Staging: samsung-laptop: fix up some sysfs attribute permissions
[wandboard.git] / kernel / perf_event.c
blobfbbe79bf4efd4bae07f61dda96cf8cfbf278c454
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/vmalloc.h>
24 #include <linux/hardirq.h>
25 #include <linux/rculist.h>
26 #include <linux/uaccess.h>
27 #include <linux/syscalls.h>
28 #include <linux/anon_inodes.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/perf_event.h>
31 #include <linux/ftrace_event.h>
32 #include <linux/hw_breakpoint.h>
34 #include <asm/irq_regs.h>
37 * Each CPU has a list of per CPU events:
39 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
41 int perf_max_events __read_mostly = 1;
42 static int perf_reserved_percpu __read_mostly;
43 static int perf_overcommit __read_mostly = 1;
45 static atomic_t nr_events __read_mostly;
46 static atomic_t nr_mmap_events __read_mostly;
47 static atomic_t nr_comm_events __read_mostly;
48 static atomic_t nr_task_events __read_mostly;
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
57 int sysctl_perf_event_paranoid __read_mostly = 1;
59 static inline bool perf_paranoid_tracepoint_raw(void)
61 return sysctl_perf_event_paranoid > -1;
64 static inline bool perf_paranoid_cpu(void)
66 return sysctl_perf_event_paranoid > 0;
69 static inline bool perf_paranoid_kernel(void)
71 return sysctl_perf_event_paranoid > 1;
74 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
77 * max perf event sample rate
79 int sysctl_perf_event_sample_rate __read_mostly = 100000;
81 static atomic64_t perf_event_id;
84 * Lock for (sysadmin-configurable) event reservations:
86 static DEFINE_SPINLOCK(perf_resource_lock);
89 * Architecture provided APIs - weak aliases:
91 extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
93 return NULL;
96 void __weak hw_perf_disable(void) { barrier(); }
97 void __weak hw_perf_enable(void) { barrier(); }
99 void __weak hw_perf_event_setup(int cpu) { barrier(); }
100 void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
102 int __weak
103 hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
107 return 0;
110 void __weak perf_event_print_debug(void) { }
112 static DEFINE_PER_CPU(int, perf_disable_count);
114 void __perf_disable(void)
116 __get_cpu_var(perf_disable_count)++;
119 bool __perf_enable(void)
121 return !--__get_cpu_var(perf_disable_count);
124 void perf_disable(void)
126 __perf_disable();
127 hw_perf_disable();
130 void perf_enable(void)
132 if (__perf_enable())
133 hw_perf_enable();
136 static void get_ctx(struct perf_event_context *ctx)
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
141 static void free_ctx(struct rcu_head *head)
143 struct perf_event_context *ctx;
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
149 static void put_ctx(struct perf_event_context *ctx)
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
160 static void unclone_ctx(struct perf_event_context *ctx)
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
169 * If we inherit events we want to return the parent event id
170 * to userspace.
172 static u64 primary_event_id(struct perf_event *event)
174 u64 id = event->id;
176 if (event->parent)
177 id = event->parent->id;
179 return id;
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
187 static struct perf_event_context *
188 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
190 struct perf_event_context *ctx;
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
206 raw_spin_lock_irqsave(&ctx->lock, *flags);
207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
209 goto retry;
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
214 ctx = NULL;
217 rcu_read_unlock();
218 return ctx;
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
226 static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
228 struct perf_event_context *ctx;
229 unsigned long flags;
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
236 return ctx;
239 static void perf_unpin_context(struct perf_event_context *ctx)
241 unsigned long flags;
243 raw_spin_lock_irqsave(&ctx->lock, flags);
244 --ctx->pin_count;
245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
246 put_ctx(ctx);
249 static inline u64 perf_clock(void)
251 return cpu_clock(raw_smp_processor_id());
255 * Update the record of the current time in a context.
257 static void update_context_time(struct perf_event_context *ctx)
259 u64 now = perf_clock();
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
266 * Update the total_time_enabled and total_time_running fields for a event.
268 static void update_event_times(struct perf_event *event)
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
282 event->total_time_enabled = run_end - event->tstamp_enabled;
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
289 event->total_time_running = run_end - event->tstamp_running;
293 * Add a event from the lists for its context.
294 * Must be called with ctx->mutex and ctx->lock held.
296 static void
297 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
299 struct perf_event *group_leader = event->group_leader;
302 * Depending on whether it is a standalone or sibling event,
303 * add it straight to the context's event list, or to the group
304 * leader's sibling list:
306 if (group_leader == event)
307 list_add_tail(&event->group_entry, &ctx->group_list);
308 else {
309 list_add_tail(&event->group_entry, &group_leader->sibling_list);
310 group_leader->nr_siblings++;
313 list_add_rcu(&event->event_entry, &ctx->event_list);
314 ctx->nr_events++;
315 if (event->attr.inherit_stat)
316 ctx->nr_stat++;
320 * Remove a event from the lists for its context.
321 * Must be called with ctx->mutex and ctx->lock held.
323 static void
324 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
326 struct perf_event *sibling, *tmp;
328 if (list_empty(&event->group_entry))
329 return;
330 ctx->nr_events--;
331 if (event->attr.inherit_stat)
332 ctx->nr_stat--;
334 list_del_init(&event->group_entry);
335 list_del_rcu(&event->event_entry);
337 if (event->group_leader != event)
338 event->group_leader->nr_siblings--;
340 update_event_times(event);
343 * If event was in error state, then keep it
344 * that way, otherwise bogus counts will be
345 * returned on read(). The only way to get out
346 * of error state is by explicit re-enabling
347 * of the event
349 if (event->state > PERF_EVENT_STATE_OFF)
350 event->state = PERF_EVENT_STATE_OFF;
353 * If this was a group event with sibling events then
354 * upgrade the siblings to singleton events by adding them
355 * to the context list directly:
357 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
359 list_move_tail(&sibling->group_entry, &ctx->group_list);
360 sibling->group_leader = sibling;
364 static void
365 event_sched_out(struct perf_event *event,
366 struct perf_cpu_context *cpuctx,
367 struct perf_event_context *ctx)
369 if (event->state != PERF_EVENT_STATE_ACTIVE)
370 return;
372 event->state = PERF_EVENT_STATE_INACTIVE;
373 if (event->pending_disable) {
374 event->pending_disable = 0;
375 event->state = PERF_EVENT_STATE_OFF;
377 event->tstamp_stopped = ctx->time;
378 event->pmu->disable(event);
379 event->oncpu = -1;
381 if (!is_software_event(event))
382 cpuctx->active_oncpu--;
383 ctx->nr_active--;
384 if (event->attr.exclusive || !cpuctx->active_oncpu)
385 cpuctx->exclusive = 0;
388 static void
389 group_sched_out(struct perf_event *group_event,
390 struct perf_cpu_context *cpuctx,
391 struct perf_event_context *ctx)
393 struct perf_event *event;
395 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
396 return;
398 event_sched_out(group_event, cpuctx, ctx);
401 * Schedule out siblings (if any):
403 list_for_each_entry(event, &group_event->sibling_list, group_entry)
404 event_sched_out(event, cpuctx, ctx);
406 if (group_event->attr.exclusive)
407 cpuctx->exclusive = 0;
411 * Cross CPU call to remove a performance event
413 * We disable the event on the hardware level first. After that we
414 * remove it from the context list.
416 static void __perf_event_remove_from_context(void *info)
418 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
419 struct perf_event *event = info;
420 struct perf_event_context *ctx = event->ctx;
423 * If this is a task context, we need to check whether it is
424 * the current task context of this cpu. If not it has been
425 * scheduled out before the smp call arrived.
427 if (ctx->task && cpuctx->task_ctx != ctx)
428 return;
430 raw_spin_lock(&ctx->lock);
432 * Protect the list operation against NMI by disabling the
433 * events on a global level.
435 perf_disable();
437 event_sched_out(event, cpuctx, ctx);
439 list_del_event(event, ctx);
441 if (!ctx->task) {
443 * Allow more per task events with respect to the
444 * reservation:
446 cpuctx->max_pertask =
447 min(perf_max_events - ctx->nr_events,
448 perf_max_events - perf_reserved_percpu);
451 perf_enable();
452 raw_spin_unlock(&ctx->lock);
457 * Remove the event from a task's (or a CPU's) list of events.
459 * Must be called with ctx->mutex held.
461 * CPU events are removed with a smp call. For task events we only
462 * call when the task is on a CPU.
464 * If event->ctx is a cloned context, callers must make sure that
465 * every task struct that event->ctx->task could possibly point to
466 * remains valid. This is OK when called from perf_release since
467 * that only calls us on the top-level context, which can't be a clone.
468 * When called from perf_event_exit_task, it's OK because the
469 * context has been detached from its task.
471 static void perf_event_remove_from_context(struct perf_event *event)
473 struct perf_event_context *ctx = event->ctx;
474 struct task_struct *task = ctx->task;
476 if (!task) {
478 * Per cpu events are removed via an smp call and
479 * the removal is always successful.
481 smp_call_function_single(event->cpu,
482 __perf_event_remove_from_context,
483 event, 1);
484 return;
487 retry:
488 task_oncpu_function_call(task, __perf_event_remove_from_context,
489 event);
491 raw_spin_lock_irq(&ctx->lock);
493 * If the context is active we need to retry the smp call.
495 if (ctx->nr_active && !list_empty(&event->group_entry)) {
496 raw_spin_unlock_irq(&ctx->lock);
497 goto retry;
501 * The lock prevents that this context is scheduled in so we
502 * can remove the event safely, if the call above did not
503 * succeed.
505 if (!list_empty(&event->group_entry))
506 list_del_event(event, ctx);
507 raw_spin_unlock_irq(&ctx->lock);
511 * Update total_time_enabled and total_time_running for all events in a group.
513 static void update_group_times(struct perf_event *leader)
515 struct perf_event *event;
517 update_event_times(leader);
518 list_for_each_entry(event, &leader->sibling_list, group_entry)
519 update_event_times(event);
523 * Cross CPU call to disable a performance event
525 static void __perf_event_disable(void *info)
527 struct perf_event *event = info;
528 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
529 struct perf_event_context *ctx = event->ctx;
532 * If this is a per-task event, need to check whether this
533 * event's task is the current task on this cpu.
535 if (ctx->task && cpuctx->task_ctx != ctx)
536 return;
538 raw_spin_lock(&ctx->lock);
541 * If the event is on, turn it off.
542 * If it is in error state, leave it in error state.
544 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
545 update_context_time(ctx);
546 update_group_times(event);
547 if (event == event->group_leader)
548 group_sched_out(event, cpuctx, ctx);
549 else
550 event_sched_out(event, cpuctx, ctx);
551 event->state = PERF_EVENT_STATE_OFF;
554 raw_spin_unlock(&ctx->lock);
558 * Disable a event.
560 * If event->ctx is a cloned context, callers must make sure that
561 * every task struct that event->ctx->task could possibly point to
562 * remains valid. This condition is satisifed when called through
563 * perf_event_for_each_child or perf_event_for_each because they
564 * hold the top-level event's child_mutex, so any descendant that
565 * goes to exit will block in sync_child_event.
566 * When called from perf_pending_event it's OK because event->ctx
567 * is the current context on this CPU and preemption is disabled,
568 * hence we can't get into perf_event_task_sched_out for this context.
570 void perf_event_disable(struct perf_event *event)
572 struct perf_event_context *ctx = event->ctx;
573 struct task_struct *task = ctx->task;
575 if (!task) {
577 * Disable the event on the cpu that it's on
579 smp_call_function_single(event->cpu, __perf_event_disable,
580 event, 1);
581 return;
584 retry:
585 task_oncpu_function_call(task, __perf_event_disable, event);
587 raw_spin_lock_irq(&ctx->lock);
589 * If the event is still active, we need to retry the cross-call.
591 if (event->state == PERF_EVENT_STATE_ACTIVE) {
592 raw_spin_unlock_irq(&ctx->lock);
593 goto retry;
597 * Since we have the lock this context can't be scheduled
598 * in, so we can change the state safely.
600 if (event->state == PERF_EVENT_STATE_INACTIVE) {
601 update_group_times(event);
602 event->state = PERF_EVENT_STATE_OFF;
605 raw_spin_unlock_irq(&ctx->lock);
608 static int
609 event_sched_in(struct perf_event *event,
610 struct perf_cpu_context *cpuctx,
611 struct perf_event_context *ctx,
612 int cpu)
614 if (event->state <= PERF_EVENT_STATE_OFF)
615 return 0;
617 event->state = PERF_EVENT_STATE_ACTIVE;
618 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
620 * The new state must be visible before we turn it on in the hardware:
622 smp_wmb();
624 if (event->pmu->enable(event)) {
625 event->state = PERF_EVENT_STATE_INACTIVE;
626 event->oncpu = -1;
627 return -EAGAIN;
630 event->tstamp_running += ctx->time - event->tstamp_stopped;
632 if (!is_software_event(event))
633 cpuctx->active_oncpu++;
634 ctx->nr_active++;
636 if (event->attr.exclusive)
637 cpuctx->exclusive = 1;
639 return 0;
642 static int
643 group_sched_in(struct perf_event *group_event,
644 struct perf_cpu_context *cpuctx,
645 struct perf_event_context *ctx,
646 int cpu)
648 struct perf_event *event, *partial_group;
649 int ret;
651 if (group_event->state == PERF_EVENT_STATE_OFF)
652 return 0;
654 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
655 if (ret)
656 return ret < 0 ? ret : 0;
658 if (event_sched_in(group_event, cpuctx, ctx, cpu))
659 return -EAGAIN;
662 * Schedule in siblings as one group (if any):
664 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
665 if (event_sched_in(event, cpuctx, ctx, cpu)) {
666 partial_group = event;
667 goto group_error;
671 return 0;
673 group_error:
675 * Groups can be scheduled in as one unit only, so undo any
676 * partial group before returning:
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event == partial_group)
680 break;
681 event_sched_out(event, cpuctx, ctx);
683 event_sched_out(group_event, cpuctx, ctx);
685 return -EAGAIN;
689 * Return 1 for a group consisting entirely of software events,
690 * 0 if the group contains any hardware events.
692 static int is_software_only_group(struct perf_event *leader)
694 struct perf_event *event;
696 if (!is_software_event(leader))
697 return 0;
699 list_for_each_entry(event, &leader->sibling_list, group_entry)
700 if (!is_software_event(event))
701 return 0;
703 return 1;
707 * Work out whether we can put this event group on the CPU now.
709 static int group_can_go_on(struct perf_event *event,
710 struct perf_cpu_context *cpuctx,
711 int can_add_hw)
714 * Groups consisting entirely of software events can always go on.
716 if (is_software_only_group(event))
717 return 1;
719 * If an exclusive group is already on, no other hardware
720 * events can go on.
722 if (cpuctx->exclusive)
723 return 0;
725 * If this group is exclusive and there are already
726 * events on the CPU, it can't go on.
728 if (event->attr.exclusive && cpuctx->active_oncpu)
729 return 0;
731 * Otherwise, try to add it if all previous groups were able
732 * to go on.
734 return can_add_hw;
737 static void add_event_to_ctx(struct perf_event *event,
738 struct perf_event_context *ctx)
740 list_add_event(event, ctx);
741 event->tstamp_enabled = ctx->time;
742 event->tstamp_running = ctx->time;
743 event->tstamp_stopped = ctx->time;
747 * Cross CPU call to install and enable a performance event
749 * Must be called with ctx->mutex held
751 static void __perf_install_in_context(void *info)
753 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
754 struct perf_event *event = info;
755 struct perf_event_context *ctx = event->ctx;
756 struct perf_event *leader = event->group_leader;
757 int cpu = smp_processor_id();
758 int err;
761 * If this is a task context, we need to check whether it is
762 * the current task context of this cpu. If not it has been
763 * scheduled out before the smp call arrived.
764 * Or possibly this is the right context but it isn't
765 * on this cpu because it had no events.
767 if (ctx->task && cpuctx->task_ctx != ctx) {
768 if (cpuctx->task_ctx || ctx->task != current)
769 return;
770 cpuctx->task_ctx = ctx;
773 raw_spin_lock(&ctx->lock);
774 ctx->is_active = 1;
775 update_context_time(ctx);
778 * Protect the list operation against NMI by disabling the
779 * events on a global level. NOP for non NMI based events.
781 perf_disable();
783 add_event_to_ctx(event, ctx);
785 if (event->cpu != -1 && event->cpu != smp_processor_id())
786 goto unlock;
789 * Don't put the event on if it is disabled or if
790 * it is in a group and the group isn't on.
792 if (event->state != PERF_EVENT_STATE_INACTIVE ||
793 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
794 goto unlock;
797 * An exclusive event can't go on if there are already active
798 * hardware events, and no hardware event can go on if there
799 * is already an exclusive event on.
801 if (!group_can_go_on(event, cpuctx, 1))
802 err = -EEXIST;
803 else
804 err = event_sched_in(event, cpuctx, ctx, cpu);
806 if (err) {
808 * This event couldn't go on. If it is in a group
809 * then we have to pull the whole group off.
810 * If the event group is pinned then put it in error state.
812 if (leader != event)
813 group_sched_out(leader, cpuctx, ctx);
814 if (leader->attr.pinned) {
815 update_group_times(leader);
816 leader->state = PERF_EVENT_STATE_ERROR;
820 if (!err && !ctx->task && cpuctx->max_pertask)
821 cpuctx->max_pertask--;
823 unlock:
824 perf_enable();
826 raw_spin_unlock(&ctx->lock);
830 * Attach a performance event to a context
832 * First we add the event to the list with the hardware enable bit
833 * in event->hw_config cleared.
835 * If the event is attached to a task which is on a CPU we use a smp
836 * call to enable it in the task context. The task might have been
837 * scheduled away, but we check this in the smp call again.
839 * Must be called with ctx->mutex held.
841 static void
842 perf_install_in_context(struct perf_event_context *ctx,
843 struct perf_event *event,
844 int cpu)
846 struct task_struct *task = ctx->task;
848 if (!task) {
850 * Per cpu events are installed via an smp call and
851 * the install is always successful.
853 smp_call_function_single(cpu, __perf_install_in_context,
854 event, 1);
855 return;
858 retry:
859 task_oncpu_function_call(task, __perf_install_in_context,
860 event);
862 raw_spin_lock_irq(&ctx->lock);
864 * we need to retry the smp call.
866 if (ctx->is_active && list_empty(&event->group_entry)) {
867 raw_spin_unlock_irq(&ctx->lock);
868 goto retry;
872 * The lock prevents that this context is scheduled in so we
873 * can add the event safely, if it the call above did not
874 * succeed.
876 if (list_empty(&event->group_entry))
877 add_event_to_ctx(event, ctx);
878 raw_spin_unlock_irq(&ctx->lock);
882 * Put a event into inactive state and update time fields.
883 * Enabling the leader of a group effectively enables all
884 * the group members that aren't explicitly disabled, so we
885 * have to update their ->tstamp_enabled also.
886 * Note: this works for group members as well as group leaders
887 * since the non-leader members' sibling_lists will be empty.
889 static void __perf_event_mark_enabled(struct perf_event *event,
890 struct perf_event_context *ctx)
892 struct perf_event *sub;
894 event->state = PERF_EVENT_STATE_INACTIVE;
895 event->tstamp_enabled = ctx->time - event->total_time_enabled;
896 list_for_each_entry(sub, &event->sibling_list, group_entry)
897 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
898 sub->tstamp_enabled =
899 ctx->time - sub->total_time_enabled;
903 * Cross CPU call to enable a performance event
905 static void __perf_event_enable(void *info)
907 struct perf_event *event = info;
908 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
909 struct perf_event_context *ctx = event->ctx;
910 struct perf_event *leader = event->group_leader;
911 int err;
914 * If this is a per-task event, need to check whether this
915 * event's task is the current task on this cpu.
917 if (ctx->task && cpuctx->task_ctx != ctx) {
918 if (cpuctx->task_ctx || ctx->task != current)
919 return;
920 cpuctx->task_ctx = ctx;
923 raw_spin_lock(&ctx->lock);
924 ctx->is_active = 1;
925 update_context_time(ctx);
927 if (event->state >= PERF_EVENT_STATE_INACTIVE)
928 goto unlock;
929 __perf_event_mark_enabled(event, ctx);
931 if (event->cpu != -1 && event->cpu != smp_processor_id())
932 goto unlock;
935 * If the event is in a group and isn't the group leader,
936 * then don't put it on unless the group is on.
938 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
939 goto unlock;
941 if (!group_can_go_on(event, cpuctx, 1)) {
942 err = -EEXIST;
943 } else {
944 perf_disable();
945 if (event == leader)
946 err = group_sched_in(event, cpuctx, ctx,
947 smp_processor_id());
948 else
949 err = event_sched_in(event, cpuctx, ctx,
950 smp_processor_id());
951 perf_enable();
954 if (err) {
956 * If this event can't go on and it's part of a
957 * group, then the whole group has to come off.
959 if (leader != event)
960 group_sched_out(leader, cpuctx, ctx);
961 if (leader->attr.pinned) {
962 update_group_times(leader);
963 leader->state = PERF_EVENT_STATE_ERROR;
967 unlock:
968 raw_spin_unlock(&ctx->lock);
972 * Enable a event.
974 * If event->ctx is a cloned context, callers must make sure that
975 * every task struct that event->ctx->task could possibly point to
976 * remains valid. This condition is satisfied when called through
977 * perf_event_for_each_child or perf_event_for_each as described
978 * for perf_event_disable.
980 void perf_event_enable(struct perf_event *event)
982 struct perf_event_context *ctx = event->ctx;
983 struct task_struct *task = ctx->task;
985 if (!task) {
987 * Enable the event on the cpu that it's on
989 smp_call_function_single(event->cpu, __perf_event_enable,
990 event, 1);
991 return;
994 raw_spin_lock_irq(&ctx->lock);
995 if (event->state >= PERF_EVENT_STATE_INACTIVE)
996 goto out;
999 * If the event is in error state, clear that first.
1000 * That way, if we see the event in error state below, we
1001 * know that it has gone back into error state, as distinct
1002 * from the task having been scheduled away before the
1003 * cross-call arrived.
1005 if (event->state == PERF_EVENT_STATE_ERROR)
1006 event->state = PERF_EVENT_STATE_OFF;
1008 retry:
1009 raw_spin_unlock_irq(&ctx->lock);
1010 task_oncpu_function_call(task, __perf_event_enable, event);
1012 raw_spin_lock_irq(&ctx->lock);
1015 * If the context is active and the event is still off,
1016 * we need to retry the cross-call.
1018 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1019 goto retry;
1022 * Since we have the lock this context can't be scheduled
1023 * in, so we can change the state safely.
1025 if (event->state == PERF_EVENT_STATE_OFF)
1026 __perf_event_mark_enabled(event, ctx);
1028 out:
1029 raw_spin_unlock_irq(&ctx->lock);
1032 static int perf_event_refresh(struct perf_event *event, int refresh)
1035 * not supported on inherited events
1037 if (event->attr.inherit)
1038 return -EINVAL;
1040 atomic_add(refresh, &event->event_limit);
1041 perf_event_enable(event);
1043 return 0;
1046 void __perf_event_sched_out(struct perf_event_context *ctx,
1047 struct perf_cpu_context *cpuctx)
1049 struct perf_event *event;
1051 raw_spin_lock(&ctx->lock);
1052 ctx->is_active = 0;
1053 if (likely(!ctx->nr_events))
1054 goto out;
1055 update_context_time(ctx);
1057 perf_disable();
1058 if (ctx->nr_active) {
1059 list_for_each_entry(event, &ctx->group_list, group_entry)
1060 group_sched_out(event, cpuctx, ctx);
1062 perf_enable();
1063 out:
1064 raw_spin_unlock(&ctx->lock);
1068 * Test whether two contexts are equivalent, i.e. whether they
1069 * have both been cloned from the same version of the same context
1070 * and they both have the same number of enabled events.
1071 * If the number of enabled events is the same, then the set
1072 * of enabled events should be the same, because these are both
1073 * inherited contexts, therefore we can't access individual events
1074 * in them directly with an fd; we can only enable/disable all
1075 * events via prctl, or enable/disable all events in a family
1076 * via ioctl, which will have the same effect on both contexts.
1078 static int context_equiv(struct perf_event_context *ctx1,
1079 struct perf_event_context *ctx2)
1081 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1082 && ctx1->parent_gen == ctx2->parent_gen
1083 && !ctx1->pin_count && !ctx2->pin_count;
1086 static void __perf_event_sync_stat(struct perf_event *event,
1087 struct perf_event *next_event)
1089 u64 value;
1091 if (!event->attr.inherit_stat)
1092 return;
1095 * Update the event value, we cannot use perf_event_read()
1096 * because we're in the middle of a context switch and have IRQs
1097 * disabled, which upsets smp_call_function_single(), however
1098 * we know the event must be on the current CPU, therefore we
1099 * don't need to use it.
1101 switch (event->state) {
1102 case PERF_EVENT_STATE_ACTIVE:
1103 event->pmu->read(event);
1104 /* fall-through */
1106 case PERF_EVENT_STATE_INACTIVE:
1107 update_event_times(event);
1108 break;
1110 default:
1111 break;
1115 * In order to keep per-task stats reliable we need to flip the event
1116 * values when we flip the contexts.
1118 value = atomic64_read(&next_event->count);
1119 value = atomic64_xchg(&event->count, value);
1120 atomic64_set(&next_event->count, value);
1122 swap(event->total_time_enabled, next_event->total_time_enabled);
1123 swap(event->total_time_running, next_event->total_time_running);
1126 * Since we swizzled the values, update the user visible data too.
1128 perf_event_update_userpage(event);
1129 perf_event_update_userpage(next_event);
1132 #define list_next_entry(pos, member) \
1133 list_entry(pos->member.next, typeof(*pos), member)
1135 static void perf_event_sync_stat(struct perf_event_context *ctx,
1136 struct perf_event_context *next_ctx)
1138 struct perf_event *event, *next_event;
1140 if (!ctx->nr_stat)
1141 return;
1143 update_context_time(ctx);
1145 event = list_first_entry(&ctx->event_list,
1146 struct perf_event, event_entry);
1148 next_event = list_first_entry(&next_ctx->event_list,
1149 struct perf_event, event_entry);
1151 while (&event->event_entry != &ctx->event_list &&
1152 &next_event->event_entry != &next_ctx->event_list) {
1154 __perf_event_sync_stat(event, next_event);
1156 event = list_next_entry(event, event_entry);
1157 next_event = list_next_entry(next_event, event_entry);
1162 * Called from scheduler to remove the events of the current task,
1163 * with interrupts disabled.
1165 * We stop each event and update the event value in event->count.
1167 * This does not protect us against NMI, but disable()
1168 * sets the disabled bit in the control field of event _before_
1169 * accessing the event control register. If a NMI hits, then it will
1170 * not restart the event.
1172 void perf_event_task_sched_out(struct task_struct *task,
1173 struct task_struct *next, int cpu)
1175 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1176 struct perf_event_context *ctx = task->perf_event_ctxp;
1177 struct perf_event_context *next_ctx;
1178 struct perf_event_context *parent;
1179 struct pt_regs *regs;
1180 int do_switch = 1;
1182 regs = task_pt_regs(task);
1183 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1185 if (likely(!ctx || !cpuctx->task_ctx))
1186 return;
1188 rcu_read_lock();
1189 parent = rcu_dereference(ctx->parent_ctx);
1190 next_ctx = next->perf_event_ctxp;
1191 if (parent && next_ctx &&
1192 rcu_dereference(next_ctx->parent_ctx) == parent) {
1194 * Looks like the two contexts are clones, so we might be
1195 * able to optimize the context switch. We lock both
1196 * contexts and check that they are clones under the
1197 * lock (including re-checking that neither has been
1198 * uncloned in the meantime). It doesn't matter which
1199 * order we take the locks because no other cpu could
1200 * be trying to lock both of these tasks.
1202 raw_spin_lock(&ctx->lock);
1203 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1204 if (context_equiv(ctx, next_ctx)) {
1206 * XXX do we need a memory barrier of sorts
1207 * wrt to rcu_dereference() of perf_event_ctxp
1209 task->perf_event_ctxp = next_ctx;
1210 next->perf_event_ctxp = ctx;
1211 ctx->task = next;
1212 next_ctx->task = task;
1213 do_switch = 0;
1215 perf_event_sync_stat(ctx, next_ctx);
1217 raw_spin_unlock(&next_ctx->lock);
1218 raw_spin_unlock(&ctx->lock);
1220 rcu_read_unlock();
1222 if (do_switch) {
1223 __perf_event_sched_out(ctx, cpuctx);
1224 cpuctx->task_ctx = NULL;
1229 * Called with IRQs disabled
1231 static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1233 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1235 if (!cpuctx->task_ctx)
1236 return;
1238 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1239 return;
1241 __perf_event_sched_out(ctx, cpuctx);
1242 cpuctx->task_ctx = NULL;
1246 * Called with IRQs disabled
1248 static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1250 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1253 static void
1254 __perf_event_sched_in(struct perf_event_context *ctx,
1255 struct perf_cpu_context *cpuctx, int cpu)
1257 struct perf_event *event;
1258 int can_add_hw = 1;
1260 raw_spin_lock(&ctx->lock);
1261 ctx->is_active = 1;
1262 if (likely(!ctx->nr_events))
1263 goto out;
1265 ctx->timestamp = perf_clock();
1267 perf_disable();
1270 * First go through the list and put on any pinned groups
1271 * in order to give them the best chance of going on.
1273 list_for_each_entry(event, &ctx->group_list, group_entry) {
1274 if (event->state <= PERF_EVENT_STATE_OFF ||
1275 !event->attr.pinned)
1276 continue;
1277 if (event->cpu != -1 && event->cpu != cpu)
1278 continue;
1280 if (group_can_go_on(event, cpuctx, 1))
1281 group_sched_in(event, cpuctx, ctx, cpu);
1284 * If this pinned group hasn't been scheduled,
1285 * put it in error state.
1287 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1288 update_group_times(event);
1289 event->state = PERF_EVENT_STATE_ERROR;
1293 list_for_each_entry(event, &ctx->group_list, group_entry) {
1295 * Ignore events in OFF or ERROR state, and
1296 * ignore pinned events since we did them already.
1298 if (event->state <= PERF_EVENT_STATE_OFF ||
1299 event->attr.pinned)
1300 continue;
1303 * Listen to the 'cpu' scheduling filter constraint
1304 * of events:
1306 if (event->cpu != -1 && event->cpu != cpu)
1307 continue;
1309 if (group_can_go_on(event, cpuctx, can_add_hw))
1310 if (group_sched_in(event, cpuctx, ctx, cpu))
1311 can_add_hw = 0;
1313 perf_enable();
1314 out:
1315 raw_spin_unlock(&ctx->lock);
1319 * Called from scheduler to add the events of the current task
1320 * with interrupts disabled.
1322 * We restore the event value and then enable it.
1324 * This does not protect us against NMI, but enable()
1325 * sets the enabled bit in the control field of event _before_
1326 * accessing the event control register. If a NMI hits, then it will
1327 * keep the event running.
1329 void perf_event_task_sched_in(struct task_struct *task, int cpu)
1331 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
1332 struct perf_event_context *ctx = task->perf_event_ctxp;
1334 if (likely(!ctx))
1335 return;
1336 if (cpuctx->task_ctx == ctx)
1337 return;
1338 __perf_event_sched_in(ctx, cpuctx, cpu);
1339 cpuctx->task_ctx = ctx;
1342 static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
1344 struct perf_event_context *ctx = &cpuctx->ctx;
1346 __perf_event_sched_in(ctx, cpuctx, cpu);
1349 #define MAX_INTERRUPTS (~0ULL)
1351 static void perf_log_throttle(struct perf_event *event, int enable);
1353 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1355 u64 frequency = event->attr.sample_freq;
1356 u64 sec = NSEC_PER_SEC;
1357 u64 divisor, dividend;
1359 int count_fls, nsec_fls, frequency_fls, sec_fls;
1361 count_fls = fls64(count);
1362 nsec_fls = fls64(nsec);
1363 frequency_fls = fls64(frequency);
1364 sec_fls = 30;
1367 * We got @count in @nsec, with a target of sample_freq HZ
1368 * the target period becomes:
1370 * @count * 10^9
1371 * period = -------------------
1372 * @nsec * sample_freq
1377 * Reduce accuracy by one bit such that @a and @b converge
1378 * to a similar magnitude.
1380 #define REDUCE_FLS(a, b) \
1381 do { \
1382 if (a##_fls > b##_fls) { \
1383 a >>= 1; \
1384 a##_fls--; \
1385 } else { \
1386 b >>= 1; \
1387 b##_fls--; \
1389 } while (0)
1392 * Reduce accuracy until either term fits in a u64, then proceed with
1393 * the other, so that finally we can do a u64/u64 division.
1395 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1396 REDUCE_FLS(nsec, frequency);
1397 REDUCE_FLS(sec, count);
1400 if (count_fls + sec_fls > 64) {
1401 divisor = nsec * frequency;
1403 while (count_fls + sec_fls > 64) {
1404 REDUCE_FLS(count, sec);
1405 divisor >>= 1;
1408 dividend = count * sec;
1409 } else {
1410 dividend = count * sec;
1412 while (nsec_fls + frequency_fls > 64) {
1413 REDUCE_FLS(nsec, frequency);
1414 dividend >>= 1;
1417 divisor = nsec * frequency;
1420 if (!divisor)
1421 return dividend;
1423 return div64_u64(dividend, divisor);
1426 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1428 struct hw_perf_event *hwc = &event->hw;
1429 s64 period, sample_period;
1430 s64 delta;
1432 period = perf_calculate_period(event, nsec, count);
1434 delta = (s64)(period - hwc->sample_period);
1435 delta = (delta + 7) / 8; /* low pass filter */
1437 sample_period = hwc->sample_period + delta;
1439 if (!sample_period)
1440 sample_period = 1;
1442 hwc->sample_period = sample_period;
1444 if (atomic64_read(&hwc->period_left) > 8*sample_period) {
1445 perf_disable();
1446 event->pmu->disable(event);
1447 atomic64_set(&hwc->period_left, 0);
1448 event->pmu->enable(event);
1449 perf_enable();
1453 static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1455 struct perf_event *event;
1456 struct hw_perf_event *hwc;
1457 u64 interrupts, now;
1458 s64 delta;
1460 raw_spin_lock(&ctx->lock);
1461 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1462 if (event->state != PERF_EVENT_STATE_ACTIVE)
1463 continue;
1465 if (event->cpu != -1 && event->cpu != smp_processor_id())
1466 continue;
1468 hwc = &event->hw;
1470 interrupts = hwc->interrupts;
1471 hwc->interrupts = 0;
1474 * unthrottle events on the tick
1476 if (interrupts == MAX_INTERRUPTS) {
1477 perf_log_throttle(event, 1);
1478 event->pmu->unthrottle(event);
1481 if (!event->attr.freq || !event->attr.sample_freq)
1482 continue;
1484 event->pmu->read(event);
1485 now = atomic64_read(&event->count);
1486 delta = now - hwc->freq_count_stamp;
1487 hwc->freq_count_stamp = now;
1489 if (delta > 0)
1490 perf_adjust_period(event, TICK_NSEC, delta);
1492 raw_spin_unlock(&ctx->lock);
1496 * Round-robin a context's events:
1498 static void rotate_ctx(struct perf_event_context *ctx)
1500 struct perf_event *event;
1502 if (!ctx->nr_events)
1503 return;
1505 raw_spin_lock(&ctx->lock);
1507 * Rotate the first entry last (works just fine for group events too):
1509 perf_disable();
1510 list_for_each_entry(event, &ctx->group_list, group_entry) {
1511 list_move_tail(&event->group_entry, &ctx->group_list);
1512 break;
1514 perf_enable();
1516 raw_spin_unlock(&ctx->lock);
1519 void perf_event_task_tick(struct task_struct *curr, int cpu)
1521 struct perf_cpu_context *cpuctx;
1522 struct perf_event_context *ctx;
1524 if (!atomic_read(&nr_events))
1525 return;
1527 cpuctx = &per_cpu(perf_cpu_context, cpu);
1528 ctx = curr->perf_event_ctxp;
1530 perf_ctx_adjust_freq(&cpuctx->ctx);
1531 if (ctx)
1532 perf_ctx_adjust_freq(ctx);
1534 perf_event_cpu_sched_out(cpuctx);
1535 if (ctx)
1536 __perf_event_task_sched_out(ctx);
1538 rotate_ctx(&cpuctx->ctx);
1539 if (ctx)
1540 rotate_ctx(ctx);
1542 perf_event_cpu_sched_in(cpuctx, cpu);
1543 if (ctx)
1544 perf_event_task_sched_in(curr, cpu);
1548 * Enable all of a task's events that have been marked enable-on-exec.
1549 * This expects task == current.
1551 static void perf_event_enable_on_exec(struct task_struct *task)
1553 struct perf_event_context *ctx;
1554 struct perf_event *event;
1555 unsigned long flags;
1556 int enabled = 0;
1558 local_irq_save(flags);
1559 ctx = task->perf_event_ctxp;
1560 if (!ctx || !ctx->nr_events)
1561 goto out;
1563 __perf_event_task_sched_out(ctx);
1565 raw_spin_lock(&ctx->lock);
1567 list_for_each_entry(event, &ctx->group_list, group_entry) {
1568 if (!event->attr.enable_on_exec)
1569 continue;
1570 event->attr.enable_on_exec = 0;
1571 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1572 continue;
1573 __perf_event_mark_enabled(event, ctx);
1574 enabled = 1;
1578 * Unclone this context if we enabled any event.
1580 if (enabled)
1581 unclone_ctx(ctx);
1583 raw_spin_unlock(&ctx->lock);
1585 perf_event_task_sched_in(task, smp_processor_id());
1586 out:
1587 local_irq_restore(flags);
1591 * Cross CPU call to read the hardware event
1593 static void __perf_event_read(void *info)
1595 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1596 struct perf_event *event = info;
1597 struct perf_event_context *ctx = event->ctx;
1600 * If this is a task context, we need to check whether it is
1601 * the current task context of this cpu. If not it has been
1602 * scheduled out before the smp call arrived. In that case
1603 * event->count would have been updated to a recent sample
1604 * when the event was scheduled out.
1606 if (ctx->task && cpuctx->task_ctx != ctx)
1607 return;
1609 raw_spin_lock(&ctx->lock);
1610 update_context_time(ctx);
1611 update_event_times(event);
1612 raw_spin_unlock(&ctx->lock);
1614 event->pmu->read(event);
1617 static u64 perf_event_read(struct perf_event *event)
1620 * If event is enabled and currently active on a CPU, update the
1621 * value in the event structure:
1623 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1624 smp_call_function_single(event->oncpu,
1625 __perf_event_read, event, 1);
1626 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1627 struct perf_event_context *ctx = event->ctx;
1628 unsigned long flags;
1630 raw_spin_lock_irqsave(&ctx->lock, flags);
1631 update_context_time(ctx);
1632 update_event_times(event);
1633 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1636 return atomic64_read(&event->count);
1640 * Initialize the perf_event context in a task_struct:
1642 static void
1643 __perf_event_init_context(struct perf_event_context *ctx,
1644 struct task_struct *task)
1646 raw_spin_lock_init(&ctx->lock);
1647 mutex_init(&ctx->mutex);
1648 INIT_LIST_HEAD(&ctx->group_list);
1649 INIT_LIST_HEAD(&ctx->event_list);
1650 atomic_set(&ctx->refcount, 1);
1651 ctx->task = task;
1654 static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1656 struct perf_event_context *ctx;
1657 struct perf_cpu_context *cpuctx;
1658 struct task_struct *task;
1659 unsigned long flags;
1660 int err;
1662 if (pid == -1 && cpu != -1) {
1663 /* Must be root to operate on a CPU event: */
1664 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1665 return ERR_PTR(-EACCES);
1667 if (cpu < 0 || cpu >= nr_cpumask_bits)
1668 return ERR_PTR(-EINVAL);
1671 * We could be clever and allow to attach a event to an
1672 * offline CPU and activate it when the CPU comes up, but
1673 * that's for later.
1675 if (!cpu_online(cpu))
1676 return ERR_PTR(-ENODEV);
1678 cpuctx = &per_cpu(perf_cpu_context, cpu);
1679 ctx = &cpuctx->ctx;
1680 get_ctx(ctx);
1682 return ctx;
1685 rcu_read_lock();
1686 if (!pid)
1687 task = current;
1688 else
1689 task = find_task_by_vpid(pid);
1690 if (task)
1691 get_task_struct(task);
1692 rcu_read_unlock();
1694 if (!task)
1695 return ERR_PTR(-ESRCH);
1698 * Can't attach events to a dying task.
1700 err = -ESRCH;
1701 if (task->flags & PF_EXITING)
1702 goto errout;
1704 /* Reuse ptrace permission checks for now. */
1705 err = -EACCES;
1706 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1707 goto errout;
1709 retry:
1710 ctx = perf_lock_task_context(task, &flags);
1711 if (ctx) {
1712 unclone_ctx(ctx);
1713 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1716 if (!ctx) {
1717 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
1718 err = -ENOMEM;
1719 if (!ctx)
1720 goto errout;
1721 __perf_event_init_context(ctx, task);
1722 get_ctx(ctx);
1723 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1725 * We raced with some other task; use
1726 * the context they set.
1728 kfree(ctx);
1729 goto retry;
1731 get_task_struct(task);
1734 put_task_struct(task);
1735 return ctx;
1737 errout:
1738 put_task_struct(task);
1739 return ERR_PTR(err);
1742 static void perf_event_free_filter(struct perf_event *event);
1744 static void free_event_rcu(struct rcu_head *head)
1746 struct perf_event *event;
1748 event = container_of(head, struct perf_event, rcu_head);
1749 if (event->ns)
1750 put_pid_ns(event->ns);
1751 perf_event_free_filter(event);
1752 kfree(event);
1755 static void perf_pending_sync(struct perf_event *event);
1757 static void free_event(struct perf_event *event)
1759 perf_pending_sync(event);
1761 if (!event->parent) {
1762 atomic_dec(&nr_events);
1763 if (event->attr.mmap)
1764 atomic_dec(&nr_mmap_events);
1765 if (event->attr.comm)
1766 atomic_dec(&nr_comm_events);
1767 if (event->attr.task)
1768 atomic_dec(&nr_task_events);
1771 if (event->output) {
1772 fput(event->output->filp);
1773 event->output = NULL;
1776 if (event->destroy)
1777 event->destroy(event);
1779 put_ctx(event->ctx);
1780 call_rcu(&event->rcu_head, free_event_rcu);
1783 int perf_event_release_kernel(struct perf_event *event)
1785 struct perf_event_context *ctx = event->ctx;
1787 WARN_ON_ONCE(ctx->parent_ctx);
1788 mutex_lock(&ctx->mutex);
1789 perf_event_remove_from_context(event);
1790 mutex_unlock(&ctx->mutex);
1792 mutex_lock(&event->owner->perf_event_mutex);
1793 list_del_init(&event->owner_entry);
1794 mutex_unlock(&event->owner->perf_event_mutex);
1795 put_task_struct(event->owner);
1797 free_event(event);
1799 return 0;
1801 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1804 * Called when the last reference to the file is gone.
1806 static int perf_release(struct inode *inode, struct file *file)
1808 struct perf_event *event = file->private_data;
1810 file->private_data = NULL;
1812 return perf_event_release_kernel(event);
1815 static int perf_event_read_size(struct perf_event *event)
1817 int entry = sizeof(u64); /* value */
1818 int size = 0;
1819 int nr = 1;
1821 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1822 size += sizeof(u64);
1824 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1825 size += sizeof(u64);
1827 if (event->attr.read_format & PERF_FORMAT_ID)
1828 entry += sizeof(u64);
1830 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1831 nr += event->group_leader->nr_siblings;
1832 size += sizeof(u64);
1835 size += entry * nr;
1837 return size;
1840 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
1842 struct perf_event *child;
1843 u64 total = 0;
1845 *enabled = 0;
1846 *running = 0;
1848 mutex_lock(&event->child_mutex);
1849 total += perf_event_read(event);
1850 *enabled += event->total_time_enabled +
1851 atomic64_read(&event->child_total_time_enabled);
1852 *running += event->total_time_running +
1853 atomic64_read(&event->child_total_time_running);
1855 list_for_each_entry(child, &event->child_list, child_list) {
1856 total += perf_event_read(child);
1857 *enabled += child->total_time_enabled;
1858 *running += child->total_time_running;
1860 mutex_unlock(&event->child_mutex);
1862 return total;
1864 EXPORT_SYMBOL_GPL(perf_event_read_value);
1866 static int perf_event_read_group(struct perf_event *event,
1867 u64 read_format, char __user *buf)
1869 struct perf_event *leader = event->group_leader, *sub;
1870 int n = 0, size = 0, ret = -EFAULT;
1871 struct perf_event_context *ctx = leader->ctx;
1872 u64 values[5];
1873 u64 count, enabled, running;
1875 mutex_lock(&ctx->mutex);
1876 count = perf_event_read_value(leader, &enabled, &running);
1878 values[n++] = 1 + leader->nr_siblings;
1879 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1880 values[n++] = enabled;
1881 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1882 values[n++] = running;
1883 values[n++] = count;
1884 if (read_format & PERF_FORMAT_ID)
1885 values[n++] = primary_event_id(leader);
1887 size = n * sizeof(u64);
1889 if (copy_to_user(buf, values, size))
1890 goto unlock;
1892 ret = size;
1894 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
1895 n = 0;
1897 values[n++] = perf_event_read_value(sub, &enabled, &running);
1898 if (read_format & PERF_FORMAT_ID)
1899 values[n++] = primary_event_id(sub);
1901 size = n * sizeof(u64);
1903 if (copy_to_user(buf + ret, values, size)) {
1904 ret = -EFAULT;
1905 goto unlock;
1908 ret += size;
1910 unlock:
1911 mutex_unlock(&ctx->mutex);
1913 return ret;
1916 static int perf_event_read_one(struct perf_event *event,
1917 u64 read_format, char __user *buf)
1919 u64 enabled, running;
1920 u64 values[4];
1921 int n = 0;
1923 values[n++] = perf_event_read_value(event, &enabled, &running);
1924 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1925 values[n++] = enabled;
1926 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1927 values[n++] = running;
1928 if (read_format & PERF_FORMAT_ID)
1929 values[n++] = primary_event_id(event);
1931 if (copy_to_user(buf, values, n * sizeof(u64)))
1932 return -EFAULT;
1934 return n * sizeof(u64);
1938 * Read the performance event - simple non blocking version for now
1940 static ssize_t
1941 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1943 u64 read_format = event->attr.read_format;
1944 int ret;
1947 * Return end-of-file for a read on a event that is in
1948 * error state (i.e. because it was pinned but it couldn't be
1949 * scheduled on to the CPU at some point).
1951 if (event->state == PERF_EVENT_STATE_ERROR)
1952 return 0;
1954 if (count < perf_event_read_size(event))
1955 return -ENOSPC;
1957 WARN_ON_ONCE(event->ctx->parent_ctx);
1958 if (read_format & PERF_FORMAT_GROUP)
1959 ret = perf_event_read_group(event, read_format, buf);
1960 else
1961 ret = perf_event_read_one(event, read_format, buf);
1963 return ret;
1966 static ssize_t
1967 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1969 struct perf_event *event = file->private_data;
1971 return perf_read_hw(event, buf, count);
1974 static unsigned int perf_poll(struct file *file, poll_table *wait)
1976 struct perf_event *event = file->private_data;
1977 struct perf_mmap_data *data;
1978 unsigned int events = POLL_HUP;
1980 rcu_read_lock();
1981 data = rcu_dereference(event->data);
1982 if (data)
1983 events = atomic_xchg(&data->poll, 0);
1984 rcu_read_unlock();
1986 poll_wait(file, &event->waitq, wait);
1988 return events;
1991 static void perf_event_reset(struct perf_event *event)
1993 (void)perf_event_read(event);
1994 atomic64_set(&event->count, 0);
1995 perf_event_update_userpage(event);
1999 * Holding the top-level event's child_mutex means that any
2000 * descendant process that has inherited this event will block
2001 * in sync_child_event if it goes to exit, thus satisfying the
2002 * task existence requirements of perf_event_enable/disable.
2004 static void perf_event_for_each_child(struct perf_event *event,
2005 void (*func)(struct perf_event *))
2007 struct perf_event *child;
2009 WARN_ON_ONCE(event->ctx->parent_ctx);
2010 mutex_lock(&event->child_mutex);
2011 func(event);
2012 list_for_each_entry(child, &event->child_list, child_list)
2013 func(child);
2014 mutex_unlock(&event->child_mutex);
2017 static void perf_event_for_each(struct perf_event *event,
2018 void (*func)(struct perf_event *))
2020 struct perf_event_context *ctx = event->ctx;
2021 struct perf_event *sibling;
2023 WARN_ON_ONCE(ctx->parent_ctx);
2024 mutex_lock(&ctx->mutex);
2025 event = event->group_leader;
2027 perf_event_for_each_child(event, func);
2028 func(event);
2029 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2030 perf_event_for_each_child(event, func);
2031 mutex_unlock(&ctx->mutex);
2034 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2036 struct perf_event_context *ctx = event->ctx;
2037 unsigned long size;
2038 int ret = 0;
2039 u64 value;
2041 if (!event->attr.sample_period)
2042 return -EINVAL;
2044 size = copy_from_user(&value, arg, sizeof(value));
2045 if (size != sizeof(value))
2046 return -EFAULT;
2048 if (!value)
2049 return -EINVAL;
2051 raw_spin_lock_irq(&ctx->lock);
2052 if (event->attr.freq) {
2053 if (value > sysctl_perf_event_sample_rate) {
2054 ret = -EINVAL;
2055 goto unlock;
2058 event->attr.sample_freq = value;
2059 } else {
2060 event->attr.sample_period = value;
2061 event->hw.sample_period = value;
2063 unlock:
2064 raw_spin_unlock_irq(&ctx->lock);
2066 return ret;
2069 static int perf_event_set_output(struct perf_event *event, int output_fd);
2070 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2072 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2074 struct perf_event *event = file->private_data;
2075 void (*func)(struct perf_event *);
2076 u32 flags = arg;
2078 switch (cmd) {
2079 case PERF_EVENT_IOC_ENABLE:
2080 func = perf_event_enable;
2081 break;
2082 case PERF_EVENT_IOC_DISABLE:
2083 func = perf_event_disable;
2084 break;
2085 case PERF_EVENT_IOC_RESET:
2086 func = perf_event_reset;
2087 break;
2089 case PERF_EVENT_IOC_REFRESH:
2090 return perf_event_refresh(event, arg);
2092 case PERF_EVENT_IOC_PERIOD:
2093 return perf_event_period(event, (u64 __user *)arg);
2095 case PERF_EVENT_IOC_SET_OUTPUT:
2096 return perf_event_set_output(event, arg);
2098 case PERF_EVENT_IOC_SET_FILTER:
2099 return perf_event_set_filter(event, (void __user *)arg);
2101 default:
2102 return -ENOTTY;
2105 if (flags & PERF_IOC_FLAG_GROUP)
2106 perf_event_for_each(event, func);
2107 else
2108 perf_event_for_each_child(event, func);
2110 return 0;
2113 int perf_event_task_enable(void)
2115 struct perf_event *event;
2117 mutex_lock(&current->perf_event_mutex);
2118 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2119 perf_event_for_each_child(event, perf_event_enable);
2120 mutex_unlock(&current->perf_event_mutex);
2122 return 0;
2125 int perf_event_task_disable(void)
2127 struct perf_event *event;
2129 mutex_lock(&current->perf_event_mutex);
2130 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2131 perf_event_for_each_child(event, perf_event_disable);
2132 mutex_unlock(&current->perf_event_mutex);
2134 return 0;
2137 #ifndef PERF_EVENT_INDEX_OFFSET
2138 # define PERF_EVENT_INDEX_OFFSET 0
2139 #endif
2141 static int perf_event_index(struct perf_event *event)
2143 if (event->state != PERF_EVENT_STATE_ACTIVE)
2144 return 0;
2146 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2150 * Callers need to ensure there can be no nesting of this function, otherwise
2151 * the seqlock logic goes bad. We can not serialize this because the arch
2152 * code calls this from NMI context.
2154 void perf_event_update_userpage(struct perf_event *event)
2156 struct perf_event_mmap_page *userpg;
2157 struct perf_mmap_data *data;
2159 rcu_read_lock();
2160 data = rcu_dereference(event->data);
2161 if (!data)
2162 goto unlock;
2164 userpg = data->user_page;
2167 * Disable preemption so as to not let the corresponding user-space
2168 * spin too long if we get preempted.
2170 preempt_disable();
2171 ++userpg->lock;
2172 barrier();
2173 userpg->index = perf_event_index(event);
2174 userpg->offset = atomic64_read(&event->count);
2175 if (event->state == PERF_EVENT_STATE_ACTIVE)
2176 userpg->offset -= atomic64_read(&event->hw.prev_count);
2178 userpg->time_enabled = event->total_time_enabled +
2179 atomic64_read(&event->child_total_time_enabled);
2181 userpg->time_running = event->total_time_running +
2182 atomic64_read(&event->child_total_time_running);
2184 barrier();
2185 ++userpg->lock;
2186 preempt_enable();
2187 unlock:
2188 rcu_read_unlock();
2191 static unsigned long perf_data_size(struct perf_mmap_data *data)
2193 return data->nr_pages << (PAGE_SHIFT + data->data_order);
2196 #ifndef CONFIG_PERF_USE_VMALLOC
2199 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2202 static struct page *
2203 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2205 if (pgoff > data->nr_pages)
2206 return NULL;
2208 if (pgoff == 0)
2209 return virt_to_page(data->user_page);
2211 return virt_to_page(data->data_pages[pgoff - 1]);
2214 static struct perf_mmap_data *
2215 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2217 struct perf_mmap_data *data;
2218 unsigned long size;
2219 int i;
2221 WARN_ON(atomic_read(&event->mmap_count));
2223 size = sizeof(struct perf_mmap_data);
2224 size += nr_pages * sizeof(void *);
2226 data = kzalloc(size, GFP_KERNEL);
2227 if (!data)
2228 goto fail;
2230 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2231 if (!data->user_page)
2232 goto fail_user_page;
2234 for (i = 0; i < nr_pages; i++) {
2235 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2236 if (!data->data_pages[i])
2237 goto fail_data_pages;
2240 data->data_order = 0;
2241 data->nr_pages = nr_pages;
2243 return data;
2245 fail_data_pages:
2246 for (i--; i >= 0; i--)
2247 free_page((unsigned long)data->data_pages[i]);
2249 free_page((unsigned long)data->user_page);
2251 fail_user_page:
2252 kfree(data);
2254 fail:
2255 return NULL;
2258 static void perf_mmap_free_page(unsigned long addr)
2260 struct page *page = virt_to_page((void *)addr);
2262 page->mapping = NULL;
2263 __free_page(page);
2266 static void perf_mmap_data_free(struct perf_mmap_data *data)
2268 int i;
2270 perf_mmap_free_page((unsigned long)data->user_page);
2271 for (i = 0; i < data->nr_pages; i++)
2272 perf_mmap_free_page((unsigned long)data->data_pages[i]);
2273 kfree(data);
2276 #else
2279 * Back perf_mmap() with vmalloc memory.
2281 * Required for architectures that have d-cache aliasing issues.
2284 static struct page *
2285 perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2287 if (pgoff > (1UL << data->data_order))
2288 return NULL;
2290 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2293 static void perf_mmap_unmark_page(void *addr)
2295 struct page *page = vmalloc_to_page(addr);
2297 page->mapping = NULL;
2300 static void perf_mmap_data_free_work(struct work_struct *work)
2302 struct perf_mmap_data *data;
2303 void *base;
2304 int i, nr;
2306 data = container_of(work, struct perf_mmap_data, work);
2307 nr = 1 << data->data_order;
2309 base = data->user_page;
2310 for (i = 0; i < nr + 1; i++)
2311 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2313 vfree(base);
2314 kfree(data);
2317 static void perf_mmap_data_free(struct perf_mmap_data *data)
2319 schedule_work(&data->work);
2322 static struct perf_mmap_data *
2323 perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2325 struct perf_mmap_data *data;
2326 unsigned long size;
2327 void *all_buf;
2329 WARN_ON(atomic_read(&event->mmap_count));
2331 size = sizeof(struct perf_mmap_data);
2332 size += sizeof(void *);
2334 data = kzalloc(size, GFP_KERNEL);
2335 if (!data)
2336 goto fail;
2338 INIT_WORK(&data->work, perf_mmap_data_free_work);
2340 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2341 if (!all_buf)
2342 goto fail_all_buf;
2344 data->user_page = all_buf;
2345 data->data_pages[0] = all_buf + PAGE_SIZE;
2346 data->data_order = ilog2(nr_pages);
2347 data->nr_pages = 1;
2349 return data;
2351 fail_all_buf:
2352 kfree(data);
2354 fail:
2355 return NULL;
2358 #endif
2360 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2362 struct perf_event *event = vma->vm_file->private_data;
2363 struct perf_mmap_data *data;
2364 int ret = VM_FAULT_SIGBUS;
2366 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2367 if (vmf->pgoff == 0)
2368 ret = 0;
2369 return ret;
2372 rcu_read_lock();
2373 data = rcu_dereference(event->data);
2374 if (!data)
2375 goto unlock;
2377 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2378 goto unlock;
2380 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2381 if (!vmf->page)
2382 goto unlock;
2384 get_page(vmf->page);
2385 vmf->page->mapping = vma->vm_file->f_mapping;
2386 vmf->page->index = vmf->pgoff;
2388 ret = 0;
2389 unlock:
2390 rcu_read_unlock();
2392 return ret;
2395 static void
2396 perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2398 long max_size = perf_data_size(data);
2400 atomic_set(&data->lock, -1);
2402 if (event->attr.watermark) {
2403 data->watermark = min_t(long, max_size,
2404 event->attr.wakeup_watermark);
2407 if (!data->watermark)
2408 data->watermark = max_size / 2;
2411 rcu_assign_pointer(event->data, data);
2414 static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2416 struct perf_mmap_data *data;
2418 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2419 perf_mmap_data_free(data);
2422 static void perf_mmap_data_release(struct perf_event *event)
2424 struct perf_mmap_data *data = event->data;
2426 WARN_ON(atomic_read(&event->mmap_count));
2428 rcu_assign_pointer(event->data, NULL);
2429 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
2432 static void perf_mmap_open(struct vm_area_struct *vma)
2434 struct perf_event *event = vma->vm_file->private_data;
2436 atomic_inc(&event->mmap_count);
2439 static void perf_mmap_close(struct vm_area_struct *vma)
2441 struct perf_event *event = vma->vm_file->private_data;
2443 WARN_ON_ONCE(event->ctx->parent_ctx);
2444 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
2445 unsigned long size = perf_data_size(event->data);
2446 struct user_struct *user = current_user();
2448 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
2449 vma->vm_mm->locked_vm -= event->data->nr_locked;
2450 perf_mmap_data_release(event);
2451 mutex_unlock(&event->mmap_mutex);
2455 static const struct vm_operations_struct perf_mmap_vmops = {
2456 .open = perf_mmap_open,
2457 .close = perf_mmap_close,
2458 .fault = perf_mmap_fault,
2459 .page_mkwrite = perf_mmap_fault,
2462 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2464 struct perf_event *event = file->private_data;
2465 unsigned long user_locked, user_lock_limit;
2466 struct user_struct *user = current_user();
2467 unsigned long locked, lock_limit;
2468 struct perf_mmap_data *data;
2469 unsigned long vma_size;
2470 unsigned long nr_pages;
2471 long user_extra, extra;
2472 int ret = 0;
2474 if (!(vma->vm_flags & VM_SHARED))
2475 return -EINVAL;
2477 vma_size = vma->vm_end - vma->vm_start;
2478 nr_pages = (vma_size / PAGE_SIZE) - 1;
2481 * If we have data pages ensure they're a power-of-two number, so we
2482 * can do bitmasks instead of modulo.
2484 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2485 return -EINVAL;
2487 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2488 return -EINVAL;
2490 if (vma->vm_pgoff != 0)
2491 return -EINVAL;
2493 WARN_ON_ONCE(event->ctx->parent_ctx);
2494 mutex_lock(&event->mmap_mutex);
2495 if (event->output) {
2496 ret = -EINVAL;
2497 goto unlock;
2500 if (atomic_inc_not_zero(&event->mmap_count)) {
2501 if (nr_pages != event->data->nr_pages)
2502 ret = -EINVAL;
2503 goto unlock;
2506 user_extra = nr_pages + 1;
2507 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2510 * Increase the limit linearly with more CPUs:
2512 user_lock_limit *= num_online_cpus();
2514 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2516 extra = 0;
2517 if (user_locked > user_lock_limit)
2518 extra = user_locked - user_lock_limit;
2520 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2521 lock_limit >>= PAGE_SHIFT;
2522 locked = vma->vm_mm->locked_vm + extra;
2524 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2525 !capable(CAP_IPC_LOCK)) {
2526 ret = -EPERM;
2527 goto unlock;
2530 WARN_ON(event->data);
2532 data = perf_mmap_data_alloc(event, nr_pages);
2533 ret = -ENOMEM;
2534 if (!data)
2535 goto unlock;
2537 ret = 0;
2538 perf_mmap_data_init(event, data);
2540 atomic_set(&event->mmap_count, 1);
2541 atomic_long_add(user_extra, &user->locked_vm);
2542 vma->vm_mm->locked_vm += extra;
2543 event->data->nr_locked = extra;
2544 if (vma->vm_flags & VM_WRITE)
2545 event->data->writable = 1;
2547 unlock:
2548 mutex_unlock(&event->mmap_mutex);
2550 vma->vm_flags |= VM_RESERVED;
2551 vma->vm_ops = &perf_mmap_vmops;
2553 return ret;
2556 static int perf_fasync(int fd, struct file *filp, int on)
2558 struct inode *inode = filp->f_path.dentry->d_inode;
2559 struct perf_event *event = filp->private_data;
2560 int retval;
2562 mutex_lock(&inode->i_mutex);
2563 retval = fasync_helper(fd, filp, on, &event->fasync);
2564 mutex_unlock(&inode->i_mutex);
2566 if (retval < 0)
2567 return retval;
2569 return 0;
2572 static const struct file_operations perf_fops = {
2573 .release = perf_release,
2574 .read = perf_read,
2575 .poll = perf_poll,
2576 .unlocked_ioctl = perf_ioctl,
2577 .compat_ioctl = perf_ioctl,
2578 .mmap = perf_mmap,
2579 .fasync = perf_fasync,
2583 * Perf event wakeup
2585 * If there's data, ensure we set the poll() state and publish everything
2586 * to user-space before waking everybody up.
2589 void perf_event_wakeup(struct perf_event *event)
2591 wake_up_all(&event->waitq);
2593 if (event->pending_kill) {
2594 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2595 event->pending_kill = 0;
2600 * Pending wakeups
2602 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2604 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2605 * single linked list and use cmpxchg() to add entries lockless.
2608 static void perf_pending_event(struct perf_pending_entry *entry)
2610 struct perf_event *event = container_of(entry,
2611 struct perf_event, pending);
2613 if (event->pending_disable) {
2614 event->pending_disable = 0;
2615 __perf_event_disable(event);
2618 if (event->pending_wakeup) {
2619 event->pending_wakeup = 0;
2620 perf_event_wakeup(event);
2624 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2626 static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2627 PENDING_TAIL,
2630 static void perf_pending_queue(struct perf_pending_entry *entry,
2631 void (*func)(struct perf_pending_entry *))
2633 struct perf_pending_entry **head;
2635 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2636 return;
2638 entry->func = func;
2640 head = &get_cpu_var(perf_pending_head);
2642 do {
2643 entry->next = *head;
2644 } while (cmpxchg(head, entry->next, entry) != entry->next);
2646 set_perf_event_pending();
2648 put_cpu_var(perf_pending_head);
2651 static int __perf_pending_run(void)
2653 struct perf_pending_entry *list;
2654 int nr = 0;
2656 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2657 while (list != PENDING_TAIL) {
2658 void (*func)(struct perf_pending_entry *);
2659 struct perf_pending_entry *entry = list;
2661 list = list->next;
2663 func = entry->func;
2664 entry->next = NULL;
2666 * Ensure we observe the unqueue before we issue the wakeup,
2667 * so that we won't be waiting forever.
2668 * -- see perf_not_pending().
2670 smp_wmb();
2672 func(entry);
2673 nr++;
2676 return nr;
2679 static inline int perf_not_pending(struct perf_event *event)
2682 * If we flush on whatever cpu we run, there is a chance we don't
2683 * need to wait.
2685 get_cpu();
2686 __perf_pending_run();
2687 put_cpu();
2690 * Ensure we see the proper queue state before going to sleep
2691 * so that we do not miss the wakeup. -- see perf_pending_handle()
2693 smp_rmb();
2694 return event->pending.next == NULL;
2697 static void perf_pending_sync(struct perf_event *event)
2699 wait_event(event->waitq, perf_not_pending(event));
2702 void perf_event_do_pending(void)
2704 __perf_pending_run();
2708 * Callchain support -- arch specific
2711 __weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2713 return NULL;
2717 * Output
2719 static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2720 unsigned long offset, unsigned long head)
2722 unsigned long mask;
2724 if (!data->writable)
2725 return true;
2727 mask = perf_data_size(data) - 1;
2729 offset = (offset - tail) & mask;
2730 head = (head - tail) & mask;
2732 if ((int)(head - offset) < 0)
2733 return false;
2735 return true;
2738 static void perf_output_wakeup(struct perf_output_handle *handle)
2740 atomic_set(&handle->data->poll, POLL_IN);
2742 if (handle->nmi) {
2743 handle->event->pending_wakeup = 1;
2744 perf_pending_queue(&handle->event->pending,
2745 perf_pending_event);
2746 } else
2747 perf_event_wakeup(handle->event);
2751 * Curious locking construct.
2753 * We need to ensure a later event_id doesn't publish a head when a former
2754 * event_id isn't done writing. However since we need to deal with NMIs we
2755 * cannot fully serialize things.
2757 * What we do is serialize between CPUs so we only have to deal with NMI
2758 * nesting on a single CPU.
2760 * We only publish the head (and generate a wakeup) when the outer-most
2761 * event_id completes.
2763 static void perf_output_lock(struct perf_output_handle *handle)
2765 struct perf_mmap_data *data = handle->data;
2766 int cur, cpu = get_cpu();
2768 handle->locked = 0;
2770 for (;;) {
2771 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2772 if (cur == -1) {
2773 handle->locked = 1;
2774 break;
2776 if (cur == cpu)
2777 break;
2779 cpu_relax();
2783 static void perf_output_unlock(struct perf_output_handle *handle)
2785 struct perf_mmap_data *data = handle->data;
2786 unsigned long head;
2787 int cpu;
2789 data->done_head = data->head;
2791 if (!handle->locked)
2792 goto out;
2794 again:
2796 * The xchg implies a full barrier that ensures all writes are done
2797 * before we publish the new head, matched by a rmb() in userspace when
2798 * reading this position.
2800 while ((head = atomic_long_xchg(&data->done_head, 0)))
2801 data->user_page->data_head = head;
2804 * NMI can happen here, which means we can miss a done_head update.
2807 cpu = atomic_xchg(&data->lock, -1);
2808 WARN_ON_ONCE(cpu != smp_processor_id());
2811 * Therefore we have to validate we did not indeed do so.
2813 if (unlikely(atomic_long_read(&data->done_head))) {
2815 * Since we had it locked, we can lock it again.
2817 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2818 cpu_relax();
2820 goto again;
2823 if (atomic_xchg(&data->wakeup, 0))
2824 perf_output_wakeup(handle);
2825 out:
2826 put_cpu();
2829 void perf_output_copy(struct perf_output_handle *handle,
2830 const void *buf, unsigned int len)
2832 unsigned int pages_mask;
2833 unsigned long offset;
2834 unsigned int size;
2835 void **pages;
2837 offset = handle->offset;
2838 pages_mask = handle->data->nr_pages - 1;
2839 pages = handle->data->data_pages;
2841 do {
2842 unsigned long page_offset;
2843 unsigned long page_size;
2844 int nr;
2846 nr = (offset >> PAGE_SHIFT) & pages_mask;
2847 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2848 page_offset = offset & (page_size - 1);
2849 size = min_t(unsigned int, page_size - page_offset, len);
2851 memcpy(pages[nr] + page_offset, buf, size);
2853 len -= size;
2854 buf += size;
2855 offset += size;
2856 } while (len);
2858 handle->offset = offset;
2861 * Check we didn't copy past our reservation window, taking the
2862 * possible unsigned int wrap into account.
2864 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2867 int perf_output_begin(struct perf_output_handle *handle,
2868 struct perf_event *event, unsigned int size,
2869 int nmi, int sample)
2871 struct perf_event *output_event;
2872 struct perf_mmap_data *data;
2873 unsigned long tail, offset, head;
2874 int have_lost;
2875 struct {
2876 struct perf_event_header header;
2877 u64 id;
2878 u64 lost;
2879 } lost_event;
2881 rcu_read_lock();
2883 * For inherited events we send all the output towards the parent.
2885 if (event->parent)
2886 event = event->parent;
2888 output_event = rcu_dereference(event->output);
2889 if (output_event)
2890 event = output_event;
2892 data = rcu_dereference(event->data);
2893 if (!data)
2894 goto out;
2896 handle->data = data;
2897 handle->event = event;
2898 handle->nmi = nmi;
2899 handle->sample = sample;
2901 if (!data->nr_pages)
2902 goto fail;
2904 have_lost = atomic_read(&data->lost);
2905 if (have_lost)
2906 size += sizeof(lost_event);
2908 perf_output_lock(handle);
2910 do {
2912 * Userspace could choose to issue a mb() before updating the
2913 * tail pointer. So that all reads will be completed before the
2914 * write is issued.
2916 tail = ACCESS_ONCE(data->user_page->data_tail);
2917 smp_rmb();
2918 offset = head = atomic_long_read(&data->head);
2919 head += size;
2920 if (unlikely(!perf_output_space(data, tail, offset, head)))
2921 goto fail;
2922 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2924 handle->offset = offset;
2925 handle->head = head;
2927 if (head - tail > data->watermark)
2928 atomic_set(&data->wakeup, 1);
2930 if (have_lost) {
2931 lost_event.header.type = PERF_RECORD_LOST;
2932 lost_event.header.misc = 0;
2933 lost_event.header.size = sizeof(lost_event);
2934 lost_event.id = event->id;
2935 lost_event.lost = atomic_xchg(&data->lost, 0);
2937 perf_output_put(handle, lost_event);
2940 return 0;
2942 fail:
2943 atomic_inc(&data->lost);
2944 perf_output_unlock(handle);
2945 out:
2946 rcu_read_unlock();
2948 return -ENOSPC;
2951 void perf_output_end(struct perf_output_handle *handle)
2953 struct perf_event *event = handle->event;
2954 struct perf_mmap_data *data = handle->data;
2956 int wakeup_events = event->attr.wakeup_events;
2958 if (handle->sample && wakeup_events) {
2959 int events = atomic_inc_return(&data->events);
2960 if (events >= wakeup_events) {
2961 atomic_sub(wakeup_events, &data->events);
2962 atomic_set(&data->wakeup, 1);
2966 perf_output_unlock(handle);
2967 rcu_read_unlock();
2970 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2973 * only top level events have the pid namespace they were created in
2975 if (event->parent)
2976 event = event->parent;
2978 return task_tgid_nr_ns(p, event->ns);
2981 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2984 * only top level events have the pid namespace they were created in
2986 if (event->parent)
2987 event = event->parent;
2989 return task_pid_nr_ns(p, event->ns);
2992 static void perf_output_read_one(struct perf_output_handle *handle,
2993 struct perf_event *event)
2995 u64 read_format = event->attr.read_format;
2996 u64 values[4];
2997 int n = 0;
2999 values[n++] = atomic64_read(&event->count);
3000 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3001 values[n++] = event->total_time_enabled +
3002 atomic64_read(&event->child_total_time_enabled);
3004 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3005 values[n++] = event->total_time_running +
3006 atomic64_read(&event->child_total_time_running);
3008 if (read_format & PERF_FORMAT_ID)
3009 values[n++] = primary_event_id(event);
3011 perf_output_copy(handle, values, n * sizeof(u64));
3015 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3017 static void perf_output_read_group(struct perf_output_handle *handle,
3018 struct perf_event *event)
3020 struct perf_event *leader = event->group_leader, *sub;
3021 u64 read_format = event->attr.read_format;
3022 u64 values[5];
3023 int n = 0;
3025 values[n++] = 1 + leader->nr_siblings;
3027 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3028 values[n++] = leader->total_time_enabled;
3030 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3031 values[n++] = leader->total_time_running;
3033 if (leader != event)
3034 leader->pmu->read(leader);
3036 values[n++] = atomic64_read(&leader->count);
3037 if (read_format & PERF_FORMAT_ID)
3038 values[n++] = primary_event_id(leader);
3040 perf_output_copy(handle, values, n * sizeof(u64));
3042 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3043 n = 0;
3045 if (sub != event)
3046 sub->pmu->read(sub);
3048 values[n++] = atomic64_read(&sub->count);
3049 if (read_format & PERF_FORMAT_ID)
3050 values[n++] = primary_event_id(sub);
3052 perf_output_copy(handle, values, n * sizeof(u64));
3056 static void perf_output_read(struct perf_output_handle *handle,
3057 struct perf_event *event)
3059 if (event->attr.read_format & PERF_FORMAT_GROUP)
3060 perf_output_read_group(handle, event);
3061 else
3062 perf_output_read_one(handle, event);
3065 void perf_output_sample(struct perf_output_handle *handle,
3066 struct perf_event_header *header,
3067 struct perf_sample_data *data,
3068 struct perf_event *event)
3070 u64 sample_type = data->type;
3072 perf_output_put(handle, *header);
3074 if (sample_type & PERF_SAMPLE_IP)
3075 perf_output_put(handle, data->ip);
3077 if (sample_type & PERF_SAMPLE_TID)
3078 perf_output_put(handle, data->tid_entry);
3080 if (sample_type & PERF_SAMPLE_TIME)
3081 perf_output_put(handle, data->time);
3083 if (sample_type & PERF_SAMPLE_ADDR)
3084 perf_output_put(handle, data->addr);
3086 if (sample_type & PERF_SAMPLE_ID)
3087 perf_output_put(handle, data->id);
3089 if (sample_type & PERF_SAMPLE_STREAM_ID)
3090 perf_output_put(handle, data->stream_id);
3092 if (sample_type & PERF_SAMPLE_CPU)
3093 perf_output_put(handle, data->cpu_entry);
3095 if (sample_type & PERF_SAMPLE_PERIOD)
3096 perf_output_put(handle, data->period);
3098 if (sample_type & PERF_SAMPLE_READ)
3099 perf_output_read(handle, event);
3101 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3102 if (data->callchain) {
3103 int size = 1;
3105 if (data->callchain)
3106 size += data->callchain->nr;
3108 size *= sizeof(u64);
3110 perf_output_copy(handle, data->callchain, size);
3111 } else {
3112 u64 nr = 0;
3113 perf_output_put(handle, nr);
3117 if (sample_type & PERF_SAMPLE_RAW) {
3118 if (data->raw) {
3119 perf_output_put(handle, data->raw->size);
3120 perf_output_copy(handle, data->raw->data,
3121 data->raw->size);
3122 } else {
3123 struct {
3124 u32 size;
3125 u32 data;
3126 } raw = {
3127 .size = sizeof(u32),
3128 .data = 0,
3130 perf_output_put(handle, raw);
3135 void perf_prepare_sample(struct perf_event_header *header,
3136 struct perf_sample_data *data,
3137 struct perf_event *event,
3138 struct pt_regs *regs)
3140 u64 sample_type = event->attr.sample_type;
3142 data->type = sample_type;
3144 header->type = PERF_RECORD_SAMPLE;
3145 header->size = sizeof(*header);
3147 header->misc = 0;
3148 header->misc |= perf_misc_flags(regs);
3150 if (sample_type & PERF_SAMPLE_IP) {
3151 data->ip = perf_instruction_pointer(regs);
3153 header->size += sizeof(data->ip);
3156 if (sample_type & PERF_SAMPLE_TID) {
3157 /* namespace issues */
3158 data->tid_entry.pid = perf_event_pid(event, current);
3159 data->tid_entry.tid = perf_event_tid(event, current);
3161 header->size += sizeof(data->tid_entry);
3164 if (sample_type & PERF_SAMPLE_TIME) {
3165 data->time = perf_clock();
3167 header->size += sizeof(data->time);
3170 if (sample_type & PERF_SAMPLE_ADDR)
3171 header->size += sizeof(data->addr);
3173 if (sample_type & PERF_SAMPLE_ID) {
3174 data->id = primary_event_id(event);
3176 header->size += sizeof(data->id);
3179 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3180 data->stream_id = event->id;
3182 header->size += sizeof(data->stream_id);
3185 if (sample_type & PERF_SAMPLE_CPU) {
3186 data->cpu_entry.cpu = raw_smp_processor_id();
3187 data->cpu_entry.reserved = 0;
3189 header->size += sizeof(data->cpu_entry);
3192 if (sample_type & PERF_SAMPLE_PERIOD)
3193 header->size += sizeof(data->period);
3195 if (sample_type & PERF_SAMPLE_READ)
3196 header->size += perf_event_read_size(event);
3198 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3199 int size = 1;
3201 data->callchain = perf_callchain(regs);
3203 if (data->callchain)
3204 size += data->callchain->nr;
3206 header->size += size * sizeof(u64);
3209 if (sample_type & PERF_SAMPLE_RAW) {
3210 int size = sizeof(u32);
3212 if (data->raw)
3213 size += data->raw->size;
3214 else
3215 size += sizeof(u32);
3217 WARN_ON_ONCE(size & (sizeof(u64)-1));
3218 header->size += size;
3222 static void perf_event_output(struct perf_event *event, int nmi,
3223 struct perf_sample_data *data,
3224 struct pt_regs *regs)
3226 struct perf_output_handle handle;
3227 struct perf_event_header header;
3229 perf_prepare_sample(&header, data, event, regs);
3231 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3232 return;
3234 perf_output_sample(&handle, &header, data, event);
3236 perf_output_end(&handle);
3240 * read event_id
3243 struct perf_read_event {
3244 struct perf_event_header header;
3246 u32 pid;
3247 u32 tid;
3250 static void
3251 perf_event_read_event(struct perf_event *event,
3252 struct task_struct *task)
3254 struct perf_output_handle handle;
3255 struct perf_read_event read_event = {
3256 .header = {
3257 .type = PERF_RECORD_READ,
3258 .misc = 0,
3259 .size = sizeof(read_event) + perf_event_read_size(event),
3261 .pid = perf_event_pid(event, task),
3262 .tid = perf_event_tid(event, task),
3264 int ret;
3266 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3267 if (ret)
3268 return;
3270 perf_output_put(&handle, read_event);
3271 perf_output_read(&handle, event);
3273 perf_output_end(&handle);
3277 * task tracking -- fork/exit
3279 * enabled by: attr.comm | attr.mmap | attr.task
3282 struct perf_task_event {
3283 struct task_struct *task;
3284 struct perf_event_context *task_ctx;
3286 struct {
3287 struct perf_event_header header;
3289 u32 pid;
3290 u32 ppid;
3291 u32 tid;
3292 u32 ptid;
3293 u64 time;
3294 } event_id;
3297 static void perf_event_task_output(struct perf_event *event,
3298 struct perf_task_event *task_event)
3300 struct perf_output_handle handle;
3301 int size;
3302 struct task_struct *task = task_event->task;
3303 int ret;
3305 size = task_event->event_id.header.size;
3306 ret = perf_output_begin(&handle, event, size, 0, 0);
3308 if (ret)
3309 return;
3311 task_event->event_id.pid = perf_event_pid(event, task);
3312 task_event->event_id.ppid = perf_event_pid(event, current);
3314 task_event->event_id.tid = perf_event_tid(event, task);
3315 task_event->event_id.ptid = perf_event_tid(event, current);
3317 perf_output_put(&handle, task_event->event_id);
3319 perf_output_end(&handle);
3322 static int perf_event_task_match(struct perf_event *event)
3324 if (event->state < PERF_EVENT_STATE_INACTIVE)
3325 return 0;
3327 if (event->cpu != -1 && event->cpu != smp_processor_id())
3328 return 0;
3330 if (event->attr.comm || event->attr.mmap || event->attr.task)
3331 return 1;
3333 return 0;
3336 static void perf_event_task_ctx(struct perf_event_context *ctx,
3337 struct perf_task_event *task_event)
3339 struct perf_event *event;
3341 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3342 if (perf_event_task_match(event))
3343 perf_event_task_output(event, task_event);
3347 static void perf_event_task_event(struct perf_task_event *task_event)
3349 struct perf_cpu_context *cpuctx;
3350 struct perf_event_context *ctx = task_event->task_ctx;
3352 rcu_read_lock();
3353 cpuctx = &get_cpu_var(perf_cpu_context);
3354 perf_event_task_ctx(&cpuctx->ctx, task_event);
3355 if (!ctx)
3356 ctx = rcu_dereference(current->perf_event_ctxp);
3357 if (ctx)
3358 perf_event_task_ctx(ctx, task_event);
3359 put_cpu_var(perf_cpu_context);
3360 rcu_read_unlock();
3363 static void perf_event_task(struct task_struct *task,
3364 struct perf_event_context *task_ctx,
3365 int new)
3367 struct perf_task_event task_event;
3369 if (!atomic_read(&nr_comm_events) &&
3370 !atomic_read(&nr_mmap_events) &&
3371 !atomic_read(&nr_task_events))
3372 return;
3374 task_event = (struct perf_task_event){
3375 .task = task,
3376 .task_ctx = task_ctx,
3377 .event_id = {
3378 .header = {
3379 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3380 .misc = 0,
3381 .size = sizeof(task_event.event_id),
3383 /* .pid */
3384 /* .ppid */
3385 /* .tid */
3386 /* .ptid */
3387 .time = perf_clock(),
3391 perf_event_task_event(&task_event);
3394 void perf_event_fork(struct task_struct *task)
3396 perf_event_task(task, NULL, 1);
3400 * comm tracking
3403 struct perf_comm_event {
3404 struct task_struct *task;
3405 char *comm;
3406 int comm_size;
3408 struct {
3409 struct perf_event_header header;
3411 u32 pid;
3412 u32 tid;
3413 } event_id;
3416 static void perf_event_comm_output(struct perf_event *event,
3417 struct perf_comm_event *comm_event)
3419 struct perf_output_handle handle;
3420 int size = comm_event->event_id.header.size;
3421 int ret = perf_output_begin(&handle, event, size, 0, 0);
3423 if (ret)
3424 return;
3426 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3427 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3429 perf_output_put(&handle, comm_event->event_id);
3430 perf_output_copy(&handle, comm_event->comm,
3431 comm_event->comm_size);
3432 perf_output_end(&handle);
3435 static int perf_event_comm_match(struct perf_event *event)
3437 if (event->state < PERF_EVENT_STATE_INACTIVE)
3438 return 0;
3440 if (event->cpu != -1 && event->cpu != smp_processor_id())
3441 return 0;
3443 if (event->attr.comm)
3444 return 1;
3446 return 0;
3449 static void perf_event_comm_ctx(struct perf_event_context *ctx,
3450 struct perf_comm_event *comm_event)
3452 struct perf_event *event;
3454 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3455 if (perf_event_comm_match(event))
3456 perf_event_comm_output(event, comm_event);
3460 static void perf_event_comm_event(struct perf_comm_event *comm_event)
3462 struct perf_cpu_context *cpuctx;
3463 struct perf_event_context *ctx;
3464 unsigned int size;
3465 char comm[TASK_COMM_LEN];
3467 memset(comm, 0, sizeof(comm));
3468 strlcpy(comm, comm_event->task->comm, sizeof(comm));
3469 size = ALIGN(strlen(comm)+1, sizeof(u64));
3471 comm_event->comm = comm;
3472 comm_event->comm_size = size;
3474 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3476 rcu_read_lock();
3477 cpuctx = &get_cpu_var(perf_cpu_context);
3478 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
3479 ctx = rcu_dereference(current->perf_event_ctxp);
3480 if (ctx)
3481 perf_event_comm_ctx(ctx, comm_event);
3482 put_cpu_var(perf_cpu_context);
3483 rcu_read_unlock();
3486 void perf_event_comm(struct task_struct *task)
3488 struct perf_comm_event comm_event;
3490 if (task->perf_event_ctxp)
3491 perf_event_enable_on_exec(task);
3493 if (!atomic_read(&nr_comm_events))
3494 return;
3496 comm_event = (struct perf_comm_event){
3497 .task = task,
3498 /* .comm */
3499 /* .comm_size */
3500 .event_id = {
3501 .header = {
3502 .type = PERF_RECORD_COMM,
3503 .misc = 0,
3504 /* .size */
3506 /* .pid */
3507 /* .tid */
3511 perf_event_comm_event(&comm_event);
3515 * mmap tracking
3518 struct perf_mmap_event {
3519 struct vm_area_struct *vma;
3521 const char *file_name;
3522 int file_size;
3524 struct {
3525 struct perf_event_header header;
3527 u32 pid;
3528 u32 tid;
3529 u64 start;
3530 u64 len;
3531 u64 pgoff;
3532 } event_id;
3535 static void perf_event_mmap_output(struct perf_event *event,
3536 struct perf_mmap_event *mmap_event)
3538 struct perf_output_handle handle;
3539 int size = mmap_event->event_id.header.size;
3540 int ret = perf_output_begin(&handle, event, size, 0, 0);
3542 if (ret)
3543 return;
3545 mmap_event->event_id.pid = perf_event_pid(event, current);
3546 mmap_event->event_id.tid = perf_event_tid(event, current);
3548 perf_output_put(&handle, mmap_event->event_id);
3549 perf_output_copy(&handle, mmap_event->file_name,
3550 mmap_event->file_size);
3551 perf_output_end(&handle);
3554 static int perf_event_mmap_match(struct perf_event *event,
3555 struct perf_mmap_event *mmap_event)
3557 if (event->state < PERF_EVENT_STATE_INACTIVE)
3558 return 0;
3560 if (event->cpu != -1 && event->cpu != smp_processor_id())
3561 return 0;
3563 if (event->attr.mmap)
3564 return 1;
3566 return 0;
3569 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3570 struct perf_mmap_event *mmap_event)
3572 struct perf_event *event;
3574 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3575 if (perf_event_mmap_match(event, mmap_event))
3576 perf_event_mmap_output(event, mmap_event);
3580 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3582 struct perf_cpu_context *cpuctx;
3583 struct perf_event_context *ctx;
3584 struct vm_area_struct *vma = mmap_event->vma;
3585 struct file *file = vma->vm_file;
3586 unsigned int size;
3587 char tmp[16];
3588 char *buf = NULL;
3589 const char *name;
3591 memset(tmp, 0, sizeof(tmp));
3593 if (file) {
3595 * d_path works from the end of the buffer backwards, so we
3596 * need to add enough zero bytes after the string to handle
3597 * the 64bit alignment we do later.
3599 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3600 if (!buf) {
3601 name = strncpy(tmp, "//enomem", sizeof(tmp));
3602 goto got_name;
3604 name = d_path(&file->f_path, buf, PATH_MAX);
3605 if (IS_ERR(name)) {
3606 name = strncpy(tmp, "//toolong", sizeof(tmp));
3607 goto got_name;
3609 } else {
3610 if (arch_vma_name(mmap_event->vma)) {
3611 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3612 sizeof(tmp));
3613 goto got_name;
3616 if (!vma->vm_mm) {
3617 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3618 goto got_name;
3621 name = strncpy(tmp, "//anon", sizeof(tmp));
3622 goto got_name;
3625 got_name:
3626 size = ALIGN(strlen(name)+1, sizeof(u64));
3628 mmap_event->file_name = name;
3629 mmap_event->file_size = size;
3631 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3633 rcu_read_lock();
3634 cpuctx = &get_cpu_var(perf_cpu_context);
3635 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
3636 ctx = rcu_dereference(current->perf_event_ctxp);
3637 if (ctx)
3638 perf_event_mmap_ctx(ctx, mmap_event);
3639 put_cpu_var(perf_cpu_context);
3640 rcu_read_unlock();
3642 kfree(buf);
3645 void __perf_event_mmap(struct vm_area_struct *vma)
3647 struct perf_mmap_event mmap_event;
3649 if (!atomic_read(&nr_mmap_events))
3650 return;
3652 mmap_event = (struct perf_mmap_event){
3653 .vma = vma,
3654 /* .file_name */
3655 /* .file_size */
3656 .event_id = {
3657 .header = {
3658 .type = PERF_RECORD_MMAP,
3659 .misc = 0,
3660 /* .size */
3662 /* .pid */
3663 /* .tid */
3664 .start = vma->vm_start,
3665 .len = vma->vm_end - vma->vm_start,
3666 .pgoff = vma->vm_pgoff,
3670 perf_event_mmap_event(&mmap_event);
3674 * IRQ throttle logging
3677 static void perf_log_throttle(struct perf_event *event, int enable)
3679 struct perf_output_handle handle;
3680 int ret;
3682 struct {
3683 struct perf_event_header header;
3684 u64 time;
3685 u64 id;
3686 u64 stream_id;
3687 } throttle_event = {
3688 .header = {
3689 .type = PERF_RECORD_THROTTLE,
3690 .misc = 0,
3691 .size = sizeof(throttle_event),
3693 .time = perf_clock(),
3694 .id = primary_event_id(event),
3695 .stream_id = event->id,
3698 if (enable)
3699 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3701 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3702 if (ret)
3703 return;
3705 perf_output_put(&handle, throttle_event);
3706 perf_output_end(&handle);
3710 * Generic event overflow handling, sampling.
3713 static int __perf_event_overflow(struct perf_event *event, int nmi,
3714 int throttle, struct perf_sample_data *data,
3715 struct pt_regs *regs)
3717 int events = atomic_read(&event->event_limit);
3718 struct hw_perf_event *hwc = &event->hw;
3719 int ret = 0;
3721 throttle = (throttle && event->pmu->unthrottle != NULL);
3723 if (!throttle) {
3724 hwc->interrupts++;
3725 } else {
3726 if (hwc->interrupts != MAX_INTERRUPTS) {
3727 hwc->interrupts++;
3728 if (HZ * hwc->interrupts >
3729 (u64)sysctl_perf_event_sample_rate) {
3730 hwc->interrupts = MAX_INTERRUPTS;
3731 perf_log_throttle(event, 0);
3732 ret = 1;
3734 } else {
3736 * Keep re-disabling events even though on the previous
3737 * pass we disabled it - just in case we raced with a
3738 * sched-in and the event got enabled again:
3740 ret = 1;
3744 if (event->attr.freq) {
3745 u64 now = perf_clock();
3746 s64 delta = now - hwc->freq_time_stamp;
3748 hwc->freq_time_stamp = now;
3750 if (delta > 0 && delta < 2*TICK_NSEC)
3751 perf_adjust_period(event, delta, hwc->last_period);
3755 * XXX event_limit might not quite work as expected on inherited
3756 * events
3759 event->pending_kill = POLL_IN;
3760 if (events && atomic_dec_and_test(&event->event_limit)) {
3761 ret = 1;
3762 event->pending_kill = POLL_HUP;
3763 if (nmi) {
3764 event->pending_disable = 1;
3765 perf_pending_queue(&event->pending,
3766 perf_pending_event);
3767 } else
3768 perf_event_disable(event);
3771 if (event->overflow_handler)
3772 event->overflow_handler(event, nmi, data, regs);
3773 else
3774 perf_event_output(event, nmi, data, regs);
3776 return ret;
3779 int perf_event_overflow(struct perf_event *event, int nmi,
3780 struct perf_sample_data *data,
3781 struct pt_regs *regs)
3783 return __perf_event_overflow(event, nmi, 1, data, regs);
3787 * Generic software event infrastructure
3791 * We directly increment event->count and keep a second value in
3792 * event->hw.period_left to count intervals. This period event
3793 * is kept in the range [-sample_period, 0] so that we can use the
3794 * sign as trigger.
3797 static u64 perf_swevent_set_period(struct perf_event *event)
3799 struct hw_perf_event *hwc = &event->hw;
3800 u64 period = hwc->last_period;
3801 u64 nr, offset;
3802 s64 old, val;
3804 hwc->last_period = hwc->sample_period;
3806 again:
3807 old = val = atomic64_read(&hwc->period_left);
3808 if (val < 0)
3809 return 0;
3811 nr = div64_u64(period + val, period);
3812 offset = nr * period;
3813 val -= offset;
3814 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3815 goto again;
3817 return nr;
3820 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
3821 int nmi, struct perf_sample_data *data,
3822 struct pt_regs *regs)
3824 struct hw_perf_event *hwc = &event->hw;
3825 int throttle = 0;
3827 data->period = event->hw.last_period;
3828 if (!overflow)
3829 overflow = perf_swevent_set_period(event);
3831 if (hwc->interrupts == MAX_INTERRUPTS)
3832 return;
3834 for (; overflow; overflow--) {
3835 if (__perf_event_overflow(event, nmi, throttle,
3836 data, regs)) {
3838 * We inhibit the overflow from happening when
3839 * hwc->interrupts == MAX_INTERRUPTS.
3841 break;
3843 throttle = 1;
3847 static void perf_swevent_unthrottle(struct perf_event *event)
3850 * Nothing to do, we already reset hwc->interrupts.
3854 static void perf_swevent_add(struct perf_event *event, u64 nr,
3855 int nmi, struct perf_sample_data *data,
3856 struct pt_regs *regs)
3858 struct hw_perf_event *hwc = &event->hw;
3860 atomic64_add(nr, &event->count);
3862 if (!regs)
3863 return;
3865 if (!hwc->sample_period)
3866 return;
3868 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3869 return perf_swevent_overflow(event, 1, nmi, data, regs);
3871 if (atomic64_add_negative(nr, &hwc->period_left))
3872 return;
3874 perf_swevent_overflow(event, 0, nmi, data, regs);
3877 static int perf_swevent_is_counting(struct perf_event *event)
3880 * The event is active, we're good!
3882 if (event->state == PERF_EVENT_STATE_ACTIVE)
3883 return 1;
3886 * The event is off/error, not counting.
3888 if (event->state != PERF_EVENT_STATE_INACTIVE)
3889 return 0;
3892 * The event is inactive, if the context is active
3893 * we're part of a group that didn't make it on the 'pmu',
3894 * not counting.
3896 if (event->ctx->is_active)
3897 return 0;
3900 * We're inactive and the context is too, this means the
3901 * task is scheduled out, we're counting events that happen
3902 * to us, like migration events.
3904 return 1;
3907 static int perf_tp_event_match(struct perf_event *event,
3908 struct perf_sample_data *data);
3910 static int perf_exclude_event(struct perf_event *event,
3911 struct pt_regs *regs)
3913 if (regs) {
3914 if (event->attr.exclude_user && user_mode(regs))
3915 return 1;
3917 if (event->attr.exclude_kernel && !user_mode(regs))
3918 return 1;
3921 return 0;
3924 static int perf_swevent_match(struct perf_event *event,
3925 enum perf_type_id type,
3926 u32 event_id,
3927 struct perf_sample_data *data,
3928 struct pt_regs *regs)
3930 if (event->cpu != -1 && event->cpu != smp_processor_id())
3931 return 0;
3933 if (!perf_swevent_is_counting(event))
3934 return 0;
3936 if (event->attr.type != type)
3937 return 0;
3939 if (event->attr.config != event_id)
3940 return 0;
3942 if (perf_exclude_event(event, regs))
3943 return 0;
3945 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3946 !perf_tp_event_match(event, data))
3947 return 0;
3949 return 1;
3952 static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3953 enum perf_type_id type,
3954 u32 event_id, u64 nr, int nmi,
3955 struct perf_sample_data *data,
3956 struct pt_regs *regs)
3958 struct perf_event *event;
3960 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3961 if (perf_swevent_match(event, type, event_id, data, regs))
3962 perf_swevent_add(event, nr, nmi, data, regs);
3966 int perf_swevent_get_recursion_context(void)
3968 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3969 int rctx;
3971 if (in_nmi())
3972 rctx = 3;
3973 else if (in_irq())
3974 rctx = 2;
3975 else if (in_softirq())
3976 rctx = 1;
3977 else
3978 rctx = 0;
3980 if (cpuctx->recursion[rctx]) {
3981 put_cpu_var(perf_cpu_context);
3982 return -1;
3985 cpuctx->recursion[rctx]++;
3986 barrier();
3988 return rctx;
3990 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
3992 void perf_swevent_put_recursion_context(int rctx)
3994 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3995 barrier();
3996 cpuctx->recursion[rctx]--;
3997 put_cpu_var(perf_cpu_context);
3999 EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
4001 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4002 u64 nr, int nmi,
4003 struct perf_sample_data *data,
4004 struct pt_regs *regs)
4006 struct perf_cpu_context *cpuctx;
4007 struct perf_event_context *ctx;
4009 cpuctx = &__get_cpu_var(perf_cpu_context);
4010 rcu_read_lock();
4011 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
4012 nr, nmi, data, regs);
4014 * doesn't really matter which of the child contexts the
4015 * events ends up in.
4017 ctx = rcu_dereference(current->perf_event_ctxp);
4018 if (ctx)
4019 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
4020 rcu_read_unlock();
4023 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4024 struct pt_regs *regs, u64 addr)
4026 struct perf_sample_data data;
4027 int rctx;
4029 rctx = perf_swevent_get_recursion_context();
4030 if (rctx < 0)
4031 return;
4033 perf_sample_data_init(&data, addr);
4035 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4037 perf_swevent_put_recursion_context(rctx);
4040 static void perf_swevent_read(struct perf_event *event)
4044 static int perf_swevent_enable(struct perf_event *event)
4046 struct hw_perf_event *hwc = &event->hw;
4048 if (hwc->sample_period) {
4049 hwc->last_period = hwc->sample_period;
4050 perf_swevent_set_period(event);
4052 return 0;
4055 static void perf_swevent_disable(struct perf_event *event)
4059 static const struct pmu perf_ops_generic = {
4060 .enable = perf_swevent_enable,
4061 .disable = perf_swevent_disable,
4062 .read = perf_swevent_read,
4063 .unthrottle = perf_swevent_unthrottle,
4067 * hrtimer based swevent callback
4070 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4072 enum hrtimer_restart ret = HRTIMER_RESTART;
4073 struct perf_sample_data data;
4074 struct pt_regs *regs;
4075 struct perf_event *event;
4076 u64 period;
4078 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4079 event->pmu->read(event);
4081 perf_sample_data_init(&data, 0);
4082 data.period = event->hw.last_period;
4083 regs = get_irq_regs();
4085 * In case we exclude kernel IPs or are somehow not in interrupt
4086 * context, provide the next best thing, the user IP.
4088 if ((event->attr.exclude_kernel || !regs) &&
4089 !event->attr.exclude_user)
4090 regs = task_pt_regs(current);
4092 if (regs) {
4093 if (!(event->attr.exclude_idle && current->pid == 0))
4094 if (perf_event_overflow(event, 0, &data, regs))
4095 ret = HRTIMER_NORESTART;
4098 period = max_t(u64, 10000, event->hw.sample_period);
4099 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4101 return ret;
4104 static void perf_swevent_start_hrtimer(struct perf_event *event)
4106 struct hw_perf_event *hwc = &event->hw;
4108 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4109 hwc->hrtimer.function = perf_swevent_hrtimer;
4110 if (hwc->sample_period) {
4111 u64 period;
4113 if (hwc->remaining) {
4114 if (hwc->remaining < 0)
4115 period = 10000;
4116 else
4117 period = hwc->remaining;
4118 hwc->remaining = 0;
4119 } else {
4120 period = max_t(u64, 10000, hwc->sample_period);
4122 __hrtimer_start_range_ns(&hwc->hrtimer,
4123 ns_to_ktime(period), 0,
4124 HRTIMER_MODE_REL, 0);
4128 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4130 struct hw_perf_event *hwc = &event->hw;
4132 if (hwc->sample_period) {
4133 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4134 hwc->remaining = ktime_to_ns(remaining);
4136 hrtimer_cancel(&hwc->hrtimer);
4141 * Software event: cpu wall time clock
4144 static void cpu_clock_perf_event_update(struct perf_event *event)
4146 int cpu = raw_smp_processor_id();
4147 s64 prev;
4148 u64 now;
4150 now = cpu_clock(cpu);
4151 prev = atomic64_xchg(&event->hw.prev_count, now);
4152 atomic64_add(now - prev, &event->count);
4155 static int cpu_clock_perf_event_enable(struct perf_event *event)
4157 struct hw_perf_event *hwc = &event->hw;
4158 int cpu = raw_smp_processor_id();
4160 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
4161 perf_swevent_start_hrtimer(event);
4163 return 0;
4166 static void cpu_clock_perf_event_disable(struct perf_event *event)
4168 perf_swevent_cancel_hrtimer(event);
4169 cpu_clock_perf_event_update(event);
4172 static void cpu_clock_perf_event_read(struct perf_event *event)
4174 cpu_clock_perf_event_update(event);
4177 static const struct pmu perf_ops_cpu_clock = {
4178 .enable = cpu_clock_perf_event_enable,
4179 .disable = cpu_clock_perf_event_disable,
4180 .read = cpu_clock_perf_event_read,
4184 * Software event: task time clock
4187 static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4189 u64 prev;
4190 s64 delta;
4192 prev = atomic64_xchg(&event->hw.prev_count, now);
4193 delta = now - prev;
4194 atomic64_add(delta, &event->count);
4197 static int task_clock_perf_event_enable(struct perf_event *event)
4199 struct hw_perf_event *hwc = &event->hw;
4200 u64 now;
4202 now = event->ctx->time;
4204 atomic64_set(&hwc->prev_count, now);
4206 perf_swevent_start_hrtimer(event);
4208 return 0;
4211 static void task_clock_perf_event_disable(struct perf_event *event)
4213 perf_swevent_cancel_hrtimer(event);
4214 task_clock_perf_event_update(event, event->ctx->time);
4218 static void task_clock_perf_event_read(struct perf_event *event)
4220 u64 time;
4222 if (!in_nmi()) {
4223 update_context_time(event->ctx);
4224 time = event->ctx->time;
4225 } else {
4226 u64 now = perf_clock();
4227 u64 delta = now - event->ctx->timestamp;
4228 time = event->ctx->time + delta;
4231 task_clock_perf_event_update(event, time);
4234 static const struct pmu perf_ops_task_clock = {
4235 .enable = task_clock_perf_event_enable,
4236 .disable = task_clock_perf_event_disable,
4237 .read = task_clock_perf_event_read,
4240 #ifdef CONFIG_EVENT_PROFILE
4242 void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4243 int entry_size)
4245 struct pt_regs *regs = get_irq_regs();
4246 struct perf_sample_data data;
4247 struct perf_raw_record raw = {
4248 .size = entry_size,
4249 .data = record,
4252 perf_sample_data_init(&data, addr);
4253 data.raw = &raw;
4255 if (!regs)
4256 regs = task_pt_regs(current);
4258 /* Trace events already protected against recursion */
4259 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
4260 &data, regs);
4262 EXPORT_SYMBOL_GPL(perf_tp_event);
4264 static int perf_tp_event_match(struct perf_event *event,
4265 struct perf_sample_data *data)
4267 void *record = data->raw->data;
4269 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4270 return 1;
4271 return 0;
4274 static void tp_perf_event_destroy(struct perf_event *event)
4276 ftrace_profile_disable(event->attr.config);
4279 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4282 * Raw tracepoint data is a severe data leak, only allow root to
4283 * have these.
4285 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4286 perf_paranoid_tracepoint_raw() &&
4287 !capable(CAP_SYS_ADMIN))
4288 return ERR_PTR(-EPERM);
4290 if (ftrace_profile_enable(event->attr.config))
4291 return NULL;
4293 event->destroy = tp_perf_event_destroy;
4295 return &perf_ops_generic;
4298 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4300 char *filter_str;
4301 int ret;
4303 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4304 return -EINVAL;
4306 filter_str = strndup_user(arg, PAGE_SIZE);
4307 if (IS_ERR(filter_str))
4308 return PTR_ERR(filter_str);
4310 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4312 kfree(filter_str);
4313 return ret;
4316 static void perf_event_free_filter(struct perf_event *event)
4318 ftrace_profile_free_filter(event);
4321 #else
4323 static int perf_tp_event_match(struct perf_event *event,
4324 struct perf_sample_data *data)
4326 return 1;
4329 static const struct pmu *tp_perf_event_init(struct perf_event *event)
4331 return NULL;
4334 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4336 return -ENOENT;
4339 static void perf_event_free_filter(struct perf_event *event)
4343 #endif /* CONFIG_EVENT_PROFILE */
4345 #ifdef CONFIG_HAVE_HW_BREAKPOINT
4346 static void bp_perf_event_destroy(struct perf_event *event)
4348 release_bp_slot(event);
4351 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4353 int err;
4355 err = register_perf_hw_breakpoint(bp);
4356 if (err)
4357 return ERR_PTR(err);
4359 bp->destroy = bp_perf_event_destroy;
4361 return &perf_ops_bp;
4364 void perf_bp_event(struct perf_event *bp, void *data)
4366 struct perf_sample_data sample;
4367 struct pt_regs *regs = data;
4369 perf_sample_data_init(&sample, bp->attr.bp_addr);
4371 if (!perf_exclude_event(bp, regs))
4372 perf_swevent_add(bp, 1, 1, &sample, regs);
4374 #else
4375 static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4377 return NULL;
4380 void perf_bp_event(struct perf_event *bp, void *regs)
4383 #endif
4385 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4387 static void sw_perf_event_destroy(struct perf_event *event)
4389 u64 event_id = event->attr.config;
4391 WARN_ON(event->parent);
4393 atomic_dec(&perf_swevent_enabled[event_id]);
4396 static const struct pmu *sw_perf_event_init(struct perf_event *event)
4398 const struct pmu *pmu = NULL;
4399 u64 event_id = event->attr.config;
4402 * Software events (currently) can't in general distinguish
4403 * between user, kernel and hypervisor events.
4404 * However, context switches and cpu migrations are considered
4405 * to be kernel events, and page faults are never hypervisor
4406 * events.
4408 switch (event_id) {
4409 case PERF_COUNT_SW_CPU_CLOCK:
4410 pmu = &perf_ops_cpu_clock;
4412 break;
4413 case PERF_COUNT_SW_TASK_CLOCK:
4415 * If the user instantiates this as a per-cpu event,
4416 * use the cpu_clock event instead.
4418 if (event->ctx->task)
4419 pmu = &perf_ops_task_clock;
4420 else
4421 pmu = &perf_ops_cpu_clock;
4423 break;
4424 case PERF_COUNT_SW_PAGE_FAULTS:
4425 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4426 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4427 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4428 case PERF_COUNT_SW_CPU_MIGRATIONS:
4429 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4430 case PERF_COUNT_SW_EMULATION_FAULTS:
4431 if (!event->parent) {
4432 atomic_inc(&perf_swevent_enabled[event_id]);
4433 event->destroy = sw_perf_event_destroy;
4435 pmu = &perf_ops_generic;
4436 break;
4439 return pmu;
4443 * Allocate and initialize a event structure
4445 static struct perf_event *
4446 perf_event_alloc(struct perf_event_attr *attr,
4447 int cpu,
4448 struct perf_event_context *ctx,
4449 struct perf_event *group_leader,
4450 struct perf_event *parent_event,
4451 perf_overflow_handler_t overflow_handler,
4452 gfp_t gfpflags)
4454 const struct pmu *pmu;
4455 struct perf_event *event;
4456 struct hw_perf_event *hwc;
4457 long err;
4459 event = kzalloc(sizeof(*event), gfpflags);
4460 if (!event)
4461 return ERR_PTR(-ENOMEM);
4464 * Single events are their own group leaders, with an
4465 * empty sibling list:
4467 if (!group_leader)
4468 group_leader = event;
4470 mutex_init(&event->child_mutex);
4471 INIT_LIST_HEAD(&event->child_list);
4473 INIT_LIST_HEAD(&event->group_entry);
4474 INIT_LIST_HEAD(&event->event_entry);
4475 INIT_LIST_HEAD(&event->sibling_list);
4476 init_waitqueue_head(&event->waitq);
4478 mutex_init(&event->mmap_mutex);
4480 event->cpu = cpu;
4481 event->attr = *attr;
4482 event->group_leader = group_leader;
4483 event->pmu = NULL;
4484 event->ctx = ctx;
4485 event->oncpu = -1;
4487 event->parent = parent_event;
4489 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4490 event->id = atomic64_inc_return(&perf_event_id);
4492 event->state = PERF_EVENT_STATE_INACTIVE;
4494 if (!overflow_handler && parent_event)
4495 overflow_handler = parent_event->overflow_handler;
4497 event->overflow_handler = overflow_handler;
4499 if (attr->disabled)
4500 event->state = PERF_EVENT_STATE_OFF;
4502 pmu = NULL;
4504 hwc = &event->hw;
4505 hwc->sample_period = attr->sample_period;
4506 if (attr->freq && attr->sample_freq)
4507 hwc->sample_period = 1;
4508 hwc->last_period = hwc->sample_period;
4510 atomic64_set(&hwc->period_left, hwc->sample_period);
4513 * we currently do not support PERF_FORMAT_GROUP on inherited events
4515 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4516 goto done;
4518 switch (attr->type) {
4519 case PERF_TYPE_RAW:
4520 case PERF_TYPE_HARDWARE:
4521 case PERF_TYPE_HW_CACHE:
4522 pmu = hw_perf_event_init(event);
4523 break;
4525 case PERF_TYPE_SOFTWARE:
4526 pmu = sw_perf_event_init(event);
4527 break;
4529 case PERF_TYPE_TRACEPOINT:
4530 pmu = tp_perf_event_init(event);
4531 break;
4533 case PERF_TYPE_BREAKPOINT:
4534 pmu = bp_perf_event_init(event);
4535 break;
4538 default:
4539 break;
4541 done:
4542 err = 0;
4543 if (!pmu)
4544 err = -EINVAL;
4545 else if (IS_ERR(pmu))
4546 err = PTR_ERR(pmu);
4548 if (err) {
4549 if (event->ns)
4550 put_pid_ns(event->ns);
4551 kfree(event);
4552 return ERR_PTR(err);
4555 event->pmu = pmu;
4557 if (!event->parent) {
4558 atomic_inc(&nr_events);
4559 if (event->attr.mmap)
4560 atomic_inc(&nr_mmap_events);
4561 if (event->attr.comm)
4562 atomic_inc(&nr_comm_events);
4563 if (event->attr.task)
4564 atomic_inc(&nr_task_events);
4567 return event;
4570 static int perf_copy_attr(struct perf_event_attr __user *uattr,
4571 struct perf_event_attr *attr)
4573 u32 size;
4574 int ret;
4576 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4577 return -EFAULT;
4580 * zero the full structure, so that a short copy will be nice.
4582 memset(attr, 0, sizeof(*attr));
4584 ret = get_user(size, &uattr->size);
4585 if (ret)
4586 return ret;
4588 if (size > PAGE_SIZE) /* silly large */
4589 goto err_size;
4591 if (!size) /* abi compat */
4592 size = PERF_ATTR_SIZE_VER0;
4594 if (size < PERF_ATTR_SIZE_VER0)
4595 goto err_size;
4598 * If we're handed a bigger struct than we know of,
4599 * ensure all the unknown bits are 0 - i.e. new
4600 * user-space does not rely on any kernel feature
4601 * extensions we dont know about yet.
4603 if (size > sizeof(*attr)) {
4604 unsigned char __user *addr;
4605 unsigned char __user *end;
4606 unsigned char val;
4608 addr = (void __user *)uattr + sizeof(*attr);
4609 end = (void __user *)uattr + size;
4611 for (; addr < end; addr++) {
4612 ret = get_user(val, addr);
4613 if (ret)
4614 return ret;
4615 if (val)
4616 goto err_size;
4618 size = sizeof(*attr);
4621 ret = copy_from_user(attr, uattr, size);
4622 if (ret)
4623 return -EFAULT;
4626 * If the type exists, the corresponding creation will verify
4627 * the attr->config.
4629 if (attr->type >= PERF_TYPE_MAX)
4630 return -EINVAL;
4632 if (attr->__reserved_1)
4633 return -EINVAL;
4635 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4636 return -EINVAL;
4638 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4639 return -EINVAL;
4641 out:
4642 return ret;
4644 err_size:
4645 put_user(sizeof(*attr), &uattr->size);
4646 ret = -E2BIG;
4647 goto out;
4650 static int perf_event_set_output(struct perf_event *event, int output_fd)
4652 struct perf_event *output_event = NULL;
4653 struct file *output_file = NULL;
4654 struct perf_event *old_output;
4655 int fput_needed = 0;
4656 int ret = -EINVAL;
4658 if (!output_fd)
4659 goto set;
4661 output_file = fget_light(output_fd, &fput_needed);
4662 if (!output_file)
4663 return -EBADF;
4665 if (output_file->f_op != &perf_fops)
4666 goto out;
4668 output_event = output_file->private_data;
4670 /* Don't chain output fds */
4671 if (output_event->output)
4672 goto out;
4674 /* Don't set an output fd when we already have an output channel */
4675 if (event->data)
4676 goto out;
4678 atomic_long_inc(&output_file->f_count);
4680 set:
4681 mutex_lock(&event->mmap_mutex);
4682 old_output = event->output;
4683 rcu_assign_pointer(event->output, output_event);
4684 mutex_unlock(&event->mmap_mutex);
4686 if (old_output) {
4688 * we need to make sure no existing perf_output_*()
4689 * is still referencing this event.
4691 synchronize_rcu();
4692 fput(old_output->filp);
4695 ret = 0;
4696 out:
4697 fput_light(output_file, fput_needed);
4698 return ret;
4702 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4704 * @attr_uptr: event_id type attributes for monitoring/sampling
4705 * @pid: target pid
4706 * @cpu: target cpu
4707 * @group_fd: group leader event fd
4709 SYSCALL_DEFINE5(perf_event_open,
4710 struct perf_event_attr __user *, attr_uptr,
4711 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4713 struct perf_event *event, *group_leader;
4714 struct perf_event_attr attr;
4715 struct perf_event_context *ctx;
4716 struct file *event_file = NULL;
4717 struct file *group_file = NULL;
4718 int event_fd;
4719 int fput_needed = 0;
4720 int err;
4722 /* for future expandability... */
4723 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4724 return -EINVAL;
4726 err = perf_copy_attr(attr_uptr, &attr);
4727 if (err)
4728 return err;
4730 if (!attr.exclude_kernel) {
4731 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4732 return -EACCES;
4735 if (attr.freq) {
4736 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4737 return -EINVAL;
4740 event_fd = get_unused_fd_flags(O_RDWR);
4741 if (event_fd < 0)
4742 return event_fd;
4745 * Get the target context (task or percpu):
4747 ctx = find_get_context(pid, cpu);
4748 if (IS_ERR(ctx)) {
4749 err = PTR_ERR(ctx);
4750 goto err_fd;
4754 * Look up the group leader (we will attach this event to it):
4756 group_leader = NULL;
4757 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4758 err = -EINVAL;
4759 group_file = fget_light(group_fd, &fput_needed);
4760 if (!group_file)
4761 goto err_put_context;
4762 if (group_file->f_op != &perf_fops)
4763 goto err_put_context;
4765 group_leader = group_file->private_data;
4767 * Do not allow a recursive hierarchy (this new sibling
4768 * becoming part of another group-sibling):
4770 if (group_leader->group_leader != group_leader)
4771 goto err_put_context;
4773 * Do not allow to attach to a group in a different
4774 * task or CPU context:
4776 if (group_leader->ctx != ctx)
4777 goto err_put_context;
4779 * Only a group leader can be exclusive or pinned
4781 if (attr.exclusive || attr.pinned)
4782 goto err_put_context;
4785 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
4786 NULL, NULL, GFP_KERNEL);
4787 err = PTR_ERR(event);
4788 if (IS_ERR(event))
4789 goto err_put_context;
4791 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
4792 if (IS_ERR(event_file)) {
4793 err = PTR_ERR(event_file);
4794 goto err_free_put_context;
4797 if (flags & PERF_FLAG_FD_OUTPUT) {
4798 err = perf_event_set_output(event, group_fd);
4799 if (err)
4800 goto err_fput_free_put_context;
4803 event->filp = event_file;
4804 WARN_ON_ONCE(ctx->parent_ctx);
4805 mutex_lock(&ctx->mutex);
4806 perf_install_in_context(ctx, event, cpu);
4807 ++ctx->generation;
4808 mutex_unlock(&ctx->mutex);
4810 event->owner = current;
4811 get_task_struct(current);
4812 mutex_lock(&current->perf_event_mutex);
4813 list_add_tail(&event->owner_entry, &current->perf_event_list);
4814 mutex_unlock(&current->perf_event_mutex);
4816 fput_light(group_file, fput_needed);
4817 fd_install(event_fd, event_file);
4818 return event_fd;
4820 err_fput_free_put_context:
4821 fput(event_file);
4822 err_free_put_context:
4823 free_event(event);
4824 err_put_context:
4825 fput_light(group_file, fput_needed);
4826 put_ctx(ctx);
4827 err_fd:
4828 put_unused_fd(event_fd);
4829 return err;
4833 * perf_event_create_kernel_counter
4835 * @attr: attributes of the counter to create
4836 * @cpu: cpu in which the counter is bound
4837 * @pid: task to profile
4839 struct perf_event *
4840 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
4841 pid_t pid,
4842 perf_overflow_handler_t overflow_handler)
4844 struct perf_event *event;
4845 struct perf_event_context *ctx;
4846 int err;
4849 * Get the target context (task or percpu):
4852 ctx = find_get_context(pid, cpu);
4853 if (IS_ERR(ctx)) {
4854 err = PTR_ERR(ctx);
4855 goto err_exit;
4858 event = perf_event_alloc(attr, cpu, ctx, NULL,
4859 NULL, overflow_handler, GFP_KERNEL);
4860 if (IS_ERR(event)) {
4861 err = PTR_ERR(event);
4862 goto err_put_context;
4865 event->filp = NULL;
4866 WARN_ON_ONCE(ctx->parent_ctx);
4867 mutex_lock(&ctx->mutex);
4868 perf_install_in_context(ctx, event, cpu);
4869 ++ctx->generation;
4870 mutex_unlock(&ctx->mutex);
4872 event->owner = current;
4873 get_task_struct(current);
4874 mutex_lock(&current->perf_event_mutex);
4875 list_add_tail(&event->owner_entry, &current->perf_event_list);
4876 mutex_unlock(&current->perf_event_mutex);
4878 return event;
4880 err_put_context:
4881 put_ctx(ctx);
4882 err_exit:
4883 return ERR_PTR(err);
4885 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4888 * inherit a event from parent task to child task:
4890 static struct perf_event *
4891 inherit_event(struct perf_event *parent_event,
4892 struct task_struct *parent,
4893 struct perf_event_context *parent_ctx,
4894 struct task_struct *child,
4895 struct perf_event *group_leader,
4896 struct perf_event_context *child_ctx)
4898 struct perf_event *child_event;
4901 * Instead of creating recursive hierarchies of events,
4902 * we link inherited events back to the original parent,
4903 * which has a filp for sure, which we use as the reference
4904 * count:
4906 if (parent_event->parent)
4907 parent_event = parent_event->parent;
4909 child_event = perf_event_alloc(&parent_event->attr,
4910 parent_event->cpu, child_ctx,
4911 group_leader, parent_event,
4912 NULL, GFP_KERNEL);
4913 if (IS_ERR(child_event))
4914 return child_event;
4915 get_ctx(child_ctx);
4918 * Make the child state follow the state of the parent event,
4919 * not its attr.disabled bit. We hold the parent's mutex,
4920 * so we won't race with perf_event_{en, dis}able_family.
4922 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4923 child_event->state = PERF_EVENT_STATE_INACTIVE;
4924 else
4925 child_event->state = PERF_EVENT_STATE_OFF;
4927 if (parent_event->attr.freq)
4928 child_event->hw.sample_period = parent_event->hw.sample_period;
4930 child_event->overflow_handler = parent_event->overflow_handler;
4933 * Link it up in the child's context:
4935 add_event_to_ctx(child_event, child_ctx);
4938 * Get a reference to the parent filp - we will fput it
4939 * when the child event exits. This is safe to do because
4940 * we are in the parent and we know that the filp still
4941 * exists and has a nonzero count:
4943 atomic_long_inc(&parent_event->filp->f_count);
4946 * Link this into the parent event's child list
4948 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4949 mutex_lock(&parent_event->child_mutex);
4950 list_add_tail(&child_event->child_list, &parent_event->child_list);
4951 mutex_unlock(&parent_event->child_mutex);
4953 return child_event;
4956 static int inherit_group(struct perf_event *parent_event,
4957 struct task_struct *parent,
4958 struct perf_event_context *parent_ctx,
4959 struct task_struct *child,
4960 struct perf_event_context *child_ctx)
4962 struct perf_event *leader;
4963 struct perf_event *sub;
4964 struct perf_event *child_ctr;
4966 leader = inherit_event(parent_event, parent, parent_ctx,
4967 child, NULL, child_ctx);
4968 if (IS_ERR(leader))
4969 return PTR_ERR(leader);
4970 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4971 child_ctr = inherit_event(sub, parent, parent_ctx,
4972 child, leader, child_ctx);
4973 if (IS_ERR(child_ctr))
4974 return PTR_ERR(child_ctr);
4976 return 0;
4979 static void sync_child_event(struct perf_event *child_event,
4980 struct task_struct *child)
4982 struct perf_event *parent_event = child_event->parent;
4983 u64 child_val;
4985 if (child_event->attr.inherit_stat)
4986 perf_event_read_event(child_event, child);
4988 child_val = atomic64_read(&child_event->count);
4991 * Add back the child's count to the parent's count:
4993 atomic64_add(child_val, &parent_event->count);
4994 atomic64_add(child_event->total_time_enabled,
4995 &parent_event->child_total_time_enabled);
4996 atomic64_add(child_event->total_time_running,
4997 &parent_event->child_total_time_running);
5000 * Remove this event from the parent's list
5002 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5003 mutex_lock(&parent_event->child_mutex);
5004 list_del_init(&child_event->child_list);
5005 mutex_unlock(&parent_event->child_mutex);
5008 * Release the parent event, if this was the last
5009 * reference to it.
5011 fput(parent_event->filp);
5014 static void
5015 __perf_event_exit_task(struct perf_event *child_event,
5016 struct perf_event_context *child_ctx,
5017 struct task_struct *child)
5019 struct perf_event *parent_event;
5021 perf_event_remove_from_context(child_event);
5023 parent_event = child_event->parent;
5025 * It can happen that parent exits first, and has events
5026 * that are still around due to the child reference. These
5027 * events need to be zapped - but otherwise linger.
5029 if (parent_event) {
5030 sync_child_event(child_event, child);
5031 free_event(child_event);
5036 * When a child task exits, feed back event values to parent events.
5038 void perf_event_exit_task(struct task_struct *child)
5040 struct perf_event *child_event, *tmp;
5041 struct perf_event_context *child_ctx;
5042 unsigned long flags;
5044 if (likely(!child->perf_event_ctxp)) {
5045 perf_event_task(child, NULL, 0);
5046 return;
5049 local_irq_save(flags);
5051 * We can't reschedule here because interrupts are disabled,
5052 * and either child is current or it is a task that can't be
5053 * scheduled, so we are now safe from rescheduling changing
5054 * our context.
5056 child_ctx = child->perf_event_ctxp;
5057 __perf_event_task_sched_out(child_ctx);
5060 * Take the context lock here so that if find_get_context is
5061 * reading child->perf_event_ctxp, we wait until it has
5062 * incremented the context's refcount before we do put_ctx below.
5064 raw_spin_lock(&child_ctx->lock);
5065 child->perf_event_ctxp = NULL;
5067 * If this context is a clone; unclone it so it can't get
5068 * swapped to another process while we're removing all
5069 * the events from it.
5071 unclone_ctx(child_ctx);
5072 update_context_time(child_ctx);
5073 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
5076 * Report the task dead after unscheduling the events so that we
5077 * won't get any samples after PERF_RECORD_EXIT. We can however still
5078 * get a few PERF_RECORD_READ events.
5080 perf_event_task(child, child_ctx, 0);
5083 * We can recurse on the same lock type through:
5085 * __perf_event_exit_task()
5086 * sync_child_event()
5087 * fput(parent_event->filp)
5088 * perf_release()
5089 * mutex_lock(&ctx->mutex)
5091 * But since its the parent context it won't be the same instance.
5093 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5095 again:
5096 list_for_each_entry_safe(child_event, tmp, &child_ctx->group_list,
5097 group_entry)
5098 __perf_event_exit_task(child_event, child_ctx, child);
5101 * If the last event was a group event, it will have appended all
5102 * its siblings to the list, but we obtained 'tmp' before that which
5103 * will still point to the list head terminating the iteration.
5105 if (!list_empty(&child_ctx->group_list))
5106 goto again;
5108 mutex_unlock(&child_ctx->mutex);
5110 put_ctx(child_ctx);
5114 * free an unexposed, unused context as created by inheritance by
5115 * init_task below, used by fork() in case of fail.
5117 void perf_event_free_task(struct task_struct *task)
5119 struct perf_event_context *ctx = task->perf_event_ctxp;
5120 struct perf_event *event, *tmp;
5122 if (!ctx)
5123 return;
5125 mutex_lock(&ctx->mutex);
5126 again:
5127 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry) {
5128 struct perf_event *parent = event->parent;
5130 if (WARN_ON_ONCE(!parent))
5131 continue;
5133 mutex_lock(&parent->child_mutex);
5134 list_del_init(&event->child_list);
5135 mutex_unlock(&parent->child_mutex);
5137 fput(parent->filp);
5139 list_del_event(event, ctx);
5140 free_event(event);
5143 if (!list_empty(&ctx->group_list))
5144 goto again;
5146 mutex_unlock(&ctx->mutex);
5148 put_ctx(ctx);
5152 * Initialize the perf_event context in task_struct
5154 int perf_event_init_task(struct task_struct *child)
5156 struct perf_event_context *child_ctx = NULL, *parent_ctx;
5157 struct perf_event_context *cloned_ctx;
5158 struct perf_event *event;
5159 struct task_struct *parent = current;
5160 int inherited_all = 1;
5161 int ret = 0;
5163 child->perf_event_ctxp = NULL;
5165 mutex_init(&child->perf_event_mutex);
5166 INIT_LIST_HEAD(&child->perf_event_list);
5168 if (likely(!parent->perf_event_ctxp))
5169 return 0;
5172 * If the parent's context is a clone, pin it so it won't get
5173 * swapped under us.
5175 parent_ctx = perf_pin_task_context(parent);
5178 * No need to check if parent_ctx != NULL here; since we saw
5179 * it non-NULL earlier, the only reason for it to become NULL
5180 * is if we exit, and since we're currently in the middle of
5181 * a fork we can't be exiting at the same time.
5185 * Lock the parent list. No need to lock the child - not PID
5186 * hashed yet and not running, so nobody can access it.
5188 mutex_lock(&parent_ctx->mutex);
5191 * We dont have to disable NMIs - we are only looking at
5192 * the list, not manipulating it:
5194 list_for_each_entry(event, &parent_ctx->group_list, group_entry) {
5196 if (!event->attr.inherit) {
5197 inherited_all = 0;
5198 continue;
5201 if (!child->perf_event_ctxp) {
5203 * This is executed from the parent task context, so
5204 * inherit events that have been marked for cloning.
5205 * First allocate and initialize a context for the
5206 * child.
5209 child_ctx = kzalloc(sizeof(struct perf_event_context),
5210 GFP_KERNEL);
5211 if (!child_ctx) {
5212 ret = -ENOMEM;
5213 break;
5216 __perf_event_init_context(child_ctx, child);
5217 child->perf_event_ctxp = child_ctx;
5218 get_task_struct(child);
5221 ret = inherit_group(event, parent, parent_ctx,
5222 child, child_ctx);
5223 if (ret) {
5224 inherited_all = 0;
5225 break;
5229 if (child_ctx && inherited_all) {
5231 * Mark the child context as a clone of the parent
5232 * context, or of whatever the parent is a clone of.
5233 * Note that if the parent is a clone, it could get
5234 * uncloned at any point, but that doesn't matter
5235 * because the list of events and the generation
5236 * count can't have changed since we took the mutex.
5238 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5239 if (cloned_ctx) {
5240 child_ctx->parent_ctx = cloned_ctx;
5241 child_ctx->parent_gen = parent_ctx->parent_gen;
5242 } else {
5243 child_ctx->parent_ctx = parent_ctx;
5244 child_ctx->parent_gen = parent_ctx->generation;
5246 get_ctx(child_ctx->parent_ctx);
5249 mutex_unlock(&parent_ctx->mutex);
5251 perf_unpin_context(parent_ctx);
5253 return ret;
5256 static void __init perf_event_init_all_cpus(void)
5258 int cpu;
5259 struct perf_cpu_context *cpuctx;
5261 for_each_possible_cpu(cpu) {
5262 cpuctx = &per_cpu(perf_cpu_context, cpu);
5263 __perf_event_init_context(&cpuctx->ctx, NULL);
5267 static void __cpuinit perf_event_init_cpu(int cpu)
5269 struct perf_cpu_context *cpuctx;
5271 cpuctx = &per_cpu(perf_cpu_context, cpu);
5273 spin_lock(&perf_resource_lock);
5274 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5275 spin_unlock(&perf_resource_lock);
5277 hw_perf_event_setup(cpu);
5280 #ifdef CONFIG_HOTPLUG_CPU
5281 static void __perf_event_exit_cpu(void *info)
5283 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5284 struct perf_event_context *ctx = &cpuctx->ctx;
5285 struct perf_event *event, *tmp;
5287 list_for_each_entry_safe(event, tmp, &ctx->group_list, group_entry)
5288 __perf_event_remove_from_context(event);
5290 static void perf_event_exit_cpu(int cpu)
5292 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5293 struct perf_event_context *ctx = &cpuctx->ctx;
5295 mutex_lock(&ctx->mutex);
5296 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5297 mutex_unlock(&ctx->mutex);
5299 #else
5300 static inline void perf_event_exit_cpu(int cpu) { }
5301 #endif
5303 static int __cpuinit
5304 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5306 unsigned int cpu = (long)hcpu;
5308 switch (action) {
5310 case CPU_UP_PREPARE:
5311 case CPU_UP_PREPARE_FROZEN:
5312 perf_event_init_cpu(cpu);
5313 break;
5315 case CPU_ONLINE:
5316 case CPU_ONLINE_FROZEN:
5317 hw_perf_event_setup_online(cpu);
5318 break;
5320 case CPU_DOWN_PREPARE:
5321 case CPU_DOWN_PREPARE_FROZEN:
5322 perf_event_exit_cpu(cpu);
5323 break;
5325 default:
5326 break;
5329 return NOTIFY_OK;
5333 * This has to have a higher priority than migration_notifier in sched.c.
5335 static struct notifier_block __cpuinitdata perf_cpu_nb = {
5336 .notifier_call = perf_cpu_notify,
5337 .priority = 20,
5340 void __init perf_event_init(void)
5342 perf_event_init_all_cpus();
5343 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5344 (void *)(long)smp_processor_id());
5345 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5346 (void *)(long)smp_processor_id());
5347 register_cpu_notifier(&perf_cpu_nb);
5350 static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5352 return sprintf(buf, "%d\n", perf_reserved_percpu);
5355 static ssize_t
5356 perf_set_reserve_percpu(struct sysdev_class *class,
5357 const char *buf,
5358 size_t count)
5360 struct perf_cpu_context *cpuctx;
5361 unsigned long val;
5362 int err, cpu, mpt;
5364 err = strict_strtoul(buf, 10, &val);
5365 if (err)
5366 return err;
5367 if (val > perf_max_events)
5368 return -EINVAL;
5370 spin_lock(&perf_resource_lock);
5371 perf_reserved_percpu = val;
5372 for_each_online_cpu(cpu) {
5373 cpuctx = &per_cpu(perf_cpu_context, cpu);
5374 raw_spin_lock_irq(&cpuctx->ctx.lock);
5375 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5376 perf_max_events - perf_reserved_percpu);
5377 cpuctx->max_pertask = mpt;
5378 raw_spin_unlock_irq(&cpuctx->ctx.lock);
5380 spin_unlock(&perf_resource_lock);
5382 return count;
5385 static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5387 return sprintf(buf, "%d\n", perf_overcommit);
5390 static ssize_t
5391 perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5393 unsigned long val;
5394 int err;
5396 err = strict_strtoul(buf, 10, &val);
5397 if (err)
5398 return err;
5399 if (val > 1)
5400 return -EINVAL;
5402 spin_lock(&perf_resource_lock);
5403 perf_overcommit = val;
5404 spin_unlock(&perf_resource_lock);
5406 return count;
5409 static SYSDEV_CLASS_ATTR(
5410 reserve_percpu,
5411 0644,
5412 perf_show_reserve_percpu,
5413 perf_set_reserve_percpu
5416 static SYSDEV_CLASS_ATTR(
5417 overcommit,
5418 0644,
5419 perf_show_overcommit,
5420 perf_set_overcommit
5423 static struct attribute *perfclass_attrs[] = {
5424 &attr_reserve_percpu.attr,
5425 &attr_overcommit.attr,
5426 NULL
5429 static struct attribute_group perfclass_attr_group = {
5430 .attrs = perfclass_attrs,
5431 .name = "perf_events",
5434 static int __init perf_event_sysfs_init(void)
5436 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5437 &perfclass_attr_group);
5439 device_initcall(perf_event_sysfs_init);