4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/suspend.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/acct.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
164 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
165 * to time slice values: [800ms ... 100ms ... 5ms]
167 * The higher a thread's priority, the bigger timeslices
168 * it gets during one round of execution. But even the lowest
169 * priority thread gets MIN_TIMESLICE worth of execution time.
172 #define SCALE_PRIO(x, prio) \
173 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
175 static unsigned int static_prio_timeslice(int static_prio
)
177 if (static_prio
< NICE_TO_PRIO(0))
178 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
180 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
183 static inline unsigned int task_timeslice(struct task_struct
*p
)
185 return static_prio_timeslice(p
->static_prio
);
189 * These are the runqueue data structures:
193 unsigned int nr_active
;
194 DECLARE_BITMAP(bitmap
, MAX_PRIO
+1); /* include 1 bit for delimiter */
195 struct list_head queue
[MAX_PRIO
];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running
;
213 unsigned long raw_weighted_load
;
215 unsigned long cpu_load
[3];
217 unsigned long long nr_switches
;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible
;
227 unsigned long expired_timestamp
;
228 unsigned long long timestamp_last_tick
;
229 struct task_struct
*curr
, *idle
;
230 struct mm_struct
*prev_mm
;
231 struct prio_array
*active
, *expired
, arrays
[2];
232 int best_expired_prio
;
236 struct sched_domain
*sd
;
238 /* For active balancing */
241 int cpu
; /* cpu of this runqueue */
243 struct task_struct
*migration_thread
;
244 struct list_head migration_queue
;
247 #ifdef CONFIG_SCHEDSTATS
249 struct sched_info rq_sched_info
;
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty
;
253 unsigned long yld_act_empty
;
254 unsigned long yld_both_empty
;
255 unsigned long yld_cnt
;
257 /* schedule() stats */
258 unsigned long sched_switch
;
259 unsigned long sched_cnt
;
260 unsigned long sched_goidle
;
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt
;
264 unsigned long ttwu_local
;
266 struct lock_class_key rq_lock_key
;
269 static DEFINE_PER_CPU(struct rq
, runqueues
);
271 static inline int cpu_of(struct rq
*rq
)
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
282 * See detach_destroy_domains: synchronize_sched for details.
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
287 #define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
290 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291 #define this_rq() (&__get_cpu_var(runqueues))
292 #define task_rq(p) cpu_rq(task_cpu(p))
293 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
295 #ifndef prepare_arch_switch
296 # define prepare_arch_switch(next) do { } while (0)
298 #ifndef finish_arch_switch
299 # define finish_arch_switch(prev) do { } while (0)
302 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
303 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
305 return rq
->curr
== p
;
308 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
312 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
314 #ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq
->lock
.owner
= current
;
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
323 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
325 spin_unlock_irq(&rq
->lock
);
328 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
329 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
334 return rq
->curr
== p
;
338 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
348 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq
->lock
);
351 spin_unlock(&rq
->lock
);
355 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
366 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
370 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
376 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
383 spin_lock(&rq
->lock
);
384 if (unlikely(rq
!= task_rq(p
))) {
385 spin_unlock(&rq
->lock
);
386 goto repeat_lock_task
;
392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
396 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
402 local_irq_save(*flags
);
404 spin_lock(&rq
->lock
);
405 if (unlikely(rq
!= task_rq(p
))) {
406 spin_unlock_irqrestore(&rq
->lock
, *flags
);
407 goto repeat_lock_task
;
412 static inline void __task_rq_unlock(struct rq
*rq
)
415 spin_unlock(&rq
->lock
);
418 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
421 spin_unlock_irqrestore(&rq
->lock
, *flags
);
424 #ifdef CONFIG_SCHEDSTATS
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
429 #define SCHEDSTAT_VERSION 12
431 static int show_schedstat(struct seq_file
*seq
, void *v
)
435 seq_printf(seq
, "version %d\n", SCHEDSTAT_VERSION
);
436 seq_printf(seq
, "timestamp %lu\n", jiffies
);
437 for_each_online_cpu(cpu
) {
438 struct rq
*rq
= cpu_rq(cpu
);
440 struct sched_domain
*sd
;
444 /* runqueue-specific stats */
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu
, rq
->yld_both_empty
,
448 rq
->yld_act_empty
, rq
->yld_exp_empty
, rq
->yld_cnt
,
449 rq
->sched_switch
, rq
->sched_cnt
, rq
->sched_goidle
,
450 rq
->ttwu_cnt
, rq
->ttwu_local
,
451 rq
->rq_sched_info
.cpu_time
,
452 rq
->rq_sched_info
.run_delay
, rq
->rq_sched_info
.pcnt
);
454 seq_printf(seq
, "\n");
457 /* domain-specific stats */
459 for_each_domain(cpu
, sd
) {
460 enum idle_type itype
;
461 char mask_str
[NR_CPUS
];
463 cpumask_scnprintf(mask_str
, NR_CPUS
, sd
->span
);
464 seq_printf(seq
, "domain%d %s", dcnt
++, mask_str
);
465 for (itype
= SCHED_IDLE
; itype
< MAX_IDLE_TYPES
;
467 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu",
469 sd
->lb_balanced
[itype
],
470 sd
->lb_failed
[itype
],
471 sd
->lb_imbalance
[itype
],
472 sd
->lb_gained
[itype
],
473 sd
->lb_hot_gained
[itype
],
474 sd
->lb_nobusyq
[itype
],
475 sd
->lb_nobusyg
[itype
]);
477 seq_printf(seq
, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
478 sd
->alb_cnt
, sd
->alb_failed
, sd
->alb_pushed
,
479 sd
->sbe_cnt
, sd
->sbe_balanced
, sd
->sbe_pushed
,
480 sd
->sbf_cnt
, sd
->sbf_balanced
, sd
->sbf_pushed
,
481 sd
->ttwu_wake_remote
, sd
->ttwu_move_affine
, sd
->ttwu_move_balance
);
489 static int schedstat_open(struct inode
*inode
, struct file
*file
)
491 unsigned int size
= PAGE_SIZE
* (1 + num_online_cpus() / 32);
492 char *buf
= kmalloc(size
, GFP_KERNEL
);
498 res
= single_open(file
, show_schedstat
, NULL
);
500 m
= file
->private_data
;
508 struct file_operations proc_schedstat_operations
= {
509 .open
= schedstat_open
,
512 .release
= single_release
,
516 * Expects runqueue lock to be held for atomicity of update
519 rq_sched_info_arrive(struct rq
*rq
, unsigned long delta_jiffies
)
522 rq
->rq_sched_info
.run_delay
+= delta_jiffies
;
523 rq
->rq_sched_info
.pcnt
++;
528 * Expects runqueue lock to be held for atomicity of update
531 rq_sched_info_depart(struct rq
*rq
, unsigned long delta_jiffies
)
534 rq
->rq_sched_info
.cpu_time
+= delta_jiffies
;
536 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538 #else /* !CONFIG_SCHEDSTATS */
540 rq_sched_info_arrive(struct rq
*rq
, unsigned long delta_jiffies
)
543 rq_sched_info_depart(struct rq
*rq
, unsigned long delta_jiffies
)
545 # define schedstat_inc(rq, field) do { } while (0)
546 # define schedstat_add(rq, field, amt) do { } while (0)
550 * rq_lock - lock a given runqueue and disable interrupts.
552 static inline struct rq
*this_rq_lock(void)
559 spin_lock(&rq
->lock
);
564 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
580 static inline void sched_info_dequeued(struct task_struct
*t
)
582 t
->sched_info
.last_queued
= 0;
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
590 static void sched_info_arrive(struct task_struct
*t
)
592 unsigned long now
= jiffies
, delta_jiffies
= 0;
594 if (t
->sched_info
.last_queued
)
595 delta_jiffies
= now
- t
->sched_info
.last_queued
;
596 sched_info_dequeued(t
);
597 t
->sched_info
.run_delay
+= delta_jiffies
;
598 t
->sched_info
.last_arrival
= now
;
599 t
->sched_info
.pcnt
++;
601 rq_sched_info_arrive(task_rq(t
), delta_jiffies
);
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
619 static inline void sched_info_queued(struct task_struct
*t
)
621 if (unlikely(sched_info_on()))
622 if (!t
->sched_info
.last_queued
)
623 t
->sched_info
.last_queued
= jiffies
;
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
630 static inline void sched_info_depart(struct task_struct
*t
)
632 unsigned long delta_jiffies
= jiffies
- t
->sched_info
.last_arrival
;
634 t
->sched_info
.cpu_time
+= delta_jiffies
;
635 rq_sched_info_depart(task_rq(t
), delta_jiffies
);
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
644 __sched_info_switch(struct task_struct
*prev
, struct task_struct
*next
)
646 struct rq
*rq
= task_rq(prev
);
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
653 if (prev
!= rq
->idle
)
654 sched_info_depart(prev
);
656 if (next
!= rq
->idle
)
657 sched_info_arrive(next
);
660 sched_info_switch(struct task_struct
*prev
, struct task_struct
*next
)
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev
, next
);
666 #define sched_info_queued(t) do { } while (0)
667 #define sched_info_switch(t, next) do { } while (0)
668 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
671 * Adding/removing a task to/from a priority array:
673 static void dequeue_task(struct task_struct
*p
, struct prio_array
*array
)
676 list_del(&p
->run_list
);
677 if (list_empty(array
->queue
+ p
->prio
))
678 __clear_bit(p
->prio
, array
->bitmap
);
681 static void enqueue_task(struct task_struct
*p
, struct prio_array
*array
)
683 sched_info_queued(p
);
684 list_add_tail(&p
->run_list
, array
->queue
+ p
->prio
);
685 __set_bit(p
->prio
, array
->bitmap
);
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
694 static void requeue_task(struct task_struct
*p
, struct prio_array
*array
)
696 list_move_tail(&p
->run_list
, array
->queue
+ p
->prio
);
700 enqueue_task_head(struct task_struct
*p
, struct prio_array
*array
)
702 list_add(&p
->run_list
, array
->queue
+ p
->prio
);
703 __set_bit(p
->prio
, array
->bitmap
);
709 * __normal_prio - return the priority that is based on the static
710 * priority but is modified by bonuses/penalties.
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
715 * We use 25% of the full 0...39 priority range so that:
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
720 * Both properties are important to certain workloads.
723 static inline int __normal_prio(struct task_struct
*p
)
727 bonus
= CURRENT_BONUS(p
) - MAX_BONUS
/ 2;
729 prio
= p
->static_prio
- bonus
;
730 if (prio
< MAX_RT_PRIO
)
732 if (prio
> MAX_PRIO
-1)
738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
751 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752 #define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754 #define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
759 static void set_load_weight(struct task_struct
*p
)
761 if (has_rt_policy(p
)) {
763 if (p
== task_rq(p
)->migration_thread
)
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
772 p
->load_weight
= RTPRIO_TO_LOAD_WEIGHT(p
->rt_priority
);
774 p
->load_weight
= PRIO_TO_LOAD_WEIGHT(p
->static_prio
);
778 inc_raw_weighted_load(struct rq
*rq
, const struct task_struct
*p
)
780 rq
->raw_weighted_load
+= p
->load_weight
;
784 dec_raw_weighted_load(struct rq
*rq
, const struct task_struct
*p
)
786 rq
->raw_weighted_load
-= p
->load_weight
;
789 static inline void inc_nr_running(struct task_struct
*p
, struct rq
*rq
)
792 inc_raw_weighted_load(rq
, p
);
795 static inline void dec_nr_running(struct task_struct
*p
, struct rq
*rq
)
798 dec_raw_weighted_load(rq
, p
);
802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
808 static inline int normal_prio(struct task_struct
*p
)
812 if (has_rt_policy(p
))
813 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
815 prio
= __normal_prio(p
);
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
826 static int effective_prio(struct task_struct
*p
)
828 p
->normal_prio
= normal_prio(p
);
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
834 if (!rt_prio(p
->prio
))
835 return p
->normal_prio
;
840 * __activate_task - move a task to the runqueue.
842 static void __activate_task(struct task_struct
*p
, struct rq
*rq
)
844 struct prio_array
*target
= rq
->active
;
847 target
= rq
->expired
;
848 enqueue_task(p
, target
);
849 inc_nr_running(p
, rq
);
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
855 static inline void __activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
857 enqueue_task_head(p
, rq
->active
);
858 inc_nr_running(p
, rq
);
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
865 static int recalc_task_prio(struct task_struct
*p
, unsigned long long now
)
867 /* Caller must always ensure 'now >= p->timestamp' */
868 unsigned long sleep_time
= now
- p
->timestamp
;
873 if (likely(sleep_time
> 0)) {
875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
879 unsigned long ceiling
= INTERACTIVE_SLEEP(p
);
881 if (p
->mm
&& sleep_time
> ceiling
&& p
->sleep_avg
< ceiling
) {
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
886 p
->sleep_avg
= ceiling
;
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
896 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
903 if (p
->sleep_type
== SLEEP_NONINTERACTIVE
&& p
->mm
) {
904 if (p
->sleep_avg
>= ceiling
)
906 else if (p
->sleep_avg
+ sleep_time
>=
908 p
->sleep_avg
= ceiling
;
914 * This code gives a bonus to interactive tasks.
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
921 p
->sleep_avg
+= sleep_time
;
924 if (p
->sleep_avg
> NS_MAX_SLEEP_AVG
)
925 p
->sleep_avg
= NS_MAX_SLEEP_AVG
;
928 return effective_prio(p
);
932 * activate_task - move a task to the runqueue and do priority recalculation
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
937 static void activate_task(struct task_struct
*p
, struct rq
*rq
, int local
)
939 unsigned long long now
;
944 /* Compensate for drifting sched_clock */
945 struct rq
*this_rq
= this_rq();
946 now
= (now
- this_rq
->timestamp_last_tick
)
947 + rq
->timestamp_last_tick
;
952 p
->prio
= recalc_task_prio(p
, now
);
955 * This checks to make sure it's not an uninterruptible task
956 * that is now waking up.
958 if (p
->sleep_type
== SLEEP_NORMAL
) {
960 * Tasks which were woken up by interrupts (ie. hw events)
961 * are most likely of interactive nature. So we give them
962 * the credit of extending their sleep time to the period
963 * of time they spend on the runqueue, waiting for execution
964 * on a CPU, first time around:
967 p
->sleep_type
= SLEEP_INTERRUPTED
;
970 * Normal first-time wakeups get a credit too for
971 * on-runqueue time, but it will be weighted down:
973 p
->sleep_type
= SLEEP_INTERACTIVE
;
978 __activate_task(p
, rq
);
982 * deactivate_task - remove a task from the runqueue.
984 static void deactivate_task(struct task_struct
*p
, struct rq
*rq
)
986 dec_nr_running(p
, rq
);
987 dequeue_task(p
, p
->array
);
992 * resched_task - mark a task 'to be rescheduled now'.
994 * On UP this means the setting of the need_resched flag, on SMP it
995 * might also involve a cross-CPU call to trigger the scheduler on
1000 #ifndef tsk_is_polling
1001 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1004 static void resched_task(struct task_struct
*p
)
1008 assert_spin_locked(&task_rq(p
)->lock
);
1010 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
1013 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
1016 if (cpu
== smp_processor_id())
1019 /* NEED_RESCHED must be visible before we test polling */
1021 if (!tsk_is_polling(p
))
1022 smp_send_reschedule(cpu
);
1025 static inline void resched_task(struct task_struct
*p
)
1027 assert_spin_locked(&task_rq(p
)->lock
);
1028 set_tsk_need_resched(p
);
1033 * task_curr - is this task currently executing on a CPU?
1034 * @p: the task in question.
1036 inline int task_curr(const struct task_struct
*p
)
1038 return cpu_curr(task_cpu(p
)) == p
;
1041 /* Used instead of source_load when we know the type == 0 */
1042 unsigned long weighted_cpuload(const int cpu
)
1044 return cpu_rq(cpu
)->raw_weighted_load
;
1048 struct migration_req
{
1049 struct list_head list
;
1051 struct task_struct
*task
;
1054 struct completion done
;
1058 * The task's runqueue lock must be held.
1059 * Returns true if you have to wait for migration thread.
1062 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1064 struct rq
*rq
= task_rq(p
);
1067 * If the task is not on a runqueue (and not running), then
1068 * it is sufficient to simply update the task's cpu field.
1070 if (!p
->array
&& !task_running(rq
, p
)) {
1071 set_task_cpu(p
, dest_cpu
);
1075 init_completion(&req
->done
);
1077 req
->dest_cpu
= dest_cpu
;
1078 list_add(&req
->list
, &rq
->migration_queue
);
1084 * wait_task_inactive - wait for a thread to unschedule.
1086 * The caller must ensure that the task *will* unschedule sometime soon,
1087 * else this function might spin for a *long* time. This function can't
1088 * be called with interrupts off, or it may introduce deadlock with
1089 * smp_call_function() if an IPI is sent by the same process we are
1090 * waiting to become inactive.
1092 void wait_task_inactive(struct task_struct
*p
)
1094 unsigned long flags
;
1099 rq
= task_rq_lock(p
, &flags
);
1100 /* Must be off runqueue entirely, not preempted. */
1101 if (unlikely(p
->array
|| task_running(rq
, p
))) {
1102 /* If it's preempted, we yield. It could be a while. */
1103 preempted
= !task_running(rq
, p
);
1104 task_rq_unlock(rq
, &flags
);
1110 task_rq_unlock(rq
, &flags
);
1114 * kick_process - kick a running thread to enter/exit the kernel
1115 * @p: the to-be-kicked thread
1117 * Cause a process which is running on another CPU to enter
1118 * kernel-mode, without any delay. (to get signals handled.)
1120 * NOTE: this function doesnt have to take the runqueue lock,
1121 * because all it wants to ensure is that the remote task enters
1122 * the kernel. If the IPI races and the task has been migrated
1123 * to another CPU then no harm is done and the purpose has been
1126 void kick_process(struct task_struct
*p
)
1132 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1133 smp_send_reschedule(cpu
);
1138 * Return a low guess at the load of a migration-source cpu weighted
1139 * according to the scheduling class and "nice" value.
1141 * We want to under-estimate the load of migration sources, to
1142 * balance conservatively.
1144 static inline unsigned long source_load(int cpu
, int type
)
1146 struct rq
*rq
= cpu_rq(cpu
);
1149 return rq
->raw_weighted_load
;
1151 return min(rq
->cpu_load
[type
-1], rq
->raw_weighted_load
);
1155 * Return a high guess at the load of a migration-target cpu weighted
1156 * according to the scheduling class and "nice" value.
1158 static inline unsigned long target_load(int cpu
, int type
)
1160 struct rq
*rq
= cpu_rq(cpu
);
1163 return rq
->raw_weighted_load
;
1165 return max(rq
->cpu_load
[type
-1], rq
->raw_weighted_load
);
1169 * Return the average load per task on the cpu's run queue
1171 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1173 struct rq
*rq
= cpu_rq(cpu
);
1174 unsigned long n
= rq
->nr_running
;
1176 return n
? rq
->raw_weighted_load
/ n
: SCHED_LOAD_SCALE
;
1180 * find_idlest_group finds and returns the least busy CPU group within the
1183 static struct sched_group
*
1184 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1186 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1187 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1188 int load_idx
= sd
->forkexec_idx
;
1189 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1192 unsigned long load
, avg_load
;
1196 /* Skip over this group if it has no CPUs allowed */
1197 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1200 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1202 /* Tally up the load of all CPUs in the group */
1205 for_each_cpu_mask(i
, group
->cpumask
) {
1206 /* Bias balancing toward cpus of our domain */
1208 load
= source_load(i
, load_idx
);
1210 load
= target_load(i
, load_idx
);
1215 /* Adjust by relative CPU power of the group */
1216 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
1219 this_load
= avg_load
;
1221 } else if (avg_load
< min_load
) {
1222 min_load
= avg_load
;
1226 group
= group
->next
;
1227 } while (group
!= sd
->groups
);
1229 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1235 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1238 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1241 unsigned long load
, min_load
= ULONG_MAX
;
1245 /* Traverse only the allowed CPUs */
1246 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1248 for_each_cpu_mask(i
, tmp
) {
1249 load
= weighted_cpuload(i
);
1251 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1261 * sched_balance_self: balance the current task (running on cpu) in domains
1262 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1265 * Balance, ie. select the least loaded group.
1267 * Returns the target CPU number, or the same CPU if no balancing is needed.
1269 * preempt must be disabled.
1271 static int sched_balance_self(int cpu
, int flag
)
1273 struct task_struct
*t
= current
;
1274 struct sched_domain
*tmp
, *sd
= NULL
;
1276 for_each_domain(cpu
, tmp
) {
1278 * If power savings logic is enabled for a domain, stop there.
1280 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1282 if (tmp
->flags
& flag
)
1288 struct sched_group
*group
;
1293 group
= find_idlest_group(sd
, t
, cpu
);
1297 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1298 if (new_cpu
== -1 || new_cpu
== cpu
)
1301 /* Now try balancing at a lower domain level */
1305 weight
= cpus_weight(span
);
1306 for_each_domain(cpu
, tmp
) {
1307 if (weight
<= cpus_weight(tmp
->span
))
1309 if (tmp
->flags
& flag
)
1312 /* while loop will break here if sd == NULL */
1318 #endif /* CONFIG_SMP */
1321 * wake_idle() will wake a task on an idle cpu if task->cpu is
1322 * not idle and an idle cpu is available. The span of cpus to
1323 * search starts with cpus closest then further out as needed,
1324 * so we always favor a closer, idle cpu.
1326 * Returns the CPU we should wake onto.
1328 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1329 static int wake_idle(int cpu
, struct task_struct
*p
)
1332 struct sched_domain
*sd
;
1338 for_each_domain(cpu
, sd
) {
1339 if (sd
->flags
& SD_WAKE_IDLE
) {
1340 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1341 for_each_cpu_mask(i
, tmp
) {
1352 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1359 * try_to_wake_up - wake up a thread
1360 * @p: the to-be-woken-up thread
1361 * @state: the mask of task states that can be woken
1362 * @sync: do a synchronous wakeup?
1364 * Put it on the run-queue if it's not already there. The "current"
1365 * thread is always on the run-queue (except when the actual
1366 * re-schedule is in progress), and as such you're allowed to do
1367 * the simpler "current->state = TASK_RUNNING" to mark yourself
1368 * runnable without the overhead of this.
1370 * returns failure only if the task is already active.
1372 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1374 int cpu
, this_cpu
, success
= 0;
1375 unsigned long flags
;
1379 struct sched_domain
*sd
, *this_sd
= NULL
;
1380 unsigned long load
, this_load
;
1384 rq
= task_rq_lock(p
, &flags
);
1385 old_state
= p
->state
;
1386 if (!(old_state
& state
))
1393 this_cpu
= smp_processor_id();
1396 if (unlikely(task_running(rq
, p
)))
1401 schedstat_inc(rq
, ttwu_cnt
);
1402 if (cpu
== this_cpu
) {
1403 schedstat_inc(rq
, ttwu_local
);
1407 for_each_domain(this_cpu
, sd
) {
1408 if (cpu_isset(cpu
, sd
->span
)) {
1409 schedstat_inc(sd
, ttwu_wake_remote
);
1415 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1419 * Check for affine wakeup and passive balancing possibilities.
1422 int idx
= this_sd
->wake_idx
;
1423 unsigned int imbalance
;
1425 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1427 load
= source_load(cpu
, idx
);
1428 this_load
= target_load(this_cpu
, idx
);
1430 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1432 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1433 unsigned long tl
= this_load
;
1434 unsigned long tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1437 * If sync wakeup then subtract the (maximum possible)
1438 * effect of the currently running task from the load
1439 * of the current CPU:
1442 tl
-= current
->load_weight
;
1445 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1446 100*(tl
+ p
->load_weight
) <= imbalance
*load
) {
1448 * This domain has SD_WAKE_AFFINE and
1449 * p is cache cold in this domain, and
1450 * there is no bad imbalance.
1452 schedstat_inc(this_sd
, ttwu_move_affine
);
1458 * Start passive balancing when half the imbalance_pct
1461 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1462 if (imbalance
*this_load
<= 100*load
) {
1463 schedstat_inc(this_sd
, ttwu_move_balance
);
1469 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1471 new_cpu
= wake_idle(new_cpu
, p
);
1472 if (new_cpu
!= cpu
) {
1473 set_task_cpu(p
, new_cpu
);
1474 task_rq_unlock(rq
, &flags
);
1475 /* might preempt at this point */
1476 rq
= task_rq_lock(p
, &flags
);
1477 old_state
= p
->state
;
1478 if (!(old_state
& state
))
1483 this_cpu
= smp_processor_id();
1488 #endif /* CONFIG_SMP */
1489 if (old_state
== TASK_UNINTERRUPTIBLE
) {
1490 rq
->nr_uninterruptible
--;
1492 * Tasks on involuntary sleep don't earn
1493 * sleep_avg beyond just interactive state.
1495 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1499 * Tasks that have marked their sleep as noninteractive get
1500 * woken up with their sleep average not weighted in an
1503 if (old_state
& TASK_NONINTERACTIVE
)
1504 p
->sleep_type
= SLEEP_NONINTERACTIVE
;
1507 activate_task(p
, rq
, cpu
== this_cpu
);
1509 * Sync wakeups (i.e. those types of wakeups where the waker
1510 * has indicated that it will leave the CPU in short order)
1511 * don't trigger a preemption, if the woken up task will run on
1512 * this cpu. (in this case the 'I will reschedule' promise of
1513 * the waker guarantees that the freshly woken up task is going
1514 * to be considered on this CPU.)
1516 if (!sync
|| cpu
!= this_cpu
) {
1517 if (TASK_PREEMPTS_CURR(p
, rq
))
1518 resched_task(rq
->curr
);
1523 p
->state
= TASK_RUNNING
;
1525 task_rq_unlock(rq
, &flags
);
1530 int fastcall
wake_up_process(struct task_struct
*p
)
1532 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1533 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1535 EXPORT_SYMBOL(wake_up_process
);
1537 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1539 return try_to_wake_up(p
, state
, 0);
1543 * Perform scheduler related setup for a newly forked process p.
1544 * p is forked by current.
1546 void fastcall
sched_fork(struct task_struct
*p
, int clone_flags
)
1548 int cpu
= get_cpu();
1551 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1553 set_task_cpu(p
, cpu
);
1556 * We mark the process as running here, but have not actually
1557 * inserted it onto the runqueue yet. This guarantees that
1558 * nobody will actually run it, and a signal or other external
1559 * event cannot wake it up and insert it on the runqueue either.
1561 p
->state
= TASK_RUNNING
;
1564 * Make sure we do not leak PI boosting priority to the child:
1566 p
->prio
= current
->normal_prio
;
1568 INIT_LIST_HEAD(&p
->run_list
);
1570 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1571 if (unlikely(sched_info_on()))
1572 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1574 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1577 #ifdef CONFIG_PREEMPT
1578 /* Want to start with kernel preemption disabled. */
1579 task_thread_info(p
)->preempt_count
= 1;
1582 * Share the timeslice between parent and child, thus the
1583 * total amount of pending timeslices in the system doesn't change,
1584 * resulting in more scheduling fairness.
1586 local_irq_disable();
1587 p
->time_slice
= (current
->time_slice
+ 1) >> 1;
1589 * The remainder of the first timeslice might be recovered by
1590 * the parent if the child exits early enough.
1592 p
->first_time_slice
= 1;
1593 current
->time_slice
>>= 1;
1594 p
->timestamp
= sched_clock();
1595 if (unlikely(!current
->time_slice
)) {
1597 * This case is rare, it happens when the parent has only
1598 * a single jiffy left from its timeslice. Taking the
1599 * runqueue lock is not a problem.
1601 current
->time_slice
= 1;
1609 * wake_up_new_task - wake up a newly created task for the first time.
1611 * This function will do some initial scheduler statistics housekeeping
1612 * that must be done for every newly created context, then puts the task
1613 * on the runqueue and wakes it.
1615 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1617 struct rq
*rq
, *this_rq
;
1618 unsigned long flags
;
1621 rq
= task_rq_lock(p
, &flags
);
1622 BUG_ON(p
->state
!= TASK_RUNNING
);
1623 this_cpu
= smp_processor_id();
1627 * We decrease the sleep average of forking parents
1628 * and children as well, to keep max-interactive tasks
1629 * from forking tasks that are max-interactive. The parent
1630 * (current) is done further down, under its lock.
1632 p
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(p
) *
1633 CHILD_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1635 p
->prio
= effective_prio(p
);
1637 if (likely(cpu
== this_cpu
)) {
1638 if (!(clone_flags
& CLONE_VM
)) {
1640 * The VM isn't cloned, so we're in a good position to
1641 * do child-runs-first in anticipation of an exec. This
1642 * usually avoids a lot of COW overhead.
1644 if (unlikely(!current
->array
))
1645 __activate_task(p
, rq
);
1647 p
->prio
= current
->prio
;
1648 p
->normal_prio
= current
->normal_prio
;
1649 list_add_tail(&p
->run_list
, ¤t
->run_list
);
1650 p
->array
= current
->array
;
1651 p
->array
->nr_active
++;
1652 inc_nr_running(p
, rq
);
1656 /* Run child last */
1657 __activate_task(p
, rq
);
1659 * We skip the following code due to cpu == this_cpu
1661 * task_rq_unlock(rq, &flags);
1662 * this_rq = task_rq_lock(current, &flags);
1666 this_rq
= cpu_rq(this_cpu
);
1669 * Not the local CPU - must adjust timestamp. This should
1670 * get optimised away in the !CONFIG_SMP case.
1672 p
->timestamp
= (p
->timestamp
- this_rq
->timestamp_last_tick
)
1673 + rq
->timestamp_last_tick
;
1674 __activate_task(p
, rq
);
1675 if (TASK_PREEMPTS_CURR(p
, rq
))
1676 resched_task(rq
->curr
);
1679 * Parent and child are on different CPUs, now get the
1680 * parent runqueue to update the parent's ->sleep_avg:
1682 task_rq_unlock(rq
, &flags
);
1683 this_rq
= task_rq_lock(current
, &flags
);
1685 current
->sleep_avg
= JIFFIES_TO_NS(CURRENT_BONUS(current
) *
1686 PARENT_PENALTY
/ 100 * MAX_SLEEP_AVG
/ MAX_BONUS
);
1687 task_rq_unlock(this_rq
, &flags
);
1691 * Potentially available exiting-child timeslices are
1692 * retrieved here - this way the parent does not get
1693 * penalized for creating too many threads.
1695 * (this cannot be used to 'generate' timeslices
1696 * artificially, because any timeslice recovered here
1697 * was given away by the parent in the first place.)
1699 void fastcall
sched_exit(struct task_struct
*p
)
1701 unsigned long flags
;
1705 * If the child was a (relative-) CPU hog then decrease
1706 * the sleep_avg of the parent as well.
1708 rq
= task_rq_lock(p
->parent
, &flags
);
1709 if (p
->first_time_slice
&& task_cpu(p
) == task_cpu(p
->parent
)) {
1710 p
->parent
->time_slice
+= p
->time_slice
;
1711 if (unlikely(p
->parent
->time_slice
> task_timeslice(p
)))
1712 p
->parent
->time_slice
= task_timeslice(p
);
1714 if (p
->sleep_avg
< p
->parent
->sleep_avg
)
1715 p
->parent
->sleep_avg
= p
->parent
->sleep_avg
/
1716 (EXIT_WEIGHT
+ 1) * EXIT_WEIGHT
+ p
->sleep_avg
/
1718 task_rq_unlock(rq
, &flags
);
1722 * prepare_task_switch - prepare to switch tasks
1723 * @rq: the runqueue preparing to switch
1724 * @next: the task we are going to switch to.
1726 * This is called with the rq lock held and interrupts off. It must
1727 * be paired with a subsequent finish_task_switch after the context
1730 * prepare_task_switch sets up locking and calls architecture specific
1733 static inline void prepare_task_switch(struct rq
*rq
, struct task_struct
*next
)
1735 prepare_lock_switch(rq
, next
);
1736 prepare_arch_switch(next
);
1740 * finish_task_switch - clean up after a task-switch
1741 * @rq: runqueue associated with task-switch
1742 * @prev: the thread we just switched away from.
1744 * finish_task_switch must be called after the context switch, paired
1745 * with a prepare_task_switch call before the context switch.
1746 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1747 * and do any other architecture-specific cleanup actions.
1749 * Note that we may have delayed dropping an mm in context_switch(). If
1750 * so, we finish that here outside of the runqueue lock. (Doing it
1751 * with the lock held can cause deadlocks; see schedule() for
1754 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1755 __releases(rq
->lock
)
1757 struct mm_struct
*mm
= rq
->prev_mm
;
1758 unsigned long prev_task_flags
;
1763 * A task struct has one reference for the use as "current".
1764 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1765 * calls schedule one last time. The schedule call will never return,
1766 * and the scheduled task must drop that reference.
1767 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1768 * still held, otherwise prev could be scheduled on another cpu, die
1769 * there before we look at prev->state, and then the reference would
1771 * Manfred Spraul <manfred@colorfullife.com>
1773 prev_task_flags
= prev
->flags
;
1774 finish_arch_switch(prev
);
1775 finish_lock_switch(rq
, prev
);
1778 if (unlikely(prev_task_flags
& PF_DEAD
)) {
1780 * Remove function-return probe instances associated with this
1781 * task and put them back on the free list.
1783 kprobe_flush_task(prev
);
1784 put_task_struct(prev
);
1789 * schedule_tail - first thing a freshly forked thread must call.
1790 * @prev: the thread we just switched away from.
1792 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1793 __releases(rq
->lock
)
1795 struct rq
*rq
= this_rq();
1797 finish_task_switch(rq
, prev
);
1798 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1799 /* In this case, finish_task_switch does not reenable preemption */
1802 if (current
->set_child_tid
)
1803 put_user(current
->pid
, current
->set_child_tid
);
1807 * context_switch - switch to the new MM and the new
1808 * thread's register state.
1810 static inline struct task_struct
*
1811 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1812 struct task_struct
*next
)
1814 struct mm_struct
*mm
= next
->mm
;
1815 struct mm_struct
*oldmm
= prev
->active_mm
;
1817 if (unlikely(!mm
)) {
1818 next
->active_mm
= oldmm
;
1819 atomic_inc(&oldmm
->mm_count
);
1820 enter_lazy_tlb(oldmm
, next
);
1822 switch_mm(oldmm
, mm
, next
);
1824 if (unlikely(!prev
->mm
)) {
1825 prev
->active_mm
= NULL
;
1826 WARN_ON(rq
->prev_mm
);
1827 rq
->prev_mm
= oldmm
;
1830 * Since the runqueue lock will be released by the next
1831 * task (which is an invalid locking op but in the case
1832 * of the scheduler it's an obvious special-case), so we
1833 * do an early lockdep release here:
1835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1836 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1839 /* Here we just switch the register state and the stack. */
1840 switch_to(prev
, next
, prev
);
1846 * nr_running, nr_uninterruptible and nr_context_switches:
1848 * externally visible scheduler statistics: current number of runnable
1849 * threads, current number of uninterruptible-sleeping threads, total
1850 * number of context switches performed since bootup.
1852 unsigned long nr_running(void)
1854 unsigned long i
, sum
= 0;
1856 for_each_online_cpu(i
)
1857 sum
+= cpu_rq(i
)->nr_running
;
1862 unsigned long nr_uninterruptible(void)
1864 unsigned long i
, sum
= 0;
1866 for_each_possible_cpu(i
)
1867 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1870 * Since we read the counters lockless, it might be slightly
1871 * inaccurate. Do not allow it to go below zero though:
1873 if (unlikely((long)sum
< 0))
1879 unsigned long long nr_context_switches(void)
1882 unsigned long long sum
= 0;
1884 for_each_possible_cpu(i
)
1885 sum
+= cpu_rq(i
)->nr_switches
;
1890 unsigned long nr_iowait(void)
1892 unsigned long i
, sum
= 0;
1894 for_each_possible_cpu(i
)
1895 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1900 unsigned long nr_active(void)
1902 unsigned long i
, running
= 0, uninterruptible
= 0;
1904 for_each_online_cpu(i
) {
1905 running
+= cpu_rq(i
)->nr_running
;
1906 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1909 if (unlikely((long)uninterruptible
< 0))
1910 uninterruptible
= 0;
1912 return running
+ uninterruptible
;
1918 * Is this task likely cache-hot:
1921 task_hot(struct task_struct
*p
, unsigned long long now
, struct sched_domain
*sd
)
1923 return (long long)(now
- p
->last_ran
) < (long long)sd
->cache_hot_time
;
1927 * double_rq_lock - safely lock two runqueues
1929 * Note this does not disable interrupts like task_rq_lock,
1930 * you need to do so manually before calling.
1932 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1933 __acquires(rq1
->lock
)
1934 __acquires(rq2
->lock
)
1937 spin_lock(&rq1
->lock
);
1938 __acquire(rq2
->lock
); /* Fake it out ;) */
1941 spin_lock(&rq1
->lock
);
1942 spin_lock(&rq2
->lock
);
1944 spin_lock(&rq2
->lock
);
1945 spin_lock(&rq1
->lock
);
1951 * double_rq_unlock - safely unlock two runqueues
1953 * Note this does not restore interrupts like task_rq_unlock,
1954 * you need to do so manually after calling.
1956 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1957 __releases(rq1
->lock
)
1958 __releases(rq2
->lock
)
1960 spin_unlock(&rq1
->lock
);
1962 spin_unlock(&rq2
->lock
);
1964 __release(rq2
->lock
);
1968 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1970 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1971 __releases(this_rq
->lock
)
1972 __acquires(busiest
->lock
)
1973 __acquires(this_rq
->lock
)
1975 if (unlikely(!spin_trylock(&busiest
->lock
))) {
1976 if (busiest
< this_rq
) {
1977 spin_unlock(&this_rq
->lock
);
1978 spin_lock(&busiest
->lock
);
1979 spin_lock(&this_rq
->lock
);
1981 spin_lock(&busiest
->lock
);
1986 * If dest_cpu is allowed for this process, migrate the task to it.
1987 * This is accomplished by forcing the cpu_allowed mask to only
1988 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1989 * the cpu_allowed mask is restored.
1991 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
1993 struct migration_req req
;
1994 unsigned long flags
;
1997 rq
= task_rq_lock(p
, &flags
);
1998 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
1999 || unlikely(cpu_is_offline(dest_cpu
)))
2002 /* force the process onto the specified CPU */
2003 if (migrate_task(p
, dest_cpu
, &req
)) {
2004 /* Need to wait for migration thread (might exit: take ref). */
2005 struct task_struct
*mt
= rq
->migration_thread
;
2007 get_task_struct(mt
);
2008 task_rq_unlock(rq
, &flags
);
2009 wake_up_process(mt
);
2010 put_task_struct(mt
);
2011 wait_for_completion(&req
.done
);
2016 task_rq_unlock(rq
, &flags
);
2020 * sched_exec - execve() is a valuable balancing opportunity, because at
2021 * this point the task has the smallest effective memory and cache footprint.
2023 void sched_exec(void)
2025 int new_cpu
, this_cpu
= get_cpu();
2026 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2028 if (new_cpu
!= this_cpu
)
2029 sched_migrate_task(current
, new_cpu
);
2033 * pull_task - move a task from a remote runqueue to the local runqueue.
2034 * Both runqueues must be locked.
2036 static void pull_task(struct rq
*src_rq
, struct prio_array
*src_array
,
2037 struct task_struct
*p
, struct rq
*this_rq
,
2038 struct prio_array
*this_array
, int this_cpu
)
2040 dequeue_task(p
, src_array
);
2041 dec_nr_running(p
, src_rq
);
2042 set_task_cpu(p
, this_cpu
);
2043 inc_nr_running(p
, this_rq
);
2044 enqueue_task(p
, this_array
);
2045 p
->timestamp
= (p
->timestamp
- src_rq
->timestamp_last_tick
)
2046 + this_rq
->timestamp_last_tick
;
2048 * Note that idle threads have a prio of MAX_PRIO, for this test
2049 * to be always true for them.
2051 if (TASK_PREEMPTS_CURR(p
, this_rq
))
2052 resched_task(this_rq
->curr
);
2056 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2059 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2060 struct sched_domain
*sd
, enum idle_type idle
,
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2069 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2073 if (task_running(rq
, p
))
2077 * Aggressive migration if:
2078 * 1) task is cache cold, or
2079 * 2) too many balance attempts have failed.
2082 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2085 if (task_hot(p
, rq
->timestamp_last_tick
, sd
))
2090 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2093 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2094 * load from busiest to this_rq, as part of a balancing operation within
2095 * "domain". Returns the number of tasks moved.
2097 * Called with both runqueues locked.
2099 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2100 unsigned long max_nr_move
, unsigned long max_load_move
,
2101 struct sched_domain
*sd
, enum idle_type idle
,
2104 int idx
, pulled
= 0, pinned
= 0, this_best_prio
, best_prio
,
2105 best_prio_seen
, skip_for_load
;
2106 struct prio_array
*array
, *dst_array
;
2107 struct list_head
*head
, *curr
;
2108 struct task_struct
*tmp
;
2111 if (max_nr_move
== 0 || max_load_move
== 0)
2114 rem_load_move
= max_load_move
;
2116 this_best_prio
= rq_best_prio(this_rq
);
2117 best_prio
= rq_best_prio(busiest
);
2119 * Enable handling of the case where there is more than one task
2120 * with the best priority. If the current running task is one
2121 * of those with prio==best_prio we know it won't be moved
2122 * and therefore it's safe to override the skip (based on load) of
2123 * any task we find with that prio.
2125 best_prio_seen
= best_prio
== busiest
->curr
->prio
;
2128 * We first consider expired tasks. Those will likely not be
2129 * executed in the near future, and they are most likely to
2130 * be cache-cold, thus switching CPUs has the least effect
2133 if (busiest
->expired
->nr_active
) {
2134 array
= busiest
->expired
;
2135 dst_array
= this_rq
->expired
;
2137 array
= busiest
->active
;
2138 dst_array
= this_rq
->active
;
2142 /* Start searching at priority 0: */
2146 idx
= sched_find_first_bit(array
->bitmap
);
2148 idx
= find_next_bit(array
->bitmap
, MAX_PRIO
, idx
);
2149 if (idx
>= MAX_PRIO
) {
2150 if (array
== busiest
->expired
&& busiest
->active
->nr_active
) {
2151 array
= busiest
->active
;
2152 dst_array
= this_rq
->active
;
2158 head
= array
->queue
+ idx
;
2161 tmp
= list_entry(curr
, struct task_struct
, run_list
);
2166 * To help distribute high priority tasks accross CPUs we don't
2167 * skip a task if it will be the highest priority task (i.e. smallest
2168 * prio value) on its new queue regardless of its load weight
2170 skip_for_load
= tmp
->load_weight
> rem_load_move
;
2171 if (skip_for_load
&& idx
< this_best_prio
)
2172 skip_for_load
= !best_prio_seen
&& idx
== best_prio
;
2173 if (skip_for_load
||
2174 !can_migrate_task(tmp
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2176 best_prio_seen
|= idx
== best_prio
;
2183 #ifdef CONFIG_SCHEDSTATS
2184 if (task_hot(tmp
, busiest
->timestamp_last_tick
, sd
))
2185 schedstat_inc(sd
, lb_hot_gained
[idle
]);
2188 pull_task(busiest
, array
, tmp
, this_rq
, dst_array
, this_cpu
);
2190 rem_load_move
-= tmp
->load_weight
;
2193 * We only want to steal up to the prescribed number of tasks
2194 * and the prescribed amount of weighted load.
2196 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2197 if (idx
< this_best_prio
)
2198 this_best_prio
= idx
;
2206 * Right now, this is the only place pull_task() is called,
2207 * so we can safely collect pull_task() stats here rather than
2208 * inside pull_task().
2210 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2213 *all_pinned
= pinned
;
2218 * find_busiest_group finds and returns the busiest CPU group within the
2219 * domain. It calculates and returns the amount of weighted load which
2220 * should be moved to restore balance via the imbalance parameter.
2222 static struct sched_group
*
2223 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2224 unsigned long *imbalance
, enum idle_type idle
, int *sd_idle
,
2227 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2228 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2229 unsigned long max_pull
;
2230 unsigned long busiest_load_per_task
, busiest_nr_running
;
2231 unsigned long this_load_per_task
, this_nr_running
;
2233 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2234 int power_savings_balance
= 1;
2235 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2236 unsigned long min_nr_running
= ULONG_MAX
;
2237 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2240 max_load
= this_load
= total_load
= total_pwr
= 0;
2241 busiest_load_per_task
= busiest_nr_running
= 0;
2242 this_load_per_task
= this_nr_running
= 0;
2243 if (idle
== NOT_IDLE
)
2244 load_idx
= sd
->busy_idx
;
2245 else if (idle
== NEWLY_IDLE
)
2246 load_idx
= sd
->newidle_idx
;
2248 load_idx
= sd
->idle_idx
;
2251 unsigned long load
, group_capacity
;
2254 unsigned long sum_nr_running
, sum_weighted_load
;
2256 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2258 /* Tally up the load of all CPUs in the group */
2259 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2261 for_each_cpu_mask(i
, group
->cpumask
) {
2264 if (!cpu_isset(i
, *cpus
))
2269 if (*sd_idle
&& !idle_cpu(i
))
2272 /* Bias balancing toward cpus of our domain */
2274 load
= target_load(i
, load_idx
);
2276 load
= source_load(i
, load_idx
);
2279 sum_nr_running
+= rq
->nr_running
;
2280 sum_weighted_load
+= rq
->raw_weighted_load
;
2283 total_load
+= avg_load
;
2284 total_pwr
+= group
->cpu_power
;
2286 /* Adjust by relative CPU power of the group */
2287 avg_load
= (avg_load
* SCHED_LOAD_SCALE
) / group
->cpu_power
;
2289 group_capacity
= group
->cpu_power
/ SCHED_LOAD_SCALE
;
2292 this_load
= avg_load
;
2294 this_nr_running
= sum_nr_running
;
2295 this_load_per_task
= sum_weighted_load
;
2296 } else if (avg_load
> max_load
&&
2297 sum_nr_running
> group_capacity
) {
2298 max_load
= avg_load
;
2300 busiest_nr_running
= sum_nr_running
;
2301 busiest_load_per_task
= sum_weighted_load
;
2304 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2306 * Busy processors will not participate in power savings
2309 if (idle
== NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2313 * If the local group is idle or completely loaded
2314 * no need to do power savings balance at this domain
2316 if (local_group
&& (this_nr_running
>= group_capacity
||
2318 power_savings_balance
= 0;
2321 * If a group is already running at full capacity or idle,
2322 * don't include that group in power savings calculations
2324 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2329 * Calculate the group which has the least non-idle load.
2330 * This is the group from where we need to pick up the load
2333 if ((sum_nr_running
< min_nr_running
) ||
2334 (sum_nr_running
== min_nr_running
&&
2335 first_cpu(group
->cpumask
) <
2336 first_cpu(group_min
->cpumask
))) {
2338 min_nr_running
= sum_nr_running
;
2339 min_load_per_task
= sum_weighted_load
/
2344 * Calculate the group which is almost near its
2345 * capacity but still has some space to pick up some load
2346 * from other group and save more power
2348 if (sum_nr_running
<= group_capacity
- 1) {
2349 if (sum_nr_running
> leader_nr_running
||
2350 (sum_nr_running
== leader_nr_running
&&
2351 first_cpu(group
->cpumask
) >
2352 first_cpu(group_leader
->cpumask
))) {
2353 group_leader
= group
;
2354 leader_nr_running
= sum_nr_running
;
2359 group
= group
->next
;
2360 } while (group
!= sd
->groups
);
2362 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2365 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2367 if (this_load
>= avg_load
||
2368 100*max_load
<= sd
->imbalance_pct
*this_load
)
2371 busiest_load_per_task
/= busiest_nr_running
;
2373 * We're trying to get all the cpus to the average_load, so we don't
2374 * want to push ourselves above the average load, nor do we wish to
2375 * reduce the max loaded cpu below the average load, as either of these
2376 * actions would just result in more rebalancing later, and ping-pong
2377 * tasks around. Thus we look for the minimum possible imbalance.
2378 * Negative imbalances (*we* are more loaded than anyone else) will
2379 * be counted as no imbalance for these purposes -- we can't fix that
2380 * by pulling tasks to us. Be careful of negative numbers as they'll
2381 * appear as very large values with unsigned longs.
2383 if (max_load
<= busiest_load_per_task
)
2387 * In the presence of smp nice balancing, certain scenarios can have
2388 * max load less than avg load(as we skip the groups at or below
2389 * its cpu_power, while calculating max_load..)
2391 if (max_load
< avg_load
) {
2393 goto small_imbalance
;
2396 /* Don't want to pull so many tasks that a group would go idle */
2397 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2399 /* How much load to actually move to equalise the imbalance */
2400 *imbalance
= min(max_pull
* busiest
->cpu_power
,
2401 (avg_load
- this_load
) * this->cpu_power
)
2405 * if *imbalance is less than the average load per runnable task
2406 * there is no gaurantee that any tasks will be moved so we'll have
2407 * a think about bumping its value to force at least one task to be
2410 if (*imbalance
< busiest_load_per_task
) {
2411 unsigned long tmp
, pwr_now
, pwr_move
;
2415 pwr_move
= pwr_now
= 0;
2417 if (this_nr_running
) {
2418 this_load_per_task
/= this_nr_running
;
2419 if (busiest_load_per_task
> this_load_per_task
)
2422 this_load_per_task
= SCHED_LOAD_SCALE
;
2424 if (max_load
- this_load
>= busiest_load_per_task
* imbn
) {
2425 *imbalance
= busiest_load_per_task
;
2430 * OK, we don't have enough imbalance to justify moving tasks,
2431 * however we may be able to increase total CPU power used by
2435 pwr_now
+= busiest
->cpu_power
*
2436 min(busiest_load_per_task
, max_load
);
2437 pwr_now
+= this->cpu_power
*
2438 min(this_load_per_task
, this_load
);
2439 pwr_now
/= SCHED_LOAD_SCALE
;
2441 /* Amount of load we'd subtract */
2442 tmp
= busiest_load_per_task
*SCHED_LOAD_SCALE
/busiest
->cpu_power
;
2444 pwr_move
+= busiest
->cpu_power
*
2445 min(busiest_load_per_task
, max_load
- tmp
);
2447 /* Amount of load we'd add */
2448 if (max_load
*busiest
->cpu_power
<
2449 busiest_load_per_task
*SCHED_LOAD_SCALE
)
2450 tmp
= max_load
*busiest
->cpu_power
/this->cpu_power
;
2452 tmp
= busiest_load_per_task
*SCHED_LOAD_SCALE
/this->cpu_power
;
2453 pwr_move
+= this->cpu_power
*min(this_load_per_task
, this_load
+ tmp
);
2454 pwr_move
/= SCHED_LOAD_SCALE
;
2456 /* Move if we gain throughput */
2457 if (pwr_move
<= pwr_now
)
2460 *imbalance
= busiest_load_per_task
;
2466 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2467 if (idle
== NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2470 if (this == group_leader
&& group_leader
!= group_min
) {
2471 *imbalance
= min_load_per_task
;
2481 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2484 find_busiest_queue(struct sched_group
*group
, enum idle_type idle
,
2485 unsigned long imbalance
, cpumask_t
*cpus
)
2487 struct rq
*busiest
= NULL
, *rq
;
2488 unsigned long max_load
= 0;
2491 for_each_cpu_mask(i
, group
->cpumask
) {
2493 if (!cpu_isset(i
, *cpus
))
2498 if (rq
->nr_running
== 1 && rq
->raw_weighted_load
> imbalance
)
2501 if (rq
->raw_weighted_load
> max_load
) {
2502 max_load
= rq
->raw_weighted_load
;
2511 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2512 * so long as it is large enough.
2514 #define MAX_PINNED_INTERVAL 512
2516 static inline unsigned long minus_1_or_zero(unsigned long n
)
2518 return n
> 0 ? n
- 1 : 0;
2522 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2523 * tasks if there is an imbalance.
2525 * Called with this_rq unlocked.
2527 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2528 struct sched_domain
*sd
, enum idle_type idle
)
2530 int nr_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2531 struct sched_group
*group
;
2532 unsigned long imbalance
;
2534 cpumask_t cpus
= CPU_MASK_ALL
;
2536 if (idle
!= NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2537 !sched_smt_power_savings
)
2540 schedstat_inc(sd
, lb_cnt
[idle
]);
2543 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2546 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2550 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2552 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2556 BUG_ON(busiest
== this_rq
);
2558 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2561 if (busiest
->nr_running
> 1) {
2563 * Attempt to move tasks. If find_busiest_group has found
2564 * an imbalance but busiest->nr_running <= 1, the group is
2565 * still unbalanced. nr_moved simply stays zero, so it is
2566 * correctly treated as an imbalance.
2568 double_rq_lock(this_rq
, busiest
);
2569 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2570 minus_1_or_zero(busiest
->nr_running
),
2571 imbalance
, sd
, idle
, &all_pinned
);
2572 double_rq_unlock(this_rq
, busiest
);
2574 /* All tasks on this runqueue were pinned by CPU affinity */
2575 if (unlikely(all_pinned
)) {
2576 cpu_clear(cpu_of(busiest
), cpus
);
2577 if (!cpus_empty(cpus
))
2584 schedstat_inc(sd
, lb_failed
[idle
]);
2585 sd
->nr_balance_failed
++;
2587 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2589 spin_lock(&busiest
->lock
);
2591 /* don't kick the migration_thread, if the curr
2592 * task on busiest cpu can't be moved to this_cpu
2594 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2595 spin_unlock(&busiest
->lock
);
2597 goto out_one_pinned
;
2600 if (!busiest
->active_balance
) {
2601 busiest
->active_balance
= 1;
2602 busiest
->push_cpu
= this_cpu
;
2605 spin_unlock(&busiest
->lock
);
2607 wake_up_process(busiest
->migration_thread
);
2610 * We've kicked active balancing, reset the failure
2613 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2616 sd
->nr_balance_failed
= 0;
2618 if (likely(!active_balance
)) {
2619 /* We were unbalanced, so reset the balancing interval */
2620 sd
->balance_interval
= sd
->min_interval
;
2623 * If we've begun active balancing, start to back off. This
2624 * case may not be covered by the all_pinned logic if there
2625 * is only 1 task on the busy runqueue (because we don't call
2628 if (sd
->balance_interval
< sd
->max_interval
)
2629 sd
->balance_interval
*= 2;
2632 if (!nr_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2633 !sched_smt_power_savings
)
2638 schedstat_inc(sd
, lb_balanced
[idle
]);
2640 sd
->nr_balance_failed
= 0;
2643 /* tune up the balancing interval */
2644 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2645 (sd
->balance_interval
< sd
->max_interval
))
2646 sd
->balance_interval
*= 2;
2648 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2649 !sched_smt_power_savings
)
2655 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2656 * tasks if there is an imbalance.
2658 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2659 * this_rq is locked.
2662 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2664 struct sched_group
*group
;
2665 struct rq
*busiest
= NULL
;
2666 unsigned long imbalance
;
2669 cpumask_t cpus
= CPU_MASK_ALL
;
2671 if (sd
->flags
& SD_SHARE_CPUPOWER
&& !sched_smt_power_savings
)
2674 schedstat_inc(sd
, lb_cnt
[NEWLY_IDLE
]);
2676 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, NEWLY_IDLE
,
2679 schedstat_inc(sd
, lb_nobusyg
[NEWLY_IDLE
]);
2683 busiest
= find_busiest_queue(group
, NEWLY_IDLE
, imbalance
,
2686 schedstat_inc(sd
, lb_nobusyq
[NEWLY_IDLE
]);
2690 BUG_ON(busiest
== this_rq
);
2692 schedstat_add(sd
, lb_imbalance
[NEWLY_IDLE
], imbalance
);
2695 if (busiest
->nr_running
> 1) {
2696 /* Attempt to move tasks */
2697 double_lock_balance(this_rq
, busiest
);
2698 nr_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2699 minus_1_or_zero(busiest
->nr_running
),
2700 imbalance
, sd
, NEWLY_IDLE
, NULL
);
2701 spin_unlock(&busiest
->lock
);
2704 cpu_clear(cpu_of(busiest
), cpus
);
2705 if (!cpus_empty(cpus
))
2711 schedstat_inc(sd
, lb_failed
[NEWLY_IDLE
]);
2712 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
)
2715 sd
->nr_balance_failed
= 0;
2720 schedstat_inc(sd
, lb_balanced
[NEWLY_IDLE
]);
2721 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2722 !sched_smt_power_savings
)
2724 sd
->nr_balance_failed
= 0;
2730 * idle_balance is called by schedule() if this_cpu is about to become
2731 * idle. Attempts to pull tasks from other CPUs.
2733 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2735 struct sched_domain
*sd
;
2737 for_each_domain(this_cpu
, sd
) {
2738 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
2739 /* If we've pulled tasks over stop searching: */
2740 if (load_balance_newidle(this_cpu
, this_rq
, sd
))
2747 * active_load_balance is run by migration threads. It pushes running tasks
2748 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2749 * running on each physical CPU where possible, and avoids physical /
2750 * logical imbalances.
2752 * Called with busiest_rq locked.
2754 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2756 int target_cpu
= busiest_rq
->push_cpu
;
2757 struct sched_domain
*sd
;
2758 struct rq
*target_rq
;
2760 /* Is there any task to move? */
2761 if (busiest_rq
->nr_running
<= 1)
2764 target_rq
= cpu_rq(target_cpu
);
2767 * This condition is "impossible", if it occurs
2768 * we need to fix it. Originally reported by
2769 * Bjorn Helgaas on a 128-cpu setup.
2771 BUG_ON(busiest_rq
== target_rq
);
2773 /* move a task from busiest_rq to target_rq */
2774 double_lock_balance(busiest_rq
, target_rq
);
2776 /* Search for an sd spanning us and the target CPU. */
2777 for_each_domain(target_cpu
, sd
) {
2778 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2779 cpu_isset(busiest_cpu
, sd
->span
))
2784 schedstat_inc(sd
, alb_cnt
);
2786 if (move_tasks(target_rq
, target_cpu
, busiest_rq
, 1,
2787 RTPRIO_TO_LOAD_WEIGHT(100), sd
, SCHED_IDLE
,
2789 schedstat_inc(sd
, alb_pushed
);
2791 schedstat_inc(sd
, alb_failed
);
2793 spin_unlock(&target_rq
->lock
);
2797 * rebalance_tick will get called every timer tick, on every CPU.
2799 * It checks each scheduling domain to see if it is due to be balanced,
2800 * and initiates a balancing operation if so.
2802 * Balancing parameters are set up in arch_init_sched_domains.
2805 /* Don't have all balancing operations going off at once: */
2806 static inline unsigned long cpu_offset(int cpu
)
2808 return jiffies
+ cpu
* HZ
/ NR_CPUS
;
2812 rebalance_tick(int this_cpu
, struct rq
*this_rq
, enum idle_type idle
)
2814 unsigned long this_load
, interval
, j
= cpu_offset(this_cpu
);
2815 struct sched_domain
*sd
;
2818 this_load
= this_rq
->raw_weighted_load
;
2820 /* Update our load: */
2821 for (i
= 0, scale
= 1; i
< 3; i
++, scale
<<= 1) {
2822 unsigned long old_load
, new_load
;
2824 old_load
= this_rq
->cpu_load
[i
];
2825 new_load
= this_load
;
2827 * Round up the averaging division if load is increasing. This
2828 * prevents us from getting stuck on 9 if the load is 10, for
2831 if (new_load
> old_load
)
2832 new_load
+= scale
-1;
2833 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) / scale
;
2836 for_each_domain(this_cpu
, sd
) {
2837 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2840 interval
= sd
->balance_interval
;
2841 if (idle
!= SCHED_IDLE
)
2842 interval
*= sd
->busy_factor
;
2844 /* scale ms to jiffies */
2845 interval
= msecs_to_jiffies(interval
);
2846 if (unlikely(!interval
))
2849 if (j
- sd
->last_balance
>= interval
) {
2850 if (load_balance(this_cpu
, this_rq
, sd
, idle
)) {
2852 * We've pulled tasks over so either we're no
2853 * longer idle, or one of our SMT siblings is
2858 sd
->last_balance
+= interval
;
2864 * on UP we do not need to balance between CPUs:
2866 static inline void rebalance_tick(int cpu
, struct rq
*rq
, enum idle_type idle
)
2869 static inline void idle_balance(int cpu
, struct rq
*rq
)
2874 static inline int wake_priority_sleeper(struct rq
*rq
)
2878 #ifdef CONFIG_SCHED_SMT
2879 spin_lock(&rq
->lock
);
2881 * If an SMT sibling task has been put to sleep for priority
2882 * reasons reschedule the idle task to see if it can now run.
2884 if (rq
->nr_running
) {
2885 resched_task(rq
->idle
);
2888 spin_unlock(&rq
->lock
);
2893 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
2895 EXPORT_PER_CPU_SYMBOL(kstat
);
2898 * This is called on clock ticks and on context switches.
2899 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2902 update_cpu_clock(struct task_struct
*p
, struct rq
*rq
, unsigned long long now
)
2904 p
->sched_time
+= now
- max(p
->timestamp
, rq
->timestamp_last_tick
);
2908 * Return current->sched_time plus any more ns on the sched_clock
2909 * that have not yet been banked.
2911 unsigned long long current_sched_time(const struct task_struct
*p
)
2913 unsigned long long ns
;
2914 unsigned long flags
;
2916 local_irq_save(flags
);
2917 ns
= max(p
->timestamp
, task_rq(p
)->timestamp_last_tick
);
2918 ns
= p
->sched_time
+ sched_clock() - ns
;
2919 local_irq_restore(flags
);
2925 * We place interactive tasks back into the active array, if possible.
2927 * To guarantee that this does not starve expired tasks we ignore the
2928 * interactivity of a task if the first expired task had to wait more
2929 * than a 'reasonable' amount of time. This deadline timeout is
2930 * load-dependent, as the frequency of array switched decreases with
2931 * increasing number of running tasks. We also ignore the interactivity
2932 * if a better static_prio task has expired:
2934 static inline int expired_starving(struct rq
*rq
)
2936 if (rq
->curr
->static_prio
> rq
->best_expired_prio
)
2938 if (!STARVATION_LIMIT
|| !rq
->expired_timestamp
)
2940 if (jiffies
- rq
->expired_timestamp
> STARVATION_LIMIT
* rq
->nr_running
)
2946 * Account user cpu time to a process.
2947 * @p: the process that the cpu time gets accounted to
2948 * @hardirq_offset: the offset to subtract from hardirq_count()
2949 * @cputime: the cpu time spent in user space since the last update
2951 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
2953 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2956 p
->utime
= cputime_add(p
->utime
, cputime
);
2958 /* Add user time to cpustat. */
2959 tmp
= cputime_to_cputime64(cputime
);
2960 if (TASK_NICE(p
) > 0)
2961 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
2963 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
2967 * Account system cpu time to a process.
2968 * @p: the process that the cpu time gets accounted to
2969 * @hardirq_offset: the offset to subtract from hardirq_count()
2970 * @cputime: the cpu time spent in kernel space since the last update
2972 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
2975 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
2976 struct rq
*rq
= this_rq();
2979 p
->stime
= cputime_add(p
->stime
, cputime
);
2981 /* Add system time to cpustat. */
2982 tmp
= cputime_to_cputime64(cputime
);
2983 if (hardirq_count() - hardirq_offset
)
2984 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
2985 else if (softirq_count())
2986 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
2987 else if (p
!= rq
->idle
)
2988 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
2989 else if (atomic_read(&rq
->nr_iowait
) > 0)
2990 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
2992 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
2993 /* Account for system time used */
2994 acct_update_integrals(p
);
2998 * Account for involuntary wait time.
2999 * @p: the process from which the cpu time has been stolen
3000 * @steal: the cpu time spent in involuntary wait
3002 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3004 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3005 cputime64_t tmp
= cputime_to_cputime64(steal
);
3006 struct rq
*rq
= this_rq();
3008 if (p
== rq
->idle
) {
3009 p
->stime
= cputime_add(p
->stime
, steal
);
3010 if (atomic_read(&rq
->nr_iowait
) > 0)
3011 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3013 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3015 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3019 * This function gets called by the timer code, with HZ frequency.
3020 * We call it with interrupts disabled.
3022 * It also gets called by the fork code, when changing the parent's
3025 void scheduler_tick(void)
3027 unsigned long long now
= sched_clock();
3028 struct task_struct
*p
= current
;
3029 int cpu
= smp_processor_id();
3030 struct rq
*rq
= cpu_rq(cpu
);
3032 update_cpu_clock(p
, rq
, now
);
3034 rq
->timestamp_last_tick
= now
;
3036 if (p
== rq
->idle
) {
3037 if (wake_priority_sleeper(rq
))
3039 rebalance_tick(cpu
, rq
, SCHED_IDLE
);
3043 /* Task might have expired already, but not scheduled off yet */
3044 if (p
->array
!= rq
->active
) {
3045 set_tsk_need_resched(p
);
3048 spin_lock(&rq
->lock
);
3050 * The task was running during this tick - update the
3051 * time slice counter. Note: we do not update a thread's
3052 * priority until it either goes to sleep or uses up its
3053 * timeslice. This makes it possible for interactive tasks
3054 * to use up their timeslices at their highest priority levels.
3058 * RR tasks need a special form of timeslice management.
3059 * FIFO tasks have no timeslices.
3061 if ((p
->policy
== SCHED_RR
) && !--p
->time_slice
) {
3062 p
->time_slice
= task_timeslice(p
);
3063 p
->first_time_slice
= 0;
3064 set_tsk_need_resched(p
);
3066 /* put it at the end of the queue: */
3067 requeue_task(p
, rq
->active
);
3071 if (!--p
->time_slice
) {
3072 dequeue_task(p
, rq
->active
);
3073 set_tsk_need_resched(p
);
3074 p
->prio
= effective_prio(p
);
3075 p
->time_slice
= task_timeslice(p
);
3076 p
->first_time_slice
= 0;
3078 if (!rq
->expired_timestamp
)
3079 rq
->expired_timestamp
= jiffies
;
3080 if (!TASK_INTERACTIVE(p
) || expired_starving(rq
)) {
3081 enqueue_task(p
, rq
->expired
);
3082 if (p
->static_prio
< rq
->best_expired_prio
)
3083 rq
->best_expired_prio
= p
->static_prio
;
3085 enqueue_task(p
, rq
->active
);
3088 * Prevent a too long timeslice allowing a task to monopolize
3089 * the CPU. We do this by splitting up the timeslice into
3092 * Note: this does not mean the task's timeslices expire or
3093 * get lost in any way, they just might be preempted by
3094 * another task of equal priority. (one with higher
3095 * priority would have preempted this task already.) We
3096 * requeue this task to the end of the list on this priority
3097 * level, which is in essence a round-robin of tasks with
3100 * This only applies to tasks in the interactive
3101 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3103 if (TASK_INTERACTIVE(p
) && !((task_timeslice(p
) -
3104 p
->time_slice
) % TIMESLICE_GRANULARITY(p
)) &&
3105 (p
->time_slice
>= TIMESLICE_GRANULARITY(p
)) &&
3106 (p
->array
== rq
->active
)) {
3108 requeue_task(p
, rq
->active
);
3109 set_tsk_need_resched(p
);
3113 spin_unlock(&rq
->lock
);
3115 rebalance_tick(cpu
, rq
, NOT_IDLE
);
3118 #ifdef CONFIG_SCHED_SMT
3119 static inline void wakeup_busy_runqueue(struct rq
*rq
)
3121 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3122 if (rq
->curr
== rq
->idle
&& rq
->nr_running
)
3123 resched_task(rq
->idle
);
3127 * Called with interrupt disabled and this_rq's runqueue locked.
3129 static void wake_sleeping_dependent(int this_cpu
)
3131 struct sched_domain
*tmp
, *sd
= NULL
;
3134 for_each_domain(this_cpu
, tmp
) {
3135 if (tmp
->flags
& SD_SHARE_CPUPOWER
) {
3144 for_each_cpu_mask(i
, sd
->span
) {
3145 struct rq
*smt_rq
= cpu_rq(i
);
3149 if (unlikely(!spin_trylock(&smt_rq
->lock
)))
3152 wakeup_busy_runqueue(smt_rq
);
3153 spin_unlock(&smt_rq
->lock
);
3158 * number of 'lost' timeslices this task wont be able to fully
3159 * utilize, if another task runs on a sibling. This models the
3160 * slowdown effect of other tasks running on siblings:
3162 static inline unsigned long
3163 smt_slice(struct task_struct
*p
, struct sched_domain
*sd
)
3165 return p
->time_slice
* (100 - sd
->per_cpu_gain
) / 100;
3169 * To minimise lock contention and not have to drop this_rq's runlock we only
3170 * trylock the sibling runqueues and bypass those runqueues if we fail to
3171 * acquire their lock. As we only trylock the normal locking order does not
3172 * need to be obeyed.
3175 dependent_sleeper(int this_cpu
, struct rq
*this_rq
, struct task_struct
*p
)
3177 struct sched_domain
*tmp
, *sd
= NULL
;
3180 /* kernel/rt threads do not participate in dependent sleeping */
3181 if (!p
->mm
|| rt_task(p
))
3184 for_each_domain(this_cpu
, tmp
) {
3185 if (tmp
->flags
& SD_SHARE_CPUPOWER
) {
3194 for_each_cpu_mask(i
, sd
->span
) {
3195 struct task_struct
*smt_curr
;
3202 if (unlikely(!spin_trylock(&smt_rq
->lock
)))
3205 smt_curr
= smt_rq
->curr
;
3211 * If a user task with lower static priority than the
3212 * running task on the SMT sibling is trying to schedule,
3213 * delay it till there is proportionately less timeslice
3214 * left of the sibling task to prevent a lower priority
3215 * task from using an unfair proportion of the
3216 * physical cpu's resources. -ck
3218 if (rt_task(smt_curr
)) {
3220 * With real time tasks we run non-rt tasks only
3221 * per_cpu_gain% of the time.
3223 if ((jiffies
% DEF_TIMESLICE
) >
3224 (sd
->per_cpu_gain
* DEF_TIMESLICE
/ 100))
3227 if (smt_curr
->static_prio
< p
->static_prio
&&
3228 !TASK_PREEMPTS_CURR(p
, smt_rq
) &&
3229 smt_slice(smt_curr
, sd
) > task_timeslice(p
))
3233 spin_unlock(&smt_rq
->lock
);
3238 static inline void wake_sleeping_dependent(int this_cpu
)
3242 dependent_sleeper(int this_cpu
, struct rq
*this_rq
, struct task_struct
*p
)
3248 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3250 void fastcall
add_preempt_count(int val
)
3255 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3257 preempt_count() += val
;
3259 * Spinlock count overflowing soon?
3261 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >= PREEMPT_MASK
-10);
3263 EXPORT_SYMBOL(add_preempt_count
);
3265 void fastcall
sub_preempt_count(int val
)
3270 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3273 * Is the spinlock portion underflowing?
3275 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3276 !(preempt_count() & PREEMPT_MASK
)))
3279 preempt_count() -= val
;
3281 EXPORT_SYMBOL(sub_preempt_count
);
3285 static inline int interactive_sleep(enum sleep_type sleep_type
)
3287 return (sleep_type
== SLEEP_INTERACTIVE
||
3288 sleep_type
== SLEEP_INTERRUPTED
);
3292 * schedule() is the main scheduler function.
3294 asmlinkage
void __sched
schedule(void)
3296 struct task_struct
*prev
, *next
;
3297 struct prio_array
*array
;
3298 struct list_head
*queue
;
3299 unsigned long long now
;
3300 unsigned long run_time
;
3301 int cpu
, idx
, new_prio
;
3306 * Test if we are atomic. Since do_exit() needs to call into
3307 * schedule() atomically, we ignore that path for now.
3308 * Otherwise, whine if we are scheduling when we should not be.
3310 if (unlikely(in_atomic() && !current
->exit_state
)) {
3311 printk(KERN_ERR
"BUG: scheduling while atomic: "
3313 current
->comm
, preempt_count(), current
->pid
);
3316 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3321 release_kernel_lock(prev
);
3322 need_resched_nonpreemptible
:
3326 * The idle thread is not allowed to schedule!
3327 * Remove this check after it has been exercised a bit.
3329 if (unlikely(prev
== rq
->idle
) && prev
->state
!= TASK_RUNNING
) {
3330 printk(KERN_ERR
"bad: scheduling from the idle thread!\n");
3334 schedstat_inc(rq
, sched_cnt
);
3335 now
= sched_clock();
3336 if (likely((long long)(now
- prev
->timestamp
) < NS_MAX_SLEEP_AVG
)) {
3337 run_time
= now
- prev
->timestamp
;
3338 if (unlikely((long long)(now
- prev
->timestamp
) < 0))
3341 run_time
= NS_MAX_SLEEP_AVG
;
3344 * Tasks charged proportionately less run_time at high sleep_avg to
3345 * delay them losing their interactive status
3347 run_time
/= (CURRENT_BONUS(prev
) ? : 1);
3349 spin_lock_irq(&rq
->lock
);
3351 if (unlikely(prev
->flags
& PF_DEAD
))
3352 prev
->state
= EXIT_DEAD
;
3354 switch_count
= &prev
->nivcsw
;
3355 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3356 switch_count
= &prev
->nvcsw
;
3357 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3358 unlikely(signal_pending(prev
))))
3359 prev
->state
= TASK_RUNNING
;
3361 if (prev
->state
== TASK_UNINTERRUPTIBLE
)
3362 rq
->nr_uninterruptible
++;
3363 deactivate_task(prev
, rq
);
3367 cpu
= smp_processor_id();
3368 if (unlikely(!rq
->nr_running
)) {
3369 idle_balance(cpu
, rq
);
3370 if (!rq
->nr_running
) {
3372 rq
->expired_timestamp
= 0;
3373 wake_sleeping_dependent(cpu
);
3379 if (unlikely(!array
->nr_active
)) {
3381 * Switch the active and expired arrays.
3383 schedstat_inc(rq
, sched_switch
);
3384 rq
->active
= rq
->expired
;
3385 rq
->expired
= array
;
3387 rq
->expired_timestamp
= 0;
3388 rq
->best_expired_prio
= MAX_PRIO
;
3391 idx
= sched_find_first_bit(array
->bitmap
);
3392 queue
= array
->queue
+ idx
;
3393 next
= list_entry(queue
->next
, struct task_struct
, run_list
);
3395 if (!rt_task(next
) && interactive_sleep(next
->sleep_type
)) {
3396 unsigned long long delta
= now
- next
->timestamp
;
3397 if (unlikely((long long)(now
- next
->timestamp
) < 0))
3400 if (next
->sleep_type
== SLEEP_INTERACTIVE
)
3401 delta
= delta
* (ON_RUNQUEUE_WEIGHT
* 128 / 100) / 128;
3403 array
= next
->array
;
3404 new_prio
= recalc_task_prio(next
, next
->timestamp
+ delta
);
3406 if (unlikely(next
->prio
!= new_prio
)) {
3407 dequeue_task(next
, array
);
3408 next
->prio
= new_prio
;
3409 enqueue_task(next
, array
);
3412 next
->sleep_type
= SLEEP_NORMAL
;
3413 if (dependent_sleeper(cpu
, rq
, next
))
3416 if (next
== rq
->idle
)
3417 schedstat_inc(rq
, sched_goidle
);
3419 prefetch_stack(next
);
3420 clear_tsk_need_resched(prev
);
3421 rcu_qsctr_inc(task_cpu(prev
));
3423 update_cpu_clock(prev
, rq
, now
);
3425 prev
->sleep_avg
-= run_time
;
3426 if ((long)prev
->sleep_avg
<= 0)
3427 prev
->sleep_avg
= 0;
3428 prev
->timestamp
= prev
->last_ran
= now
;
3430 sched_info_switch(prev
, next
);
3431 if (likely(prev
!= next
)) {
3432 next
->timestamp
= now
;
3437 prepare_task_switch(rq
, next
);
3438 prev
= context_switch(rq
, prev
, next
);
3441 * this_rq must be evaluated again because prev may have moved
3442 * CPUs since it called schedule(), thus the 'rq' on its stack
3443 * frame will be invalid.
3445 finish_task_switch(this_rq(), prev
);
3447 spin_unlock_irq(&rq
->lock
);
3450 if (unlikely(reacquire_kernel_lock(prev
) < 0))
3451 goto need_resched_nonpreemptible
;
3452 preempt_enable_no_resched();
3453 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3456 EXPORT_SYMBOL(schedule
);
3458 #ifdef CONFIG_PREEMPT
3460 * this is the entry point to schedule() from in-kernel preemption
3461 * off of preempt_enable. Kernel preemptions off return from interrupt
3462 * occur there and call schedule directly.
3464 asmlinkage
void __sched
preempt_schedule(void)
3466 struct thread_info
*ti
= current_thread_info();
3467 #ifdef CONFIG_PREEMPT_BKL
3468 struct task_struct
*task
= current
;
3469 int saved_lock_depth
;
3472 * If there is a non-zero preempt_count or interrupts are disabled,
3473 * we do not want to preempt the current task. Just return..
3475 if (unlikely(ti
->preempt_count
|| irqs_disabled()))
3479 add_preempt_count(PREEMPT_ACTIVE
);
3481 * We keep the big kernel semaphore locked, but we
3482 * clear ->lock_depth so that schedule() doesnt
3483 * auto-release the semaphore:
3485 #ifdef CONFIG_PREEMPT_BKL
3486 saved_lock_depth
= task
->lock_depth
;
3487 task
->lock_depth
= -1;
3490 #ifdef CONFIG_PREEMPT_BKL
3491 task
->lock_depth
= saved_lock_depth
;
3493 sub_preempt_count(PREEMPT_ACTIVE
);
3495 /* we could miss a preemption opportunity between schedule and now */
3497 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3500 EXPORT_SYMBOL(preempt_schedule
);
3503 * this is the entry point to schedule() from kernel preemption
3504 * off of irq context.
3505 * Note, that this is called and return with irqs disabled. This will
3506 * protect us against recursive calling from irq.
3508 asmlinkage
void __sched
preempt_schedule_irq(void)
3510 struct thread_info
*ti
= current_thread_info();
3511 #ifdef CONFIG_PREEMPT_BKL
3512 struct task_struct
*task
= current
;
3513 int saved_lock_depth
;
3515 /* Catch callers which need to be fixed */
3516 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3519 add_preempt_count(PREEMPT_ACTIVE
);
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3525 #ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth
= task
->lock_depth
;
3527 task
->lock_depth
= -1;
3531 local_irq_disable();
3532 #ifdef CONFIG_PREEMPT_BKL
3533 task
->lock_depth
= saved_lock_depth
;
3535 sub_preempt_count(PREEMPT_ACTIVE
);
3537 /* we could miss a preemption opportunity between schedule and now */
3539 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3543 #endif /* CONFIG_PREEMPT */
3545 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3548 return try_to_wake_up(curr
->private, mode
, sync
);
3550 EXPORT_SYMBOL(default_wake_function
);
3553 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3554 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3555 * number) then we wake all the non-exclusive tasks and one exclusive task.
3557 * There are circumstances in which we can try to wake a task which has already
3558 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3559 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3561 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3562 int nr_exclusive
, int sync
, void *key
)
3564 struct list_head
*tmp
, *next
;
3566 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3567 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3568 unsigned flags
= curr
->flags
;
3570 if (curr
->func(curr
, mode
, sync
, key
) &&
3571 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3577 * __wake_up - wake up threads blocked on a waitqueue.
3579 * @mode: which threads
3580 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3581 * @key: is directly passed to the wakeup function
3583 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3584 int nr_exclusive
, void *key
)
3586 unsigned long flags
;
3588 spin_lock_irqsave(&q
->lock
, flags
);
3589 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3590 spin_unlock_irqrestore(&q
->lock
, flags
);
3592 EXPORT_SYMBOL(__wake_up
);
3595 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3597 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3599 __wake_up_common(q
, mode
, 1, 0, NULL
);
3603 * __wake_up_sync - wake up threads blocked on a waitqueue.
3605 * @mode: which threads
3606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3608 * The sync wakeup differs that the waker knows that it will schedule
3609 * away soon, so while the target thread will be woken up, it will not
3610 * be migrated to another CPU - ie. the two threads are 'synchronized'
3611 * with each other. This can prevent needless bouncing between CPUs.
3613 * On UP it can prevent extra preemption.
3616 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3618 unsigned long flags
;
3624 if (unlikely(!nr_exclusive
))
3627 spin_lock_irqsave(&q
->lock
, flags
);
3628 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3629 spin_unlock_irqrestore(&q
->lock
, flags
);
3631 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3633 void fastcall
complete(struct completion
*x
)
3635 unsigned long flags
;
3637 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3639 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3641 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3643 EXPORT_SYMBOL(complete
);
3645 void fastcall
complete_all(struct completion
*x
)
3647 unsigned long flags
;
3649 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3650 x
->done
+= UINT_MAX
/2;
3651 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3653 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3655 EXPORT_SYMBOL(complete_all
);
3657 void fastcall __sched
wait_for_completion(struct completion
*x
)
3661 spin_lock_irq(&x
->wait
.lock
);
3663 DECLARE_WAITQUEUE(wait
, current
);
3665 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3666 __add_wait_queue_tail(&x
->wait
, &wait
);
3668 __set_current_state(TASK_UNINTERRUPTIBLE
);
3669 spin_unlock_irq(&x
->wait
.lock
);
3671 spin_lock_irq(&x
->wait
.lock
);
3673 __remove_wait_queue(&x
->wait
, &wait
);
3676 spin_unlock_irq(&x
->wait
.lock
);
3678 EXPORT_SYMBOL(wait_for_completion
);
3680 unsigned long fastcall __sched
3681 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3685 spin_lock_irq(&x
->wait
.lock
);
3687 DECLARE_WAITQUEUE(wait
, current
);
3689 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3690 __add_wait_queue_tail(&x
->wait
, &wait
);
3692 __set_current_state(TASK_UNINTERRUPTIBLE
);
3693 spin_unlock_irq(&x
->wait
.lock
);
3694 timeout
= schedule_timeout(timeout
);
3695 spin_lock_irq(&x
->wait
.lock
);
3697 __remove_wait_queue(&x
->wait
, &wait
);
3701 __remove_wait_queue(&x
->wait
, &wait
);
3705 spin_unlock_irq(&x
->wait
.lock
);
3708 EXPORT_SYMBOL(wait_for_completion_timeout
);
3710 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3716 spin_lock_irq(&x
->wait
.lock
);
3718 DECLARE_WAITQUEUE(wait
, current
);
3720 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3721 __add_wait_queue_tail(&x
->wait
, &wait
);
3723 if (signal_pending(current
)) {
3725 __remove_wait_queue(&x
->wait
, &wait
);
3728 __set_current_state(TASK_INTERRUPTIBLE
);
3729 spin_unlock_irq(&x
->wait
.lock
);
3731 spin_lock_irq(&x
->wait
.lock
);
3733 __remove_wait_queue(&x
->wait
, &wait
);
3737 spin_unlock_irq(&x
->wait
.lock
);
3741 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3743 unsigned long fastcall __sched
3744 wait_for_completion_interruptible_timeout(struct completion
*x
,
3745 unsigned long timeout
)
3749 spin_lock_irq(&x
->wait
.lock
);
3751 DECLARE_WAITQUEUE(wait
, current
);
3753 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3754 __add_wait_queue_tail(&x
->wait
, &wait
);
3756 if (signal_pending(current
)) {
3757 timeout
= -ERESTARTSYS
;
3758 __remove_wait_queue(&x
->wait
, &wait
);
3761 __set_current_state(TASK_INTERRUPTIBLE
);
3762 spin_unlock_irq(&x
->wait
.lock
);
3763 timeout
= schedule_timeout(timeout
);
3764 spin_lock_irq(&x
->wait
.lock
);
3766 __remove_wait_queue(&x
->wait
, &wait
);
3770 __remove_wait_queue(&x
->wait
, &wait
);
3774 spin_unlock_irq(&x
->wait
.lock
);
3777 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3780 #define SLEEP_ON_VAR \
3781 unsigned long flags; \
3782 wait_queue_t wait; \
3783 init_waitqueue_entry(&wait, current);
3785 #define SLEEP_ON_HEAD \
3786 spin_lock_irqsave(&q->lock,flags); \
3787 __add_wait_queue(q, &wait); \
3788 spin_unlock(&q->lock);
3790 #define SLEEP_ON_TAIL \
3791 spin_lock_irq(&q->lock); \
3792 __remove_wait_queue(q, &wait); \
3793 spin_unlock_irqrestore(&q->lock, flags);
3795 void fastcall __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3799 current
->state
= TASK_INTERRUPTIBLE
;
3805 EXPORT_SYMBOL(interruptible_sleep_on
);
3807 long fastcall __sched
3808 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3812 current
->state
= TASK_INTERRUPTIBLE
;
3815 timeout
= schedule_timeout(timeout
);
3820 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3822 void fastcall __sched
sleep_on(wait_queue_head_t
*q
)
3826 current
->state
= TASK_UNINTERRUPTIBLE
;
3832 EXPORT_SYMBOL(sleep_on
);
3834 long fastcall __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3838 current
->state
= TASK_UNINTERRUPTIBLE
;
3841 timeout
= schedule_timeout(timeout
);
3847 EXPORT_SYMBOL(sleep_on_timeout
);
3849 #ifdef CONFIG_RT_MUTEXES
3852 * rt_mutex_setprio - set the current priority of a task
3854 * @prio: prio value (kernel-internal form)
3856 * This function changes the 'effective' priority of a task. It does
3857 * not touch ->normal_prio like __setscheduler().
3859 * Used by the rt_mutex code to implement priority inheritance logic.
3861 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3863 struct prio_array
*array
;
3864 unsigned long flags
;
3868 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3870 rq
= task_rq_lock(p
, &flags
);
3875 dequeue_task(p
, array
);
3880 * If changing to an RT priority then queue it
3881 * in the active array!
3885 enqueue_task(p
, array
);
3887 * Reschedule if we are currently running on this runqueue and
3888 * our priority decreased, or if we are not currently running on
3889 * this runqueue and our priority is higher than the current's
3891 if (task_running(rq
, p
)) {
3892 if (p
->prio
> oldprio
)
3893 resched_task(rq
->curr
);
3894 } else if (TASK_PREEMPTS_CURR(p
, rq
))
3895 resched_task(rq
->curr
);
3897 task_rq_unlock(rq
, &flags
);
3902 void set_user_nice(struct task_struct
*p
, long nice
)
3904 struct prio_array
*array
;
3905 int old_prio
, delta
;
3906 unsigned long flags
;
3909 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3912 * We have to be careful, if called from sys_setpriority(),
3913 * the task might be in the middle of scheduling on another CPU.
3915 rq
= task_rq_lock(p
, &flags
);
3917 * The RT priorities are set via sched_setscheduler(), but we still
3918 * allow the 'normal' nice value to be set - but as expected
3919 * it wont have any effect on scheduling until the task is
3920 * not SCHED_NORMAL/SCHED_BATCH:
3922 if (has_rt_policy(p
)) {
3923 p
->static_prio
= NICE_TO_PRIO(nice
);
3928 dequeue_task(p
, array
);
3929 dec_raw_weighted_load(rq
, p
);
3932 p
->static_prio
= NICE_TO_PRIO(nice
);
3935 p
->prio
= effective_prio(p
);
3936 delta
= p
->prio
- old_prio
;
3939 enqueue_task(p
, array
);
3940 inc_raw_weighted_load(rq
, p
);
3942 * If the task increased its priority or is running and
3943 * lowered its priority, then reschedule its CPU:
3945 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3946 resched_task(rq
->curr
);
3949 task_rq_unlock(rq
, &flags
);
3951 EXPORT_SYMBOL(set_user_nice
);
3954 * can_nice - check if a task can reduce its nice value
3958 int can_nice(const struct task_struct
*p
, const int nice
)
3960 /* convert nice value [19,-20] to rlimit style value [1,40] */
3961 int nice_rlim
= 20 - nice
;
3963 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
3964 capable(CAP_SYS_NICE
));
3967 #ifdef __ARCH_WANT_SYS_NICE
3970 * sys_nice - change the priority of the current process.
3971 * @increment: priority increment
3973 * sys_setpriority is a more generic, but much slower function that
3974 * does similar things.
3976 asmlinkage
long sys_nice(int increment
)
3981 * Setpriority might change our priority at the same moment.
3982 * We don't have to worry. Conceptually one call occurs first
3983 * and we have a single winner.
3985 if (increment
< -40)
3990 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
3996 if (increment
< 0 && !can_nice(current
, nice
))
3999 retval
= security_task_setnice(current
, nice
);
4003 set_user_nice(current
, nice
);
4010 * task_prio - return the priority value of a given task.
4011 * @p: the task in question.
4013 * This is the priority value as seen by users in /proc.
4014 * RT tasks are offset by -200. Normal tasks are centered
4015 * around 0, value goes from -16 to +15.
4017 int task_prio(const struct task_struct
*p
)
4019 return p
->prio
- MAX_RT_PRIO
;
4023 * task_nice - return the nice value of a given task.
4024 * @p: the task in question.
4026 int task_nice(const struct task_struct
*p
)
4028 return TASK_NICE(p
);
4030 EXPORT_SYMBOL_GPL(task_nice
);
4033 * idle_cpu - is a given cpu idle currently?
4034 * @cpu: the processor in question.
4036 int idle_cpu(int cpu
)
4038 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4042 * idle_task - return the idle task for a given cpu.
4043 * @cpu: the processor in question.
4045 struct task_struct
*idle_task(int cpu
)
4047 return cpu_rq(cpu
)->idle
;
4051 * find_process_by_pid - find a process with a matching PID value.
4052 * @pid: the pid in question.
4054 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4056 return pid
? find_task_by_pid(pid
) : current
;
4059 /* Actually do priority change: must hold rq lock. */
4060 static void __setscheduler(struct task_struct
*p
, int policy
, int prio
)
4065 p
->rt_priority
= prio
;
4066 p
->normal_prio
= normal_prio(p
);
4067 /* we are holding p->pi_lock already */
4068 p
->prio
= rt_mutex_getprio(p
);
4070 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4072 if (policy
== SCHED_BATCH
)
4078 * sched_setscheduler - change the scheduling policy and/or RT priority of
4080 * @p: the task in question.
4081 * @policy: new policy.
4082 * @param: structure containing the new RT priority.
4084 int sched_setscheduler(struct task_struct
*p
, int policy
,
4085 struct sched_param
*param
)
4087 int retval
, oldprio
, oldpolicy
= -1;
4088 struct prio_array
*array
;
4089 unsigned long flags
;
4092 /* may grab non-irq protected spin_locks */
4093 BUG_ON(in_interrupt());
4095 /* double check policy once rq lock held */
4097 policy
= oldpolicy
= p
->policy
;
4098 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4099 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
)
4102 * Valid priorities for SCHED_FIFO and SCHED_RR are
4103 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4106 if (param
->sched_priority
< 0 ||
4107 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4108 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4110 if ((policy
== SCHED_NORMAL
|| policy
== SCHED_BATCH
)
4111 != (param
->sched_priority
== 0))
4115 * Allow unprivileged RT tasks to decrease priority:
4117 if (!capable(CAP_SYS_NICE
)) {
4119 * can't change policy, except between SCHED_NORMAL
4122 if (((policy
!= SCHED_NORMAL
&& p
->policy
!= SCHED_BATCH
) &&
4123 (policy
!= SCHED_BATCH
&& p
->policy
!= SCHED_NORMAL
)) &&
4124 !p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
4126 /* can't increase priority */
4127 if ((policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
) &&
4128 param
->sched_priority
> p
->rt_priority
&&
4129 param
->sched_priority
>
4130 p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
)
4132 /* can't change other user's priorities */
4133 if ((current
->euid
!= p
->euid
) &&
4134 (current
->euid
!= p
->uid
))
4138 retval
= security_task_setscheduler(p
, policy
, param
);
4142 * make sure no PI-waiters arrive (or leave) while we are
4143 * changing the priority of the task:
4145 spin_lock_irqsave(&p
->pi_lock
, flags
);
4147 * To be able to change p->policy safely, the apropriate
4148 * runqueue lock must be held.
4150 rq
= __task_rq_lock(p
);
4151 /* recheck policy now with rq lock held */
4152 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4153 policy
= oldpolicy
= -1;
4154 __task_rq_unlock(rq
);
4155 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4160 deactivate_task(p
, rq
);
4162 __setscheduler(p
, policy
, param
->sched_priority
);
4164 __activate_task(p
, rq
);
4166 * Reschedule if we are currently running on this runqueue and
4167 * our priority decreased, or if we are not currently running on
4168 * this runqueue and our priority is higher than the current's
4170 if (task_running(rq
, p
)) {
4171 if (p
->prio
> oldprio
)
4172 resched_task(rq
->curr
);
4173 } else if (TASK_PREEMPTS_CURR(p
, rq
))
4174 resched_task(rq
->curr
);
4176 __task_rq_unlock(rq
);
4177 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4179 rt_mutex_adjust_pi(p
);
4183 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4186 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4188 struct sched_param lparam
;
4189 struct task_struct
*p
;
4192 if (!param
|| pid
< 0)
4194 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4196 read_lock_irq(&tasklist_lock
);
4197 p
= find_process_by_pid(pid
);
4199 read_unlock_irq(&tasklist_lock
);
4202 retval
= sched_setscheduler(p
, policy
, &lparam
);
4203 read_unlock_irq(&tasklist_lock
);
4209 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4210 * @pid: the pid in question.
4211 * @policy: new policy.
4212 * @param: structure containing the new RT priority.
4214 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4215 struct sched_param __user
*param
)
4217 /* negative values for policy are not valid */
4221 return do_sched_setscheduler(pid
, policy
, param
);
4225 * sys_sched_setparam - set/change the RT priority of a thread
4226 * @pid: the pid in question.
4227 * @param: structure containing the new RT priority.
4229 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4231 return do_sched_setscheduler(pid
, -1, param
);
4235 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4236 * @pid: the pid in question.
4238 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4240 struct task_struct
*p
;
4241 int retval
= -EINVAL
;
4247 read_lock(&tasklist_lock
);
4248 p
= find_process_by_pid(pid
);
4250 retval
= security_task_getscheduler(p
);
4254 read_unlock(&tasklist_lock
);
4261 * sys_sched_getscheduler - get the RT priority of a thread
4262 * @pid: the pid in question.
4263 * @param: structure containing the RT priority.
4265 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4267 struct sched_param lp
;
4268 struct task_struct
*p
;
4269 int retval
= -EINVAL
;
4271 if (!param
|| pid
< 0)
4274 read_lock(&tasklist_lock
);
4275 p
= find_process_by_pid(pid
);
4280 retval
= security_task_getscheduler(p
);
4284 lp
.sched_priority
= p
->rt_priority
;
4285 read_unlock(&tasklist_lock
);
4288 * This one might sleep, we cannot do it with a spinlock held ...
4290 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4296 read_unlock(&tasklist_lock
);
4300 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4302 cpumask_t cpus_allowed
;
4303 struct task_struct
*p
;
4307 read_lock(&tasklist_lock
);
4309 p
= find_process_by_pid(pid
);
4311 read_unlock(&tasklist_lock
);
4312 unlock_cpu_hotplug();
4317 * It is not safe to call set_cpus_allowed with the
4318 * tasklist_lock held. We will bump the task_struct's
4319 * usage count and then drop tasklist_lock.
4322 read_unlock(&tasklist_lock
);
4325 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4326 !capable(CAP_SYS_NICE
))
4329 retval
= security_task_setscheduler(p
, 0, NULL
);
4333 cpus_allowed
= cpuset_cpus_allowed(p
);
4334 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4335 retval
= set_cpus_allowed(p
, new_mask
);
4339 unlock_cpu_hotplug();
4343 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4344 cpumask_t
*new_mask
)
4346 if (len
< sizeof(cpumask_t
)) {
4347 memset(new_mask
, 0, sizeof(cpumask_t
));
4348 } else if (len
> sizeof(cpumask_t
)) {
4349 len
= sizeof(cpumask_t
);
4351 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4355 * sys_sched_setaffinity - set the cpu affinity of a process
4356 * @pid: pid of the process
4357 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4358 * @user_mask_ptr: user-space pointer to the new cpu mask
4360 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4361 unsigned long __user
*user_mask_ptr
)
4366 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4370 return sched_setaffinity(pid
, new_mask
);
4374 * Represents all cpu's present in the system
4375 * In systems capable of hotplug, this map could dynamically grow
4376 * as new cpu's are detected in the system via any platform specific
4377 * method, such as ACPI for e.g.
4380 cpumask_t cpu_present_map __read_mostly
;
4381 EXPORT_SYMBOL(cpu_present_map
);
4384 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4385 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4388 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4390 struct task_struct
*p
;
4394 read_lock(&tasklist_lock
);
4397 p
= find_process_by_pid(pid
);
4401 retval
= security_task_getscheduler(p
);
4405 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4408 read_unlock(&tasklist_lock
);
4409 unlock_cpu_hotplug();
4417 * sys_sched_getaffinity - get the cpu affinity of a process
4418 * @pid: pid of the process
4419 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4420 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4422 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4423 unsigned long __user
*user_mask_ptr
)
4428 if (len
< sizeof(cpumask_t
))
4431 ret
= sched_getaffinity(pid
, &mask
);
4435 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4438 return sizeof(cpumask_t
);
4442 * sys_sched_yield - yield the current processor to other threads.
4444 * this function yields the current CPU by moving the calling thread
4445 * to the expired array. If there are no other threads running on this
4446 * CPU then this function will return.
4448 asmlinkage
long sys_sched_yield(void)
4450 struct rq
*rq
= this_rq_lock();
4451 struct prio_array
*array
= current
->array
, *target
= rq
->expired
;
4453 schedstat_inc(rq
, yld_cnt
);
4455 * We implement yielding by moving the task into the expired
4458 * (special rule: RT tasks will just roundrobin in the active
4461 if (rt_task(current
))
4462 target
= rq
->active
;
4464 if (array
->nr_active
== 1) {
4465 schedstat_inc(rq
, yld_act_empty
);
4466 if (!rq
->expired
->nr_active
)
4467 schedstat_inc(rq
, yld_both_empty
);
4468 } else if (!rq
->expired
->nr_active
)
4469 schedstat_inc(rq
, yld_exp_empty
);
4471 if (array
!= target
) {
4472 dequeue_task(current
, array
);
4473 enqueue_task(current
, target
);
4476 * requeue_task is cheaper so perform that if possible.
4478 requeue_task(current
, array
);
4481 * Since we are going to call schedule() anyway, there's
4482 * no need to preempt or enable interrupts:
4484 __release(rq
->lock
);
4485 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4486 _raw_spin_unlock(&rq
->lock
);
4487 preempt_enable_no_resched();
4494 static inline int __resched_legal(int expected_preempt_count
)
4496 if (unlikely(preempt_count() != expected_preempt_count
))
4498 if (unlikely(system_state
!= SYSTEM_RUNNING
))
4503 static void __cond_resched(void)
4505 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4506 __might_sleep(__FILE__
, __LINE__
);
4509 * The BKS might be reacquired before we have dropped
4510 * PREEMPT_ACTIVE, which could trigger a second
4511 * cond_resched() call.
4514 add_preempt_count(PREEMPT_ACTIVE
);
4516 sub_preempt_count(PREEMPT_ACTIVE
);
4517 } while (need_resched());
4520 int __sched
cond_resched(void)
4522 if (need_resched() && __resched_legal(0)) {
4528 EXPORT_SYMBOL(cond_resched
);
4531 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4532 * call schedule, and on return reacquire the lock.
4534 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4535 * operations here to prevent schedule() from being called twice (once via
4536 * spin_unlock(), once by hand).
4538 int cond_resched_lock(spinlock_t
*lock
)
4542 if (need_lockbreak(lock
)) {
4548 if (need_resched() && __resched_legal(1)) {
4549 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4550 _raw_spin_unlock(lock
);
4551 preempt_enable_no_resched();
4558 EXPORT_SYMBOL(cond_resched_lock
);
4560 int __sched
cond_resched_softirq(void)
4562 BUG_ON(!in_softirq());
4564 if (need_resched() && __resched_legal(0)) {
4565 raw_local_irq_disable();
4567 raw_local_irq_enable();
4574 EXPORT_SYMBOL(cond_resched_softirq
);
4577 * yield - yield the current processor to other threads.
4579 * this is a shortcut for kernel-space yielding - it marks the
4580 * thread runnable and calls sys_sched_yield().
4582 void __sched
yield(void)
4584 set_current_state(TASK_RUNNING
);
4587 EXPORT_SYMBOL(yield
);
4590 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4591 * that process accounting knows that this is a task in IO wait state.
4593 * But don't do that if it is a deliberate, throttling IO wait (this task
4594 * has set its backing_dev_info: the queue against which it should throttle)
4596 void __sched
io_schedule(void)
4598 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4600 delayacct_blkio_start();
4601 atomic_inc(&rq
->nr_iowait
);
4603 atomic_dec(&rq
->nr_iowait
);
4604 delayacct_blkio_end();
4606 EXPORT_SYMBOL(io_schedule
);
4608 long __sched
io_schedule_timeout(long timeout
)
4610 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4613 delayacct_blkio_start();
4614 atomic_inc(&rq
->nr_iowait
);
4615 ret
= schedule_timeout(timeout
);
4616 atomic_dec(&rq
->nr_iowait
);
4617 delayacct_blkio_end();
4622 * sys_sched_get_priority_max - return maximum RT priority.
4623 * @policy: scheduling class.
4625 * this syscall returns the maximum rt_priority that can be used
4626 * by a given scheduling class.
4628 asmlinkage
long sys_sched_get_priority_max(int policy
)
4635 ret
= MAX_USER_RT_PRIO
-1;
4646 * sys_sched_get_priority_min - return minimum RT priority.
4647 * @policy: scheduling class.
4649 * this syscall returns the minimum rt_priority that can be used
4650 * by a given scheduling class.
4652 asmlinkage
long sys_sched_get_priority_min(int policy
)
4669 * sys_sched_rr_get_interval - return the default timeslice of a process.
4670 * @pid: pid of the process.
4671 * @interval: userspace pointer to the timeslice value.
4673 * this syscall writes the default timeslice value of a given process
4674 * into the user-space timespec buffer. A value of '0' means infinity.
4677 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4679 struct task_struct
*p
;
4680 int retval
= -EINVAL
;
4687 read_lock(&tasklist_lock
);
4688 p
= find_process_by_pid(pid
);
4692 retval
= security_task_getscheduler(p
);
4696 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4697 0 : task_timeslice(p
), &t
);
4698 read_unlock(&tasklist_lock
);
4699 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4703 read_unlock(&tasklist_lock
);
4707 static inline struct task_struct
*eldest_child(struct task_struct
*p
)
4709 if (list_empty(&p
->children
))
4711 return list_entry(p
->children
.next
,struct task_struct
,sibling
);
4714 static inline struct task_struct
*older_sibling(struct task_struct
*p
)
4716 if (p
->sibling
.prev
==&p
->parent
->children
)
4718 return list_entry(p
->sibling
.prev
,struct task_struct
,sibling
);
4721 static inline struct task_struct
*younger_sibling(struct task_struct
*p
)
4723 if (p
->sibling
.next
==&p
->parent
->children
)
4725 return list_entry(p
->sibling
.next
,struct task_struct
,sibling
);
4728 static const char stat_nam
[] = "RSDTtZX";
4730 static void show_task(struct task_struct
*p
)
4732 struct task_struct
*relative
;
4733 unsigned long free
= 0;
4736 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4737 printk("%-13.13s %c", p
->comm
,
4738 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4739 #if (BITS_PER_LONG == 32)
4740 if (state
== TASK_RUNNING
)
4741 printk(" running ");
4743 printk(" %08lX ", thread_saved_pc(p
));
4745 if (state
== TASK_RUNNING
)
4746 printk(" running task ");
4748 printk(" %016lx ", thread_saved_pc(p
));
4750 #ifdef CONFIG_DEBUG_STACK_USAGE
4752 unsigned long *n
= end_of_stack(p
);
4755 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4758 printk("%5lu %5d %6d ", free
, p
->pid
, p
->parent
->pid
);
4759 if ((relative
= eldest_child(p
)))
4760 printk("%5d ", relative
->pid
);
4763 if ((relative
= younger_sibling(p
)))
4764 printk("%7d", relative
->pid
);
4767 if ((relative
= older_sibling(p
)))
4768 printk(" %5d", relative
->pid
);
4772 printk(" (L-TLB)\n");
4774 printk(" (NOTLB)\n");
4776 if (state
!= TASK_RUNNING
)
4777 show_stack(p
, NULL
);
4780 void show_state(void)
4782 struct task_struct
*g
, *p
;
4784 #if (BITS_PER_LONG == 32)
4787 printk(" task PC pid father child younger older\n");
4791 printk(" task PC pid father child younger older\n");
4793 read_lock(&tasklist_lock
);
4794 do_each_thread(g
, p
) {
4796 * reset the NMI-timeout, listing all files on a slow
4797 * console might take alot of time:
4799 touch_nmi_watchdog();
4801 } while_each_thread(g
, p
);
4803 read_unlock(&tasklist_lock
);
4804 debug_show_all_locks();
4808 * init_idle - set up an idle thread for a given CPU
4809 * @idle: task in question
4810 * @cpu: cpu the idle task belongs to
4812 * NOTE: this function does not set the idle thread's NEED_RESCHED
4813 * flag, to make booting more robust.
4815 void __devinit
init_idle(struct task_struct
*idle
, int cpu
)
4817 struct rq
*rq
= cpu_rq(cpu
);
4818 unsigned long flags
;
4820 idle
->timestamp
= sched_clock();
4821 idle
->sleep_avg
= 0;
4823 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4824 idle
->state
= TASK_RUNNING
;
4825 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4826 set_task_cpu(idle
, cpu
);
4828 spin_lock_irqsave(&rq
->lock
, flags
);
4829 rq
->curr
= rq
->idle
= idle
;
4830 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4833 spin_unlock_irqrestore(&rq
->lock
, flags
);
4835 /* Set the preempt count _outside_ the spinlocks! */
4836 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4837 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4839 task_thread_info(idle
)->preempt_count
= 0;
4844 * In a system that switches off the HZ timer nohz_cpu_mask
4845 * indicates which cpus entered this state. This is used
4846 * in the rcu update to wait only for active cpus. For system
4847 * which do not switch off the HZ timer nohz_cpu_mask should
4848 * always be CPU_MASK_NONE.
4850 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4854 * This is how migration works:
4856 * 1) we queue a struct migration_req structure in the source CPU's
4857 * runqueue and wake up that CPU's migration thread.
4858 * 2) we down() the locked semaphore => thread blocks.
4859 * 3) migration thread wakes up (implicitly it forces the migrated
4860 * thread off the CPU)
4861 * 4) it gets the migration request and checks whether the migrated
4862 * task is still in the wrong runqueue.
4863 * 5) if it's in the wrong runqueue then the migration thread removes
4864 * it and puts it into the right queue.
4865 * 6) migration thread up()s the semaphore.
4866 * 7) we wake up and the migration is done.
4870 * Change a given task's CPU affinity. Migrate the thread to a
4871 * proper CPU and schedule it away if the CPU it's executing on
4872 * is removed from the allowed bitmask.
4874 * NOTE: the caller must have a valid reference to the task, the
4875 * task must not exit() & deallocate itself prematurely. The
4876 * call is not atomic; no spinlocks may be held.
4878 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4880 struct migration_req req
;
4881 unsigned long flags
;
4885 rq
= task_rq_lock(p
, &flags
);
4886 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4891 p
->cpus_allowed
= new_mask
;
4892 /* Can the task run on the task's current CPU? If so, we're done */
4893 if (cpu_isset(task_cpu(p
), new_mask
))
4896 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4897 /* Need help from migration thread: drop lock and wait. */
4898 task_rq_unlock(rq
, &flags
);
4899 wake_up_process(rq
->migration_thread
);
4900 wait_for_completion(&req
.done
);
4901 tlb_migrate_finish(p
->mm
);
4905 task_rq_unlock(rq
, &flags
);
4909 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4912 * Move (not current) task off this cpu, onto dest cpu. We're doing
4913 * this because either it can't run here any more (set_cpus_allowed()
4914 * away from this CPU, or CPU going down), or because we're
4915 * attempting to rebalance this task on exec (sched_exec).
4917 * So we race with normal scheduler movements, but that's OK, as long
4918 * as the task is no longer on this CPU.
4920 * Returns non-zero if task was successfully migrated.
4922 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4924 struct rq
*rq_dest
, *rq_src
;
4927 if (unlikely(cpu_is_offline(dest_cpu
)))
4930 rq_src
= cpu_rq(src_cpu
);
4931 rq_dest
= cpu_rq(dest_cpu
);
4933 double_rq_lock(rq_src
, rq_dest
);
4934 /* Already moved. */
4935 if (task_cpu(p
) != src_cpu
)
4937 /* Affinity changed (again). */
4938 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4941 set_task_cpu(p
, dest_cpu
);
4944 * Sync timestamp with rq_dest's before activating.
4945 * The same thing could be achieved by doing this step
4946 * afterwards, and pretending it was a local activate.
4947 * This way is cleaner and logically correct.
4949 p
->timestamp
= p
->timestamp
- rq_src
->timestamp_last_tick
4950 + rq_dest
->timestamp_last_tick
;
4951 deactivate_task(p
, rq_src
);
4952 __activate_task(p
, rq_dest
);
4953 if (TASK_PREEMPTS_CURR(p
, rq_dest
))
4954 resched_task(rq_dest
->curr
);
4958 double_rq_unlock(rq_src
, rq_dest
);
4963 * migration_thread - this is a highprio system thread that performs
4964 * thread migration by bumping thread off CPU then 'pushing' onto
4967 static int migration_thread(void *data
)
4969 int cpu
= (long)data
;
4973 BUG_ON(rq
->migration_thread
!= current
);
4975 set_current_state(TASK_INTERRUPTIBLE
);
4976 while (!kthread_should_stop()) {
4977 struct migration_req
*req
;
4978 struct list_head
*head
;
4982 spin_lock_irq(&rq
->lock
);
4984 if (cpu_is_offline(cpu
)) {
4985 spin_unlock_irq(&rq
->lock
);
4989 if (rq
->active_balance
) {
4990 active_load_balance(rq
, cpu
);
4991 rq
->active_balance
= 0;
4994 head
= &rq
->migration_queue
;
4996 if (list_empty(head
)) {
4997 spin_unlock_irq(&rq
->lock
);
4999 set_current_state(TASK_INTERRUPTIBLE
);
5002 req
= list_entry(head
->next
, struct migration_req
, list
);
5003 list_del_init(head
->next
);
5005 spin_unlock(&rq
->lock
);
5006 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5009 complete(&req
->done
);
5011 __set_current_state(TASK_RUNNING
);
5015 /* Wait for kthread_stop */
5016 set_current_state(TASK_INTERRUPTIBLE
);
5017 while (!kthread_should_stop()) {
5019 set_current_state(TASK_INTERRUPTIBLE
);
5021 __set_current_state(TASK_RUNNING
);
5025 #ifdef CONFIG_HOTPLUG_CPU
5026 /* Figure out where task on dead CPU should go, use force if neccessary. */
5027 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5029 unsigned long flags
;
5036 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5037 cpus_and(mask
, mask
, p
->cpus_allowed
);
5038 dest_cpu
= any_online_cpu(mask
);
5040 /* On any allowed CPU? */
5041 if (dest_cpu
== NR_CPUS
)
5042 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5044 /* No more Mr. Nice Guy. */
5045 if (dest_cpu
== NR_CPUS
) {
5046 rq
= task_rq_lock(p
, &flags
);
5047 cpus_setall(p
->cpus_allowed
);
5048 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5049 task_rq_unlock(rq
, &flags
);
5052 * Don't tell them about moving exiting tasks or
5053 * kernel threads (both mm NULL), since they never
5056 if (p
->mm
&& printk_ratelimit())
5057 printk(KERN_INFO
"process %d (%s) no "
5058 "longer affine to cpu%d\n",
5059 p
->pid
, p
->comm
, dead_cpu
);
5061 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5066 * While a dead CPU has no uninterruptible tasks queued at this point,
5067 * it might still have a nonzero ->nr_uninterruptible counter, because
5068 * for performance reasons the counter is not stricly tracking tasks to
5069 * their home CPUs. So we just add the counter to another CPU's counter,
5070 * to keep the global sum constant after CPU-down:
5072 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5074 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5075 unsigned long flags
;
5077 local_irq_save(flags
);
5078 double_rq_lock(rq_src
, rq_dest
);
5079 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5080 rq_src
->nr_uninterruptible
= 0;
5081 double_rq_unlock(rq_src
, rq_dest
);
5082 local_irq_restore(flags
);
5085 /* Run through task list and migrate tasks from the dead cpu. */
5086 static void migrate_live_tasks(int src_cpu
)
5088 struct task_struct
*p
, *t
;
5090 write_lock_irq(&tasklist_lock
);
5092 do_each_thread(t
, p
) {
5096 if (task_cpu(p
) == src_cpu
)
5097 move_task_off_dead_cpu(src_cpu
, p
);
5098 } while_each_thread(t
, p
);
5100 write_unlock_irq(&tasklist_lock
);
5103 /* Schedules idle task to be the next runnable task on current CPU.
5104 * It does so by boosting its priority to highest possible and adding it to
5105 * the _front_ of the runqueue. Used by CPU offline code.
5107 void sched_idle_next(void)
5109 int this_cpu
= smp_processor_id();
5110 struct rq
*rq
= cpu_rq(this_cpu
);
5111 struct task_struct
*p
= rq
->idle
;
5112 unsigned long flags
;
5114 /* cpu has to be offline */
5115 BUG_ON(cpu_online(this_cpu
));
5118 * Strictly not necessary since rest of the CPUs are stopped by now
5119 * and interrupts disabled on the current cpu.
5121 spin_lock_irqsave(&rq
->lock
, flags
);
5123 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5125 /* Add idle task to the _front_ of its priority queue: */
5126 __activate_idle_task(p
, rq
);
5128 spin_unlock_irqrestore(&rq
->lock
, flags
);
5132 * Ensures that the idle task is using init_mm right before its cpu goes
5135 void idle_task_exit(void)
5137 struct mm_struct
*mm
= current
->active_mm
;
5139 BUG_ON(cpu_online(smp_processor_id()));
5142 switch_mm(mm
, &init_mm
, current
);
5146 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5148 struct rq
*rq
= cpu_rq(dead_cpu
);
5150 /* Must be exiting, otherwise would be on tasklist. */
5151 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5153 /* Cannot have done final schedule yet: would have vanished. */
5154 BUG_ON(p
->flags
& PF_DEAD
);
5159 * Drop lock around migration; if someone else moves it,
5160 * that's OK. No task can be added to this CPU, so iteration is
5163 spin_unlock_irq(&rq
->lock
);
5164 move_task_off_dead_cpu(dead_cpu
, p
);
5165 spin_lock_irq(&rq
->lock
);
5170 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5171 static void migrate_dead_tasks(unsigned int dead_cpu
)
5173 struct rq
*rq
= cpu_rq(dead_cpu
);
5174 unsigned int arr
, i
;
5176 for (arr
= 0; arr
< 2; arr
++) {
5177 for (i
= 0; i
< MAX_PRIO
; i
++) {
5178 struct list_head
*list
= &rq
->arrays
[arr
].queue
[i
];
5180 while (!list_empty(list
))
5181 migrate_dead(dead_cpu
, list_entry(list
->next
,
5182 struct task_struct
, run_list
));
5186 #endif /* CONFIG_HOTPLUG_CPU */
5189 * migration_call - callback that gets triggered when a CPU is added.
5190 * Here we can start up the necessary migration thread for the new CPU.
5192 static int __cpuinit
5193 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5195 struct task_struct
*p
;
5196 int cpu
= (long)hcpu
;
5197 unsigned long flags
;
5201 case CPU_UP_PREPARE
:
5202 p
= kthread_create(migration_thread
, hcpu
, "migration/%d",cpu
);
5205 p
->flags
|= PF_NOFREEZE
;
5206 kthread_bind(p
, cpu
);
5207 /* Must be high prio: stop_machine expects to yield to it. */
5208 rq
= task_rq_lock(p
, &flags
);
5209 __setscheduler(p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5210 task_rq_unlock(rq
, &flags
);
5211 cpu_rq(cpu
)->migration_thread
= p
;
5215 /* Strictly unneccessary, as first user will wake it. */
5216 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5219 #ifdef CONFIG_HOTPLUG_CPU
5220 case CPU_UP_CANCELED
:
5221 if (!cpu_rq(cpu
)->migration_thread
)
5223 /* Unbind it from offline cpu so it can run. Fall thru. */
5224 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5225 any_online_cpu(cpu_online_map
));
5226 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5227 cpu_rq(cpu
)->migration_thread
= NULL
;
5231 migrate_live_tasks(cpu
);
5233 kthread_stop(rq
->migration_thread
);
5234 rq
->migration_thread
= NULL
;
5235 /* Idle task back to normal (off runqueue, low prio) */
5236 rq
= task_rq_lock(rq
->idle
, &flags
);
5237 deactivate_task(rq
->idle
, rq
);
5238 rq
->idle
->static_prio
= MAX_PRIO
;
5239 __setscheduler(rq
->idle
, SCHED_NORMAL
, 0);
5240 migrate_dead_tasks(cpu
);
5241 task_rq_unlock(rq
, &flags
);
5242 migrate_nr_uninterruptible(rq
);
5243 BUG_ON(rq
->nr_running
!= 0);
5245 /* No need to migrate the tasks: it was best-effort if
5246 * they didn't do lock_cpu_hotplug(). Just wake up
5247 * the requestors. */
5248 spin_lock_irq(&rq
->lock
);
5249 while (!list_empty(&rq
->migration_queue
)) {
5250 struct migration_req
*req
;
5252 req
= list_entry(rq
->migration_queue
.next
,
5253 struct migration_req
, list
);
5254 list_del_init(&req
->list
);
5255 complete(&req
->done
);
5257 spin_unlock_irq(&rq
->lock
);
5264 /* Register at highest priority so that task migration (migrate_all_tasks)
5265 * happens before everything else.
5267 static struct notifier_block __cpuinitdata migration_notifier
= {
5268 .notifier_call
= migration_call
,
5272 int __init
migration_init(void)
5274 void *cpu
= (void *)(long)smp_processor_id();
5276 /* Start one for the boot CPU: */
5277 migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5278 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5279 register_cpu_notifier(&migration_notifier
);
5286 #undef SCHED_DOMAIN_DEBUG
5287 #ifdef SCHED_DOMAIN_DEBUG
5288 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5293 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5297 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5302 struct sched_group
*group
= sd
->groups
;
5303 cpumask_t groupmask
;
5305 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5306 cpus_clear(groupmask
);
5309 for (i
= 0; i
< level
+ 1; i
++)
5311 printk("domain %d: ", level
);
5313 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5314 printk("does not load-balance\n");
5316 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain has parent");
5320 printk("span %s\n", str
);
5322 if (!cpu_isset(cpu
, sd
->span
))
5323 printk(KERN_ERR
"ERROR: domain->span does not contain CPU%d\n", cpu
);
5324 if (!cpu_isset(cpu
, group
->cpumask
))
5325 printk(KERN_ERR
"ERROR: domain->groups does not contain CPU%d\n", cpu
);
5328 for (i
= 0; i
< level
+ 2; i
++)
5334 printk(KERN_ERR
"ERROR: group is NULL\n");
5338 if (!group
->cpu_power
) {
5340 printk(KERN_ERR
"ERROR: domain->cpu_power not set\n");
5343 if (!cpus_weight(group
->cpumask
)) {
5345 printk(KERN_ERR
"ERROR: empty group\n");
5348 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5350 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5353 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5355 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5358 group
= group
->next
;
5359 } while (group
!= sd
->groups
);
5362 if (!cpus_equal(sd
->span
, groupmask
))
5363 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
5369 if (!cpus_subset(groupmask
, sd
->span
))
5370 printk(KERN_ERR
"ERROR: parent span is not a superset of domain->span\n");
5376 # define sched_domain_debug(sd, cpu) do { } while (0)
5379 static int sd_degenerate(struct sched_domain
*sd
)
5381 if (cpus_weight(sd
->span
) == 1)
5384 /* Following flags need at least 2 groups */
5385 if (sd
->flags
& (SD_LOAD_BALANCE
|
5386 SD_BALANCE_NEWIDLE
|
5389 if (sd
->groups
!= sd
->groups
->next
)
5393 /* Following flags don't use groups */
5394 if (sd
->flags
& (SD_WAKE_IDLE
|
5403 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5405 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5407 if (sd_degenerate(parent
))
5410 if (!cpus_equal(sd
->span
, parent
->span
))
5413 /* Does parent contain flags not in child? */
5414 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5415 if (cflags
& SD_WAKE_AFFINE
)
5416 pflags
&= ~SD_WAKE_BALANCE
;
5417 /* Flags needing groups don't count if only 1 group in parent */
5418 if (parent
->groups
== parent
->groups
->next
) {
5419 pflags
&= ~(SD_LOAD_BALANCE
|
5420 SD_BALANCE_NEWIDLE
|
5424 if (~cflags
& pflags
)
5431 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5432 * hold the hotplug lock.
5434 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5436 struct rq
*rq
= cpu_rq(cpu
);
5437 struct sched_domain
*tmp
;
5439 /* Remove the sched domains which do not contribute to scheduling. */
5440 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5441 struct sched_domain
*parent
= tmp
->parent
;
5444 if (sd_parent_degenerate(tmp
, parent
))
5445 tmp
->parent
= parent
->parent
;
5448 if (sd
&& sd_degenerate(sd
))
5451 sched_domain_debug(sd
, cpu
);
5453 rcu_assign_pointer(rq
->sd
, sd
);
5456 /* cpus with isolated domains */
5457 static cpumask_t __devinitdata cpu_isolated_map
= CPU_MASK_NONE
;
5459 /* Setup the mask of cpus configured for isolated domains */
5460 static int __init
isolated_cpu_setup(char *str
)
5462 int ints
[NR_CPUS
], i
;
5464 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5465 cpus_clear(cpu_isolated_map
);
5466 for (i
= 1; i
<= ints
[0]; i
++)
5467 if (ints
[i
] < NR_CPUS
)
5468 cpu_set(ints
[i
], cpu_isolated_map
);
5472 __setup ("isolcpus=", isolated_cpu_setup
);
5475 * init_sched_build_groups takes an array of groups, the cpumask we wish
5476 * to span, and a pointer to a function which identifies what group a CPU
5477 * belongs to. The return value of group_fn must be a valid index into the
5478 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5479 * keep track of groups covered with a cpumask_t).
5481 * init_sched_build_groups will build a circular linked list of the groups
5482 * covered by the given span, and will set each group's ->cpumask correctly,
5483 * and ->cpu_power to 0.
5485 static void init_sched_build_groups(struct sched_group groups
[], cpumask_t span
,
5486 int (*group_fn
)(int cpu
))
5488 struct sched_group
*first
= NULL
, *last
= NULL
;
5489 cpumask_t covered
= CPU_MASK_NONE
;
5492 for_each_cpu_mask(i
, span
) {
5493 int group
= group_fn(i
);
5494 struct sched_group
*sg
= &groups
[group
];
5497 if (cpu_isset(i
, covered
))
5500 sg
->cpumask
= CPU_MASK_NONE
;
5503 for_each_cpu_mask(j
, span
) {
5504 if (group_fn(j
) != group
)
5507 cpu_set(j
, covered
);
5508 cpu_set(j
, sg
->cpumask
);
5519 #define SD_NODES_PER_DOMAIN 16
5522 * Self-tuning task migration cost measurement between source and target CPUs.
5524 * This is done by measuring the cost of manipulating buffers of varying
5525 * sizes. For a given buffer-size here are the steps that are taken:
5527 * 1) the source CPU reads+dirties a shared buffer
5528 * 2) the target CPU reads+dirties the same shared buffer
5530 * We measure how long they take, in the following 4 scenarios:
5532 * - source: CPU1, target: CPU2 | cost1
5533 * - source: CPU2, target: CPU1 | cost2
5534 * - source: CPU1, target: CPU1 | cost3
5535 * - source: CPU2, target: CPU2 | cost4
5537 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5538 * the cost of migration.
5540 * We then start off from a small buffer-size and iterate up to larger
5541 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5542 * doing a maximum search for the cost. (The maximum cost for a migration
5543 * normally occurs when the working set size is around the effective cache
5546 #define SEARCH_SCOPE 2
5547 #define MIN_CACHE_SIZE (64*1024U)
5548 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5549 #define ITERATIONS 1
5550 #define SIZE_THRESH 130
5551 #define COST_THRESH 130
5554 * The migration cost is a function of 'domain distance'. Domain
5555 * distance is the number of steps a CPU has to iterate down its
5556 * domain tree to share a domain with the other CPU. The farther
5557 * two CPUs are from each other, the larger the distance gets.
5559 * Note that we use the distance only to cache measurement results,
5560 * the distance value is not used numerically otherwise. When two
5561 * CPUs have the same distance it is assumed that the migration
5562 * cost is the same. (this is a simplification but quite practical)
5564 #define MAX_DOMAIN_DISTANCE 32
5566 static unsigned long long migration_cost
[MAX_DOMAIN_DISTANCE
] =
5567 { [ 0 ... MAX_DOMAIN_DISTANCE
-1 ] =
5569 * Architectures may override the migration cost and thus avoid
5570 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5571 * virtualized hardware:
5573 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5574 CONFIG_DEFAULT_MIGRATION_COST
5581 * Allow override of migration cost - in units of microseconds.
5582 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5583 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5585 static int __init
migration_cost_setup(char *str
)
5587 int ints
[MAX_DOMAIN_DISTANCE
+1], i
;
5589 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5591 printk("#ints: %d\n", ints
[0]);
5592 for (i
= 1; i
<= ints
[0]; i
++) {
5593 migration_cost
[i
-1] = (unsigned long long)ints
[i
]*1000;
5594 printk("migration_cost[%d]: %Ld\n", i
-1, migration_cost
[i
-1]);
5599 __setup ("migration_cost=", migration_cost_setup
);
5602 * Global multiplier (divisor) for migration-cutoff values,
5603 * in percentiles. E.g. use a value of 150 to get 1.5 times
5604 * longer cache-hot cutoff times.
5606 * (We scale it from 100 to 128 to long long handling easier.)
5609 #define MIGRATION_FACTOR_SCALE 128
5611 static unsigned int migration_factor
= MIGRATION_FACTOR_SCALE
;
5613 static int __init
setup_migration_factor(char *str
)
5615 get_option(&str
, &migration_factor
);
5616 migration_factor
= migration_factor
* MIGRATION_FACTOR_SCALE
/ 100;
5620 __setup("migration_factor=", setup_migration_factor
);
5623 * Estimated distance of two CPUs, measured via the number of domains
5624 * we have to pass for the two CPUs to be in the same span:
5626 static unsigned long domain_distance(int cpu1
, int cpu2
)
5628 unsigned long distance
= 0;
5629 struct sched_domain
*sd
;
5631 for_each_domain(cpu1
, sd
) {
5632 WARN_ON(!cpu_isset(cpu1
, sd
->span
));
5633 if (cpu_isset(cpu2
, sd
->span
))
5637 if (distance
>= MAX_DOMAIN_DISTANCE
) {
5639 distance
= MAX_DOMAIN_DISTANCE
-1;
5645 static unsigned int migration_debug
;
5647 static int __init
setup_migration_debug(char *str
)
5649 get_option(&str
, &migration_debug
);
5653 __setup("migration_debug=", setup_migration_debug
);
5656 * Maximum cache-size that the scheduler should try to measure.
5657 * Architectures with larger caches should tune this up during
5658 * bootup. Gets used in the domain-setup code (i.e. during SMP
5661 unsigned int max_cache_size
;
5663 static int __init
setup_max_cache_size(char *str
)
5665 get_option(&str
, &max_cache_size
);
5669 __setup("max_cache_size=", setup_max_cache_size
);
5672 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5673 * is the operation that is timed, so we try to generate unpredictable
5674 * cachemisses that still end up filling the L2 cache:
5676 static void touch_cache(void *__cache
, unsigned long __size
)
5678 unsigned long size
= __size
/sizeof(long), chunk1
= size
/3,
5680 unsigned long *cache
= __cache
;
5683 for (i
= 0; i
< size
/6; i
+= 8) {
5686 case 1: cache
[size
-1-i
]++;
5687 case 2: cache
[chunk1
-i
]++;
5688 case 3: cache
[chunk1
+i
]++;
5689 case 4: cache
[chunk2
-i
]++;
5690 case 5: cache
[chunk2
+i
]++;
5696 * Measure the cache-cost of one task migration. Returns in units of nsec.
5698 static unsigned long long
5699 measure_one(void *cache
, unsigned long size
, int source
, int target
)
5701 cpumask_t mask
, saved_mask
;
5702 unsigned long long t0
, t1
, t2
, t3
, cost
;
5704 saved_mask
= current
->cpus_allowed
;
5707 * Flush source caches to RAM and invalidate them:
5712 * Migrate to the source CPU:
5714 mask
= cpumask_of_cpu(source
);
5715 set_cpus_allowed(current
, mask
);
5716 WARN_ON(smp_processor_id() != source
);
5719 * Dirty the working set:
5722 touch_cache(cache
, size
);
5726 * Migrate to the target CPU, dirty the L2 cache and access
5727 * the shared buffer. (which represents the working set
5728 * of a migrated task.)
5730 mask
= cpumask_of_cpu(target
);
5731 set_cpus_allowed(current
, mask
);
5732 WARN_ON(smp_processor_id() != target
);
5735 touch_cache(cache
, size
);
5738 cost
= t1
-t0
+ t3
-t2
;
5740 if (migration_debug
>= 2)
5741 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5742 source
, target
, t1
-t0
, t1
-t0
, t3
-t2
, cost
);
5744 * Flush target caches to RAM and invalidate them:
5748 set_cpus_allowed(current
, saved_mask
);
5754 * Measure a series of task migrations and return the average
5755 * result. Since this code runs early during bootup the system
5756 * is 'undisturbed' and the average latency makes sense.
5758 * The algorithm in essence auto-detects the relevant cache-size,
5759 * so it will properly detect different cachesizes for different
5760 * cache-hierarchies, depending on how the CPUs are connected.
5762 * Architectures can prime the upper limit of the search range via
5763 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5765 static unsigned long long
5766 measure_cost(int cpu1
, int cpu2
, void *cache
, unsigned int size
)
5768 unsigned long long cost1
, cost2
;
5772 * Measure the migration cost of 'size' bytes, over an
5773 * average of 10 runs:
5775 * (We perturb the cache size by a small (0..4k)
5776 * value to compensate size/alignment related artifacts.
5777 * We also subtract the cost of the operation done on
5783 * dry run, to make sure we start off cache-cold on cpu1,
5784 * and to get any vmalloc pagefaults in advance:
5786 measure_one(cache
, size
, cpu1
, cpu2
);
5787 for (i
= 0; i
< ITERATIONS
; i
++)
5788 cost1
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu2
);
5790 measure_one(cache
, size
, cpu2
, cpu1
);
5791 for (i
= 0; i
< ITERATIONS
; i
++)
5792 cost1
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu1
);
5795 * (We measure the non-migrating [cached] cost on both
5796 * cpu1 and cpu2, to handle CPUs with different speeds)
5800 measure_one(cache
, size
, cpu1
, cpu1
);
5801 for (i
= 0; i
< ITERATIONS
; i
++)
5802 cost2
+= measure_one(cache
, size
- i
*1024, cpu1
, cpu1
);
5804 measure_one(cache
, size
, cpu2
, cpu2
);
5805 for (i
= 0; i
< ITERATIONS
; i
++)
5806 cost2
+= measure_one(cache
, size
- i
*1024, cpu2
, cpu2
);
5809 * Get the per-iteration migration cost:
5811 do_div(cost1
, 2*ITERATIONS
);
5812 do_div(cost2
, 2*ITERATIONS
);
5814 return cost1
- cost2
;
5817 static unsigned long long measure_migration_cost(int cpu1
, int cpu2
)
5819 unsigned long long max_cost
= 0, fluct
= 0, avg_fluct
= 0;
5820 unsigned int max_size
, size
, size_found
= 0;
5821 long long cost
= 0, prev_cost
;
5825 * Search from max_cache_size*5 down to 64K - the real relevant
5826 * cachesize has to lie somewhere inbetween.
5828 if (max_cache_size
) {
5829 max_size
= max(max_cache_size
* SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5830 size
= max(max_cache_size
/ SEARCH_SCOPE
, MIN_CACHE_SIZE
);
5833 * Since we have no estimation about the relevant
5836 max_size
= DEFAULT_CACHE_SIZE
* SEARCH_SCOPE
;
5837 size
= MIN_CACHE_SIZE
;
5840 if (!cpu_online(cpu1
) || !cpu_online(cpu2
)) {
5841 printk("cpu %d and %d not both online!\n", cpu1
, cpu2
);
5846 * Allocate the working set:
5848 cache
= vmalloc(max_size
);
5850 printk("could not vmalloc %d bytes for cache!\n", 2*max_size
);
5851 return 1000000; /* return 1 msec on very small boxen */
5854 while (size
<= max_size
) {
5856 cost
= measure_cost(cpu1
, cpu2
, cache
, size
);
5862 if (max_cost
< cost
) {
5868 * Calculate average fluctuation, we use this to prevent
5869 * noise from triggering an early break out of the loop:
5871 fluct
= abs(cost
- prev_cost
);
5872 avg_fluct
= (avg_fluct
+ fluct
)/2;
5874 if (migration_debug
)
5875 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5877 (long)cost
/ 1000000,
5878 ((long)cost
/ 100000) % 10,
5879 (long)max_cost
/ 1000000,
5880 ((long)max_cost
/ 100000) % 10,
5881 domain_distance(cpu1
, cpu2
),
5885 * If we iterated at least 20% past the previous maximum,
5886 * and the cost has dropped by more than 20% already,
5887 * (taking fluctuations into account) then we assume to
5888 * have found the maximum and break out of the loop early:
5890 if (size_found
&& (size
*100 > size_found
*SIZE_THRESH
))
5891 if (cost
+avg_fluct
<= 0 ||
5892 max_cost
*100 > (cost
+avg_fluct
)*COST_THRESH
) {
5894 if (migration_debug
)
5895 printk("-> found max.\n");
5899 * Increase the cachesize in 10% steps:
5901 size
= size
* 10 / 9;
5904 if (migration_debug
)
5905 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5906 cpu1
, cpu2
, size_found
, max_cost
);
5911 * A task is considered 'cache cold' if at least 2 times
5912 * the worst-case cost of migration has passed.
5914 * (this limit is only listened to if the load-balancing
5915 * situation is 'nice' - if there is a large imbalance we
5916 * ignore it for the sake of CPU utilization and
5917 * processing fairness.)
5919 return 2 * max_cost
* migration_factor
/ MIGRATION_FACTOR_SCALE
;
5922 static void calibrate_migration_costs(const cpumask_t
*cpu_map
)
5924 int cpu1
= -1, cpu2
= -1, cpu
, orig_cpu
= raw_smp_processor_id();
5925 unsigned long j0
, j1
, distance
, max_distance
= 0;
5926 struct sched_domain
*sd
;
5931 * First pass - calculate the cacheflush times:
5933 for_each_cpu_mask(cpu1
, *cpu_map
) {
5934 for_each_cpu_mask(cpu2
, *cpu_map
) {
5937 distance
= domain_distance(cpu1
, cpu2
);
5938 max_distance
= max(max_distance
, distance
);
5940 * No result cached yet?
5942 if (migration_cost
[distance
] == -1LL)
5943 migration_cost
[distance
] =
5944 measure_migration_cost(cpu1
, cpu2
);
5948 * Second pass - update the sched domain hierarchy with
5949 * the new cache-hot-time estimations:
5951 for_each_cpu_mask(cpu
, *cpu_map
) {
5953 for_each_domain(cpu
, sd
) {
5954 sd
->cache_hot_time
= migration_cost
[distance
];
5961 if (migration_debug
)
5962 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5970 if (system_state
== SYSTEM_BOOTING
) {
5971 printk("migration_cost=");
5972 for (distance
= 0; distance
<= max_distance
; distance
++) {
5975 printk("%ld", (long)migration_cost
[distance
] / 1000);
5980 if (migration_debug
)
5981 printk("migration: %ld seconds\n", (j1
-j0
)/HZ
);
5984 * Move back to the original CPU. NUMA-Q gets confused
5985 * if we migrate to another quad during bootup.
5987 if (raw_smp_processor_id() != orig_cpu
) {
5988 cpumask_t mask
= cpumask_of_cpu(orig_cpu
),
5989 saved_mask
= current
->cpus_allowed
;
5991 set_cpus_allowed(current
, mask
);
5992 set_cpus_allowed(current
, saved_mask
);
5999 * find_next_best_node - find the next node to include in a sched_domain
6000 * @node: node whose sched_domain we're building
6001 * @used_nodes: nodes already in the sched_domain
6003 * Find the next node to include in a given scheduling domain. Simply
6004 * finds the closest node not already in the @used_nodes map.
6006 * Should use nodemask_t.
6008 static int find_next_best_node(int node
, unsigned long *used_nodes
)
6010 int i
, n
, val
, min_val
, best_node
= 0;
6014 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6015 /* Start at @node */
6016 n
= (node
+ i
) % MAX_NUMNODES
;
6018 if (!nr_cpus_node(n
))
6021 /* Skip already used nodes */
6022 if (test_bit(n
, used_nodes
))
6025 /* Simple min distance search */
6026 val
= node_distance(node
, n
);
6028 if (val
< min_val
) {
6034 set_bit(best_node
, used_nodes
);
6039 * sched_domain_node_span - get a cpumask for a node's sched_domain
6040 * @node: node whose cpumask we're constructing
6041 * @size: number of nodes to include in this span
6043 * Given a node, construct a good cpumask for its sched_domain to span. It
6044 * should be one that prevents unnecessary balancing, but also spreads tasks
6047 static cpumask_t
sched_domain_node_span(int node
)
6049 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
6050 cpumask_t span
, nodemask
;
6054 bitmap_zero(used_nodes
, MAX_NUMNODES
);
6056 nodemask
= node_to_cpumask(node
);
6057 cpus_or(span
, span
, nodemask
);
6058 set_bit(node
, used_nodes
);
6060 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6061 int next_node
= find_next_best_node(node
, used_nodes
);
6063 nodemask
= node_to_cpumask(next_node
);
6064 cpus_or(span
, span
, nodemask
);
6071 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6074 * SMT sched-domains:
6076 #ifdef CONFIG_SCHED_SMT
6077 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
6078 static struct sched_group sched_group_cpus
[NR_CPUS
];
6080 static int cpu_to_cpu_group(int cpu
)
6087 * multi-core sched-domains:
6089 #ifdef CONFIG_SCHED_MC
6090 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
6091 static struct sched_group
*sched_group_core_bycpu
[NR_CPUS
];
6094 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6095 static int cpu_to_core_group(int cpu
)
6097 return first_cpu(cpu_sibling_map
[cpu
]);
6099 #elif defined(CONFIG_SCHED_MC)
6100 static int cpu_to_core_group(int cpu
)
6106 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
6107 static struct sched_group
*sched_group_phys_bycpu
[NR_CPUS
];
6109 static int cpu_to_phys_group(int cpu
)
6111 #ifdef CONFIG_SCHED_MC
6112 cpumask_t mask
= cpu_coregroup_map(cpu
);
6113 return first_cpu(mask
);
6114 #elif defined(CONFIG_SCHED_SMT)
6115 return first_cpu(cpu_sibling_map
[cpu
]);
6123 * The init_sched_build_groups can't handle what we want to do with node
6124 * groups, so roll our own. Now each node has its own list of groups which
6125 * gets dynamically allocated.
6127 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
6128 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
6130 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
6131 static struct sched_group
*sched_group_allnodes_bycpu
[NR_CPUS
];
6133 static int cpu_to_allnodes_group(int cpu
)
6135 return cpu_to_node(cpu
);
6137 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6139 struct sched_group
*sg
= group_head
;
6145 for_each_cpu_mask(j
, sg
->cpumask
) {
6146 struct sched_domain
*sd
;
6148 sd
= &per_cpu(phys_domains
, j
);
6149 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
6151 * Only add "power" once for each
6157 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6160 if (sg
!= group_head
)
6165 /* Free memory allocated for various sched_group structures */
6166 static void free_sched_groups(const cpumask_t
*cpu_map
)
6172 for_each_cpu_mask(cpu
, *cpu_map
) {
6173 struct sched_group
*sched_group_allnodes
6174 = sched_group_allnodes_bycpu
[cpu
];
6175 struct sched_group
**sched_group_nodes
6176 = sched_group_nodes_bycpu
[cpu
];
6178 if (sched_group_allnodes
) {
6179 kfree(sched_group_allnodes
);
6180 sched_group_allnodes_bycpu
[cpu
] = NULL
;
6183 if (!sched_group_nodes
)
6186 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6187 cpumask_t nodemask
= node_to_cpumask(i
);
6188 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6190 cpus_and(nodemask
, nodemask
, *cpu_map
);
6191 if (cpus_empty(nodemask
))
6201 if (oldsg
!= sched_group_nodes
[i
])
6204 kfree(sched_group_nodes
);
6205 sched_group_nodes_bycpu
[cpu
] = NULL
;
6208 for_each_cpu_mask(cpu
, *cpu_map
) {
6209 if (sched_group_phys_bycpu
[cpu
]) {
6210 kfree(sched_group_phys_bycpu
[cpu
]);
6211 sched_group_phys_bycpu
[cpu
] = NULL
;
6213 #ifdef CONFIG_SCHED_MC
6214 if (sched_group_core_bycpu
[cpu
]) {
6215 kfree(sched_group_core_bycpu
[cpu
]);
6216 sched_group_core_bycpu
[cpu
] = NULL
;
6223 * Build sched domains for a given set of cpus and attach the sched domains
6224 * to the individual cpus
6226 static int build_sched_domains(const cpumask_t
*cpu_map
)
6229 struct sched_group
*sched_group_phys
= NULL
;
6230 #ifdef CONFIG_SCHED_MC
6231 struct sched_group
*sched_group_core
= NULL
;
6234 struct sched_group
**sched_group_nodes
= NULL
;
6235 struct sched_group
*sched_group_allnodes
= NULL
;
6238 * Allocate the per-node list of sched groups
6240 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6242 if (!sched_group_nodes
) {
6243 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6246 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6250 * Set up domains for cpus specified by the cpu_map.
6252 for_each_cpu_mask(i
, *cpu_map
) {
6254 struct sched_domain
*sd
= NULL
, *p
;
6255 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6257 cpus_and(nodemask
, nodemask
, *cpu_map
);
6260 if (cpus_weight(*cpu_map
)
6261 > SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6262 if (!sched_group_allnodes
) {
6263 sched_group_allnodes
6264 = kmalloc(sizeof(struct sched_group
)
6267 if (!sched_group_allnodes
) {
6269 "Can not alloc allnodes sched group\n");
6272 sched_group_allnodes_bycpu
[i
]
6273 = sched_group_allnodes
;
6275 sd
= &per_cpu(allnodes_domains
, i
);
6276 *sd
= SD_ALLNODES_INIT
;
6277 sd
->span
= *cpu_map
;
6278 group
= cpu_to_allnodes_group(i
);
6279 sd
->groups
= &sched_group_allnodes
[group
];
6284 sd
= &per_cpu(node_domains
, i
);
6286 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6288 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6291 if (!sched_group_phys
) {
6293 = kmalloc(sizeof(struct sched_group
) * NR_CPUS
,
6295 if (!sched_group_phys
) {
6296 printk (KERN_WARNING
"Can not alloc phys sched"
6300 sched_group_phys_bycpu
[i
] = sched_group_phys
;
6304 sd
= &per_cpu(phys_domains
, i
);
6305 group
= cpu_to_phys_group(i
);
6307 sd
->span
= nodemask
;
6309 sd
->groups
= &sched_group_phys
[group
];
6311 #ifdef CONFIG_SCHED_MC
6312 if (!sched_group_core
) {
6314 = kmalloc(sizeof(struct sched_group
) * NR_CPUS
,
6316 if (!sched_group_core
) {
6317 printk (KERN_WARNING
"Can not alloc core sched"
6321 sched_group_core_bycpu
[i
] = sched_group_core
;
6325 sd
= &per_cpu(core_domains
, i
);
6326 group
= cpu_to_core_group(i
);
6328 sd
->span
= cpu_coregroup_map(i
);
6329 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6331 sd
->groups
= &sched_group_core
[group
];
6334 #ifdef CONFIG_SCHED_SMT
6336 sd
= &per_cpu(cpu_domains
, i
);
6337 group
= cpu_to_cpu_group(i
);
6338 *sd
= SD_SIBLING_INIT
;
6339 sd
->span
= cpu_sibling_map
[i
];
6340 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6342 sd
->groups
= &sched_group_cpus
[group
];
6346 #ifdef CONFIG_SCHED_SMT
6347 /* Set up CPU (sibling) groups */
6348 for_each_cpu_mask(i
, *cpu_map
) {
6349 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6350 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6351 if (i
!= first_cpu(this_sibling_map
))
6354 init_sched_build_groups(sched_group_cpus
, this_sibling_map
,
6359 #ifdef CONFIG_SCHED_MC
6360 /* Set up multi-core groups */
6361 for_each_cpu_mask(i
, *cpu_map
) {
6362 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6363 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6364 if (i
!= first_cpu(this_core_map
))
6366 init_sched_build_groups(sched_group_core
, this_core_map
,
6367 &cpu_to_core_group
);
6372 /* Set up physical groups */
6373 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6374 cpumask_t nodemask
= node_to_cpumask(i
);
6376 cpus_and(nodemask
, nodemask
, *cpu_map
);
6377 if (cpus_empty(nodemask
))
6380 init_sched_build_groups(sched_group_phys
, nodemask
,
6381 &cpu_to_phys_group
);
6385 /* Set up node groups */
6386 if (sched_group_allnodes
)
6387 init_sched_build_groups(sched_group_allnodes
, *cpu_map
,
6388 &cpu_to_allnodes_group
);
6390 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6391 /* Set up node groups */
6392 struct sched_group
*sg
, *prev
;
6393 cpumask_t nodemask
= node_to_cpumask(i
);
6394 cpumask_t domainspan
;
6395 cpumask_t covered
= CPU_MASK_NONE
;
6398 cpus_and(nodemask
, nodemask
, *cpu_map
);
6399 if (cpus_empty(nodemask
)) {
6400 sched_group_nodes
[i
] = NULL
;
6404 domainspan
= sched_domain_node_span(i
);
6405 cpus_and(domainspan
, domainspan
, *cpu_map
);
6407 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6409 printk(KERN_WARNING
"Can not alloc domain group for "
6413 sched_group_nodes
[i
] = sg
;
6414 for_each_cpu_mask(j
, nodemask
) {
6415 struct sched_domain
*sd
;
6416 sd
= &per_cpu(node_domains
, j
);
6420 sg
->cpumask
= nodemask
;
6422 cpus_or(covered
, covered
, nodemask
);
6425 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6426 cpumask_t tmp
, notcovered
;
6427 int n
= (i
+ j
) % MAX_NUMNODES
;
6429 cpus_complement(notcovered
, covered
);
6430 cpus_and(tmp
, notcovered
, *cpu_map
);
6431 cpus_and(tmp
, tmp
, domainspan
);
6432 if (cpus_empty(tmp
))
6435 nodemask
= node_to_cpumask(n
);
6436 cpus_and(tmp
, tmp
, nodemask
);
6437 if (cpus_empty(tmp
))
6440 sg
= kmalloc_node(sizeof(struct sched_group
),
6444 "Can not alloc domain group for node %d\n", j
);
6449 sg
->next
= prev
->next
;
6450 cpus_or(covered
, covered
, tmp
);
6457 /* Calculate CPU power for physical packages and nodes */
6458 #ifdef CONFIG_SCHED_SMT
6459 for_each_cpu_mask(i
, *cpu_map
) {
6460 struct sched_domain
*sd
;
6461 sd
= &per_cpu(cpu_domains
, i
);
6462 sd
->groups
->cpu_power
= SCHED_LOAD_SCALE
;
6465 #ifdef CONFIG_SCHED_MC
6466 for_each_cpu_mask(i
, *cpu_map
) {
6468 struct sched_domain
*sd
;
6469 sd
= &per_cpu(core_domains
, i
);
6470 if (sched_smt_power_savings
)
6471 power
= SCHED_LOAD_SCALE
* cpus_weight(sd
->groups
->cpumask
);
6473 power
= SCHED_LOAD_SCALE
+ (cpus_weight(sd
->groups
->cpumask
)-1)
6474 * SCHED_LOAD_SCALE
/ 10;
6475 sd
->groups
->cpu_power
= power
;
6479 for_each_cpu_mask(i
, *cpu_map
) {
6480 struct sched_domain
*sd
;
6481 #ifdef CONFIG_SCHED_MC
6482 sd
= &per_cpu(phys_domains
, i
);
6483 if (i
!= first_cpu(sd
->groups
->cpumask
))
6486 sd
->groups
->cpu_power
= 0;
6487 if (sched_mc_power_savings
|| sched_smt_power_savings
) {
6490 for_each_cpu_mask(j
, sd
->groups
->cpumask
) {
6491 struct sched_domain
*sd1
;
6492 sd1
= &per_cpu(core_domains
, j
);
6494 * for each core we will add once
6495 * to the group in physical domain
6497 if (j
!= first_cpu(sd1
->groups
->cpumask
))
6500 if (sched_smt_power_savings
)
6501 sd
->groups
->cpu_power
+= sd1
->groups
->cpu_power
;
6503 sd
->groups
->cpu_power
+= SCHED_LOAD_SCALE
;
6507 * This has to be < 2 * SCHED_LOAD_SCALE
6508 * Lets keep it SCHED_LOAD_SCALE, so that
6509 * while calculating NUMA group's cpu_power
6511 * numa_group->cpu_power += phys_group->cpu_power;
6513 * See "only add power once for each physical pkg"
6516 sd
->groups
->cpu_power
= SCHED_LOAD_SCALE
;
6519 sd
= &per_cpu(phys_domains
, i
);
6520 if (sched_smt_power_savings
)
6521 power
= SCHED_LOAD_SCALE
* cpus_weight(sd
->groups
->cpumask
);
6523 power
= SCHED_LOAD_SCALE
;
6524 sd
->groups
->cpu_power
= power
;
6529 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6530 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6532 if (sched_group_allnodes
) {
6533 int group
= cpu_to_allnodes_group(first_cpu(*cpu_map
));
6534 struct sched_group
*sg
= &sched_group_allnodes
[group
];
6536 init_numa_sched_groups_power(sg
);
6540 /* Attach the domains */
6541 for_each_cpu_mask(i
, *cpu_map
) {
6542 struct sched_domain
*sd
;
6543 #ifdef CONFIG_SCHED_SMT
6544 sd
= &per_cpu(cpu_domains
, i
);
6545 #elif defined(CONFIG_SCHED_MC)
6546 sd
= &per_cpu(core_domains
, i
);
6548 sd
= &per_cpu(phys_domains
, i
);
6550 cpu_attach_domain(sd
, i
);
6553 * Tune cache-hot values:
6555 calibrate_migration_costs(cpu_map
);
6560 free_sched_groups(cpu_map
);
6564 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6566 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6568 cpumask_t cpu_default_map
;
6572 * Setup mask for cpus without special case scheduling requirements.
6573 * For now this just excludes isolated cpus, but could be used to
6574 * exclude other special cases in the future.
6576 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6578 err
= build_sched_domains(&cpu_default_map
);
6583 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6585 free_sched_groups(cpu_map
);
6589 * Detach sched domains from a group of cpus specified in cpu_map
6590 * These cpus will now be attached to the NULL domain
6592 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6596 for_each_cpu_mask(i
, *cpu_map
)
6597 cpu_attach_domain(NULL
, i
);
6598 synchronize_sched();
6599 arch_destroy_sched_domains(cpu_map
);
6603 * Partition sched domains as specified by the cpumasks below.
6604 * This attaches all cpus from the cpumasks to the NULL domain,
6605 * waits for a RCU quiescent period, recalculates sched
6606 * domain information and then attaches them back to the
6607 * correct sched domains
6608 * Call with hotplug lock held
6610 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6612 cpumask_t change_map
;
6615 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6616 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6617 cpus_or(change_map
, *partition1
, *partition2
);
6619 /* Detach sched domains from all of the affected cpus */
6620 detach_destroy_domains(&change_map
);
6621 if (!cpus_empty(*partition1
))
6622 err
= build_sched_domains(partition1
);
6623 if (!err
&& !cpus_empty(*partition2
))
6624 err
= build_sched_domains(partition2
);
6629 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6630 int arch_reinit_sched_domains(void)
6635 detach_destroy_domains(&cpu_online_map
);
6636 err
= arch_init_sched_domains(&cpu_online_map
);
6637 unlock_cpu_hotplug();
6642 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6646 if (buf
[0] != '0' && buf
[0] != '1')
6650 sched_smt_power_savings
= (buf
[0] == '1');
6652 sched_mc_power_savings
= (buf
[0] == '1');
6654 ret
= arch_reinit_sched_domains();
6656 return ret
? ret
: count
;
6659 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6663 #ifdef CONFIG_SCHED_SMT
6665 err
= sysfs_create_file(&cls
->kset
.kobj
,
6666 &attr_sched_smt_power_savings
.attr
);
6668 #ifdef CONFIG_SCHED_MC
6669 if (!err
&& mc_capable())
6670 err
= sysfs_create_file(&cls
->kset
.kobj
,
6671 &attr_sched_mc_power_savings
.attr
);
6677 #ifdef CONFIG_SCHED_MC
6678 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6680 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6682 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6683 const char *buf
, size_t count
)
6685 return sched_power_savings_store(buf
, count
, 0);
6687 SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6688 sched_mc_power_savings_store
);
6691 #ifdef CONFIG_SCHED_SMT
6692 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6694 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6696 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6697 const char *buf
, size_t count
)
6699 return sched_power_savings_store(buf
, count
, 1);
6701 SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6702 sched_smt_power_savings_store
);
6706 #ifdef CONFIG_HOTPLUG_CPU
6708 * Force a reinitialization of the sched domains hierarchy. The domains
6709 * and groups cannot be updated in place without racing with the balancing
6710 * code, so we temporarily attach all running cpus to the NULL domain
6711 * which will prevent rebalancing while the sched domains are recalculated.
6713 static int update_sched_domains(struct notifier_block
*nfb
,
6714 unsigned long action
, void *hcpu
)
6717 case CPU_UP_PREPARE
:
6718 case CPU_DOWN_PREPARE
:
6719 detach_destroy_domains(&cpu_online_map
);
6722 case CPU_UP_CANCELED
:
6723 case CPU_DOWN_FAILED
:
6727 * Fall through and re-initialise the domains.
6734 /* The hotplug lock is already held by cpu_up/cpu_down */
6735 arch_init_sched_domains(&cpu_online_map
);
6741 void __init
sched_init_smp(void)
6744 arch_init_sched_domains(&cpu_online_map
);
6745 unlock_cpu_hotplug();
6746 /* XXX: Theoretical race here - CPU may be hotplugged now */
6747 hotcpu_notifier(update_sched_domains
, 0);
6750 void __init
sched_init_smp(void)
6753 #endif /* CONFIG_SMP */
6755 int in_sched_functions(unsigned long addr
)
6757 /* Linker adds these: start and end of __sched functions */
6758 extern char __sched_text_start
[], __sched_text_end
[];
6760 return in_lock_functions(addr
) ||
6761 (addr
>= (unsigned long)__sched_text_start
6762 && addr
< (unsigned long)__sched_text_end
);
6765 void __init
sched_init(void)
6769 for_each_possible_cpu(i
) {
6770 struct prio_array
*array
;
6774 spin_lock_init(&rq
->lock
);
6775 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6777 rq
->active
= rq
->arrays
;
6778 rq
->expired
= rq
->arrays
+ 1;
6779 rq
->best_expired_prio
= MAX_PRIO
;
6783 for (j
= 1; j
< 3; j
++)
6784 rq
->cpu_load
[j
] = 0;
6785 rq
->active_balance
= 0;
6788 rq
->migration_thread
= NULL
;
6789 INIT_LIST_HEAD(&rq
->migration_queue
);
6791 atomic_set(&rq
->nr_iowait
, 0);
6793 for (j
= 0; j
< 2; j
++) {
6794 array
= rq
->arrays
+ j
;
6795 for (k
= 0; k
< MAX_PRIO
; k
++) {
6796 INIT_LIST_HEAD(array
->queue
+ k
);
6797 __clear_bit(k
, array
->bitmap
);
6799 // delimiter for bitsearch
6800 __set_bit(MAX_PRIO
, array
->bitmap
);
6804 set_load_weight(&init_task
);
6806 #ifdef CONFIG_RT_MUTEXES
6807 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6811 * The boot idle thread does lazy MMU switching as well:
6813 atomic_inc(&init_mm
.mm_count
);
6814 enter_lazy_tlb(&init_mm
, current
);
6817 * Make us the idle thread. Technically, schedule() should not be
6818 * called from this thread, however somewhere below it might be,
6819 * but because we are the idle thread, we just pick up running again
6820 * when this runqueue becomes "idle".
6822 init_idle(current
, smp_processor_id());
6825 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6826 void __might_sleep(char *file
, int line
)
6829 static unsigned long prev_jiffy
; /* ratelimiting */
6831 if ((in_atomic() || irqs_disabled()) &&
6832 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6833 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6835 prev_jiffy
= jiffies
;
6836 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6837 " context at %s:%d\n", file
, line
);
6838 printk("in_atomic():%d, irqs_disabled():%d\n",
6839 in_atomic(), irqs_disabled());
6844 EXPORT_SYMBOL(__might_sleep
);
6847 #ifdef CONFIG_MAGIC_SYSRQ
6848 void normalize_rt_tasks(void)
6850 struct prio_array
*array
;
6851 struct task_struct
*p
;
6852 unsigned long flags
;
6855 read_lock_irq(&tasklist_lock
);
6856 for_each_process(p
) {
6860 spin_lock_irqsave(&p
->pi_lock
, flags
);
6861 rq
= __task_rq_lock(p
);
6865 deactivate_task(p
, task_rq(p
));
6866 __setscheduler(p
, SCHED_NORMAL
, 0);
6868 __activate_task(p
, task_rq(p
));
6869 resched_task(rq
->curr
);
6872 __task_rq_unlock(rq
);
6873 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6875 read_unlock_irq(&tasklist_lock
);
6878 #endif /* CONFIG_MAGIC_SYSRQ */
6882 * These functions are only useful for the IA64 MCA handling.
6884 * They can only be called when the whole system has been
6885 * stopped - every CPU needs to be quiescent, and no scheduling
6886 * activity can take place. Using them for anything else would
6887 * be a serious bug, and as a result, they aren't even visible
6888 * under any other configuration.
6892 * curr_task - return the current task for a given cpu.
6893 * @cpu: the processor in question.
6895 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6897 struct task_struct
*curr_task(int cpu
)
6899 return cpu_curr(cpu
);
6903 * set_curr_task - set the current task for a given cpu.
6904 * @cpu: the processor in question.
6905 * @p: the task pointer to set.
6907 * Description: This function must only be used when non-maskable interrupts
6908 * are serviced on a separate stack. It allows the architecture to switch the
6909 * notion of the current task on a cpu in a non-blocking manner. This function
6910 * must be called with all CPU's synchronized, and interrupts disabled, the
6911 * and caller must save the original value of the current task (see
6912 * curr_task() above) and restore that value before reenabling interrupts and
6913 * re-starting the system.
6915 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6917 void set_curr_task(int cpu
, struct task_struct
*p
)