add CONFIG_VT_UNICODE
[wandboard.git] / drivers / char / keyboard.c
blob212276affa1f5c887233cdd3c14e987a6941fd22
1 /*
2 * linux/drivers/char/keyboard.c
4 * Written for linux by Johan Myreen as a translation from
5 * the assembly version by Linus (with diacriticals added)
7 * Some additional features added by Christoph Niemann (ChN), March 1993
9 * Loadable keymaps by Risto Kankkunen, May 1993
11 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
12 * Added decr/incr_console, dynamic keymaps, Unicode support,
13 * dynamic function/string keys, led setting, Sept 1994
14 * `Sticky' modifier keys, 951006.
16 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
18 * Modified to provide 'generic' keyboard support by Hamish Macdonald
19 * Merge with the m68k keyboard driver and split-off of the PC low-level
20 * parts by Geert Uytterhoeven, May 1997
22 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
23 * 30-07-98: Dead keys redone, aeb@cwi.nl.
24 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
27 #include <linux/consolemap.h>
28 #include <linux/module.h>
29 #include <linux/sched.h>
30 #include <linux/tty.h>
31 #include <linux/tty_flip.h>
32 #include <linux/mm.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/slab.h>
36 #include <linux/irq.h>
38 #include <linux/kbd_kern.h>
39 #include <linux/kbd_diacr.h>
40 #include <linux/vt_kern.h>
41 #include <linux/consolemap.h>
42 #include <linux/sysrq.h>
43 #include <linux/input.h>
44 #include <linux/reboot.h>
46 extern void ctrl_alt_del(void);
49 * Exported functions/variables
52 #define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55 * Some laptops take the 789uiojklm,. keys as number pad when NumLock is on.
56 * This seems a good reason to start with NumLock off. On HIL keyboards
57 * of PARISC machines however there is no NumLock key and everyone expects the keypad
58 * to be used for numbers.
61 #if defined(CONFIG_PARISC) && (defined(CONFIG_KEYBOARD_HIL) || defined(CONFIG_KEYBOARD_HIL_OLD))
62 #define KBD_DEFLEDS (1 << VC_NUMLOCK)
63 #else
64 #define KBD_DEFLEDS 0
65 #endif
67 #define KBD_DEFLOCK 0
69 void compute_shiftstate(void);
72 * Handler Tables.
75 #define K_HANDLERS\
76 k_self, k_fn, k_spec, k_pad,\
77 k_dead, k_cons, k_cur, k_shift,\
78 k_meta, k_ascii, k_lock, k_lowercase,\
79 k_slock, k_dead2, k_brl, k_ignore
81 typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
82 char up_flag);
83 static k_handler_fn K_HANDLERS;
84 static k_handler_fn *k_handler[16] = { K_HANDLERS };
86 #define FN_HANDLERS\
87 fn_null, fn_enter, fn_show_ptregs, fn_show_mem,\
88 fn_show_state, fn_send_intr, fn_lastcons, fn_caps_toggle,\
89 fn_num, fn_hold, fn_scroll_forw, fn_scroll_back,\
90 fn_boot_it, fn_caps_on, fn_compose, fn_SAK,\
91 fn_dec_console, fn_inc_console, fn_spawn_con, fn_bare_num
93 typedef void (fn_handler_fn)(struct vc_data *vc);
94 static fn_handler_fn FN_HANDLERS;
95 static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
98 * Variables exported for vt_ioctl.c
101 /* maximum values each key_handler can handle */
102 const int max_vals[] = {
103 255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
104 NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
105 255, NR_LOCK - 1, 255, NR_BRL - 1
108 const int NR_TYPES = ARRAY_SIZE(max_vals);
110 struct kbd_struct kbd_table[MAX_NR_CONSOLES];
111 static struct kbd_struct *kbd = kbd_table;
113 struct vt_spawn_console vt_spawn_con = {
114 .lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
115 .pid = NULL,
116 .sig = 0,
120 * Variables exported for vt.c
123 int shift_state = 0;
126 * Internal Data.
129 static struct input_handler kbd_handler;
130 static unsigned long key_down[NBITS(KEY_MAX)]; /* keyboard key bitmap */
131 static unsigned char shift_down[NR_SHIFT]; /* shift state counters.. */
132 static int dead_key_next;
133 static int npadch = -1; /* -1 or number assembled on pad */
134 static unsigned int diacr;
135 static char rep; /* flag telling character repeat */
137 static unsigned char ledstate = 0xff; /* undefined */
138 static unsigned char ledioctl;
140 static struct ledptr {
141 unsigned int *addr;
142 unsigned int mask;
143 unsigned char valid:1;
144 } ledptrs[3];
146 /* Simple translation table for the SysRq keys */
148 #ifdef CONFIG_MAGIC_SYSRQ
149 unsigned char kbd_sysrq_xlate[KEY_MAX + 1] =
150 "\000\0331234567890-=\177\t" /* 0x00 - 0x0f */
151 "qwertyuiop[]\r\000as" /* 0x10 - 0x1f */
152 "dfghjkl;'`\000\\zxcv" /* 0x20 - 0x2f */
153 "bnm,./\000*\000 \000\201\202\203\204\205" /* 0x30 - 0x3f */
154 "\206\207\210\211\212\000\000789-456+1" /* 0x40 - 0x4f */
155 "230\177\000\000\213\214\000\000\000\000\000\000\000\000\000\000" /* 0x50 - 0x5f */
156 "\r\000/"; /* 0x60 - 0x6f */
157 static int sysrq_down;
158 static int sysrq_alt_use;
159 #endif
160 static int sysrq_alt;
163 * Translation of scancodes to keycodes. We set them on only the first
164 * keyboard in the list that accepts the scancode and keycode.
165 * Explanation for not choosing the first attached keyboard anymore:
166 * USB keyboards for example have two event devices: one for all "normal"
167 * keys and one for extra function keys (like "volume up", "make coffee",
168 * etc.). So this means that scancodes for the extra function keys won't
169 * be valid for the first event device, but will be for the second.
171 int getkeycode(unsigned int scancode)
173 struct input_handle *handle;
174 int keycode;
175 int error = -ENODEV;
177 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
178 error = handle->dev->getkeycode(handle->dev, scancode, &keycode);
179 if (!error)
180 return keycode;
183 return error;
186 int setkeycode(unsigned int scancode, unsigned int keycode)
188 struct input_handle *handle;
189 int error = -ENODEV;
191 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
192 error = handle->dev->setkeycode(handle->dev, scancode, keycode);
193 if (!error)
194 break;
197 return error;
201 * Making beeps and bells.
203 static void kd_nosound(unsigned long ignored)
205 struct input_handle *handle;
207 list_for_each_entry(handle, &kbd_handler.h_list, h_node) {
208 if (test_bit(EV_SND, handle->dev->evbit)) {
209 if (test_bit(SND_TONE, handle->dev->sndbit))
210 input_inject_event(handle, EV_SND, SND_TONE, 0);
211 if (test_bit(SND_BELL, handle->dev->sndbit))
212 input_inject_event(handle, EV_SND, SND_BELL, 0);
217 static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
219 void kd_mksound(unsigned int hz, unsigned int ticks)
221 struct list_head *node;
223 del_timer(&kd_mksound_timer);
225 if (hz) {
226 list_for_each_prev(node, &kbd_handler.h_list) {
227 struct input_handle *handle = to_handle_h(node);
228 if (test_bit(EV_SND, handle->dev->evbit)) {
229 if (test_bit(SND_TONE, handle->dev->sndbit)) {
230 input_inject_event(handle, EV_SND, SND_TONE, hz);
231 break;
233 if (test_bit(SND_BELL, handle->dev->sndbit)) {
234 input_inject_event(handle, EV_SND, SND_BELL, 1);
235 break;
239 if (ticks)
240 mod_timer(&kd_mksound_timer, jiffies + ticks);
241 } else
242 kd_nosound(0);
246 * Setting the keyboard rate.
249 int kbd_rate(struct kbd_repeat *rep)
251 struct list_head *node;
252 unsigned int d = 0;
253 unsigned int p = 0;
255 list_for_each(node, &kbd_handler.h_list) {
256 struct input_handle *handle = to_handle_h(node);
257 struct input_dev *dev = handle->dev;
259 if (test_bit(EV_REP, dev->evbit)) {
260 if (rep->delay > 0)
261 input_inject_event(handle, EV_REP, REP_DELAY, rep->delay);
262 if (rep->period > 0)
263 input_inject_event(handle, EV_REP, REP_PERIOD, rep->period);
264 d = dev->rep[REP_DELAY];
265 p = dev->rep[REP_PERIOD];
268 rep->delay = d;
269 rep->period = p;
270 return 0;
274 * Helper Functions.
276 static void put_queue(struct vc_data *vc, int ch)
278 struct tty_struct *tty = vc->vc_tty;
280 if (tty) {
281 tty_insert_flip_char(tty, ch, 0);
282 con_schedule_flip(tty);
286 static void puts_queue(struct vc_data *vc, char *cp)
288 struct tty_struct *tty = vc->vc_tty;
290 if (!tty)
291 return;
293 while (*cp) {
294 tty_insert_flip_char(tty, *cp, 0);
295 cp++;
297 con_schedule_flip(tty);
300 static void applkey(struct vc_data *vc, int key, char mode)
302 static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
304 buf[1] = (mode ? 'O' : '[');
305 buf[2] = key;
306 puts_queue(vc, buf);
310 * Many other routines do put_queue, but I think either
311 * they produce ASCII, or they produce some user-assigned
312 * string, and in both cases we might assume that it is
313 * in utf-8 already.
315 static void to_utf8(struct vc_data *vc, uint c)
317 if (c < 0x80)
318 /* 0******* */
319 put_queue(vc, c);
320 else if (c < 0x800) {
321 /* 110***** 10****** */
322 put_queue(vc, 0xc0 | (c >> 6));
323 put_queue(vc, 0x80 | (c & 0x3f));
324 } else if (c < 0x10000) {
325 if (c >= 0xD800 && c < 0xE000)
326 return;
327 if (c == 0xFFFF)
328 return;
329 /* 1110**** 10****** 10****** */
330 put_queue(vc, 0xe0 | (c >> 12));
331 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
332 put_queue(vc, 0x80 | (c & 0x3f));
333 } else if (c < 0x110000) {
334 /* 11110*** 10****** 10****** 10****** */
335 put_queue(vc, 0xf0 | (c >> 18));
336 put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
337 put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
338 put_queue(vc, 0x80 | (c & 0x3f));
343 * Called after returning from RAW mode or when changing consoles - recompute
344 * shift_down[] and shift_state from key_down[] maybe called when keymap is
345 * undefined, so that shiftkey release is seen
347 void compute_shiftstate(void)
349 unsigned int i, j, k, sym, val;
351 shift_state = 0;
352 memset(shift_down, 0, sizeof(shift_down));
354 for (i = 0; i < ARRAY_SIZE(key_down); i++) {
356 if (!key_down[i])
357 continue;
359 k = i * BITS_PER_LONG;
361 for (j = 0; j < BITS_PER_LONG; j++, k++) {
363 if (!test_bit(k, key_down))
364 continue;
366 sym = U(key_maps[0][k]);
367 if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
368 continue;
370 val = KVAL(sym);
371 if (val == KVAL(K_CAPSSHIFT))
372 val = KVAL(K_SHIFT);
374 shift_down[val]++;
375 shift_state |= (1 << val);
381 * We have a combining character DIACR here, followed by the character CH.
382 * If the combination occurs in the table, return the corresponding value.
383 * Otherwise, if CH is a space or equals DIACR, return DIACR.
384 * Otherwise, conclude that DIACR was not combining after all,
385 * queue it and return CH.
387 static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
389 unsigned int d = diacr;
390 unsigned int i;
392 diacr = 0;
394 if ((d & ~0xff) == BRL_UC_ROW) {
395 if ((ch & ~0xff) == BRL_UC_ROW)
396 return d | ch;
397 } else {
398 for (i = 0; i < accent_table_size; i++)
399 if (accent_table[i].diacr == d && accent_table[i].base == ch)
400 return accent_table[i].result;
403 if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
404 return d;
406 if (kbd->kbdmode == VC_UNICODE)
407 to_utf8(vc, d);
408 else {
409 int c = conv_uni_to_8bit(d);
410 if (c != -1)
411 put_queue(vc, c);
414 return ch;
418 * Special function handlers
420 static void fn_enter(struct vc_data *vc)
422 if (diacr) {
423 if (kbd->kbdmode == VC_UNICODE)
424 to_utf8(vc, diacr);
425 else {
426 int c = conv_uni_to_8bit(diacr);
427 if (c != -1)
428 put_queue(vc, c);
430 diacr = 0;
432 put_queue(vc, 13);
433 if (vc_kbd_mode(kbd, VC_CRLF))
434 put_queue(vc, 10);
437 static void fn_caps_toggle(struct vc_data *vc)
439 if (rep)
440 return;
441 chg_vc_kbd_led(kbd, VC_CAPSLOCK);
444 static void fn_caps_on(struct vc_data *vc)
446 if (rep)
447 return;
448 set_vc_kbd_led(kbd, VC_CAPSLOCK);
451 static void fn_show_ptregs(struct vc_data *vc)
453 struct pt_regs *regs = get_irq_regs();
454 if (regs)
455 show_regs(regs);
458 static void fn_hold(struct vc_data *vc)
460 struct tty_struct *tty = vc->vc_tty;
462 if (rep || !tty)
463 return;
466 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
467 * these routines are also activated by ^S/^Q.
468 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
470 if (tty->stopped)
471 start_tty(tty);
472 else
473 stop_tty(tty);
476 static void fn_num(struct vc_data *vc)
478 if (vc_kbd_mode(kbd,VC_APPLIC))
479 applkey(vc, 'P', 1);
480 else
481 fn_bare_num(vc);
485 * Bind this to Shift-NumLock if you work in application keypad mode
486 * but want to be able to change the NumLock flag.
487 * Bind this to NumLock if you prefer that the NumLock key always
488 * changes the NumLock flag.
490 static void fn_bare_num(struct vc_data *vc)
492 if (!rep)
493 chg_vc_kbd_led(kbd, VC_NUMLOCK);
496 static void fn_lastcons(struct vc_data *vc)
498 /* switch to the last used console, ChN */
499 set_console(last_console);
502 static void fn_dec_console(struct vc_data *vc)
504 int i, cur = fg_console;
506 /* Currently switching? Queue this next switch relative to that. */
507 if (want_console != -1)
508 cur = want_console;
510 for (i = cur - 1; i != cur; i--) {
511 if (i == -1)
512 i = MAX_NR_CONSOLES - 1;
513 if (vc_cons_allocated(i))
514 break;
516 set_console(i);
519 static void fn_inc_console(struct vc_data *vc)
521 int i, cur = fg_console;
523 /* Currently switching? Queue this next switch relative to that. */
524 if (want_console != -1)
525 cur = want_console;
527 for (i = cur+1; i != cur; i++) {
528 if (i == MAX_NR_CONSOLES)
529 i = 0;
530 if (vc_cons_allocated(i))
531 break;
533 set_console(i);
536 static void fn_send_intr(struct vc_data *vc)
538 struct tty_struct *tty = vc->vc_tty;
540 if (!tty)
541 return;
542 tty_insert_flip_char(tty, 0, TTY_BREAK);
543 con_schedule_flip(tty);
546 static void fn_scroll_forw(struct vc_data *vc)
548 scrollfront(vc, 0);
551 static void fn_scroll_back(struct vc_data *vc)
553 scrollback(vc, 0);
556 static void fn_show_mem(struct vc_data *vc)
558 show_mem();
561 static void fn_show_state(struct vc_data *vc)
563 show_state();
566 static void fn_boot_it(struct vc_data *vc)
568 ctrl_alt_del();
571 static void fn_compose(struct vc_data *vc)
573 dead_key_next = 1;
576 static void fn_spawn_con(struct vc_data *vc)
578 spin_lock(&vt_spawn_con.lock);
579 if (vt_spawn_con.pid)
580 if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
581 put_pid(vt_spawn_con.pid);
582 vt_spawn_con.pid = NULL;
584 spin_unlock(&vt_spawn_con.lock);
587 static void fn_SAK(struct vc_data *vc)
589 struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
590 schedule_work(SAK_work);
593 static void fn_null(struct vc_data *vc)
595 compute_shiftstate();
599 * Special key handlers
601 static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
605 static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
607 if (up_flag)
608 return;
609 if (value >= ARRAY_SIZE(fn_handler))
610 return;
611 if ((kbd->kbdmode == VC_RAW ||
612 kbd->kbdmode == VC_MEDIUMRAW) &&
613 value != KVAL(K_SAK))
614 return; /* SAK is allowed even in raw mode */
615 fn_handler[value](vc);
618 static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
620 printk(KERN_ERR "keyboard.c: k_lowercase was called - impossible\n");
623 static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
625 if (up_flag)
626 return; /* no action, if this is a key release */
628 if (diacr)
629 value = handle_diacr(vc, value);
631 if (dead_key_next) {
632 dead_key_next = 0;
633 diacr = value;
634 return;
636 if (kbd->kbdmode == VC_UNICODE)
637 to_utf8(vc, value);
638 else {
639 int c = conv_uni_to_8bit(value);
640 if (c != -1)
641 put_queue(vc, c);
646 * Handle dead key. Note that we now may have several
647 * dead keys modifying the same character. Very useful
648 * for Vietnamese.
650 static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
652 if (up_flag)
653 return;
654 diacr = (diacr ? handle_diacr(vc, value) : value);
657 static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
659 unsigned int uni;
660 if (kbd->kbdmode == VC_UNICODE)
661 uni = value;
662 else
663 uni = conv_8bit_to_uni(value);
664 k_unicode(vc, uni, up_flag);
667 static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
669 k_deadunicode(vc, value, up_flag);
673 * Obsolete - for backwards compatibility only
675 static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
677 static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
678 value = ret_diacr[value];
679 k_deadunicode(vc, value, up_flag);
682 static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
684 if (up_flag)
685 return;
686 set_console(value);
689 static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
691 unsigned v;
693 if (up_flag)
694 return;
695 v = value;
696 if (v < ARRAY_SIZE(func_table)) {
697 if (func_table[value])
698 puts_queue(vc, func_table[value]);
699 } else
700 printk(KERN_ERR "k_fn called with value=%d\n", value);
703 static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
705 static const char cur_chars[] = "BDCA";
707 if (up_flag)
708 return;
709 applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
712 static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
714 static const char pad_chars[] = "0123456789+-*/\015,.?()#";
715 static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
717 if (up_flag)
718 return; /* no action, if this is a key release */
720 /* kludge... shift forces cursor/number keys */
721 if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
722 applkey(vc, app_map[value], 1);
723 return;
726 if (!vc_kbd_led(kbd, VC_NUMLOCK))
727 switch (value) {
728 case KVAL(K_PCOMMA):
729 case KVAL(K_PDOT):
730 k_fn(vc, KVAL(K_REMOVE), 0);
731 return;
732 case KVAL(K_P0):
733 k_fn(vc, KVAL(K_INSERT), 0);
734 return;
735 case KVAL(K_P1):
736 k_fn(vc, KVAL(K_SELECT), 0);
737 return;
738 case KVAL(K_P2):
739 k_cur(vc, KVAL(K_DOWN), 0);
740 return;
741 case KVAL(K_P3):
742 k_fn(vc, KVAL(K_PGDN), 0);
743 return;
744 case KVAL(K_P4):
745 k_cur(vc, KVAL(K_LEFT), 0);
746 return;
747 case KVAL(K_P6):
748 k_cur(vc, KVAL(K_RIGHT), 0);
749 return;
750 case KVAL(K_P7):
751 k_fn(vc, KVAL(K_FIND), 0);
752 return;
753 case KVAL(K_P8):
754 k_cur(vc, KVAL(K_UP), 0);
755 return;
756 case KVAL(K_P9):
757 k_fn(vc, KVAL(K_PGUP), 0);
758 return;
759 case KVAL(K_P5):
760 applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
761 return;
764 put_queue(vc, pad_chars[value]);
765 if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
766 put_queue(vc, 10);
769 static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
771 int old_state = shift_state;
773 if (rep)
774 return;
776 * Mimic typewriter:
777 * a CapsShift key acts like Shift but undoes CapsLock
779 if (value == KVAL(K_CAPSSHIFT)) {
780 value = KVAL(K_SHIFT);
781 if (!up_flag)
782 clr_vc_kbd_led(kbd, VC_CAPSLOCK);
785 if (up_flag) {
787 * handle the case that two shift or control
788 * keys are depressed simultaneously
790 if (shift_down[value])
791 shift_down[value]--;
792 } else
793 shift_down[value]++;
795 if (shift_down[value])
796 shift_state |= (1 << value);
797 else
798 shift_state &= ~(1 << value);
800 /* kludge */
801 if (up_flag && shift_state != old_state && npadch != -1) {
802 if (kbd->kbdmode == VC_UNICODE)
803 to_utf8(vc, npadch);
804 else
805 put_queue(vc, npadch & 0xff);
806 npadch = -1;
810 static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
812 if (up_flag)
813 return;
815 if (vc_kbd_mode(kbd, VC_META)) {
816 put_queue(vc, '\033');
817 put_queue(vc, value);
818 } else
819 put_queue(vc, value | 0x80);
822 static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
824 int base;
826 if (up_flag)
827 return;
829 if (value < 10) {
830 /* decimal input of code, while Alt depressed */
831 base = 10;
832 } else {
833 /* hexadecimal input of code, while AltGr depressed */
834 value -= 10;
835 base = 16;
838 if (npadch == -1)
839 npadch = value;
840 else
841 npadch = npadch * base + value;
844 static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
846 if (up_flag || rep)
847 return;
848 chg_vc_kbd_lock(kbd, value);
851 static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
853 k_shift(vc, value, up_flag);
854 if (up_flag || rep)
855 return;
856 chg_vc_kbd_slock(kbd, value);
857 /* try to make Alt, oops, AltGr and such work */
858 if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
859 kbd->slockstate = 0;
860 chg_vc_kbd_slock(kbd, value);
864 /* by default, 300ms interval for combination release */
865 static unsigned brl_timeout = 300;
866 MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
867 module_param(brl_timeout, uint, 0644);
869 static unsigned brl_nbchords = 1;
870 MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
871 module_param(brl_nbchords, uint, 0644);
873 static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
875 static unsigned long chords;
876 static unsigned committed;
878 if (!brl_nbchords)
879 k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
880 else {
881 committed |= pattern;
882 chords++;
883 if (chords == brl_nbchords) {
884 k_unicode(vc, BRL_UC_ROW | committed, up_flag);
885 chords = 0;
886 committed = 0;
891 static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
893 static unsigned pressed,committing;
894 static unsigned long releasestart;
896 if (kbd->kbdmode != VC_UNICODE) {
897 if (!up_flag)
898 printk("keyboard mode must be unicode for braille patterns\n");
899 return;
902 if (!value) {
903 k_unicode(vc, BRL_UC_ROW, up_flag);
904 return;
907 if (value > 8)
908 return;
910 if (up_flag) {
911 if (brl_timeout) {
912 if (!committing ||
913 jiffies - releasestart > (brl_timeout * HZ) / 1000) {
914 committing = pressed;
915 releasestart = jiffies;
917 pressed &= ~(1 << (value - 1));
918 if (!pressed) {
919 if (committing) {
920 k_brlcommit(vc, committing, 0);
921 committing = 0;
924 } else {
925 if (committing) {
926 k_brlcommit(vc, committing, 0);
927 committing = 0;
929 pressed &= ~(1 << (value - 1));
931 } else {
932 pressed |= 1 << (value - 1);
933 if (!brl_timeout)
934 committing = pressed;
939 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
940 * or (ii) whatever pattern of lights people want to show using KDSETLED,
941 * or (iii) specified bits of specified words in kernel memory.
943 unsigned char getledstate(void)
945 return ledstate;
948 void setledstate(struct kbd_struct *kbd, unsigned int led)
950 if (!(led & ~7)) {
951 ledioctl = led;
952 kbd->ledmode = LED_SHOW_IOCTL;
953 } else
954 kbd->ledmode = LED_SHOW_FLAGS;
955 set_leds();
958 static inline unsigned char getleds(void)
960 struct kbd_struct *kbd = kbd_table + fg_console;
961 unsigned char leds;
962 int i;
964 if (kbd->ledmode == LED_SHOW_IOCTL)
965 return ledioctl;
967 leds = kbd->ledflagstate;
969 if (kbd->ledmode == LED_SHOW_MEM) {
970 for (i = 0; i < 3; i++)
971 if (ledptrs[i].valid) {
972 if (*ledptrs[i].addr & ledptrs[i].mask)
973 leds |= (1 << i);
974 else
975 leds &= ~(1 << i);
978 return leds;
982 * This routine is the bottom half of the keyboard interrupt
983 * routine, and runs with all interrupts enabled. It does
984 * console changing, led setting and copy_to_cooked, which can
985 * take a reasonably long time.
987 * Aside from timing (which isn't really that important for
988 * keyboard interrupts as they happen often), using the software
989 * interrupt routines for this thing allows us to easily mask
990 * this when we don't want any of the above to happen.
991 * This allows for easy and efficient race-condition prevention
992 * for kbd_start => input_inject_event(dev, EV_LED, ...) => ...
995 static void kbd_bh(unsigned long dummy)
997 struct list_head *node;
998 unsigned char leds = getleds();
1000 if (leds != ledstate) {
1001 list_for_each(node, &kbd_handler.h_list) {
1002 struct input_handle *handle = to_handle_h(node);
1003 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1004 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1005 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1006 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1010 ledstate = leds;
1013 DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1015 #if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1016 defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1017 defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1018 (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC))
1020 #define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1021 ((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1023 static const unsigned short x86_keycodes[256] =
1024 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
1025 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1026 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1027 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1028 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1029 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1030 284,285,309, 0,312, 91,327,328,329,331,333,335,336,337,338,339,
1031 367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1032 360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1033 103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1034 291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1035 264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1036 377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1037 308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1038 332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1040 #ifdef CONFIG_SPARC
1041 static int sparc_l1_a_state = 0;
1042 extern void sun_do_break(void);
1043 #endif
1045 static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1046 unsigned char up_flag)
1048 int code;
1050 switch (keycode) {
1051 case KEY_PAUSE:
1052 put_queue(vc, 0xe1);
1053 put_queue(vc, 0x1d | up_flag);
1054 put_queue(vc, 0x45 | up_flag);
1055 break;
1057 case KEY_HANGEUL:
1058 if (!up_flag)
1059 put_queue(vc, 0xf2);
1060 break;
1062 case KEY_HANJA:
1063 if (!up_flag)
1064 put_queue(vc, 0xf1);
1065 break;
1067 case KEY_SYSRQ:
1069 * Real AT keyboards (that's what we're trying
1070 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1071 * pressing PrtSc/SysRq alone, but simply 0x54
1072 * when pressing Alt+PrtSc/SysRq.
1074 if (sysrq_alt) {
1075 put_queue(vc, 0x54 | up_flag);
1076 } else {
1077 put_queue(vc, 0xe0);
1078 put_queue(vc, 0x2a | up_flag);
1079 put_queue(vc, 0xe0);
1080 put_queue(vc, 0x37 | up_flag);
1082 break;
1084 default:
1085 if (keycode > 255)
1086 return -1;
1088 code = x86_keycodes[keycode];
1089 if (!code)
1090 return -1;
1092 if (code & 0x100)
1093 put_queue(vc, 0xe0);
1094 put_queue(vc, (code & 0x7f) | up_flag);
1096 break;
1099 return 0;
1102 #else
1104 #define HW_RAW(dev) 0
1106 #warning "Cannot generate rawmode keyboard for your architecture yet."
1108 static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1110 if (keycode > 127)
1111 return -1;
1113 put_queue(vc, keycode | up_flag);
1114 return 0;
1116 #endif
1118 static void kbd_rawcode(unsigned char data)
1120 struct vc_data *vc = vc_cons[fg_console].d;
1121 kbd = kbd_table + fg_console;
1122 if (kbd->kbdmode == VC_RAW)
1123 put_queue(vc, data);
1126 static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1128 struct vc_data *vc = vc_cons[fg_console].d;
1129 unsigned short keysym, *key_map;
1130 unsigned char type, raw_mode;
1131 struct tty_struct *tty;
1132 int shift_final;
1134 tty = vc->vc_tty;
1136 if (tty && (!tty->driver_data)) {
1137 /* No driver data? Strange. Okay we fix it then. */
1138 tty->driver_data = vc;
1141 kbd = kbd_table + fg_console;
1143 if (keycode == KEY_LEFTALT || keycode == KEY_RIGHTALT)
1144 sysrq_alt = down ? keycode : 0;
1145 #ifdef CONFIG_SPARC
1146 if (keycode == KEY_STOP)
1147 sparc_l1_a_state = down;
1148 #endif
1150 rep = (down == 2);
1152 #ifdef CONFIG_MAC_EMUMOUSEBTN
1153 if (mac_hid_mouse_emulate_buttons(1, keycode, down))
1154 return;
1155 #endif /* CONFIG_MAC_EMUMOUSEBTN */
1157 if ((raw_mode = (kbd->kbdmode == VC_RAW)) && !hw_raw)
1158 if (emulate_raw(vc, keycode, !down << 7))
1159 if (keycode < BTN_MISC && printk_ratelimit())
1160 printk(KERN_WARNING "keyboard.c: can't emulate rawmode for keycode %d\n", keycode);
1162 #ifdef CONFIG_MAGIC_SYSRQ /* Handle the SysRq Hack */
1163 if (keycode == KEY_SYSRQ && (sysrq_down || (down == 1 && sysrq_alt))) {
1164 if (!sysrq_down) {
1165 sysrq_down = down;
1166 sysrq_alt_use = sysrq_alt;
1168 return;
1170 if (sysrq_down && !down && keycode == sysrq_alt_use)
1171 sysrq_down = 0;
1172 if (sysrq_down && down && !rep) {
1173 handle_sysrq(kbd_sysrq_xlate[keycode], tty);
1174 return;
1176 #endif
1177 #ifdef CONFIG_SPARC
1178 if (keycode == KEY_A && sparc_l1_a_state) {
1179 sparc_l1_a_state = 0;
1180 sun_do_break();
1182 #endif
1184 if (kbd->kbdmode == VC_MEDIUMRAW) {
1186 * This is extended medium raw mode, with keys above 127
1187 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1188 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1189 * interfere with anything else. The two bytes after 0 will
1190 * always have the up flag set not to interfere with older
1191 * applications. This allows for 16384 different keycodes,
1192 * which should be enough.
1194 if (keycode < 128) {
1195 put_queue(vc, keycode | (!down << 7));
1196 } else {
1197 put_queue(vc, !down << 7);
1198 put_queue(vc, (keycode >> 7) | 0x80);
1199 put_queue(vc, keycode | 0x80);
1201 raw_mode = 1;
1204 if (down)
1205 set_bit(keycode, key_down);
1206 else
1207 clear_bit(keycode, key_down);
1209 if (rep &&
1210 (!vc_kbd_mode(kbd, VC_REPEAT) ||
1211 (tty && !L_ECHO(tty) && tty->driver->chars_in_buffer(tty)))) {
1213 * Don't repeat a key if the input buffers are not empty and the
1214 * characters get aren't echoed locally. This makes key repeat
1215 * usable with slow applications and under heavy loads.
1217 return;
1220 shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1221 key_map = key_maps[shift_final];
1223 if (!key_map) {
1224 compute_shiftstate();
1225 kbd->slockstate = 0;
1226 return;
1229 if (keycode > NR_KEYS)
1230 if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1231 keysym = K(KT_BRL, keycode - KEY_BRL_DOT1 + 1);
1232 else
1233 return;
1234 else
1235 keysym = key_map[keycode];
1237 type = KTYP(keysym);
1239 if (type < 0xf0) {
1240 if (down && !raw_mode)
1241 to_utf8(vc, keysym);
1242 return;
1245 type -= 0xf0;
1247 if (raw_mode && type != KT_SPEC && type != KT_SHIFT)
1248 return;
1250 if (type == KT_LETTER) {
1251 type = KT_LATIN;
1252 if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1253 key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1254 if (key_map)
1255 keysym = key_map[keycode];
1259 (*k_handler[type])(vc, keysym & 0xff, !down);
1261 if (type != KT_SLOCK)
1262 kbd->slockstate = 0;
1265 static void kbd_event(struct input_handle *handle, unsigned int event_type,
1266 unsigned int event_code, int value)
1268 if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1269 kbd_rawcode(value);
1270 if (event_type == EV_KEY)
1271 kbd_keycode(event_code, value, HW_RAW(handle->dev));
1272 tasklet_schedule(&keyboard_tasklet);
1273 do_poke_blanked_console = 1;
1274 schedule_console_callback();
1278 * When a keyboard (or other input device) is found, the kbd_connect
1279 * function is called. The function then looks at the device, and if it
1280 * likes it, it can open it and get events from it. In this (kbd_connect)
1281 * function, we should decide which VT to bind that keyboard to initially.
1283 static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1284 const struct input_device_id *id)
1286 struct input_handle *handle;
1287 int error;
1288 int i;
1290 for (i = KEY_RESERVED; i < BTN_MISC; i++)
1291 if (test_bit(i, dev->keybit))
1292 break;
1294 if (i == BTN_MISC && !test_bit(EV_SND, dev->evbit))
1295 return -ENODEV;
1297 handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1298 if (!handle)
1299 return -ENOMEM;
1301 handle->dev = dev;
1302 handle->handler = handler;
1303 handle->name = "kbd";
1305 error = input_register_handle(handle);
1306 if (error)
1307 goto err_free_handle;
1309 error = input_open_device(handle);
1310 if (error)
1311 goto err_unregister_handle;
1313 return 0;
1315 err_unregister_handle:
1316 input_unregister_handle(handle);
1317 err_free_handle:
1318 kfree(handle);
1319 return error;
1322 static void kbd_disconnect(struct input_handle *handle)
1324 input_close_device(handle);
1325 input_unregister_handle(handle);
1326 kfree(handle);
1330 * Start keyboard handler on the new keyboard by refreshing LED state to
1331 * match the rest of the system.
1333 static void kbd_start(struct input_handle *handle)
1335 unsigned char leds = ledstate;
1337 tasklet_disable(&keyboard_tasklet);
1338 if (leds != 0xff) {
1339 input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1340 input_inject_event(handle, EV_LED, LED_NUML, !!(leds & 0x02));
1341 input_inject_event(handle, EV_LED, LED_CAPSL, !!(leds & 0x04));
1342 input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1344 tasklet_enable(&keyboard_tasklet);
1347 static const struct input_device_id kbd_ids[] = {
1349 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1350 .evbit = { BIT(EV_KEY) },
1354 .flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1355 .evbit = { BIT(EV_SND) },
1358 { }, /* Terminating entry */
1361 MODULE_DEVICE_TABLE(input, kbd_ids);
1363 static struct input_handler kbd_handler = {
1364 .event = kbd_event,
1365 .connect = kbd_connect,
1366 .disconnect = kbd_disconnect,
1367 .start = kbd_start,
1368 .name = "kbd",
1369 .id_table = kbd_ids,
1372 int __init kbd_init(void)
1374 int i;
1375 int error;
1377 for (i = 0; i < MAX_NR_CONSOLES; i++) {
1378 kbd_table[i].ledflagstate = KBD_DEFLEDS;
1379 kbd_table[i].default_ledflagstate = KBD_DEFLEDS;
1380 kbd_table[i].ledmode = LED_SHOW_FLAGS;
1381 kbd_table[i].lockstate = KBD_DEFLOCK;
1382 kbd_table[i].slockstate = 0;
1383 kbd_table[i].modeflags = KBD_DEFMODE;
1384 kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1387 error = input_register_handler(&kbd_handler);
1388 if (error)
1389 return error;
1391 tasklet_enable(&keyboard_tasklet);
1392 tasklet_schedule(&keyboard_tasklet);
1394 return 0;