpu(cpu_domains, i).sd;
6841 SD_INIT(sd, SIBLING);
6842 set_domain_attribute(sd, attr);
6843 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6844 sd->parent = parent;
6845 parent->child = sd;
6846 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6847 #endif
6848 return sd;
6851 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6852 const struct cpumask *cpu_map, int cpu)
6854 switch (l) {
6855 #ifdef CONFIG_SCHED_SMT
6856 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6857 cpumask_and(d->this_sibling_map, cpu_map,
6858 topology_thread_cpumask(cpu));
6859 if (cpu == cpumask_first(d->this_sibling_map))
6860 init_sched_build_groups(d->this_sibling_map, cpu_map,
6861 &cpu_to_cpu_group,
6862 d->send_covered, d->tmpmask);
6863 break;
6864 #endif
6865 #ifdef CONFIG_SCHED_MC
6866 case SD_LV_MC: /* set up multi-core groups */
6867 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6868 if (cpu == cpumask_first(d->this_core_map))
6869 init_sched_build_groups(d->this_core_map, cpu_map,
6870 &cpu_to_core_group,
6871 d->send_covered, d->tmpmask);
6872 break;
6873 #endif
6874 case SD_LV_CPU: /* set up physical groups */
6875 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6876 if (!cpumask_empty(d->nodemask))
6877 init_sched_build_groups(d->nodemask, cpu_map,
6878 &cpu_to_phys_group,
6879 d->send_covered, d->tmpmask);
6880 break;
6881 #ifdef CONFIG_NUMA
6882 case SD_LV_ALLNODES:
6883 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6884 d->send_covered, d->tmpmask);
6885 break;
6886 #endif
6887 default:
6888 break;
6893 * Build sched domains for a given set of cpus and attach the sched domains
6894 * to the individual cpus
6896 static int __build_sched_domains(const struct cpumask *cpu_map,
6897 struct sched_domain_attr *attr)
6899 enum s_alloc alloc_state = sa_none;
6900 struct s_data d;
6901 struct sched_domain *sd;
6902 int i;
6903 #ifdef CONFIG_NUMA
6904 d.sd_allnodes = 0;
6905 #endif
6907 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6908 if (alloc_state != sa_rootdomain)
6909 goto error;
6910 alloc_state = sa_sched_groups;
6913 * Set up domains for cpus specified by the cpu_map.
6915 for_each_cpu(i, cpu_map) {
6916 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6917 cpu_map);
6919 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6920 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6921 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6922 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6925 for_each_cpu(i, cpu_map) {
6926 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6927 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6930 /* Set up physical groups */
6931 for (i = 0; i < nr_node_ids; i++)
6932 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6934 #ifdef CONFIG_NUMA
6935 /* Set up node groups */
6936 if (d.sd_allnodes)
6937 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6939 for (i = 0; i < nr_node_ids; i++)
6940 if (build_numa_sched_groups(&d, cpu_map, i))
6941 goto error;
6942 #endif
6944 /* Calculate CPU power for physical packages and nodes */
6945 #ifdef CONFIG_SCHED_SMT
6946 for_each_cpu(i, cpu_map) {
6947 sd = &per_cpu(cpu_domains, i).sd;
6948 init_sched_groups_power(i, sd);
6950 #endif
6951 #ifdef CONFIG_SCHED_MC
6952 for_each_cpu(i, cpu_map) {
6953 sd = &per_cpu(core_domains, i).sd;
6954 init_sched_groups_power(i, sd);
6956 #endif
6958 for_each_cpu(i, cpu_map) {
6959 sd = &per_cpu(phys_domains, i).sd;
6960 init_sched_groups_power(i, sd);
6963 #ifdef CONFIG_NUMA
6964 for (i = 0; i < nr_node_ids; i++)
6965 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6967 if (d.sd_allnodes) {
6968 struct sched_group *sg;
6970 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6971 d.tmpmask);
6972 init_numa_sched_groups_power(sg);
6974 #endif
6976 /* Attach the domains */
6977 for_each_cpu(i, cpu_map) {
6978 #ifdef CONFIG_SCHED_SMT
6979 sd = &per_cpu(cpu_domains, i).sd;
6980 #elif defined(CONFIG_SCHED_MC)
6981 sd = &per_cpu(core_domains, i).sd;
6982 #else
6983 sd = &per_cpu(phys_domains, i).sd;
6984 #endif
6985 cpu_attach_domain(sd, d.rd, i);
6988 d.sched_group_nodes = NULL; /* don't free this we still need it */
6989 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6990 return 0;
6992 error:
6993 __free_domain_allocs(&d, alloc_state, cpu_map);
6994 return -ENOMEM;
6997 static int build_sched_domains(const struct cpumask *cpu_map)
6999 return __build_sched_domains(cpu_map, NULL);
7002 static cpumask_var_t *doms_cur; /* current sched domains */
7003 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7004 static struct sched_domain_attr *dattr_cur;
7005 /* attribues of custom domains in 'doms_cur' */
7008 * Special case: If a kmalloc of a doms_cur partition (array of
7009 * cpumask) fails, then fallback to a single sched domain,
7010 * as determined by the single cpumask fallback_doms.
7012 static cpumask_var_t fallback_doms;
7015 * arch_update_cpu_topology lets virtualized architectures update the
7016 * cpu core maps. It is supposed to return 1 if the topology changed
7017 * or 0 if it stayed the same.
7019 int __attribute__((weak)) arch_update_cpu_topology(void)
7021 return 0;
7024 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7026 int i;
7027 cpumask_var_t *doms;
7029 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7030 if (!doms)
7031 return NULL;
7032 for (i = 0; i < ndoms; i++) {
7033 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7034 free_sched_domains(doms, i);
7035 return NULL;
7038 return doms;
7041 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7043 unsigned int i;
7044 for (i = 0; i < ndoms; i++)
7045 free_cpumask_var(doms[i]);
7046 kfree(doms);
7050 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7051 * For now this just excludes isolated cpus, but could be used to
7052 * exclude other special cases in the future.
7054 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7056 int err;
7058 arch_update_cpu_topology();
7059 ndoms_cur = 1;
7060 doms_cur = alloc_sched_domains(ndoms_cur);
7061 if (!doms_cur)
7062 doms_cur = &fallback_doms;
7063 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7064 dattr_cur = NULL;
7065 err = build_sched_domains(doms_cur[0]);
7066 register_sched_domain_sysctl();
7068 return err;
7071 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7072 struct cpumask *tmpmask)
7074 free_sched_groups(cpu_map, tmpmask);
7078 * Detach sched domains from a group of cpus specified in cpu_map
7079 * These cpus will now be attached to the NULL domain
7081 static void detach_destroy_domains(const struct cpumask *cpu_map)
7083 /* Save because hotplug lock held. */
7084 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7085 int i;
7087 for_each_cpu(i, cpu_map)
7088 cpu_attach_domain(NULL, &def_root_domain, i);
7089 synchronize_sched();
7090 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7093 /* handle null as "default" */
7094 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7095 struct sched_domain_attr *new, int idx_new)
7097 struct sched_domain_attr tmp;
7099 /* fast path */
7100 if (!new && !cur)
7101 return 1;
7103 tmp = SD_ATTR_INIT;
7104 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7105 new ? (new + idx_new) : &tmp,
7106 sizeof(struct sched_domain_attr));
7110 * Partition sched domains as specified by the 'ndoms_new'
7111 * cpumasks in the array doms_new[] of cpumasks. This compares
7112 * doms_new[] to the current sched domain partitioning, doms_cur[].
7113 * It destroys each deleted domain and builds each new domain.
7115 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7116 * The masks don't intersect (don't overlap.) We should setup one
7117 * sched domain for each mask. CPUs not in any of the cpumasks will
7118 * not be load balanced. If the same cpumask appears both in the
7119 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7120 * it as it is.
7122 * The passed in 'doms_new' should be allocated using
7123 * alloc_sched_domains. This routine takes ownership of it and will
7124 * free_sched_domains it when done with it. If the caller failed the
7125 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7126 * and partition_sched_domains() will fallback to the single partition
7127 * 'fallback_doms', it also forces the domains to be rebuilt.
7129 * If doms_new == NULL it will be replaced with cpu_online_mask.
7130 * ndoms_new == 0 is a special case for destroying existing domains,
7131 * and it will not create the default domain.
7133 * Call with hotplug lock held
7135 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7136 struct sched_domain_attr *dattr_new)
7138 int i, j, n;
7139 int new_topology;
7141 mutex_lock(&sched_domains_mutex);
7143 /* always unregister in case we don't destroy any domains */
7144 unregister_sched_domain_sysctl();
7146 /* Let architecture update cpu core mappings. */
7147 new_topology = arch_update_cpu_topology();
7149 n = doms_new ? ndoms_new : 0;
7151 /* Destroy deleted domains */
7152 for (i = 0; i < ndoms_cur; i++) {
7153 for (j = 0; j < n && !new_topology; j++) {
7154 if (cpumask_equal(doms_cur[i], doms_new[j])
7155 && dattrs_equal(dattr_cur, i, dattr_new, j))
7156 goto match1;
7158 /* no match - a current sched domain not in new doms_new[] */
7159 detach_destroy_domains(doms_cur[i]);
7160 match1:
7164 if (doms_new == NULL) {
7165 ndoms_cur = 0;
7166 doms_new = &fallback_doms;
7167 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7168 WARN_ON_ONCE(dattr_new);
7171 /* Build new domains */
7172 for (i = 0; i < ndoms_new; i++) {
7173 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7174 if (cpumask_equal(doms_new[i], doms_cur[j])
7175 && dattrs_equal(dattr_new, i, dattr_cur, j))
7176 goto match2;
7178 /* no match - add a new doms_new */
7179 __build_sched_domains(doms_new[i],
7180 dattr_new ? dattr_new + i : NULL);
7181 match2:
7185 /* Remember the new sched domains */
7186 if (doms_cur != &fallback_doms)
7187 free_sched_domains(doms_cur, ndoms_cur);
7188 kfree(dattr_cur); /* kfree(NULL) is safe */
7189 doms_cur = doms_new;
7190 dattr_cur = dattr_new;
7191 ndoms_cur = ndoms_new;
7193 register_sched_domain_sysctl();
7195 mutex_unlock(&sched_domains_mutex);
7198 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7199 static void arch_reinit_sched_domains(void)
7201 get_online_cpus();
7203 /* Destroy domains first to force the rebuild */
7204 partition_sched_domains(0, NULL, NULL);
7206 rebuild_sched_domains();
7207 put_online_cpus();
7210 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7212 unsigned int level = 0;
7214 if (sscanf(buf, "%u", &level) != 1)
7215 return -EINVAL;
7218 * level is always be positive so don't check for
7219 * level < POWERSAVINGS_BALANCE_NONE which is 0
7220 * What happens on 0 or 1 byte write,
7221 * need to check for count as well?
7224 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7225 return -EINVAL;
7227 if (smt)
7228 sched_smt_power_savings = level;
7229 else
7230 sched_mc_power_savings = level;
7232 arch_reinit_sched_domains();
7234 return count;
7237 #ifdef CONFIG_SCHED_MC
7238 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7239 struct sysdev_class_attribute *attr,
7240 char *page)
7242 return sprintf(page, "%u\n", sched_mc_power_savings);
7244 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7245 struct sysdev_class_attribute *attr,
7246 const char *buf, size_t count)
7248 return sched_power_savings_store(buf, count, 0);
7250 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7251 sched_mc_power_savings_show,
7252 sched_mc_power_savings_store);
7253 #endif
7255 #ifdef CONFIG_SCHED_SMT
7256 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7257 struct sysdev_class_attribute *attr,
7258 char *page)
7260 return sprintf(page, "%u\n", sched_smt_power_savings);
7262 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7263 struct sysdev_class_attribute *attr,
7264 const char *buf, size_t count)
7266 return sched_power_savings_store(buf, count, 1);
7268 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7269 sched_smt_power_savings_show,
7270 sched_smt_power_savings_store);
7271 #endif
7273 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7275 int err = 0;
7277 #ifdef CONFIG_SCHED_SMT
7278 if (smt_capable())
7279 err = sysfs_create_file(&cls->kset.kobj,
7280 &attr_sched_smt_power_savings.attr);
7281 #endif
7282 #ifdef CONFIG_SCHED_MC
7283 if (!err && mc_capable())
7284 err = sysfs_create_file(&cls->kset.kobj,
7285 &attr_sched_mc_power_savings.attr);
7286 #endif
7287 return err;
7289 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7291 #ifndef CONFIG_CPUSETS
7293 * Add online and remove offline CPUs from the scheduler domains.
7294 * When cpusets are enabled they take over this function.
7296 static int update_sched_domains(struct notifier_block *nfb,
7297 unsigned long action, void *hcpu)
7299 switch (action) {
7300 case CPU_ONLINE:
7301 case CPU_ONLINE_FROZEN:
7302 case CPU_DOWN_PREPARE:
7303 case CPU_DOWN_PREPARE_FROZEN:
7304 case CPU_DOWN_FAILED:
7305 case CPU_DOWN_FAILED_FROZEN:
7306 partition_sched_domains(1, NULL, NULL);
7307 return NOTIFY_OK;
7309 default:
7310 return NOTIFY_DONE;
7313 #endif
7315 static int update_runtime(struct notifier_block *nfb,
7316 unsigned long action, void *hcpu)
7318 int cpu = (int)(long)hcpu;
7320 switch (action) {
7321 case CPU_DOWN_PREPARE:
7322 case CPU_DOWN_PREPARE_FROZEN:
7323 disable_runtime(cpu_rq(cpu));
7324 return NOTIFY_OK;
7326 case CPU_DOWN_FAILED:
7327 case CPU_DOWN_FAILED_FROZEN:
7328 case CPU_ONLINE:
7329 case CPU_ONLINE_FROZEN:
7330 enable_runtime(cpu_rq(cpu));
7331 return NOTIFY_OK;
7333 default:
7334 return NOTIFY_DONE;
7338 void __init sched_init_smp(void)
7340 cpumask_var_t non_isolated_cpus;
7342 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7343 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7345 #if defined(CONFIG_NUMA)
7346 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7347 GFP_KERNEL);
7348 BUG_ON(sched_group_nodes_bycpu == NULL);
7349 #endif
7350 get_online_cpus();
7351 mutex_lock(&sched_domains_mutex);
7352 arch_init_sched_domains(cpu_active_mask);
7353 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7354 if (cpumask_empty(non_isolated_cpus))
7355 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7356 mutex_unlock(&sched_domains_mutex);
7357 put_online_cpus();
7359 #ifndef CONFIG_CPUSETS
7360 /* XXX: Theoretical race here - CPU may be hotplugged now */
7361 hotcpu_notifier(update_sched_domains, 0);
7362 #endif
7364 /* RT runtime code needs to handle some hotplug events */
7365 hotcpu_notifier(update_runtime, 0);
7367 init_hrtick();
7369 /* Move init over to a non-isolated CPU */
7370 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7371 BUG();
7372 sched_init_granularity();
7373 free_cpumask_var(non_isolated_cpus);
7375 init_sched_rt_class();
7377 #else
7378 void __init sched_init_smp(void)
7380 sched_init_granularity();
7382 #endif /* CONFIG_SMP */
7384 const_debug unsigned int sysctl_timer_migration = 1;
7386 int in_sched_functions(unsigned long addr)
7388 return in_lock_functions(addr) ||
7389 (addr >= (unsigned long)__sched_text_start
7390 && addr < (unsigned long)__sched_text_end);
7393 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7395 cfs_rq->tasks_timeline = RB_ROOT;
7396 INIT_LIST_HEAD(&cfs_rq->tasks);
7397 #ifdef CONFIG_FAIR_GROUP_SCHED
7398 cfs_rq->rq = rq;
7399 #endif
7400 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7403 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7405 struct rt_prio_array *array;
7406 int i;
7408 array = &rt_rq->active;
7409 for (i = 0; i < MAX_RT_PRIO; i++) {
7410 INIT_LIST_HEAD(array->queue + i);
7411 __clear_bit(i, array->bitmap);
7413 /* delimiter for bitsearch: */
7414 __set_bit(MAX_RT_PRIO, array->bitmap);
7416 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7417 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7418 #ifdef CONFIG_SMP
7419 rt_rq->highest_prio.next = MAX_RT_PRIO;
7420 #endif
7421 #endif
7422 #ifdef CONFIG_SMP
7423 rt_rq->rt_nr_migratory = 0;
7424 rt_rq->overloaded = 0;
7425 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7426 #endif
7428 rt_rq->rt_time = 0;
7429 rt_rq->rt_throttled = 0;
7430 rt_rq->rt_runtime = 0;
7431 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7433 #ifdef CONFIG_RT_GROUP_SCHED
7434 rt_rq->rt_nr_boosted = 0;
7435 rt_rq->rq = rq;
7436 #endif
7439 #ifdef CONFIG_FAIR_GROUP_SCHED
7440 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7441 struct sched_entity *se, int cpu, int add,
7442 struct sched_entity *parent)
7444 struct rq *rq = cpu_rq(cpu);
7445 tg->cfs_rq[cpu] = cfs_rq;
7446 init_cfs_rq(cfs_rq, rq);
7447 cfs_rq->tg = tg;
7448 if (add)
7449 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7451 tg->se[cpu] = se;
7452 /* se could be NULL for init_task_group */
7453 if (!se)
7454 return;
7456 if (!parent)
7457 se->cfs_rq = &rq->cfs;
7458 else
7459 se->cfs_rq = parent->my_q;
7461 se->my_q = cfs_rq;
7462 se->load.weight = tg->shares;
7463 se->load.inv_weight = 0;
7464 se->parent = parent;
7466 #endif
7468 #ifdef CONFIG_RT_GROUP_SCHED
7469 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7470 struct sched_rt_entity *rt_se, int cpu, int add,
7471 struct sched_rt_entity *parent)
7473 struct rq *rq = cpu_rq(cpu);
7475 tg->rt_rq[cpu] = rt_rq;
7476 init_rt_rq(rt_rq, rq);
7477 rt_rq->tg = tg;
7478 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7479 if (add)
7480 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7482 tg->rt_se[cpu] = rt_se;
7483 if (!rt_se)
7484 return;
7486 if (!parent)
7487 rt_se->rt_rq = &rq->rt;
7488 else
7489 rt_se->rt_rq = parent->my_q;
7491 rt_se->my_q = rt_rq;
7492 rt_se->parent = parent;
7493 INIT_LIST_HEAD(&rt_se->run_list);
7495 #endif
7497 void __init sched_init(void)
7499 int i, j;
7500 unsigned long alloc_size = 0, ptr;
7502 #ifdef CONFIG_FAIR_GROUP_SCHED
7503 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7504 #endif
7505 #ifdef CONFIG_RT_GROUP_SCHED
7506 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7507 #endif
7508 #ifdef CONFIG_CPUMASK_OFFSTACK
7509 alloc_size += num_possible_cpus() * cpumask_size();
7510 #endif
7511 if (alloc_size) {
7512 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7514 #ifdef CONFIG_FAIR_GROUP_SCHED
7515 init_task_group.se = (struct sched_entity **)ptr;
7516 ptr += nr_cpu_ids * sizeof(void **);
7518 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7519 ptr += nr_cpu_ids * sizeof(void **);
7521 #endif /* CONFIG_FAIR_GROUP_SCHED */
7522 #ifdef CONFIG_RT_GROUP_SCHED
7523 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7524 ptr += nr_cpu_ids * sizeof(void **);
7526 init_task_group.rt_rq = (struct rt_rq **)ptr;
7527 ptr += nr_cpu_ids * sizeof(void **);
7529 #endif /* CONFIG_RT_GROUP_SCHED */
7530 #ifdef CONFIG_CPUMASK_OFFSTACK
7531 for_each_possible_cpu(i) {
7532 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7533 ptr += cpumask_size();
7535 #endif /* CONFIG_CPUMASK_OFFSTACK */
7538 #ifdef CONFIG_SMP
7539 init_defrootdomain();
7540 #endif
7542 init_rt_bandwidth(&def_rt_bandwidth,
7543 global_rt_period(), global_rt_runtime());
7545 #ifdef CONFIG_RT_GROUP_SCHED
7546 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7547 global_rt_period(), global_rt_runtime());
7548 #endif /* CONFIG_RT_GROUP_SCHED */
7550 #ifdef CONFIG_CGROUP_SCHED
7551 list_add(&init_task_group.list, &task_groups);
7552 INIT_LIST_HEAD(&init_task_group.children);
7554 #endif /* CONFIG_CGROUP_SCHED */
7556 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7557 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7558 __alignof__(unsigned long));
7559 #endif
7560 for_each_possible_cpu(i) {
7561 struct rq *rq;
7563 rq = cpu_rq(i);
7564 raw_spin_lock_init(&rq->lock);
7565 rq->nr_running = 0;
7566 rq->calc_load_active = 0;
7567 rq->calc_load_update = jiffies + LOAD_FREQ;
7568 init_cfs_rq(&rq->cfs, rq);
7569 init_rt_rq(&rq->rt, rq);
7570 #ifdef CONFIG_FAIR_GROUP_SCHED
7571 init_task_group.shares = init_task_group_load;
7572 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7573 #ifdef CONFIG_CGROUP_SCHED
7575 * How much cpu bandwidth does init_task_group get?
7577 * In case of task-groups formed thr' the cgroup filesystem, it
7578 * gets 100% of the cpu resources in the system. This overall
7579 * system cpu resource is divided among the tasks of
7580 * init_task_group and its child task-groups in a fair manner,
7581 * based on each entity's (task or task-group's) weight
7582 * (se->load.weight).
7584 * In other words, if init_task_group has 10 tasks of weight
7585 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7586 * then A0's share of the cpu resource is:
7588 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7590 * We achieve this by letting init_task_group's tasks sit
7591 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7593 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7594 #endif
7595 #endif /* CONFIG_FAIR_GROUP_SCHED */
7597 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7598 #ifdef CONFIG_RT_GROUP_SCHED
7599 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7600 #ifdef CONFIG_CGROUP_SCHED
7601 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7602 #endif
7603 #endif
7605 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7606 rq->cpu_load[j] = 0;
7607 #ifdef CONFIG_SMP
7608 rq->sd = NULL;
7609 rq->rd = NULL;
7610 rq->cpu_power = SCHED_LOAD_SCALE;
7611 rq->post_schedule = 0;
7612 rq->active_balance = 0;
7613 rq->next_balance = jiffies;
7614 rq->push_cpu = 0;
7615 rq->cpu = i;
7616 rq->online = 0;
7617 rq->idle_stamp = 0;
7618 rq->avg_idle = 2*sysctl_sched_migration_cost;
7619 rq_attach_root(rq, &def_root_domain);
7620 #endif
7621 init_rq_hrtick(rq);
7622 atomic_set(&rq->nr_iowait, 0);
7625 set_load_weight(&init_task);
7627 #ifdef CONFIG_PREEMPT_NOTIFIERS
7628 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7629 #endif
7631 #ifdef CONFIG_SMP
7632 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7633 #endif
7635 #ifdef CONFIG_RT_MUTEXES
7636 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7637 #endif
7640 * The boot idle thread does lazy MMU switching as well:
7642 atomic_inc(&init_mm.mm_count);
7643 enter_lazy_tlb(&init_mm, current);
7646 * Make us the idle thread. Technically, schedule() should not be
7647 * called from this thread, however somewhere below it might be,
7648 * but because we are the idle thread, we just pick up running again
7649 * when this runqueue becomes "idle".
7651 init_idle(current, smp_processor_id());
7653 calc_load_update = jiffies + LOAD_FREQ;
7656 * During early bootup we pretend to be a normal task:
7658 current->sched_class = &fair_sched_class;
7660 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7661 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7662 #ifdef CONFIG_SMP
7663 #ifdef CONFIG_NO_HZ
7664 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7665 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7666 #endif
7667 /* May be allocated at isolcpus cmdline parse time */
7668 if (cpu_isolated_map == NULL)
7669 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7670 #endif /* SMP */
7672 perf_event_init();
7674 scheduler_running = 1;
7677 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7678 static inline int preempt_count_equals(int preempt_offset)
7680 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7682 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7685 void __might_sleep(const char *file, int line, int preempt_offset)
7687 #ifdef in_atomic
7688 static unsigned long prev_jiffy; /* ratelimiting */
7690 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7691 system_state != SYSTEM_RUNNING || oops_in_progress)
7692 return;
7693 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7694 return;
7695 prev_jiffy = jiffies;
7697 printk(KERN_ERR
7698 "BUG: sleeping function called from invalid context at %s:%d\n",
7699 file, line);
7700 printk(KERN_ERR
7701 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7702 in_atomic(), irqs_disabled(),
7703 current->pid, current->comm);
7705 debug_show_held_locks(current);
7706 if (irqs_disabled())
7707 print_irqtrace_events(current);
7708 dump_stack();
7709 #endif
7711 EXPORT_SYMBOL(__might_sleep);
7712 #endif
7714 #ifdef CONFIG_MAGIC_SYSRQ
7715 static void normalize_task(struct rq *rq, struct task_struct *p)
7717 int on_rq;
7719 on_rq = p->se.on_rq;
7720 if (on_rq)
7721 deactivate_task(rq, p, 0);
7722 __setscheduler(rq, p, SCHED_NORMAL, 0);
7723 if (on_rq) {
7724 activate_task(rq, p, 0);
7725 resched_task(rq->curr);
7729 void normalize_rt_tasks(void)
7731 struct task_struct *g, *p;
7732 unsigned long flags;
7733 struct rq *rq;
7735 read_lock_irqsave(&tasklist_lock, flags);
7736 do_each_thread(g, p) {
7738 * Only normalize user tasks:
7740 if (!p->mm)
7741 continue;
7743 p->se.exec_start = 0;
7744 #ifdef CONFIG_SCHEDSTATS
7745 p->se.statistics.wait_start = 0;
7746 p->se.statistics.sleep_start = 0;
7747 p->se.statistics.block_start = 0;
7748 #endif
7750 if (!rt_task(p)) {
7752 * Renice negative nice level userspace
7753 * tasks back to 0:
7755 if (TASK_NICE(p) < 0 && p->mm)
7756 set_user_nice(p, 0);
7757 continue;
7760 raw_spin_lock(&p->pi_lock);
7761 rq = __task_rq_lock(p);
7763 normalize_task(rq, p);
7765 __task_rq_unlock(rq);
7766 raw_spin_unlock(&p->pi_lock);
7767 } while_each_thread(g, p);
7769 read_unlock_irqrestore(&tasklist_lock, flags);
7772 #endif /* CONFIG_MAGIC_SYSRQ */
7774 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7776 * These functions are only useful for the IA64 MCA handling, or kdb.
7778 * They can only be called when the whole system has been
7779 * stopped - every CPU needs to be quiescent, and no scheduling
7780 * activity can take place. Using them for anything else would
7781 * be a serious bug, and as a result, they aren't even visible
7782 * under any other configuration.
7786 * curr_task - return the current task for a given cpu.
7787 * @cpu: the processor in question.
7789 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7791 struct task_struct *curr_task(int cpu)
7793 return cpu_curr(cpu);
7796 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7798 #ifdef CONFIG_IA64
7800 * set_curr_task - set the current task for a given cpu.
7801 * @cpu: the processor in question.
7802 * @p: the task pointer to set.
7804 * Description: This function must only be used when non-maskable interrupts
7805 * are serviced on a separate stack. It allows the architecture to switch the
7806 * notion of the current task on a cpu in a non-blocking manner. This function
7807 * must be called with all CPU's synchronized, and interrupts disabled, the
7808 * and caller must save the original value of the current task (see
7809 * curr_task() above) and restore that value before reenabling interrupts and
7810 * re-starting the system.
7812 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7814 void set_curr_task(int cpu, struct task_struct *p)
7816 cpu_curr(cpu) = p;
7819 #endif
7821 #ifdef CONFIG_FAIR_GROUP_SCHED
7822 static void free_fair_sched_group(struct task_group *tg)
7824 int i;
7826 for_each_possible_cpu(i) {
7827 if (tg->cfs_rq)
7828 kfree(tg->cfs_rq[i]);
7829 if (tg->se)
7830 kfree(tg->se[i]);
7833 kfree(tg->cfs_rq);
7834 kfree(tg->se);
7837 static
7838 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7840 struct cfs_rq *cfs_rq;
7841 struct sched_entity *se;
7842 struct rq *rq;
7843 int i;
7845 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7846 if (!tg->cfs_rq)
7847 goto err;
7848 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7849 if (!tg->se)
7850 goto err;
7852 tg->shares = NICE_0_LOAD;
7854 for_each_possible_cpu(i) {
7855 rq = cpu_rq(i);
7857 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7858 GFP_KERNEL, cpu_to_node(i));
7859 if (!cfs_rq)
7860 goto err;
7862 se = kzalloc_node(sizeof(struct sched_entity),
7863 GFP_KERNEL, cpu_to_node(i));
7864 if (!se)
7865 goto err_free_rq;
7867 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7870 return 1;
7872 err_free_rq:
7873 kfree(cfs_rq);
7874 err:
7875 return 0;
7878 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7880 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7881 &cpu_rq(cpu)->leaf_cfs_rq_list);
7884 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7886 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7888 #else /* !CONFG_FAIR_GROUP_SCHED */
7889 static inline void free_fair_sched_group(struct task_group *tg)
7893 static inline
7894 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7896 return 1;
7899 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7903 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7906 #endif /* CONFIG_FAIR_GROUP_SCHED */
7908 #ifdef CONFIG_RT_GROUP_SCHED
7909 static void free_rt_sched_group(struct task_group *tg)
7911 int i;
7913 destroy_rt_bandwidth(&tg->rt_bandwidth);
7915 for_each_possible_cpu(i) {
7916 if (tg->rt_rq)
7917 kfree(tg->rt_rq[i]);
7918 if (tg->rt_se)
7919 kfree(tg->rt_se[i]);
7922 kfree(tg->rt_rq);
7923 kfree(tg->rt_se);
7926 static
7927 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7929 struct rt_rq *rt_rq;
7930 struct sched_rt_entity *rt_se;
7931 struct rq *rq;
7932 int i;
7934 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7935 if (!tg->rt_rq)
7936 goto err;
7937 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7938 if (!tg->rt_se)
7939 goto err;
7941 init_rt_bandwidth(&tg->rt_bandwidth,
7942 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7944 for_each_possible_cpu(i) {
7945 rq = cpu_rq(i);
7947 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7948 GFP_KERNEL, cpu_to_node(i));
7949 if (!rt_rq)
7950 goto err;
7952 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7953 GFP_KERNEL, cpu_to_node(i));
7954 if (!rt_se)
7955 goto err_free_rq;
7957 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7960 return 1;
7962 err_free_rq:
7963 kfree(rt_rq);
7964 err:
7965 return 0;
7968 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7970 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7971 &cpu_rq(cpu)->leaf_rt_rq_list);
7974 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7976 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7978 #else /* !CONFIG_RT_GROUP_SCHED */
7979 static inline void free_rt_sched_group(struct task_group *tg)
7983 static inline
7984 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7986 return 1;
7989 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7993 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7996 #endif /* CONFIG_RT_GROUP_SCHED */
7998 #ifdef CONFIG_CGROUP_SCHED
7999 static void free_sched_group(struct task_group *tg)
8001 free_fair_sched_group(tg);
8002 free_rt_sched_group(tg);
8003 kfree(tg);
8006 /* allocate runqueue etc for a new task group */
8007 struct task_group *sched_create_group(struct task_group *parent)
8009 struct task_group *tg;
8010 unsigned long flags;
8011 int i;
8013 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8014 if (!tg)
8015 return ERR_PTR(-ENOMEM);
8017 if (!alloc_fair_sched_group(tg, parent))
8018 goto err;
8020 if (!alloc_rt_sched_group(tg, parent))
8021 goto err;
8023 spin_lock_irqsave(&task_group_lock, flags);
8024 for_each_possible_cpu(i) {
8025 register_fair_sched_group(tg, i);
8026 register_rt_sched_group(tg, i);
8028 list_add_rcu(&tg->list, &task_groups);
8030 WARN_ON(!parent); /* root should already exist */
8032 tg->parent = parent;
8033 INIT_LIST_HEAD(&tg->children);
8034 list_add_rcu(&tg->siblings, &parent->children);
8035 spin_unlock_irqrestore(&task_group_lock, flags);
8037 return tg;
8039 err:
8040 free_sched_group(tg);
8041 return ERR_PTR(-ENOMEM);
8044 /* rcu callback to free various structures associated with a task group */
8045 static void free_sched_group_rcu(struct rcu_head *rhp)
8047 /* now it should be safe to free those cfs_rqs */
8048 free_sched_group(container_of(rhp, struct task_group, rcu));
8051 /* Destroy runqueue etc associated with a task group */
8052 void sched_destroy_group(struct task_group *tg)
8054 unsigned long flags;
8055 int i;
8057 spin_lock_irqsave(&task_group_lock, flags);
8058 for_each_possible_cpu(i) {
8059 unregister_fair_sched_group(tg, i);
8060 unregister_rt_sched_group(tg, i);
8062 list_del_rcu(&tg->list);
8063 list_del_rcu(&tg->siblings);
8064 spin_unlock_irqrestore(&task_group_lock, flags);
8066 /* wait for possible concurrent references to cfs_rqs complete */
8067 call_rcu(&tg->rcu, free_sched_group_rcu);
8070 /* change task's runqueue when it moves between groups.
8071 * The caller of this function should have put the task in its new group
8072 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8073 * reflect its new group.
8075 void sched_move_task(struct task_struct *tsk)
8077 int on_rq, running;
8078 unsigned long flags;
8079 struct rq *rq;
8081 rq = task_rq_lock(tsk, &flags);
8083 running = task_current(rq, tsk);
8084 on_rq = tsk->se.on_rq;
8086 if (on_rq)
8087 dequeue_task(rq, tsk, 0);
8088 if (unlikely(running))
8089 tsk->sched_class->put_prev_task(rq, tsk);
8091 set_task_rq(tsk, task_cpu(tsk));
8093 #ifdef CONFIG_FAIR_GROUP_SCHED
8094 if (tsk->sched_class->moved_group)
8095 tsk->sched_class->moved_group(tsk, on_rq);
8096 #endif
8098 if (unlikely(running))
8099 tsk->sched_class->set_curr_task(rq);
8100 if (on_rq)
8101 enqueue_task(rq, tsk, 0);
8103 task_rq_unlock(rq, &flags);
8105 #endif /* CONFIG_CGROUP_SCHED */
8107 #ifdef CONFIG_FAIR_GROUP_SCHED
8108 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8110 struct cfs_rq *cfs_rq = se->cfs_rq;
8111 int on_rq;
8113 on_rq = se->on_rq;
8114 if (on_rq)
8115 dequeue_entity(cfs_rq, se, 0);
8117 se->load.weight = shares;
8118 se->load.inv_weight = 0;
8120 if (on_rq)
8121 enqueue_entity(cfs_rq, se, 0);
8124 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8126 struct cfs_rq *cfs_rq = se->cfs_rq;
8127 struct rq *rq = cfs_rq->rq;
8128 unsigned long flags;
8130 raw_spin_lock_irqsave(&rq->lock, flags);
8131 __set_se_shares(se, shares);
8132 raw_spin_unlock_irqrestore(&rq->lock, flags);
8135 static DEFINE_MUTEX(shares_mutex);
8137 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8139 int i;
8140 unsigned long flags;
8143 * We can't change the weight of the root cgroup.
8145 if (!tg->se[0])
8146 return -EINVAL;
8148 if (shares < MIN_SHARES)
8149 shares = MIN_SHARES;
8150 else if (shares > MAX_SHARES)
8151 shares = MAX_SHARES;
8153 mutex_lock(&shares_mutex);
8154 if (tg->shares == shares)
8155 goto done;
8157 spin_lock_irqsave(&task_group_lock, flags);
8158 for_each_possible_cpu(i)
8159 unregister_fair_sched_group(tg, i);
8160 list_del_rcu(&tg->siblings);
8161 spin_unlock_irqrestore(&task_group_lock, flags);
8163 /* wait for any ongoing reference to this group to finish */
8164 synchronize_sched();
8167 * Now we are free to modify the group's share on each cpu
8168 * w/o tripping rebalance_share or load_balance_fair.
8170 tg->shares = shares;
8171 for_each_possible_cpu(i) {
8173 * force a rebalance
8175 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8176 set_se_shares(tg->se[i], shares);
8180 * Enable load balance activity on this group, by inserting it back on
8181 * each cpu's rq->leaf_cfs_rq_list.
8183 spin_lock_irqsave(&task_group_lock, flags);
8184 for_each_possible_cpu(i)
8185 register_fair_sched_group(tg, i);
8186 list_add_rcu(&tg->siblings, &tg->parent->children);
8187 spin_unlock_irqrestore(&task_group_lock, flags);
8188 done:
8189 mutex_unlock(&shares_mutex);
8190 return 0;
8193 unsigned long sched_group_shares(struct task_group *tg)
8195 return tg->shares;
8197 #endif
8199 #ifdef CONFIG_RT_GROUP_SCHED
8201 * Ensure that the real time constraints are schedulable.
8203 static DEFINE_MUTEX(rt_constraints_mutex);
8205 static unsigned long to_ratio(u64 period, u64 runtime)
8207 if (runtime == RUNTIME_INF)
8208 return 1ULL << 20;
8210 return div64_u64(runtime << 20, period);
8213 /* Must be called with tasklist_lock held */
8214 static inline int tg_has_rt_tasks(struct task_group *tg)
8216 struct task_struct *g, *p;
8218 do_each_thread(g, p) {
8219 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8220 return 1;
8221 } while_each_thread(g, p);
8223 return 0;
8226 struct rt_schedulable_data {
8227 struct task_group *tg;
8228 u64 rt_period;
8229 u64 rt_runtime;
8232 static int tg_schedulable(struct task_group *tg, void *data)
8234 struct rt_schedulable_data *d = data;
8235 struct task_group *child;
8236 unsigned long total, sum = 0;
8237 u64 period, runtime;
8239 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8240 runtime = tg->rt_bandwidth.rt_runtime;
8242 if (tg == d->tg) {
8243 period = d->rt_period;
8244 runtime = d->rt_runtime;
8248 * Cannot have more runtime than the period.
8250 if (runtime > period && runtime != RUNTIME_INF)
8251 return -EINVAL;
8254 * Ensure we don't starve existing RT tasks.
8256 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8257 return -EBUSY;
8259 total = to_ratio(period, runtime);
8262 * Nobody can have more than the global setting allows.
8264 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8265 return -EINVAL;
8268 * The sum of our children's runtime should not exceed our own.
8270 list_for_each_entry_rcu(child, &tg->children, siblings) {
8271 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8272 runtime = child->rt_bandwidth.rt_runtime;
8274 if (child == d->tg) {
8275 period = d->rt_period;
8276 runtime = d->rt_runtime;
8279 sum += to_ratio(period, runtime);
8282 if (sum > total)
8283 return -EINVAL;
8285 return 0;
8288 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8290 struct rt_schedulable_data data = {
8291 .tg = tg,
8292 .rt_period = period,
8293 .rt_runtime = runtime,
8296 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8299 static int tg_set_bandwidth(struct task_group *tg,
8300 u64 rt_period, u64 rt_runtime)
8302 int i, err = 0;
8304 mutex_lock(&rt_constraints_mutex);
8305 read_lock(&tasklist_lock);
8306 err = __rt_schedulable(tg, rt_period, rt_runtime);
8307 if (err)
8308 goto unlock;
8310 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8311 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8312 tg->rt_bandwidth.rt_runtime = rt_runtime;
8314 for_each_possible_cpu(i) {
8315 struct rt_rq *rt_rq = tg->rt_rq[i];
8317 raw_spin_lock(&rt_rq->rt_runtime_lock);
8318 rt_rq->rt_runtime = rt_runtime;
8319 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8321 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8322 unlock:
8323 read_unlock(&tasklist_lock);
8324 mutex_unlock(&rt_constraints_mutex);
8326 return err;
8329 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8331 u64 rt_runtime, rt_period;
8333 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8334 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8335 if (rt_runtime_us < 0)
8336 rt_runtime = RUNTIME_INF;
8338 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8341 long sched_group_rt_runtime(struct task_group *tg)
8343 u64 rt_runtime_us;
8345 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8346 return -1;
8348 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8349 do_div(rt_runtime_us, NSEC_PER_USEC);
8350 return rt_runtime_us;
8353 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8355 u64 rt_runtime, rt_period;
8357 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8358 rt_runtime = tg->rt_bandwidth.rt_runtime;
8360 if (rt_period == 0)
8361 return -EINVAL;
8363 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8366 long sched_group_rt_period(struct task_group *tg)
8368 u64 rt_period_us;
8370 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8371 do_div(rt_period_us, NSEC_PER_USEC);
8372 return rt_period_us;
8375 static int sched_rt_global_constraints(void)
8377 u64 runtime, period;
8378 int ret = 0;
8380 if (sysctl_sched_rt_period <= 0)
8381 return -EINVAL;
8383 runtime = global_rt_runtime();
8384 period = global_rt_period();
8387 * Sanity check on the sysctl variables.
8389 if (runtime > period && runtime != RUNTIME_INF)
8390 return -EINVAL;
8392 mutex_lock(&rt_constraints_mutex);
8393 read_lock(&tasklist_lock);
8394 ret = __rt_schedulable(NULL, 0, 0);
8395 read_unlock(&tasklist_lock);
8396 mutex_unlock(&rt_constraints_mutex);
8398 return ret;
8401 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8403 /* Don't accept realtime tasks when there is no way for them to run */
8404 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8405 return 0;
8407 return 1;
8410 #else /* !CONFIG_RT_GROUP_SCHED */
8411 static int sched_rt_global_constraints(void)
8413 unsigned long flags;
8414 int i;
8416 if (sysctl_sched_rt_period <= 0)
8417 return -EINVAL;
8420 * There's always some RT tasks in the root group
8421 * -- migration, kstopmachine etc..
8423 if (sysctl_sched_rt_runtime == 0)
8424 return -EBUSY;
8426 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8427 for_each_possible_cpu(i) {
8428 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8430 raw_spin_lock(&rt_rq->rt_runtime_lock);
8431 rt_rq->rt_runtime = global_rt_runtime();
8432 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8434 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8436 return 0;
8438 #endif /* CONFIG_RT_GROUP_SCHED */
8440 int sched_rt_handler(struct ctl_table *table, int write,
8441 void __user *buffer, size_t *lenp,
8442 loff_t *ppos)
8444 int ret;
8445 int old_period, old_runtime;
8446 static DEFINE_MUTEX(mutex);
8448 mutex_lock(&mutex);
8449 old_period = sysctl_sched_rt_period;
8450 old_runtime = sysctl_sched_rt_runtime;
8452 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8454 if (!ret && write) {
8455 ret = sched_rt_global_constraints();
8456 if (ret) {
8457 sysctl_sched_rt_period = old_period;
8458 sysctl_sched_rt_runtime = old_runtime;
8459 } else {
8460 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8461 def_rt_bandwidth.rt_period =
8462 ns_to_ktime(global_rt_period());
8465 mutex_unlock(&mutex);
8467 return ret;
8470 #ifdef CONFIG_CGROUP_SCHED
8472 /* return corresponding task_group object of a cgroup */
8473 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8475 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8476 struct task_group, css);
8479 static struct cgroup_subsys_state *
8480 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8482 struct task_group *tg, *parent;
8484 if (!cgrp->parent) {
8485 /* This is early initialization for the top cgroup */
8486 return &init_task_group.css;
8489 parent = cgroup_tg(cgrp->parent);
8490 tg = sched_create_group(parent);
8491 if (IS_ERR(tg))
8492 return ERR_PTR(-ENOMEM);
8494 return &tg->css;
8497 static void
8498 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8500 struct task_group *tg = cgroup_tg(cgrp);
8502 sched_destroy_group(tg);
8505 static int
8506 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8508 #ifdef CONFIG_RT_GROUP_SCHED
8509 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8510 return -EINVAL;
8511 #else
8512 /* We don't support RT-tasks being in separate groups */
8513 if (tsk->sched_class != &fair_sched_class)
8514 return -EINVAL;
8515 #endif
8516 return 0;
8519 static int
8520 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8521 struct task_struct *tsk, bool threadgroup)
8523 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8524 if (retval)
8525 return retval;
8526 if (threadgroup) {
8527 struct task_struct *c;
8528 rcu_read_lock();
8529 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8530 retval = cpu_cgroup_can_attach_task(cgrp, c);
8531 if (retval) {
8532 rcu_read_unlock();
8533 return retval;
8536 rcu_read_unlock();
8538 return 0;
8541 static void
8542 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8543 struct cgroup *old_cont, struct task_struct *tsk,
8544 bool threadgroup)
8546 sched_move_task(tsk);
8547 if (threadgroup) {
8548 struct task_struct *c;
8549 rcu_read_lock();
8550 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8551 sched_move_task(c);
8553 rcu_read_unlock();
8557 #ifdef CONFIG_FAIR_GROUP_SCHED
8558 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8559 u64 shareval)
8561 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8564 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8566 struct task_group *tg = cgroup_tg(cgrp);
8568 return (u64) tg->shares;
8570 #endif /* CONFIG_FAIR_GROUP_SCHED */
8572 #ifdef CONFIG_RT_GROUP_SCHED
8573 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8574 s64 val)
8576 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8579 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8581 return sched_group_rt_runtime(cgroup_tg(cgrp));
8584 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8585 u64 rt_period_us)
8587 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8590 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8592 return sched_group_rt_period(cgroup_tg(cgrp));
8594 #endif /* CONFIG_RT_GROUP_SCHED */
8596 static struct cftype cpu_files[] = {
8597 #ifdef CONFIG_FAIR_GROUP_SCHED
8599 .name = "shares",
8600 .read_u64 = cpu_shares_read_u64,
8601 .write_u64 = cpu_shares_write_u64,
8603 #endif
8604 #ifdef CONFIG_RT_GROUP_SCHED
8606 .name = "rt_runtime_us",
8607 .read_s64 = cpu_rt_runtime_read,
8608 .write_s64 = cpu_rt_runtime_write,
8611 .name = "rt_period_us",
8612 .read_u64 = cpu_rt_period_read_uint,
8613 .write_u64 = cpu_rt_period_write_uint,
8615 #endif
8618 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8620 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8623 struct cgroup_subsys cpu_cgroup_subsys = {
8624 .name = "cpu",
8625 .create = cpu_cgroup_create,
8626 .destroy = cpu_cgroup_destroy,
8627 .can_attach = cpu_cgroup_can_attach,
8628 .attach = cpu_cgroup_attach,
8629 .populate = cpu_cgroup_populate,
8630 .subsys_id = cpu_cgroup_subsys_id,
8631 .early_init = 1,
8634 #endif /* CONFIG_CGROUP_SCHED */
8636 #ifdef CONFIG_CGROUP_CPUACCT
8639 * CPU accounting code for task groups.
8641 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8642 * (balbir@in.ibm.com).
8645 /* track cpu usage of a group of tasks and its child groups */
8646 struct cpuacct {
8647 struct cgroup_subsys_state css;
8648 /* cpuusage holds pointer to a u64-type object on every cpu */
8649 u64 __percpu *cpuusage;
8650 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8651 struct cpuacct *parent;
8654 struct cgroup_subsys cpuacct_subsys;
8656 /* return cpu accounting group corresponding to this container */
8657 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8659 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8660 struct cpuacct, css);
8663 /* return cpu accounting group to which this task belongs */
8664 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8666 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8667 struct cpuacct, css);
8670 /* create a new cpu accounting group */
8671 static struct cgroup_subsys_state *cpuacct_create(
8672 struct cgroup_subsys *ss, struct cgroup *cgrp)
8674 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8675 int i;
8677 if (!ca)
8678 goto out;
8680 ca->cpuusage = alloc_percpu(u64);
8681 if (!ca->cpuusage)
8682 goto out_free_ca;
8684 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8685 if (percpu_counter_init(&ca->cpustat[i], 0))
8686 goto out_free_counters;
8688 if (cgrp->parent)
8689 ca->parent = cgroup_ca(cgrp->parent);
8691 return &ca->css;
8693 out_free_counters:
8694 while (--i >= 0)
8695 percpu_counter_destroy(&ca->cpustat[i]);
8696 free_percpu(ca->cpuusage);
8697 out_free_ca:
8698 kfree(ca);
8699 out:
8700 return ERR_PTR(-ENOMEM);
8703 /* destroy an existing cpu accounting group */
8704 static void
8705 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8707 struct cpuacct *ca = cgroup_ca(cgrp);
8708 int i;
8710 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8711 percpu_counter_destroy(&ca->cpustat[i]);
8712 free_percpu(ca->cpuusage);
8713 kfree(ca);
8716 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8718 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8719 u64 data;
8721 #ifndef CONFIG_64BIT
8723 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8725 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8726 data = *cpuusage;
8727 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8728 #else
8729 data = *cpuusage;
8730 #endif
8732 return data;
8735 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8737 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8739 #ifndef CONFIG_64BIT
8741 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8743 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8744 *cpuusage = val;
8745 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8746 #else
8747 *cpuusage = val;
8748 #endif
8751 /* return total cpu usage (in nanoseconds) of a group */
8752 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8754 struct cpuacct *ca = cgroup_ca(cgrp);
8755 u64 totalcpuusage = 0;
8756 int i;
8758 for_each_present_cpu(i)
8759 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8761 return totalcpuusage;
8764 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8765 u64 reset)
8767 struct cpuacct *ca = cgroup_ca(cgrp);
8768 int err = 0;
8769 int i;
8771 if (reset) {
8772 err = -EINVAL;
8773 goto out;
8776 for_each_present_cpu(i)
8777 cpuacct_cpuusage_write(ca, i, 0);
8779 out:
8780 return err;
8783 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8784 struct seq_file *m)
8786 struct cpuacct *ca = cgroup_ca(cgroup);
8787 u64 percpu;
8788 int i;
8790 for_each_present_cpu(i) {
8791 percpu = cpuacct_cpuusage_read(ca, i);
8792 seq_printf(m, "%llu ", (unsigned long long) percpu);
8794 seq_printf(m, "\n");
8795 return 0;
8798 static const char *cpuacct_stat_desc[] = {
8799 [CPUACCT_STAT_USER] = "user",
8800 [CPUACCT_STAT_SYSTEM] = "system",
8803 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8804 struct cgroup_map_cb *cb)
8806 struct cpuacct *ca = cgroup_ca(cgrp);
8807 int i;
8809 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8810 s64 val = percpu_counter_read(&ca->cpustat[i]);
8811 val = cputime64_to_clock_t(val);
8812 cb->fill(cb, cpuacct_stat_desc[i], val);
8814 return 0;
8817 static struct cftype files[] = {
8819 .name = "usage",
8820 .read_u64 = cpuusage_read,
8821 .write_u64 = cpuusage_write,
8824 .name = "usage_percpu",
8825 .read_seq_string = cpuacct_percpu_seq_read,
8828 .name = "stat",
8829 .read_map = cpuacct_stats_show,
8833 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8835 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8839 * charge this task's execution time to its accounting group.
8841 * called with rq->lock held.
8843 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8845 struct cpuacct *ca;
8846 int cpu;
8848 if (unlikely(!cpuacct_subsys.active))
8849 return;
8851 cpu = task_cpu(tsk);
8853 rcu_read_lock();
8855 ca = task_ca(tsk);
8857 for (; ca; ca = ca->parent) {
8858 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8859 *cpuusage += cputime;
8862 rcu_read_unlock();
8866 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8867 * in cputime_t units. As a result, cpuacct_update_stats calls
8868 * percpu_counter_add with values large enough to always overflow the
8869 * per cpu batch limit causing bad SMP scalability.
8871 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8872 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8873 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8875 #ifdef CONFIG_SMP
8876 #define CPUACCT_BATCH \
8877 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8878 #else
8879 #define CPUACCT_BATCH 0
8880 #endif
8883 * Charge the system/user time to the task's accounting group.
8885 static void cpuacct_update_stats(struct task_struct *tsk,
8886 enum cpuacct_stat_index idx, cputime_t val)
8888 struct cpuacct *ca;
8889 int batch = CPUACCT_BATCH;
8891 if (unlikely(!cpuacct_subsys.active))
8892 return;
8894 rcu_read_lock();
8895 ca = task_ca(tsk);
8897 do {
8898 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8899 ca = ca->parent;
8900 } while (ca);
8901 rcu_read_unlock();
8904 struct cgroup_subsys cpuacct_subsys = {
8905 .name = "cpuacct",
8906 .create = cpuacct_create,
8907 .destroy = cpuacct_destroy,
8908 .populate = cpuacct_populate,
8909 .subsys_id = cpuacct_subsys_id,
8911 #endif /* CONFIG_CGROUP_CPUACCT */
8913 #ifndef CONFIG_SMP
8915 void synchronize_sched_expedited(void)
8917 barrier();
8919 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8921 #else /* #ifndef CONFIG_SMP */
8923 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8925 static int synchronize_sched_expedited_cpu_stop(void *data)
8928 * There must be a full memory barrier on each affected CPU
8929 * between the time that try_stop_cpus() is called and the
8930 * time that it returns.
8932 * In the current initial implementation of cpu_stop, the
8933 * above condition is already met when the control reaches
8934 * this point and the following smp_mb() is not strictly
8935 * necessary. Do smp_mb() anyway for documentation and
8936 * robustness against future implementation changes.
8938 smp_mb(); /* See above comment block. */
8939 return 0;
8943 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8944 * approach to force grace period to end quickly. This consumes
8945 * significant time on all CPUs, and is thus not recommended for
8946 * any sort of common-case code.
8948 * Note that it is illegal to call this function while holding any
8949 * lock that is acquired by a CPU-hotplug notifier. Failing to
8950 * observe this restriction will result in deadlock.
8952 void synchronize_sched_expedited(void)
8954 int snap, trycount = 0;
8956 smp_mb(); /* ensure prior mod happens before capturing snap. */
8957 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8958 get_online_cpus();
8959 while (try_stop_cpus(cpu_online_mask,
8960 synchronize_sched_expedited_cpu_stop,
8961 NULL) == -EAGAIN) {
8962 put_online_cpus();
8963 if (trycount++ < 10)
8964 udelay(trycount * num_online_cpus());
8965 else {
8966 synchronize_sched();
8967 return;
8969 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8970 smp_mb(); /* ensure test happens before caller kfree */
8971 return;
8973 get_online_cpus();
8975 atomic_inc(&synchronize_sched_expedited_count);
8976 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8977 put_online_cpus();
8979 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8981 #endif /* #else #ifndef CONFIG_SMP */