[PATCH] isdn/gigaset: use bitrev8
[wandboard.git] / kernel / sched.c
blobf385eff4682d7fbf169accde4c93d0bf4f42fd83
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <asm/tlb.h>
57 #include <asm/unistd.h>
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
64 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
73 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
78 * Some helpers for converting nanosecond timing to jiffy resolution
80 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
84 * These are the 'tuning knobs' of the scheduler:
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
90 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91 #define DEF_TIMESLICE (100 * HZ / 1000)
92 #define ON_RUNQUEUE_WEIGHT 30
93 #define CHILD_PENALTY 95
94 #define PARENT_PENALTY 100
95 #define EXIT_WEIGHT 3
96 #define PRIO_BONUS_RATIO 25
97 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98 #define INTERACTIVE_DELTA 2
99 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
101 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
109 * This part scales the interactivity limit depending on niceness.
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
131 #define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
135 #define GRANULARITY (10 * HZ / 1000 ? : 1)
137 #ifdef CONFIG_SMP
138 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141 #else
142 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144 #endif
146 #define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
149 #define DELTA(p) \
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
153 #define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
156 #define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
160 #define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
163 #define SCALE_PRIO(x, prio) \
164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
166 static unsigned int static_prio_timeslice(int static_prio)
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
170 else
171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
183 static inline unsigned int task_timeslice(struct task_struct *p)
185 return static_prio_timeslice(p->static_prio);
189 * These are the runqueue data structures:
192 struct prio_array {
193 unsigned int nr_active;
194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
195 struct list_head queue[MAX_PRIO];
199 * This is the main, per-CPU runqueue data structure.
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
205 struct rq {
206 spinlock_t lock;
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
212 unsigned long nr_running;
213 unsigned long raw_weighted_load;
214 #ifdef CONFIG_SMP
215 unsigned long cpu_load[3];
216 #endif
217 unsigned long long nr_switches;
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
225 unsigned long nr_uninterruptible;
227 unsigned long expired_timestamp;
228 unsigned long long timestamp_last_tick;
229 struct task_struct *curr, *idle;
230 struct mm_struct *prev_mm;
231 struct prio_array *active, *expired, arrays[2];
232 int best_expired_prio;
233 atomic_t nr_iowait;
235 #ifdef CONFIG_SMP
236 struct sched_domain *sd;
238 /* For active balancing */
239 int active_balance;
240 int push_cpu;
241 int cpu; /* cpu of this runqueue */
243 struct task_struct *migration_thread;
244 struct list_head migration_queue;
245 #endif
247 #ifdef CONFIG_SCHEDSTATS
248 /* latency stats */
249 struct sched_info rq_sched_info;
251 /* sys_sched_yield() stats */
252 unsigned long yld_exp_empty;
253 unsigned long yld_act_empty;
254 unsigned long yld_both_empty;
255 unsigned long yld_cnt;
257 /* schedule() stats */
258 unsigned long sched_switch;
259 unsigned long sched_cnt;
260 unsigned long sched_goidle;
262 /* try_to_wake_up() stats */
263 unsigned long ttwu_cnt;
264 unsigned long ttwu_local;
265 #endif
266 struct lock_class_key rq_lock_key;
269 static DEFINE_PER_CPU(struct rq, runqueues);
271 static inline int cpu_of(struct rq *rq)
273 #ifdef CONFIG_SMP
274 return rq->cpu;
275 #else
276 return 0;
277 #endif
281 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
282 * See detach_destroy_domains: synchronize_sched for details.
284 * The domain tree of any CPU may only be accessed from within
285 * preempt-disabled sections.
287 #define for_each_domain(cpu, __sd) \
288 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
290 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
291 #define this_rq() (&__get_cpu_var(runqueues))
292 #define task_rq(p) cpu_rq(task_cpu(p))
293 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
295 #ifndef prepare_arch_switch
296 # define prepare_arch_switch(next) do { } while (0)
297 #endif
298 #ifndef finish_arch_switch
299 # define finish_arch_switch(prev) do { } while (0)
300 #endif
302 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
303 static inline int task_running(struct rq *rq, struct task_struct *p)
305 return rq->curr == p;
308 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
312 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
314 #ifdef CONFIG_DEBUG_SPINLOCK
315 /* this is a valid case when another task releases the spinlock */
316 rq->lock.owner = current;
317 #endif
319 * If we are tracking spinlock dependencies then we have to
320 * fix up the runqueue lock - which gets 'carried over' from
321 * prev into current:
323 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
325 spin_unlock_irq(&rq->lock);
328 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
329 static inline int task_running(struct rq *rq, struct task_struct *p)
331 #ifdef CONFIG_SMP
332 return p->oncpu;
333 #else
334 return rq->curr == p;
335 #endif
338 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
340 #ifdef CONFIG_SMP
342 * We can optimise this out completely for !SMP, because the
343 * SMP rebalancing from interrupt is the only thing that cares
344 * here.
346 next->oncpu = 1;
347 #endif
348 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
349 spin_unlock_irq(&rq->lock);
350 #else
351 spin_unlock(&rq->lock);
352 #endif
355 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
357 #ifdef CONFIG_SMP
359 * After ->oncpu is cleared, the task can be moved to a different CPU.
360 * We must ensure this doesn't happen until the switch is completely
361 * finished.
363 smp_wmb();
364 prev->oncpu = 0;
365 #endif
366 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
367 local_irq_enable();
368 #endif
370 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
373 * __task_rq_lock - lock the runqueue a given task resides on.
374 * Must be called interrupts disabled.
376 static inline struct rq *__task_rq_lock(struct task_struct *p)
377 __acquires(rq->lock)
379 struct rq *rq;
381 repeat_lock_task:
382 rq = task_rq(p);
383 spin_lock(&rq->lock);
384 if (unlikely(rq != task_rq(p))) {
385 spin_unlock(&rq->lock);
386 goto repeat_lock_task;
388 return rq;
392 * task_rq_lock - lock the runqueue a given task resides on and disable
393 * interrupts. Note the ordering: we can safely lookup the task_rq without
394 * explicitly disabling preemption.
396 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
397 __acquires(rq->lock)
399 struct rq *rq;
401 repeat_lock_task:
402 local_irq_save(*flags);
403 rq = task_rq(p);
404 spin_lock(&rq->lock);
405 if (unlikely(rq != task_rq(p))) {
406 spin_unlock_irqrestore(&rq->lock, *flags);
407 goto repeat_lock_task;
409 return rq;
412 static inline void __task_rq_unlock(struct rq *rq)
413 __releases(rq->lock)
415 spin_unlock(&rq->lock);
418 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
419 __releases(rq->lock)
421 spin_unlock_irqrestore(&rq->lock, *flags);
424 #ifdef CONFIG_SCHEDSTATS
426 * bump this up when changing the output format or the meaning of an existing
427 * format, so that tools can adapt (or abort)
429 #define SCHEDSTAT_VERSION 12
431 static int show_schedstat(struct seq_file *seq, void *v)
433 int cpu;
435 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
436 seq_printf(seq, "timestamp %lu\n", jiffies);
437 for_each_online_cpu(cpu) {
438 struct rq *rq = cpu_rq(cpu);
439 #ifdef CONFIG_SMP
440 struct sched_domain *sd;
441 int dcnt = 0;
442 #endif
444 /* runqueue-specific stats */
445 seq_printf(seq,
446 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
447 cpu, rq->yld_both_empty,
448 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
449 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
450 rq->ttwu_cnt, rq->ttwu_local,
451 rq->rq_sched_info.cpu_time,
452 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
454 seq_printf(seq, "\n");
456 #ifdef CONFIG_SMP
457 /* domain-specific stats */
458 preempt_disable();
459 for_each_domain(cpu, sd) {
460 enum idle_type itype;
461 char mask_str[NR_CPUS];
463 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
464 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
465 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
466 itype++) {
467 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
468 sd->lb_cnt[itype],
469 sd->lb_balanced[itype],
470 sd->lb_failed[itype],
471 sd->lb_imbalance[itype],
472 sd->lb_gained[itype],
473 sd->lb_hot_gained[itype],
474 sd->lb_nobusyq[itype],
475 sd->lb_nobusyg[itype]);
477 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
478 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
479 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
480 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
481 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
483 preempt_enable();
484 #endif
486 return 0;
489 static int schedstat_open(struct inode *inode, struct file *file)
491 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
492 char *buf = kmalloc(size, GFP_KERNEL);
493 struct seq_file *m;
494 int res;
496 if (!buf)
497 return -ENOMEM;
498 res = single_open(file, show_schedstat, NULL);
499 if (!res) {
500 m = file->private_data;
501 m->buf = buf;
502 m->size = size;
503 } else
504 kfree(buf);
505 return res;
508 const struct file_operations proc_schedstat_operations = {
509 .open = schedstat_open,
510 .read = seq_read,
511 .llseek = seq_lseek,
512 .release = single_release,
516 * Expects runqueue lock to be held for atomicity of update
518 static inline void
519 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
521 if (rq) {
522 rq->rq_sched_info.run_delay += delta_jiffies;
523 rq->rq_sched_info.pcnt++;
528 * Expects runqueue lock to be held for atomicity of update
530 static inline void
531 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
533 if (rq)
534 rq->rq_sched_info.cpu_time += delta_jiffies;
536 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
537 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
538 #else /* !CONFIG_SCHEDSTATS */
539 static inline void
540 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
542 static inline void
543 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
545 # define schedstat_inc(rq, field) do { } while (0)
546 # define schedstat_add(rq, field, amt) do { } while (0)
547 #endif
550 * rq_lock - lock a given runqueue and disable interrupts.
552 static inline struct rq *this_rq_lock(void)
553 __acquires(rq->lock)
555 struct rq *rq;
557 local_irq_disable();
558 rq = this_rq();
559 spin_lock(&rq->lock);
561 return rq;
564 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
566 * Called when a process is dequeued from the active array and given
567 * the cpu. We should note that with the exception of interactive
568 * tasks, the expired queue will become the active queue after the active
569 * queue is empty, without explicitly dequeuing and requeuing tasks in the
570 * expired queue. (Interactive tasks may be requeued directly to the
571 * active queue, thus delaying tasks in the expired queue from running;
572 * see scheduler_tick()).
574 * This function is only called from sched_info_arrive(), rather than
575 * dequeue_task(). Even though a task may be queued and dequeued multiple
576 * times as it is shuffled about, we're really interested in knowing how
577 * long it was from the *first* time it was queued to the time that it
578 * finally hit a cpu.
580 static inline void sched_info_dequeued(struct task_struct *t)
582 t->sched_info.last_queued = 0;
586 * Called when a task finally hits the cpu. We can now calculate how
587 * long it was waiting to run. We also note when it began so that we
588 * can keep stats on how long its timeslice is.
590 static void sched_info_arrive(struct task_struct *t)
592 unsigned long now = jiffies, delta_jiffies = 0;
594 if (t->sched_info.last_queued)
595 delta_jiffies = now - t->sched_info.last_queued;
596 sched_info_dequeued(t);
597 t->sched_info.run_delay += delta_jiffies;
598 t->sched_info.last_arrival = now;
599 t->sched_info.pcnt++;
601 rq_sched_info_arrive(task_rq(t), delta_jiffies);
605 * Called when a process is queued into either the active or expired
606 * array. The time is noted and later used to determine how long we
607 * had to wait for us to reach the cpu. Since the expired queue will
608 * become the active queue after active queue is empty, without dequeuing
609 * and requeuing any tasks, we are interested in queuing to either. It
610 * is unusual but not impossible for tasks to be dequeued and immediately
611 * requeued in the same or another array: this can happen in sched_yield(),
612 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
613 * to runqueue.
615 * This function is only called from enqueue_task(), but also only updates
616 * the timestamp if it is already not set. It's assumed that
617 * sched_info_dequeued() will clear that stamp when appropriate.
619 static inline void sched_info_queued(struct task_struct *t)
621 if (unlikely(sched_info_on()))
622 if (!t->sched_info.last_queued)
623 t->sched_info.last_queued = jiffies;
627 * Called when a process ceases being the active-running process, either
628 * voluntarily or involuntarily. Now we can calculate how long we ran.
630 static inline void sched_info_depart(struct task_struct *t)
632 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
634 t->sched_info.cpu_time += delta_jiffies;
635 rq_sched_info_depart(task_rq(t), delta_jiffies);
639 * Called when tasks are switched involuntarily due, typically, to expiring
640 * their time slice. (This may also be called when switching to or from
641 * the idle task.) We are only called when prev != next.
643 static inline void
644 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
646 struct rq *rq = task_rq(prev);
649 * prev now departs the cpu. It's not interesting to record
650 * stats about how efficient we were at scheduling the idle
651 * process, however.
653 if (prev != rq->idle)
654 sched_info_depart(prev);
656 if (next != rq->idle)
657 sched_info_arrive(next);
659 static inline void
660 sched_info_switch(struct task_struct *prev, struct task_struct *next)
662 if (unlikely(sched_info_on()))
663 __sched_info_switch(prev, next);
665 #else
666 #define sched_info_queued(t) do { } while (0)
667 #define sched_info_switch(t, next) do { } while (0)
668 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
671 * Adding/removing a task to/from a priority array:
673 static void dequeue_task(struct task_struct *p, struct prio_array *array)
675 array->nr_active--;
676 list_del(&p->run_list);
677 if (list_empty(array->queue + p->prio))
678 __clear_bit(p->prio, array->bitmap);
681 static void enqueue_task(struct task_struct *p, struct prio_array *array)
683 sched_info_queued(p);
684 list_add_tail(&p->run_list, array->queue + p->prio);
685 __set_bit(p->prio, array->bitmap);
686 array->nr_active++;
687 p->array = array;
691 * Put task to the end of the run list without the overhead of dequeue
692 * followed by enqueue.
694 static void requeue_task(struct task_struct *p, struct prio_array *array)
696 list_move_tail(&p->run_list, array->queue + p->prio);
699 static inline void
700 enqueue_task_head(struct task_struct *p, struct prio_array *array)
702 list_add(&p->run_list, array->queue + p->prio);
703 __set_bit(p->prio, array->bitmap);
704 array->nr_active++;
705 p->array = array;
709 * __normal_prio - return the priority that is based on the static
710 * priority but is modified by bonuses/penalties.
712 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
713 * into the -5 ... 0 ... +5 bonus/penalty range.
715 * We use 25% of the full 0...39 priority range so that:
717 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
718 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
720 * Both properties are important to certain workloads.
723 static inline int __normal_prio(struct task_struct *p)
725 int bonus, prio;
727 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
729 prio = p->static_prio - bonus;
730 if (prio < MAX_RT_PRIO)
731 prio = MAX_RT_PRIO;
732 if (prio > MAX_PRIO-1)
733 prio = MAX_PRIO-1;
734 return prio;
738 * To aid in avoiding the subversion of "niceness" due to uneven distribution
739 * of tasks with abnormal "nice" values across CPUs the contribution that
740 * each task makes to its run queue's load is weighted according to its
741 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
742 * scaled version of the new time slice allocation that they receive on time
743 * slice expiry etc.
747 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
748 * If static_prio_timeslice() is ever changed to break this assumption then
749 * this code will need modification
751 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
752 #define LOAD_WEIGHT(lp) \
753 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
754 #define PRIO_TO_LOAD_WEIGHT(prio) \
755 LOAD_WEIGHT(static_prio_timeslice(prio))
756 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
757 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
759 static void set_load_weight(struct task_struct *p)
761 if (has_rt_policy(p)) {
762 #ifdef CONFIG_SMP
763 if (p == task_rq(p)->migration_thread)
765 * The migration thread does the actual balancing.
766 * Giving its load any weight will skew balancing
767 * adversely.
769 p->load_weight = 0;
770 else
771 #endif
772 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
773 } else
774 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
777 static inline void
778 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
780 rq->raw_weighted_load += p->load_weight;
783 static inline void
784 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
786 rq->raw_weighted_load -= p->load_weight;
789 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
791 rq->nr_running++;
792 inc_raw_weighted_load(rq, p);
795 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
797 rq->nr_running--;
798 dec_raw_weighted_load(rq, p);
802 * Calculate the expected normal priority: i.e. priority
803 * without taking RT-inheritance into account. Might be
804 * boosted by interactivity modifiers. Changes upon fork,
805 * setprio syscalls, and whenever the interactivity
806 * estimator recalculates.
808 static inline int normal_prio(struct task_struct *p)
810 int prio;
812 if (has_rt_policy(p))
813 prio = MAX_RT_PRIO-1 - p->rt_priority;
814 else
815 prio = __normal_prio(p);
816 return prio;
820 * Calculate the current priority, i.e. the priority
821 * taken into account by the scheduler. This value might
822 * be boosted by RT tasks, or might be boosted by
823 * interactivity modifiers. Will be RT if the task got
824 * RT-boosted. If not then it returns p->normal_prio.
826 static int effective_prio(struct task_struct *p)
828 p->normal_prio = normal_prio(p);
830 * If we are RT tasks or we were boosted to RT priority,
831 * keep the priority unchanged. Otherwise, update priority
832 * to the normal priority:
834 if (!rt_prio(p->prio))
835 return p->normal_prio;
836 return p->prio;
840 * __activate_task - move a task to the runqueue.
842 static void __activate_task(struct task_struct *p, struct rq *rq)
844 struct prio_array *target = rq->active;
846 if (batch_task(p))
847 target = rq->expired;
848 enqueue_task(p, target);
849 inc_nr_running(p, rq);
853 * __activate_idle_task - move idle task to the _front_ of runqueue.
855 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
857 enqueue_task_head(p, rq->active);
858 inc_nr_running(p, rq);
862 * Recalculate p->normal_prio and p->prio after having slept,
863 * updating the sleep-average too:
865 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
867 /* Caller must always ensure 'now >= p->timestamp' */
868 unsigned long sleep_time = now - p->timestamp;
870 if (batch_task(p))
871 sleep_time = 0;
873 if (likely(sleep_time > 0)) {
875 * This ceiling is set to the lowest priority that would allow
876 * a task to be reinserted into the active array on timeslice
877 * completion.
879 unsigned long ceiling = INTERACTIVE_SLEEP(p);
881 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
883 * Prevents user tasks from achieving best priority
884 * with one single large enough sleep.
886 p->sleep_avg = ceiling;
888 * Using INTERACTIVE_SLEEP() as a ceiling places a
889 * nice(0) task 1ms sleep away from promotion, and
890 * gives it 700ms to round-robin with no chance of
891 * being demoted. This is more than generous, so
892 * mark this sleep as non-interactive to prevent the
893 * on-runqueue bonus logic from intervening should
894 * this task not receive cpu immediately.
896 p->sleep_type = SLEEP_NONINTERACTIVE;
897 } else {
899 * Tasks waking from uninterruptible sleep are
900 * limited in their sleep_avg rise as they
901 * are likely to be waiting on I/O
903 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
904 if (p->sleep_avg >= ceiling)
905 sleep_time = 0;
906 else if (p->sleep_avg + sleep_time >=
907 ceiling) {
908 p->sleep_avg = ceiling;
909 sleep_time = 0;
914 * This code gives a bonus to interactive tasks.
916 * The boost works by updating the 'average sleep time'
917 * value here, based on ->timestamp. The more time a
918 * task spends sleeping, the higher the average gets -
919 * and the higher the priority boost gets as well.
921 p->sleep_avg += sleep_time;
924 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
925 p->sleep_avg = NS_MAX_SLEEP_AVG;
928 return effective_prio(p);
932 * activate_task - move a task to the runqueue and do priority recalculation
934 * Update all the scheduling statistics stuff. (sleep average
935 * calculation, priority modifiers, etc.)
937 static void activate_task(struct task_struct *p, struct rq *rq, int local)
939 unsigned long long now;
941 now = sched_clock();
942 #ifdef CONFIG_SMP
943 if (!local) {
944 /* Compensate for drifting sched_clock */
945 struct rq *this_rq = this_rq();
946 now = (now - this_rq->timestamp_last_tick)
947 + rq->timestamp_last_tick;
949 #endif
952 * Sleep time is in units of nanosecs, so shift by 20 to get a
953 * milliseconds-range estimation of the amount of time that the task
954 * spent sleeping:
956 if (unlikely(prof_on == SLEEP_PROFILING)) {
957 if (p->state == TASK_UNINTERRUPTIBLE)
958 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
959 (now - p->timestamp) >> 20);
962 if (!rt_task(p))
963 p->prio = recalc_task_prio(p, now);
966 * This checks to make sure it's not an uninterruptible task
967 * that is now waking up.
969 if (p->sleep_type == SLEEP_NORMAL) {
971 * Tasks which were woken up by interrupts (ie. hw events)
972 * are most likely of interactive nature. So we give them
973 * the credit of extending their sleep time to the period
974 * of time they spend on the runqueue, waiting for execution
975 * on a CPU, first time around:
977 if (in_interrupt())
978 p->sleep_type = SLEEP_INTERRUPTED;
979 else {
981 * Normal first-time wakeups get a credit too for
982 * on-runqueue time, but it will be weighted down:
984 p->sleep_type = SLEEP_INTERACTIVE;
987 p->timestamp = now;
989 __activate_task(p, rq);
993 * deactivate_task - remove a task from the runqueue.
995 static void deactivate_task(struct task_struct *p, struct rq *rq)
997 dec_nr_running(p, rq);
998 dequeue_task(p, p->array);
999 p->array = NULL;
1003 * resched_task - mark a task 'to be rescheduled now'.
1005 * On UP this means the setting of the need_resched flag, on SMP it
1006 * might also involve a cross-CPU call to trigger the scheduler on
1007 * the target CPU.
1009 #ifdef CONFIG_SMP
1011 #ifndef tsk_is_polling
1012 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1013 #endif
1015 static void resched_task(struct task_struct *p)
1017 int cpu;
1019 assert_spin_locked(&task_rq(p)->lock);
1021 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1022 return;
1024 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1026 cpu = task_cpu(p);
1027 if (cpu == smp_processor_id())
1028 return;
1030 /* NEED_RESCHED must be visible before we test polling */
1031 smp_mb();
1032 if (!tsk_is_polling(p))
1033 smp_send_reschedule(cpu);
1035 #else
1036 static inline void resched_task(struct task_struct *p)
1038 assert_spin_locked(&task_rq(p)->lock);
1039 set_tsk_need_resched(p);
1041 #endif
1044 * task_curr - is this task currently executing on a CPU?
1045 * @p: the task in question.
1047 inline int task_curr(const struct task_struct *p)
1049 return cpu_curr(task_cpu(p)) == p;
1052 /* Used instead of source_load when we know the type == 0 */
1053 unsigned long weighted_cpuload(const int cpu)
1055 return cpu_rq(cpu)->raw_weighted_load;
1058 #ifdef CONFIG_SMP
1059 struct migration_req {
1060 struct list_head list;
1062 struct task_struct *task;
1063 int dest_cpu;
1065 struct completion done;
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1072 static int
1073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1075 struct rq *rq = task_rq(p);
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1081 if (!p->array && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1086 init_completion(&req->done);
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
1091 return 1;
1095 * wait_task_inactive - wait for a thread to unschedule.
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1103 void wait_task_inactive(struct task_struct *p)
1105 unsigned long flags;
1106 struct rq *rq;
1107 int preempted;
1109 repeat:
1110 rq = task_rq_lock(p, &flags);
1111 /* Must be off runqueue entirely, not preempted. */
1112 if (unlikely(p->array || task_running(rq, p))) {
1113 /* If it's preempted, we yield. It could be a while. */
1114 preempted = !task_running(rq, p);
1115 task_rq_unlock(rq, &flags);
1116 cpu_relax();
1117 if (preempted)
1118 yield();
1119 goto repeat;
1121 task_rq_unlock(rq, &flags);
1124 /***
1125 * kick_process - kick a running thread to enter/exit the kernel
1126 * @p: the to-be-kicked thread
1128 * Cause a process which is running on another CPU to enter
1129 * kernel-mode, without any delay. (to get signals handled.)
1131 * NOTE: this function doesnt have to take the runqueue lock,
1132 * because all it wants to ensure is that the remote task enters
1133 * the kernel. If the IPI races and the task has been migrated
1134 * to another CPU then no harm is done and the purpose has been
1135 * achieved as well.
1137 void kick_process(struct task_struct *p)
1139 int cpu;
1141 preempt_disable();
1142 cpu = task_cpu(p);
1143 if ((cpu != smp_processor_id()) && task_curr(p))
1144 smp_send_reschedule(cpu);
1145 preempt_enable();
1149 * Return a low guess at the load of a migration-source cpu weighted
1150 * according to the scheduling class and "nice" value.
1152 * We want to under-estimate the load of migration sources, to
1153 * balance conservatively.
1155 static inline unsigned long source_load(int cpu, int type)
1157 struct rq *rq = cpu_rq(cpu);
1159 if (type == 0)
1160 return rq->raw_weighted_load;
1162 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1166 * Return a high guess at the load of a migration-target cpu weighted
1167 * according to the scheduling class and "nice" value.
1169 static inline unsigned long target_load(int cpu, int type)
1171 struct rq *rq = cpu_rq(cpu);
1173 if (type == 0)
1174 return rq->raw_weighted_load;
1176 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1180 * Return the average load per task on the cpu's run queue
1182 static inline unsigned long cpu_avg_load_per_task(int cpu)
1184 struct rq *rq = cpu_rq(cpu);
1185 unsigned long n = rq->nr_running;
1187 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1191 * find_idlest_group finds and returns the least busy CPU group within the
1192 * domain.
1194 static struct sched_group *
1195 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1197 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1198 unsigned long min_load = ULONG_MAX, this_load = 0;
1199 int load_idx = sd->forkexec_idx;
1200 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1202 do {
1203 unsigned long load, avg_load;
1204 int local_group;
1205 int i;
1207 /* Skip over this group if it has no CPUs allowed */
1208 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1209 goto nextgroup;
1211 local_group = cpu_isset(this_cpu, group->cpumask);
1213 /* Tally up the load of all CPUs in the group */
1214 avg_load = 0;
1216 for_each_cpu_mask(i, group->cpumask) {
1217 /* Bias balancing toward cpus of our domain */
1218 if (local_group)
1219 load = source_load(i, load_idx);
1220 else
1221 load = target_load(i, load_idx);
1223 avg_load += load;
1226 /* Adjust by relative CPU power of the group */
1227 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1236 nextgroup:
1237 group = group->next;
1238 } while (group != sd->groups);
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1248 static int
1249 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1251 cpumask_t tmp;
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1259 for_each_cpu_mask(i, tmp) {
1260 load = weighted_cpuload(i);
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1268 return idlest;
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1276 * Balance, ie. select the least loaded group.
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1280 * preempt must be disabled.
1282 static int sched_balance_self(int cpu, int flag)
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
1287 for_each_domain(cpu, tmp) {
1289 * If power savings logic is enabled for a domain, stop there.
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
1293 if (tmp->flags & flag)
1294 sd = tmp;
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1300 int new_cpu, weight;
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1314 new_cpu = find_idlest_cpu(group, t, cpu);
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1321 /* Now try balancing at a lower domain level of new_cpu */
1322 cpu = new_cpu;
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1331 /* while loop will break here if sd == NULL */
1334 return cpu;
1337 #endif /* CONFIG_SMP */
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1345 * Returns the CPU we should wake onto.
1347 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1348 static int wake_idle(int cpu, struct task_struct *p)
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1354 if (idle_cpu(cpu))
1355 return cpu;
1357 for_each_domain(cpu, sd) {
1358 if (sd->flags & SD_WAKE_IDLE) {
1359 cpus_and(tmp, sd->span, p->cpus_allowed);
1360 for_each_cpu_mask(i, tmp) {
1361 if (idle_cpu(i))
1362 return i;
1365 else
1366 break;
1368 return cpu;
1370 #else
1371 static inline int wake_idle(int cpu, struct task_struct *p)
1373 return cpu;
1375 #endif
1377 /***
1378 * try_to_wake_up - wake up a thread
1379 * @p: the to-be-woken-up thread
1380 * @state: the mask of task states that can be woken
1381 * @sync: do a synchronous wakeup?
1383 * Put it on the run-queue if it's not already there. The "current"
1384 * thread is always on the run-queue (except when the actual
1385 * re-schedule is in progress), and as such you're allowed to do
1386 * the simpler "current->state = TASK_RUNNING" to mark yourself
1387 * runnable without the overhead of this.
1389 * returns failure only if the task is already active.
1391 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1393 int cpu, this_cpu, success = 0;
1394 unsigned long flags;
1395 long old_state;
1396 struct rq *rq;
1397 #ifdef CONFIG_SMP
1398 struct sched_domain *sd, *this_sd = NULL;
1399 unsigned long load, this_load;
1400 int new_cpu;
1401 #endif
1403 rq = task_rq_lock(p, &flags);
1404 old_state = p->state;
1405 if (!(old_state & state))
1406 goto out;
1408 if (p->array)
1409 goto out_running;
1411 cpu = task_cpu(p);
1412 this_cpu = smp_processor_id();
1414 #ifdef CONFIG_SMP
1415 if (unlikely(task_running(rq, p)))
1416 goto out_activate;
1418 new_cpu = cpu;
1420 schedstat_inc(rq, ttwu_cnt);
1421 if (cpu == this_cpu) {
1422 schedstat_inc(rq, ttwu_local);
1423 goto out_set_cpu;
1426 for_each_domain(this_cpu, sd) {
1427 if (cpu_isset(cpu, sd->span)) {
1428 schedstat_inc(sd, ttwu_wake_remote);
1429 this_sd = sd;
1430 break;
1434 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1435 goto out_set_cpu;
1438 * Check for affine wakeup and passive balancing possibilities.
1440 if (this_sd) {
1441 int idx = this_sd->wake_idx;
1442 unsigned int imbalance;
1444 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1446 load = source_load(cpu, idx);
1447 this_load = target_load(this_cpu, idx);
1449 new_cpu = this_cpu; /* Wake to this CPU if we can */
1451 if (this_sd->flags & SD_WAKE_AFFINE) {
1452 unsigned long tl = this_load;
1453 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1456 * If sync wakeup then subtract the (maximum possible)
1457 * effect of the currently running task from the load
1458 * of the current CPU:
1460 if (sync)
1461 tl -= current->load_weight;
1463 if ((tl <= load &&
1464 tl + target_load(cpu, idx) <= tl_per_task) ||
1465 100*(tl + p->load_weight) <= imbalance*load) {
1467 * This domain has SD_WAKE_AFFINE and
1468 * p is cache cold in this domain, and
1469 * there is no bad imbalance.
1471 schedstat_inc(this_sd, ttwu_move_affine);
1472 goto out_set_cpu;
1477 * Start passive balancing when half the imbalance_pct
1478 * limit is reached.
1480 if (this_sd->flags & SD_WAKE_BALANCE) {
1481 if (imbalance*this_load <= 100*load) {
1482 schedstat_inc(this_sd, ttwu_move_balance);
1483 goto out_set_cpu;
1488 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1489 out_set_cpu:
1490 new_cpu = wake_idle(new_cpu, p);
1491 if (new_cpu != cpu) {
1492 set_task_cpu(p, new_cpu);
1493 task_rq_unlock(rq, &flags);
1494 /* might preempt at this point */
1495 rq = task_rq_lock(p, &flags);
1496 old_state = p->state;
1497 if (!(old_state & state))
1498 goto out;
1499 if (p->array)
1500 goto out_running;
1502 this_cpu = smp_processor_id();
1503 cpu = task_cpu(p);
1506 out_activate:
1507 #endif /* CONFIG_SMP */
1508 if (old_state == TASK_UNINTERRUPTIBLE) {
1509 rq->nr_uninterruptible--;
1511 * Tasks on involuntary sleep don't earn
1512 * sleep_avg beyond just interactive state.
1514 p->sleep_type = SLEEP_NONINTERACTIVE;
1515 } else
1518 * Tasks that have marked their sleep as noninteractive get
1519 * woken up with their sleep average not weighted in an
1520 * interactive way.
1522 if (old_state & TASK_NONINTERACTIVE)
1523 p->sleep_type = SLEEP_NONINTERACTIVE;
1526 activate_task(p, rq, cpu == this_cpu);
1528 * Sync wakeups (i.e. those types of wakeups where the waker
1529 * has indicated that it will leave the CPU in short order)
1530 * don't trigger a preemption, if the woken up task will run on
1531 * this cpu. (in this case the 'I will reschedule' promise of
1532 * the waker guarantees that the freshly woken up task is going
1533 * to be considered on this CPU.)
1535 if (!sync || cpu != this_cpu) {
1536 if (TASK_PREEMPTS_CURR(p, rq))
1537 resched_task(rq->curr);
1539 success = 1;
1541 out_running:
1542 p->state = TASK_RUNNING;
1543 out:
1544 task_rq_unlock(rq, &flags);
1546 return success;
1549 int fastcall wake_up_process(struct task_struct *p)
1551 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1552 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1554 EXPORT_SYMBOL(wake_up_process);
1556 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1558 return try_to_wake_up(p, state, 0);
1562 * Perform scheduler related setup for a newly forked process p.
1563 * p is forked by current.
1565 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1567 int cpu = get_cpu();
1569 #ifdef CONFIG_SMP
1570 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1571 #endif
1572 set_task_cpu(p, cpu);
1575 * We mark the process as running here, but have not actually
1576 * inserted it onto the runqueue yet. This guarantees that
1577 * nobody will actually run it, and a signal or other external
1578 * event cannot wake it up and insert it on the runqueue either.
1580 p->state = TASK_RUNNING;
1583 * Make sure we do not leak PI boosting priority to the child:
1585 p->prio = current->normal_prio;
1587 INIT_LIST_HEAD(&p->run_list);
1588 p->array = NULL;
1589 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1590 if (unlikely(sched_info_on()))
1591 memset(&p->sched_info, 0, sizeof(p->sched_info));
1592 #endif
1593 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1594 p->oncpu = 0;
1595 #endif
1596 #ifdef CONFIG_PREEMPT
1597 /* Want to start with kernel preemption disabled. */
1598 task_thread_info(p)->preempt_count = 1;
1599 #endif
1601 * Share the timeslice between parent and child, thus the
1602 * total amount of pending timeslices in the system doesn't change,
1603 * resulting in more scheduling fairness.
1605 local_irq_disable();
1606 p->time_slice = (current->time_slice + 1) >> 1;
1608 * The remainder of the first timeslice might be recovered by
1609 * the parent if the child exits early enough.
1611 p->first_time_slice = 1;
1612 current->time_slice >>= 1;
1613 p->timestamp = sched_clock();
1614 if (unlikely(!current->time_slice)) {
1616 * This case is rare, it happens when the parent has only
1617 * a single jiffy left from its timeslice. Taking the
1618 * runqueue lock is not a problem.
1620 current->time_slice = 1;
1621 scheduler_tick();
1623 local_irq_enable();
1624 put_cpu();
1628 * wake_up_new_task - wake up a newly created task for the first time.
1630 * This function will do some initial scheduler statistics housekeeping
1631 * that must be done for every newly created context, then puts the task
1632 * on the runqueue and wakes it.
1634 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1636 struct rq *rq, *this_rq;
1637 unsigned long flags;
1638 int this_cpu, cpu;
1640 rq = task_rq_lock(p, &flags);
1641 BUG_ON(p->state != TASK_RUNNING);
1642 this_cpu = smp_processor_id();
1643 cpu = task_cpu(p);
1646 * We decrease the sleep average of forking parents
1647 * and children as well, to keep max-interactive tasks
1648 * from forking tasks that are max-interactive. The parent
1649 * (current) is done further down, under its lock.
1651 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1652 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1654 p->prio = effective_prio(p);
1656 if (likely(cpu == this_cpu)) {
1657 if (!(clone_flags & CLONE_VM)) {
1659 * The VM isn't cloned, so we're in a good position to
1660 * do child-runs-first in anticipation of an exec. This
1661 * usually avoids a lot of COW overhead.
1663 if (unlikely(!current->array))
1664 __activate_task(p, rq);
1665 else {
1666 p->prio = current->prio;
1667 p->normal_prio = current->normal_prio;
1668 list_add_tail(&p->run_list, &current->run_list);
1669 p->array = current->array;
1670 p->array->nr_active++;
1671 inc_nr_running(p, rq);
1673 set_need_resched();
1674 } else
1675 /* Run child last */
1676 __activate_task(p, rq);
1678 * We skip the following code due to cpu == this_cpu
1680 * task_rq_unlock(rq, &flags);
1681 * this_rq = task_rq_lock(current, &flags);
1683 this_rq = rq;
1684 } else {
1685 this_rq = cpu_rq(this_cpu);
1688 * Not the local CPU - must adjust timestamp. This should
1689 * get optimised away in the !CONFIG_SMP case.
1691 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1692 + rq->timestamp_last_tick;
1693 __activate_task(p, rq);
1694 if (TASK_PREEMPTS_CURR(p, rq))
1695 resched_task(rq->curr);
1698 * Parent and child are on different CPUs, now get the
1699 * parent runqueue to update the parent's ->sleep_avg:
1701 task_rq_unlock(rq, &flags);
1702 this_rq = task_rq_lock(current, &flags);
1704 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1705 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1706 task_rq_unlock(this_rq, &flags);
1710 * Potentially available exiting-child timeslices are
1711 * retrieved here - this way the parent does not get
1712 * penalized for creating too many threads.
1714 * (this cannot be used to 'generate' timeslices
1715 * artificially, because any timeslice recovered here
1716 * was given away by the parent in the first place.)
1718 void fastcall sched_exit(struct task_struct *p)
1720 unsigned long flags;
1721 struct rq *rq;
1724 * If the child was a (relative-) CPU hog then decrease
1725 * the sleep_avg of the parent as well.
1727 rq = task_rq_lock(p->parent, &flags);
1728 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1729 p->parent->time_slice += p->time_slice;
1730 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1731 p->parent->time_slice = task_timeslice(p);
1733 if (p->sleep_avg < p->parent->sleep_avg)
1734 p->parent->sleep_avg = p->parent->sleep_avg /
1735 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1736 (EXIT_WEIGHT + 1);
1737 task_rq_unlock(rq, &flags);
1741 * prepare_task_switch - prepare to switch tasks
1742 * @rq: the runqueue preparing to switch
1743 * @next: the task we are going to switch to.
1745 * This is called with the rq lock held and interrupts off. It must
1746 * be paired with a subsequent finish_task_switch after the context
1747 * switch.
1749 * prepare_task_switch sets up locking and calls architecture specific
1750 * hooks.
1752 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1754 prepare_lock_switch(rq, next);
1755 prepare_arch_switch(next);
1759 * finish_task_switch - clean up after a task-switch
1760 * @rq: runqueue associated with task-switch
1761 * @prev: the thread we just switched away from.
1763 * finish_task_switch must be called after the context switch, paired
1764 * with a prepare_task_switch call before the context switch.
1765 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1766 * and do any other architecture-specific cleanup actions.
1768 * Note that we may have delayed dropping an mm in context_switch(). If
1769 * so, we finish that here outside of the runqueue lock. (Doing it
1770 * with the lock held can cause deadlocks; see schedule() for
1771 * details.)
1773 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1774 __releases(rq->lock)
1776 struct mm_struct *mm = rq->prev_mm;
1777 long prev_state;
1779 rq->prev_mm = NULL;
1782 * A task struct has one reference for the use as "current".
1783 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1784 * schedule one last time. The schedule call will never return, and
1785 * the scheduled task must drop that reference.
1786 * The test for TASK_DEAD must occur while the runqueue locks are
1787 * still held, otherwise prev could be scheduled on another cpu, die
1788 * there before we look at prev->state, and then the reference would
1789 * be dropped twice.
1790 * Manfred Spraul <manfred@colorfullife.com>
1792 prev_state = prev->state;
1793 finish_arch_switch(prev);
1794 finish_lock_switch(rq, prev);
1795 if (mm)
1796 mmdrop(mm);
1797 if (unlikely(prev_state == TASK_DEAD)) {
1799 * Remove function-return probe instances associated with this
1800 * task and put them back on the free list.
1802 kprobe_flush_task(prev);
1803 put_task_struct(prev);
1808 * schedule_tail - first thing a freshly forked thread must call.
1809 * @prev: the thread we just switched away from.
1811 asmlinkage void schedule_tail(struct task_struct *prev)
1812 __releases(rq->lock)
1814 struct rq *rq = this_rq();
1816 finish_task_switch(rq, prev);
1817 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1818 /* In this case, finish_task_switch does not reenable preemption */
1819 preempt_enable();
1820 #endif
1821 if (current->set_child_tid)
1822 put_user(current->pid, current->set_child_tid);
1826 * context_switch - switch to the new MM and the new
1827 * thread's register state.
1829 static inline struct task_struct *
1830 context_switch(struct rq *rq, struct task_struct *prev,
1831 struct task_struct *next)
1833 struct mm_struct *mm = next->mm;
1834 struct mm_struct *oldmm = prev->active_mm;
1836 if (!mm) {
1837 next->active_mm = oldmm;
1838 atomic_inc(&oldmm->mm_count);
1839 enter_lazy_tlb(oldmm, next);
1840 } else
1841 switch_mm(oldmm, mm, next);
1843 if (!prev->mm) {
1844 prev->active_mm = NULL;
1845 WARN_ON(rq->prev_mm);
1846 rq->prev_mm = oldmm;
1849 * Since the runqueue lock will be released by the next
1850 * task (which is an invalid locking op but in the case
1851 * of the scheduler it's an obvious special-case), so we
1852 * do an early lockdep release here:
1854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1855 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1856 #endif
1858 /* Here we just switch the register state and the stack. */
1859 switch_to(prev, next, prev);
1861 return prev;
1865 * nr_running, nr_uninterruptible and nr_context_switches:
1867 * externally visible scheduler statistics: current number of runnable
1868 * threads, current number of uninterruptible-sleeping threads, total
1869 * number of context switches performed since bootup.
1871 unsigned long nr_running(void)
1873 unsigned long i, sum = 0;
1875 for_each_online_cpu(i)
1876 sum += cpu_rq(i)->nr_running;
1878 return sum;
1881 unsigned long nr_uninterruptible(void)
1883 unsigned long i, sum = 0;
1885 for_each_possible_cpu(i)
1886 sum += cpu_rq(i)->nr_uninterruptible;
1889 * Since we read the counters lockless, it might be slightly
1890 * inaccurate. Do not allow it to go below zero though:
1892 if (unlikely((long)sum < 0))
1893 sum = 0;
1895 return sum;
1898 unsigned long long nr_context_switches(void)
1900 int i;
1901 unsigned long long sum = 0;
1903 for_each_possible_cpu(i)
1904 sum += cpu_rq(i)->nr_switches;
1906 return sum;
1909 unsigned long nr_iowait(void)
1911 unsigned long i, sum = 0;
1913 for_each_possible_cpu(i)
1914 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1916 return sum;
1919 unsigned long nr_active(void)
1921 unsigned long i, running = 0, uninterruptible = 0;
1923 for_each_online_cpu(i) {
1924 running += cpu_rq(i)->nr_running;
1925 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1928 if (unlikely((long)uninterruptible < 0))
1929 uninterruptible = 0;
1931 return running + uninterruptible;
1934 #ifdef CONFIG_SMP
1937 * Is this task likely cache-hot:
1939 static inline int
1940 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1942 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1946 * double_rq_lock - safely lock two runqueues
1948 * Note this does not disable interrupts like task_rq_lock,
1949 * you need to do so manually before calling.
1951 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1952 __acquires(rq1->lock)
1953 __acquires(rq2->lock)
1955 if (rq1 == rq2) {
1956 spin_lock(&rq1->lock);
1957 __acquire(rq2->lock); /* Fake it out ;) */
1958 } else {
1959 if (rq1 < rq2) {
1960 spin_lock(&rq1->lock);
1961 spin_lock(&rq2->lock);
1962 } else {
1963 spin_lock(&rq2->lock);
1964 spin_lock(&rq1->lock);
1970 * double_rq_unlock - safely unlock two runqueues
1972 * Note this does not restore interrupts like task_rq_unlock,
1973 * you need to do so manually after calling.
1975 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1976 __releases(rq1->lock)
1977 __releases(rq2->lock)
1979 spin_unlock(&rq1->lock);
1980 if (rq1 != rq2)
1981 spin_unlock(&rq2->lock);
1982 else
1983 __release(rq2->lock);
1987 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1989 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1990 __releases(this_rq->lock)
1991 __acquires(busiest->lock)
1992 __acquires(this_rq->lock)
1994 if (unlikely(!spin_trylock(&busiest->lock))) {
1995 if (busiest < this_rq) {
1996 spin_unlock(&this_rq->lock);
1997 spin_lock(&busiest->lock);
1998 spin_lock(&this_rq->lock);
1999 } else
2000 spin_lock(&busiest->lock);
2005 * If dest_cpu is allowed for this process, migrate the task to it.
2006 * This is accomplished by forcing the cpu_allowed mask to only
2007 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2008 * the cpu_allowed mask is restored.
2010 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2012 struct migration_req req;
2013 unsigned long flags;
2014 struct rq *rq;
2016 rq = task_rq_lock(p, &flags);
2017 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2018 || unlikely(cpu_is_offline(dest_cpu)))
2019 goto out;
2021 /* force the process onto the specified CPU */
2022 if (migrate_task(p, dest_cpu, &req)) {
2023 /* Need to wait for migration thread (might exit: take ref). */
2024 struct task_struct *mt = rq->migration_thread;
2026 get_task_struct(mt);
2027 task_rq_unlock(rq, &flags);
2028 wake_up_process(mt);
2029 put_task_struct(mt);
2030 wait_for_completion(&req.done);
2032 return;
2034 out:
2035 task_rq_unlock(rq, &flags);
2039 * sched_exec - execve() is a valuable balancing opportunity, because at
2040 * this point the task has the smallest effective memory and cache footprint.
2042 void sched_exec(void)
2044 int new_cpu, this_cpu = get_cpu();
2045 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2046 put_cpu();
2047 if (new_cpu != this_cpu)
2048 sched_migrate_task(current, new_cpu);
2052 * pull_task - move a task from a remote runqueue to the local runqueue.
2053 * Both runqueues must be locked.
2055 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2056 struct task_struct *p, struct rq *this_rq,
2057 struct prio_array *this_array, int this_cpu)
2059 dequeue_task(p, src_array);
2060 dec_nr_running(p, src_rq);
2061 set_task_cpu(p, this_cpu);
2062 inc_nr_running(p, this_rq);
2063 enqueue_task(p, this_array);
2064 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
2065 + this_rq->timestamp_last_tick;
2067 * Note that idle threads have a prio of MAX_PRIO, for this test
2068 * to be always true for them.
2070 if (TASK_PREEMPTS_CURR(p, this_rq))
2071 resched_task(this_rq->curr);
2075 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2077 static
2078 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2079 struct sched_domain *sd, enum idle_type idle,
2080 int *all_pinned)
2083 * We do not migrate tasks that are:
2084 * 1) running (obviously), or
2085 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2086 * 3) are cache-hot on their current CPU.
2088 if (!cpu_isset(this_cpu, p->cpus_allowed))
2089 return 0;
2090 *all_pinned = 0;
2092 if (task_running(rq, p))
2093 return 0;
2096 * Aggressive migration if:
2097 * 1) task is cache cold, or
2098 * 2) too many balance attempts have failed.
2101 if (sd->nr_balance_failed > sd->cache_nice_tries)
2102 return 1;
2104 if (task_hot(p, rq->timestamp_last_tick, sd))
2105 return 0;
2106 return 1;
2109 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2112 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2113 * load from busiest to this_rq, as part of a balancing operation within
2114 * "domain". Returns the number of tasks moved.
2116 * Called with both runqueues locked.
2118 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2119 unsigned long max_nr_move, unsigned long max_load_move,
2120 struct sched_domain *sd, enum idle_type idle,
2121 int *all_pinned)
2123 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2124 best_prio_seen, skip_for_load;
2125 struct prio_array *array, *dst_array;
2126 struct list_head *head, *curr;
2127 struct task_struct *tmp;
2128 long rem_load_move;
2130 if (max_nr_move == 0 || max_load_move == 0)
2131 goto out;
2133 rem_load_move = max_load_move;
2134 pinned = 1;
2135 this_best_prio = rq_best_prio(this_rq);
2136 best_prio = rq_best_prio(busiest);
2138 * Enable handling of the case where there is more than one task
2139 * with the best priority. If the current running task is one
2140 * of those with prio==best_prio we know it won't be moved
2141 * and therefore it's safe to override the skip (based on load) of
2142 * any task we find with that prio.
2144 best_prio_seen = best_prio == busiest->curr->prio;
2147 * We first consider expired tasks. Those will likely not be
2148 * executed in the near future, and they are most likely to
2149 * be cache-cold, thus switching CPUs has the least effect
2150 * on them.
2152 if (busiest->expired->nr_active) {
2153 array = busiest->expired;
2154 dst_array = this_rq->expired;
2155 } else {
2156 array = busiest->active;
2157 dst_array = this_rq->active;
2160 new_array:
2161 /* Start searching at priority 0: */
2162 idx = 0;
2163 skip_bitmap:
2164 if (!idx)
2165 idx = sched_find_first_bit(array->bitmap);
2166 else
2167 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2168 if (idx >= MAX_PRIO) {
2169 if (array == busiest->expired && busiest->active->nr_active) {
2170 array = busiest->active;
2171 dst_array = this_rq->active;
2172 goto new_array;
2174 goto out;
2177 head = array->queue + idx;
2178 curr = head->prev;
2179 skip_queue:
2180 tmp = list_entry(curr, struct task_struct, run_list);
2182 curr = curr->prev;
2185 * To help distribute high priority tasks accross CPUs we don't
2186 * skip a task if it will be the highest priority task (i.e. smallest
2187 * prio value) on its new queue regardless of its load weight
2189 skip_for_load = tmp->load_weight > rem_load_move;
2190 if (skip_for_load && idx < this_best_prio)
2191 skip_for_load = !best_prio_seen && idx == best_prio;
2192 if (skip_for_load ||
2193 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2195 best_prio_seen |= idx == best_prio;
2196 if (curr != head)
2197 goto skip_queue;
2198 idx++;
2199 goto skip_bitmap;
2202 #ifdef CONFIG_SCHEDSTATS
2203 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
2204 schedstat_inc(sd, lb_hot_gained[idle]);
2205 #endif
2207 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2208 pulled++;
2209 rem_load_move -= tmp->load_weight;
2212 * We only want to steal up to the prescribed number of tasks
2213 * and the prescribed amount of weighted load.
2215 if (pulled < max_nr_move && rem_load_move > 0) {
2216 if (idx < this_best_prio)
2217 this_best_prio = idx;
2218 if (curr != head)
2219 goto skip_queue;
2220 idx++;
2221 goto skip_bitmap;
2223 out:
2225 * Right now, this is the only place pull_task() is called,
2226 * so we can safely collect pull_task() stats here rather than
2227 * inside pull_task().
2229 schedstat_add(sd, lb_gained[idle], pulled);
2231 if (all_pinned)
2232 *all_pinned = pinned;
2233 return pulled;
2237 * find_busiest_group finds and returns the busiest CPU group within the
2238 * domain. It calculates and returns the amount of weighted load which
2239 * should be moved to restore balance via the imbalance parameter.
2241 static struct sched_group *
2242 find_busiest_group(struct sched_domain *sd, int this_cpu,
2243 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2244 cpumask_t *cpus)
2246 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2247 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2248 unsigned long max_pull;
2249 unsigned long busiest_load_per_task, busiest_nr_running;
2250 unsigned long this_load_per_task, this_nr_running;
2251 int load_idx;
2252 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2253 int power_savings_balance = 1;
2254 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2255 unsigned long min_nr_running = ULONG_MAX;
2256 struct sched_group *group_min = NULL, *group_leader = NULL;
2257 #endif
2259 max_load = this_load = total_load = total_pwr = 0;
2260 busiest_load_per_task = busiest_nr_running = 0;
2261 this_load_per_task = this_nr_running = 0;
2262 if (idle == NOT_IDLE)
2263 load_idx = sd->busy_idx;
2264 else if (idle == NEWLY_IDLE)
2265 load_idx = sd->newidle_idx;
2266 else
2267 load_idx = sd->idle_idx;
2269 do {
2270 unsigned long load, group_capacity;
2271 int local_group;
2272 int i;
2273 unsigned long sum_nr_running, sum_weighted_load;
2275 local_group = cpu_isset(this_cpu, group->cpumask);
2277 /* Tally up the load of all CPUs in the group */
2278 sum_weighted_load = sum_nr_running = avg_load = 0;
2280 for_each_cpu_mask(i, group->cpumask) {
2281 struct rq *rq;
2283 if (!cpu_isset(i, *cpus))
2284 continue;
2286 rq = cpu_rq(i);
2288 if (*sd_idle && !idle_cpu(i))
2289 *sd_idle = 0;
2291 /* Bias balancing toward cpus of our domain */
2292 if (local_group)
2293 load = target_load(i, load_idx);
2294 else
2295 load = source_load(i, load_idx);
2297 avg_load += load;
2298 sum_nr_running += rq->nr_running;
2299 sum_weighted_load += rq->raw_weighted_load;
2302 total_load += avg_load;
2303 total_pwr += group->cpu_power;
2305 /* Adjust by relative CPU power of the group */
2306 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2308 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2310 if (local_group) {
2311 this_load = avg_load;
2312 this = group;
2313 this_nr_running = sum_nr_running;
2314 this_load_per_task = sum_weighted_load;
2315 } else if (avg_load > max_load &&
2316 sum_nr_running > group_capacity) {
2317 max_load = avg_load;
2318 busiest = group;
2319 busiest_nr_running = sum_nr_running;
2320 busiest_load_per_task = sum_weighted_load;
2323 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2325 * Busy processors will not participate in power savings
2326 * balance.
2328 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2329 goto group_next;
2332 * If the local group is idle or completely loaded
2333 * no need to do power savings balance at this domain
2335 if (local_group && (this_nr_running >= group_capacity ||
2336 !this_nr_running))
2337 power_savings_balance = 0;
2340 * If a group is already running at full capacity or idle,
2341 * don't include that group in power savings calculations
2343 if (!power_savings_balance || sum_nr_running >= group_capacity
2344 || !sum_nr_running)
2345 goto group_next;
2348 * Calculate the group which has the least non-idle load.
2349 * This is the group from where we need to pick up the load
2350 * for saving power
2352 if ((sum_nr_running < min_nr_running) ||
2353 (sum_nr_running == min_nr_running &&
2354 first_cpu(group->cpumask) <
2355 first_cpu(group_min->cpumask))) {
2356 group_min = group;
2357 min_nr_running = sum_nr_running;
2358 min_load_per_task = sum_weighted_load /
2359 sum_nr_running;
2363 * Calculate the group which is almost near its
2364 * capacity but still has some space to pick up some load
2365 * from other group and save more power
2367 if (sum_nr_running <= group_capacity - 1) {
2368 if (sum_nr_running > leader_nr_running ||
2369 (sum_nr_running == leader_nr_running &&
2370 first_cpu(group->cpumask) >
2371 first_cpu(group_leader->cpumask))) {
2372 group_leader = group;
2373 leader_nr_running = sum_nr_running;
2376 group_next:
2377 #endif
2378 group = group->next;
2379 } while (group != sd->groups);
2381 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2382 goto out_balanced;
2384 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2386 if (this_load >= avg_load ||
2387 100*max_load <= sd->imbalance_pct*this_load)
2388 goto out_balanced;
2390 busiest_load_per_task /= busiest_nr_running;
2392 * We're trying to get all the cpus to the average_load, so we don't
2393 * want to push ourselves above the average load, nor do we wish to
2394 * reduce the max loaded cpu below the average load, as either of these
2395 * actions would just result in more rebalancing later, and ping-pong
2396 * tasks around. Thus we look for the minimum possible imbalance.
2397 * Negative imbalances (*we* are more loaded than anyone else) will
2398 * be counted as no imbalance for these purposes -- we can't fix that
2399 * by pulling tasks to us. Be careful of negative numbers as they'll
2400 * appear as very large values with unsigned longs.
2402 if (max_load <= busiest_load_per_task)
2403 goto out_balanced;
2406 * In the presence of smp nice balancing, certain scenarios can have
2407 * max load less than avg load(as we skip the groups at or below
2408 * its cpu_power, while calculating max_load..)
2410 if (max_load < avg_load) {
2411 *imbalance = 0;
2412 goto small_imbalance;
2415 /* Don't want to pull so many tasks that a group would go idle */
2416 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2418 /* How much load to actually move to equalise the imbalance */
2419 *imbalance = min(max_pull * busiest->cpu_power,
2420 (avg_load - this_load) * this->cpu_power)
2421 / SCHED_LOAD_SCALE;
2424 * if *imbalance is less than the average load per runnable task
2425 * there is no gaurantee that any tasks will be moved so we'll have
2426 * a think about bumping its value to force at least one task to be
2427 * moved
2429 if (*imbalance < busiest_load_per_task) {
2430 unsigned long tmp, pwr_now, pwr_move;
2431 unsigned int imbn;
2433 small_imbalance:
2434 pwr_move = pwr_now = 0;
2435 imbn = 2;
2436 if (this_nr_running) {
2437 this_load_per_task /= this_nr_running;
2438 if (busiest_load_per_task > this_load_per_task)
2439 imbn = 1;
2440 } else
2441 this_load_per_task = SCHED_LOAD_SCALE;
2443 if (max_load - this_load >= busiest_load_per_task * imbn) {
2444 *imbalance = busiest_load_per_task;
2445 return busiest;
2449 * OK, we don't have enough imbalance to justify moving tasks,
2450 * however we may be able to increase total CPU power used by
2451 * moving them.
2454 pwr_now += busiest->cpu_power *
2455 min(busiest_load_per_task, max_load);
2456 pwr_now += this->cpu_power *
2457 min(this_load_per_task, this_load);
2458 pwr_now /= SCHED_LOAD_SCALE;
2460 /* Amount of load we'd subtract */
2461 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
2462 if (max_load > tmp)
2463 pwr_move += busiest->cpu_power *
2464 min(busiest_load_per_task, max_load - tmp);
2466 /* Amount of load we'd add */
2467 if (max_load*busiest->cpu_power <
2468 busiest_load_per_task*SCHED_LOAD_SCALE)
2469 tmp = max_load*busiest->cpu_power/this->cpu_power;
2470 else
2471 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2472 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
2473 pwr_move /= SCHED_LOAD_SCALE;
2475 /* Move if we gain throughput */
2476 if (pwr_move <= pwr_now)
2477 goto out_balanced;
2479 *imbalance = busiest_load_per_task;
2482 return busiest;
2484 out_balanced:
2485 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2486 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2487 goto ret;
2489 if (this == group_leader && group_leader != group_min) {
2490 *imbalance = min_load_per_task;
2491 return group_min;
2493 ret:
2494 #endif
2495 *imbalance = 0;
2496 return NULL;
2500 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2502 static struct rq *
2503 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2504 unsigned long imbalance, cpumask_t *cpus)
2506 struct rq *busiest = NULL, *rq;
2507 unsigned long max_load = 0;
2508 int i;
2510 for_each_cpu_mask(i, group->cpumask) {
2512 if (!cpu_isset(i, *cpus))
2513 continue;
2515 rq = cpu_rq(i);
2517 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2518 continue;
2520 if (rq->raw_weighted_load > max_load) {
2521 max_load = rq->raw_weighted_load;
2522 busiest = rq;
2526 return busiest;
2530 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2531 * so long as it is large enough.
2533 #define MAX_PINNED_INTERVAL 512
2535 static inline unsigned long minus_1_or_zero(unsigned long n)
2537 return n > 0 ? n - 1 : 0;
2541 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2542 * tasks if there is an imbalance.
2544 * Called with this_rq unlocked.
2546 static int load_balance(int this_cpu, struct rq *this_rq,
2547 struct sched_domain *sd, enum idle_type idle)
2549 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2550 struct sched_group *group;
2551 unsigned long imbalance;
2552 struct rq *busiest;
2553 cpumask_t cpus = CPU_MASK_ALL;
2556 * When power savings policy is enabled for the parent domain, idle
2557 * sibling can pick up load irrespective of busy siblings. In this case,
2558 * let the state of idle sibling percolate up as IDLE, instead of
2559 * portraying it as NOT_IDLE.
2561 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2562 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2563 sd_idle = 1;
2565 schedstat_inc(sd, lb_cnt[idle]);
2567 redo:
2568 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2569 &cpus);
2570 if (!group) {
2571 schedstat_inc(sd, lb_nobusyg[idle]);
2572 goto out_balanced;
2575 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2576 if (!busiest) {
2577 schedstat_inc(sd, lb_nobusyq[idle]);
2578 goto out_balanced;
2581 BUG_ON(busiest == this_rq);
2583 schedstat_add(sd, lb_imbalance[idle], imbalance);
2585 nr_moved = 0;
2586 if (busiest->nr_running > 1) {
2588 * Attempt to move tasks. If find_busiest_group has found
2589 * an imbalance but busiest->nr_running <= 1, the group is
2590 * still unbalanced. nr_moved simply stays zero, so it is
2591 * correctly treated as an imbalance.
2593 double_rq_lock(this_rq, busiest);
2594 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2595 minus_1_or_zero(busiest->nr_running),
2596 imbalance, sd, idle, &all_pinned);
2597 double_rq_unlock(this_rq, busiest);
2599 /* All tasks on this runqueue were pinned by CPU affinity */
2600 if (unlikely(all_pinned)) {
2601 cpu_clear(cpu_of(busiest), cpus);
2602 if (!cpus_empty(cpus))
2603 goto redo;
2604 goto out_balanced;
2608 if (!nr_moved) {
2609 schedstat_inc(sd, lb_failed[idle]);
2610 sd->nr_balance_failed++;
2612 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2614 spin_lock(&busiest->lock);
2616 /* don't kick the migration_thread, if the curr
2617 * task on busiest cpu can't be moved to this_cpu
2619 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2620 spin_unlock(&busiest->lock);
2621 all_pinned = 1;
2622 goto out_one_pinned;
2625 if (!busiest->active_balance) {
2626 busiest->active_balance = 1;
2627 busiest->push_cpu = this_cpu;
2628 active_balance = 1;
2630 spin_unlock(&busiest->lock);
2631 if (active_balance)
2632 wake_up_process(busiest->migration_thread);
2635 * We've kicked active balancing, reset the failure
2636 * counter.
2638 sd->nr_balance_failed = sd->cache_nice_tries+1;
2640 } else
2641 sd->nr_balance_failed = 0;
2643 if (likely(!active_balance)) {
2644 /* We were unbalanced, so reset the balancing interval */
2645 sd->balance_interval = sd->min_interval;
2646 } else {
2648 * If we've begun active balancing, start to back off. This
2649 * case may not be covered by the all_pinned logic if there
2650 * is only 1 task on the busy runqueue (because we don't call
2651 * move_tasks).
2653 if (sd->balance_interval < sd->max_interval)
2654 sd->balance_interval *= 2;
2657 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2658 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2659 return -1;
2660 return nr_moved;
2662 out_balanced:
2663 schedstat_inc(sd, lb_balanced[idle]);
2665 sd->nr_balance_failed = 0;
2667 out_one_pinned:
2668 /* tune up the balancing interval */
2669 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2670 (sd->balance_interval < sd->max_interval))
2671 sd->balance_interval *= 2;
2673 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2674 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2675 return -1;
2676 return 0;
2680 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2681 * tasks if there is an imbalance.
2683 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2684 * this_rq is locked.
2686 static int
2687 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2689 struct sched_group *group;
2690 struct rq *busiest = NULL;
2691 unsigned long imbalance;
2692 int nr_moved = 0;
2693 int sd_idle = 0;
2694 cpumask_t cpus = CPU_MASK_ALL;
2697 * When power savings policy is enabled for the parent domain, idle
2698 * sibling can pick up load irrespective of busy siblings. In this case,
2699 * let the state of idle sibling percolate up as IDLE, instead of
2700 * portraying it as NOT_IDLE.
2702 if (sd->flags & SD_SHARE_CPUPOWER &&
2703 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2704 sd_idle = 1;
2706 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2707 redo:
2708 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2709 &sd_idle, &cpus);
2710 if (!group) {
2711 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2712 goto out_balanced;
2715 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2716 &cpus);
2717 if (!busiest) {
2718 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2719 goto out_balanced;
2722 BUG_ON(busiest == this_rq);
2724 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2726 nr_moved = 0;
2727 if (busiest->nr_running > 1) {
2728 /* Attempt to move tasks */
2729 double_lock_balance(this_rq, busiest);
2730 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2731 minus_1_or_zero(busiest->nr_running),
2732 imbalance, sd, NEWLY_IDLE, NULL);
2733 spin_unlock(&busiest->lock);
2735 if (!nr_moved) {
2736 cpu_clear(cpu_of(busiest), cpus);
2737 if (!cpus_empty(cpus))
2738 goto redo;
2742 if (!nr_moved) {
2743 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2744 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2746 return -1;
2747 } else
2748 sd->nr_balance_failed = 0;
2750 return nr_moved;
2752 out_balanced:
2753 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2754 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2756 return -1;
2757 sd->nr_balance_failed = 0;
2759 return 0;
2763 * idle_balance is called by schedule() if this_cpu is about to become
2764 * idle. Attempts to pull tasks from other CPUs.
2766 static void idle_balance(int this_cpu, struct rq *this_rq)
2768 struct sched_domain *sd;
2770 for_each_domain(this_cpu, sd) {
2771 if (sd->flags & SD_BALANCE_NEWIDLE) {
2772 /* If we've pulled tasks over stop searching: */
2773 if (load_balance_newidle(this_cpu, this_rq, sd))
2774 break;
2780 * active_load_balance is run by migration threads. It pushes running tasks
2781 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2782 * running on each physical CPU where possible, and avoids physical /
2783 * logical imbalances.
2785 * Called with busiest_rq locked.
2787 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2789 int target_cpu = busiest_rq->push_cpu;
2790 struct sched_domain *sd;
2791 struct rq *target_rq;
2793 /* Is there any task to move? */
2794 if (busiest_rq->nr_running <= 1)
2795 return;
2797 target_rq = cpu_rq(target_cpu);
2800 * This condition is "impossible", if it occurs
2801 * we need to fix it. Originally reported by
2802 * Bjorn Helgaas on a 128-cpu setup.
2804 BUG_ON(busiest_rq == target_rq);
2806 /* move a task from busiest_rq to target_rq */
2807 double_lock_balance(busiest_rq, target_rq);
2809 /* Search for an sd spanning us and the target CPU. */
2810 for_each_domain(target_cpu, sd) {
2811 if ((sd->flags & SD_LOAD_BALANCE) &&
2812 cpu_isset(busiest_cpu, sd->span))
2813 break;
2816 if (likely(sd)) {
2817 schedstat_inc(sd, alb_cnt);
2819 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2820 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2821 NULL))
2822 schedstat_inc(sd, alb_pushed);
2823 else
2824 schedstat_inc(sd, alb_failed);
2826 spin_unlock(&target_rq->lock);
2830 * rebalance_tick will get called every timer tick, on every CPU.
2832 * It checks each scheduling domain to see if it is due to be balanced,
2833 * and initiates a balancing operation if so.
2835 * Balancing parameters are set up in arch_init_sched_domains.
2838 /* Don't have all balancing operations going off at once: */
2839 static inline unsigned long cpu_offset(int cpu)
2841 return jiffies + cpu * HZ / NR_CPUS;
2844 static void
2845 rebalance_tick(int this_cpu, struct rq *this_rq, enum idle_type idle)
2847 unsigned long this_load, interval, j = cpu_offset(this_cpu);
2848 struct sched_domain *sd;
2849 int i, scale;
2851 this_load = this_rq->raw_weighted_load;
2853 /* Update our load: */
2854 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2855 unsigned long old_load, new_load;
2857 old_load = this_rq->cpu_load[i];
2858 new_load = this_load;
2860 * Round up the averaging division if load is increasing. This
2861 * prevents us from getting stuck on 9 if the load is 10, for
2862 * example.
2864 if (new_load > old_load)
2865 new_load += scale-1;
2866 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2869 for_each_domain(this_cpu, sd) {
2870 if (!(sd->flags & SD_LOAD_BALANCE))
2871 continue;
2873 interval = sd->balance_interval;
2874 if (idle != SCHED_IDLE)
2875 interval *= sd->busy_factor;
2877 /* scale ms to jiffies */
2878 interval = msecs_to_jiffies(interval);
2879 if (unlikely(!interval))
2880 interval = 1;
2882 if (j - sd->last_balance >= interval) {
2883 if (load_balance(this_cpu, this_rq, sd, idle)) {
2885 * We've pulled tasks over so either we're no
2886 * longer idle, or one of our SMT siblings is
2887 * not idle.
2889 idle = NOT_IDLE;
2891 sd->last_balance += interval;
2895 #else
2897 * on UP we do not need to balance between CPUs:
2899 static inline void rebalance_tick(int cpu, struct rq *rq, enum idle_type idle)
2902 static inline void idle_balance(int cpu, struct rq *rq)
2905 #endif
2907 static inline int wake_priority_sleeper(struct rq *rq)
2909 int ret = 0;
2911 #ifdef CONFIG_SCHED_SMT
2912 spin_lock(&rq->lock);
2914 * If an SMT sibling task has been put to sleep for priority
2915 * reasons reschedule the idle task to see if it can now run.
2917 if (rq->nr_running) {
2918 resched_task(rq->idle);
2919 ret = 1;
2921 spin_unlock(&rq->lock);
2922 #endif
2923 return ret;
2926 DEFINE_PER_CPU(struct kernel_stat, kstat);
2928 EXPORT_PER_CPU_SYMBOL(kstat);
2931 * This is called on clock ticks and on context switches.
2932 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2934 static inline void
2935 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
2937 p->sched_time += now - max(p->timestamp, rq->timestamp_last_tick);
2941 * Return current->sched_time plus any more ns on the sched_clock
2942 * that have not yet been banked.
2944 unsigned long long current_sched_time(const struct task_struct *p)
2946 unsigned long long ns;
2947 unsigned long flags;
2949 local_irq_save(flags);
2950 ns = max(p->timestamp, task_rq(p)->timestamp_last_tick);
2951 ns = p->sched_time + sched_clock() - ns;
2952 local_irq_restore(flags);
2954 return ns;
2958 * We place interactive tasks back into the active array, if possible.
2960 * To guarantee that this does not starve expired tasks we ignore the
2961 * interactivity of a task if the first expired task had to wait more
2962 * than a 'reasonable' amount of time. This deadline timeout is
2963 * load-dependent, as the frequency of array switched decreases with
2964 * increasing number of running tasks. We also ignore the interactivity
2965 * if a better static_prio task has expired:
2967 static inline int expired_starving(struct rq *rq)
2969 if (rq->curr->static_prio > rq->best_expired_prio)
2970 return 1;
2971 if (!STARVATION_LIMIT || !rq->expired_timestamp)
2972 return 0;
2973 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
2974 return 1;
2975 return 0;
2979 * Account user cpu time to a process.
2980 * @p: the process that the cpu time gets accounted to
2981 * @hardirq_offset: the offset to subtract from hardirq_count()
2982 * @cputime: the cpu time spent in user space since the last update
2984 void account_user_time(struct task_struct *p, cputime_t cputime)
2986 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2987 cputime64_t tmp;
2989 p->utime = cputime_add(p->utime, cputime);
2991 /* Add user time to cpustat. */
2992 tmp = cputime_to_cputime64(cputime);
2993 if (TASK_NICE(p) > 0)
2994 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2995 else
2996 cpustat->user = cputime64_add(cpustat->user, tmp);
3000 * Account system cpu time to a process.
3001 * @p: the process that the cpu time gets accounted to
3002 * @hardirq_offset: the offset to subtract from hardirq_count()
3003 * @cputime: the cpu time spent in kernel space since the last update
3005 void account_system_time(struct task_struct *p, int hardirq_offset,
3006 cputime_t cputime)
3008 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3009 struct rq *rq = this_rq();
3010 cputime64_t tmp;
3012 p->stime = cputime_add(p->stime, cputime);
3014 /* Add system time to cpustat. */
3015 tmp = cputime_to_cputime64(cputime);
3016 if (hardirq_count() - hardirq_offset)
3017 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3018 else if (softirq_count())
3019 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3020 else if (p != rq->idle)
3021 cpustat->system = cputime64_add(cpustat->system, tmp);
3022 else if (atomic_read(&rq->nr_iowait) > 0)
3023 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3024 else
3025 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3026 /* Account for system time used */
3027 acct_update_integrals(p);
3031 * Account for involuntary wait time.
3032 * @p: the process from which the cpu time has been stolen
3033 * @steal: the cpu time spent in involuntary wait
3035 void account_steal_time(struct task_struct *p, cputime_t steal)
3037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3038 cputime64_t tmp = cputime_to_cputime64(steal);
3039 struct rq *rq = this_rq();
3041 if (p == rq->idle) {
3042 p->stime = cputime_add(p->stime, steal);
3043 if (atomic_read(&rq->nr_iowait) > 0)
3044 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3045 else
3046 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3047 } else
3048 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3052 * This function gets called by the timer code, with HZ frequency.
3053 * We call it with interrupts disabled.
3055 * It also gets called by the fork code, when changing the parent's
3056 * timeslices.
3058 void scheduler_tick(void)
3060 unsigned long long now = sched_clock();
3061 struct task_struct *p = current;
3062 int cpu = smp_processor_id();
3063 struct rq *rq = cpu_rq(cpu);
3065 update_cpu_clock(p, rq, now);
3067 rq->timestamp_last_tick = now;
3069 if (p == rq->idle) {
3070 if (wake_priority_sleeper(rq))
3071 goto out;
3072 rebalance_tick(cpu, rq, SCHED_IDLE);
3073 return;
3076 /* Task might have expired already, but not scheduled off yet */
3077 if (p->array != rq->active) {
3078 set_tsk_need_resched(p);
3079 goto out;
3081 spin_lock(&rq->lock);
3083 * The task was running during this tick - update the
3084 * time slice counter. Note: we do not update a thread's
3085 * priority until it either goes to sleep or uses up its
3086 * timeslice. This makes it possible for interactive tasks
3087 * to use up their timeslices at their highest priority levels.
3089 if (rt_task(p)) {
3091 * RR tasks need a special form of timeslice management.
3092 * FIFO tasks have no timeslices.
3094 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3095 p->time_slice = task_timeslice(p);
3096 p->first_time_slice = 0;
3097 set_tsk_need_resched(p);
3099 /* put it at the end of the queue: */
3100 requeue_task(p, rq->active);
3102 goto out_unlock;
3104 if (!--p->time_slice) {
3105 dequeue_task(p, rq->active);
3106 set_tsk_need_resched(p);
3107 p->prio = effective_prio(p);
3108 p->time_slice = task_timeslice(p);
3109 p->first_time_slice = 0;
3111 if (!rq->expired_timestamp)
3112 rq->expired_timestamp = jiffies;
3113 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3114 enqueue_task(p, rq->expired);
3115 if (p->static_prio < rq->best_expired_prio)
3116 rq->best_expired_prio = p->static_prio;
3117 } else
3118 enqueue_task(p, rq->active);
3119 } else {
3121 * Prevent a too long timeslice allowing a task to monopolize
3122 * the CPU. We do this by splitting up the timeslice into
3123 * smaller pieces.
3125 * Note: this does not mean the task's timeslices expire or
3126 * get lost in any way, they just might be preempted by
3127 * another task of equal priority. (one with higher
3128 * priority would have preempted this task already.) We
3129 * requeue this task to the end of the list on this priority
3130 * level, which is in essence a round-robin of tasks with
3131 * equal priority.
3133 * This only applies to tasks in the interactive
3134 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3136 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3137 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3138 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3139 (p->array == rq->active)) {
3141 requeue_task(p, rq->active);
3142 set_tsk_need_resched(p);
3145 out_unlock:
3146 spin_unlock(&rq->lock);
3147 out:
3148 rebalance_tick(cpu, rq, NOT_IDLE);
3151 #ifdef CONFIG_SCHED_SMT
3152 static inline void wakeup_busy_runqueue(struct rq *rq)
3154 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3155 if (rq->curr == rq->idle && rq->nr_running)
3156 resched_task(rq->idle);
3160 * Called with interrupt disabled and this_rq's runqueue locked.
3162 static void wake_sleeping_dependent(int this_cpu)
3164 struct sched_domain *tmp, *sd = NULL;
3165 int i;
3167 for_each_domain(this_cpu, tmp) {
3168 if (tmp->flags & SD_SHARE_CPUPOWER) {
3169 sd = tmp;
3170 break;
3174 if (!sd)
3175 return;
3177 for_each_cpu_mask(i, sd->span) {
3178 struct rq *smt_rq = cpu_rq(i);
3180 if (i == this_cpu)
3181 continue;
3182 if (unlikely(!spin_trylock(&smt_rq->lock)))
3183 continue;
3185 wakeup_busy_runqueue(smt_rq);
3186 spin_unlock(&smt_rq->lock);
3191 * number of 'lost' timeslices this task wont be able to fully
3192 * utilize, if another task runs on a sibling. This models the
3193 * slowdown effect of other tasks running on siblings:
3195 static inline unsigned long
3196 smt_slice(struct task_struct *p, struct sched_domain *sd)
3198 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3202 * To minimise lock contention and not have to drop this_rq's runlock we only
3203 * trylock the sibling runqueues and bypass those runqueues if we fail to
3204 * acquire their lock. As we only trylock the normal locking order does not
3205 * need to be obeyed.
3207 static int
3208 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3210 struct sched_domain *tmp, *sd = NULL;
3211 int ret = 0, i;
3213 /* kernel/rt threads do not participate in dependent sleeping */
3214 if (!p->mm || rt_task(p))
3215 return 0;
3217 for_each_domain(this_cpu, tmp) {
3218 if (tmp->flags & SD_SHARE_CPUPOWER) {
3219 sd = tmp;
3220 break;
3224 if (!sd)
3225 return 0;
3227 for_each_cpu_mask(i, sd->span) {
3228 struct task_struct *smt_curr;
3229 struct rq *smt_rq;
3231 if (i == this_cpu)
3232 continue;
3234 smt_rq = cpu_rq(i);
3235 if (unlikely(!spin_trylock(&smt_rq->lock)))
3236 continue;
3238 smt_curr = smt_rq->curr;
3240 if (!smt_curr->mm)
3241 goto unlock;
3244 * If a user task with lower static priority than the
3245 * running task on the SMT sibling is trying to schedule,
3246 * delay it till there is proportionately less timeslice
3247 * left of the sibling task to prevent a lower priority
3248 * task from using an unfair proportion of the
3249 * physical cpu's resources. -ck
3251 if (rt_task(smt_curr)) {
3253 * With real time tasks we run non-rt tasks only
3254 * per_cpu_gain% of the time.
3256 if ((jiffies % DEF_TIMESLICE) >
3257 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3258 ret = 1;
3259 } else {
3260 if (smt_curr->static_prio < p->static_prio &&
3261 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3262 smt_slice(smt_curr, sd) > task_timeslice(p))
3263 ret = 1;
3265 unlock:
3266 spin_unlock(&smt_rq->lock);
3268 return ret;
3270 #else
3271 static inline void wake_sleeping_dependent(int this_cpu)
3274 static inline int
3275 dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
3277 return 0;
3279 #endif
3281 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3283 void fastcall add_preempt_count(int val)
3286 * Underflow?
3288 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3289 return;
3290 preempt_count() += val;
3292 * Spinlock count overflowing soon?
3294 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
3296 EXPORT_SYMBOL(add_preempt_count);
3298 void fastcall sub_preempt_count(int val)
3301 * Underflow?
3303 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3304 return;
3306 * Is the spinlock portion underflowing?
3308 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3309 !(preempt_count() & PREEMPT_MASK)))
3310 return;
3312 preempt_count() -= val;
3314 EXPORT_SYMBOL(sub_preempt_count);
3316 #endif
3318 static inline int interactive_sleep(enum sleep_type sleep_type)
3320 return (sleep_type == SLEEP_INTERACTIVE ||
3321 sleep_type == SLEEP_INTERRUPTED);
3325 * schedule() is the main scheduler function.
3327 asmlinkage void __sched schedule(void)
3329 struct task_struct *prev, *next;
3330 struct prio_array *array;
3331 struct list_head *queue;
3332 unsigned long long now;
3333 unsigned long run_time;
3334 int cpu, idx, new_prio;
3335 long *switch_count;
3336 struct rq *rq;
3339 * Test if we are atomic. Since do_exit() needs to call into
3340 * schedule() atomically, we ignore that path for now.
3341 * Otherwise, whine if we are scheduling when we should not be.
3343 if (unlikely(in_atomic() && !current->exit_state)) {
3344 printk(KERN_ERR "BUG: scheduling while atomic: "
3345 "%s/0x%08x/%d\n",
3346 current->comm, preempt_count(), current->pid);
3347 debug_show_held_locks(current);
3348 dump_stack();
3350 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3352 need_resched:
3353 preempt_disable();
3354 prev = current;
3355 release_kernel_lock(prev);
3356 need_resched_nonpreemptible:
3357 rq = this_rq();
3360 * The idle thread is not allowed to schedule!
3361 * Remove this check after it has been exercised a bit.
3363 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3364 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3365 dump_stack();
3368 schedstat_inc(rq, sched_cnt);
3369 now = sched_clock();
3370 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3371 run_time = now - prev->timestamp;
3372 if (unlikely((long long)(now - prev->timestamp) < 0))
3373 run_time = 0;
3374 } else
3375 run_time = NS_MAX_SLEEP_AVG;
3378 * Tasks charged proportionately less run_time at high sleep_avg to
3379 * delay them losing their interactive status
3381 run_time /= (CURRENT_BONUS(prev) ? : 1);
3383 spin_lock_irq(&rq->lock);
3385 switch_count = &prev->nivcsw;
3386 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3387 switch_count = &prev->nvcsw;
3388 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3389 unlikely(signal_pending(prev))))
3390 prev->state = TASK_RUNNING;
3391 else {
3392 if (prev->state == TASK_UNINTERRUPTIBLE)
3393 rq->nr_uninterruptible++;
3394 deactivate_task(prev, rq);
3398 cpu = smp_processor_id();
3399 if (unlikely(!rq->nr_running)) {
3400 idle_balance(cpu, rq);
3401 if (!rq->nr_running) {
3402 next = rq->idle;
3403 rq->expired_timestamp = 0;
3404 wake_sleeping_dependent(cpu);
3405 goto switch_tasks;
3409 array = rq->active;
3410 if (unlikely(!array->nr_active)) {
3412 * Switch the active and expired arrays.
3414 schedstat_inc(rq, sched_switch);
3415 rq->active = rq->expired;
3416 rq->expired = array;
3417 array = rq->active;
3418 rq->expired_timestamp = 0;
3419 rq->best_expired_prio = MAX_PRIO;
3422 idx = sched_find_first_bit(array->bitmap);
3423 queue = array->queue + idx;
3424 next = list_entry(queue->next, struct task_struct, run_list);
3426 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3427 unsigned long long delta = now - next->timestamp;
3428 if (unlikely((long long)(now - next->timestamp) < 0))
3429 delta = 0;
3431 if (next->sleep_type == SLEEP_INTERACTIVE)
3432 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3434 array = next->array;
3435 new_prio = recalc_task_prio(next, next->timestamp + delta);
3437 if (unlikely(next->prio != new_prio)) {
3438 dequeue_task(next, array);
3439 next->prio = new_prio;
3440 enqueue_task(next, array);
3443 next->sleep_type = SLEEP_NORMAL;
3444 if (dependent_sleeper(cpu, rq, next))
3445 next = rq->idle;
3446 switch_tasks:
3447 if (next == rq->idle)
3448 schedstat_inc(rq, sched_goidle);
3449 prefetch(next);
3450 prefetch_stack(next);
3451 clear_tsk_need_resched(prev);
3452 rcu_qsctr_inc(task_cpu(prev));
3454 update_cpu_clock(prev, rq, now);
3456 prev->sleep_avg -= run_time;
3457 if ((long)prev->sleep_avg <= 0)
3458 prev->sleep_avg = 0;
3459 prev->timestamp = prev->last_ran = now;
3461 sched_info_switch(prev, next);
3462 if (likely(prev != next)) {
3463 next->timestamp = now;
3464 rq->nr_switches++;
3465 rq->curr = next;
3466 ++*switch_count;
3468 prepare_task_switch(rq, next);
3469 prev = context_switch(rq, prev, next);
3470 barrier();
3472 * this_rq must be evaluated again because prev may have moved
3473 * CPUs since it called schedule(), thus the 'rq' on its stack
3474 * frame will be invalid.
3476 finish_task_switch(this_rq(), prev);
3477 } else
3478 spin_unlock_irq(&rq->lock);
3480 prev = current;
3481 if (unlikely(reacquire_kernel_lock(prev) < 0))
3482 goto need_resched_nonpreemptible;
3483 preempt_enable_no_resched();
3484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3485 goto need_resched;
3487 EXPORT_SYMBOL(schedule);
3489 #ifdef CONFIG_PREEMPT
3491 * this is the entry point to schedule() from in-kernel preemption
3492 * off of preempt_enable. Kernel preemptions off return from interrupt
3493 * occur there and call schedule directly.
3495 asmlinkage void __sched preempt_schedule(void)
3497 struct thread_info *ti = current_thread_info();
3498 #ifdef CONFIG_PREEMPT_BKL
3499 struct task_struct *task = current;
3500 int saved_lock_depth;
3501 #endif
3503 * If there is a non-zero preempt_count or interrupts are disabled,
3504 * we do not want to preempt the current task. Just return..
3506 if (likely(ti->preempt_count || irqs_disabled()))
3507 return;
3509 need_resched:
3510 add_preempt_count(PREEMPT_ACTIVE);
3512 * We keep the big kernel semaphore locked, but we
3513 * clear ->lock_depth so that schedule() doesnt
3514 * auto-release the semaphore:
3516 #ifdef CONFIG_PREEMPT_BKL
3517 saved_lock_depth = task->lock_depth;
3518 task->lock_depth = -1;
3519 #endif
3520 schedule();
3521 #ifdef CONFIG_PREEMPT_BKL
3522 task->lock_depth = saved_lock_depth;
3523 #endif
3524 sub_preempt_count(PREEMPT_ACTIVE);
3526 /* we could miss a preemption opportunity between schedule and now */
3527 barrier();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3529 goto need_resched;
3531 EXPORT_SYMBOL(preempt_schedule);
3534 * this is the entry point to schedule() from kernel preemption
3535 * off of irq context.
3536 * Note, that this is called and return with irqs disabled. This will
3537 * protect us against recursive calling from irq.
3539 asmlinkage void __sched preempt_schedule_irq(void)
3541 struct thread_info *ti = current_thread_info();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct *task = current;
3544 int saved_lock_depth;
3545 #endif
3546 /* Catch callers which need to be fixed */
3547 BUG_ON(ti->preempt_count || !irqs_disabled());
3549 need_resched:
3550 add_preempt_count(PREEMPT_ACTIVE);
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3556 #ifdef CONFIG_PREEMPT_BKL
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
3559 #endif
3560 local_irq_enable();
3561 schedule();
3562 local_irq_disable();
3563 #ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565 #endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3574 #endif /* CONFIG_PREEMPT */
3576 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3577 void *key)
3579 return try_to_wake_up(curr->private, mode, sync);
3581 EXPORT_SYMBOL(default_wake_function);
3584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3586 * number) then we wake all the non-exclusive tasks and one exclusive task.
3588 * There are circumstances in which we can try to wake a task which has already
3589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3592 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3593 int nr_exclusive, int sync, void *key)
3595 struct list_head *tmp, *next;
3597 list_for_each_safe(tmp, next, &q->task_list) {
3598 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3599 unsigned flags = curr->flags;
3601 if (curr->func(curr, mode, sync, key) &&
3602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3603 break;
3608 * __wake_up - wake up threads blocked on a waitqueue.
3609 * @q: the waitqueue
3610 * @mode: which threads
3611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3612 * @key: is directly passed to the wakeup function
3614 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3615 int nr_exclusive, void *key)
3617 unsigned long flags;
3619 spin_lock_irqsave(&q->lock, flags);
3620 __wake_up_common(q, mode, nr_exclusive, 0, key);
3621 spin_unlock_irqrestore(&q->lock, flags);
3623 EXPORT_SYMBOL(__wake_up);
3626 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3628 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3630 __wake_up_common(q, mode, 1, 0, NULL);
3634 * __wake_up_sync - wake up threads blocked on a waitqueue.
3635 * @q: the waitqueue
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3639 * The sync wakeup differs that the waker knows that it will schedule
3640 * away soon, so while the target thread will be woken up, it will not
3641 * be migrated to another CPU - ie. the two threads are 'synchronized'
3642 * with each other. This can prevent needless bouncing between CPUs.
3644 * On UP it can prevent extra preemption.
3646 void fastcall
3647 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3649 unsigned long flags;
3650 int sync = 1;
3652 if (unlikely(!q))
3653 return;
3655 if (unlikely(!nr_exclusive))
3656 sync = 0;
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3660 spin_unlock_irqrestore(&q->lock, flags);
3662 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3664 void fastcall complete(struct completion *x)
3666 unsigned long flags;
3668 spin_lock_irqsave(&x->wait.lock, flags);
3669 x->done++;
3670 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3671 1, 0, NULL);
3672 spin_unlock_irqrestore(&x->wait.lock, flags);
3674 EXPORT_SYMBOL(complete);
3676 void fastcall complete_all(struct completion *x)
3678 unsigned long flags;
3680 spin_lock_irqsave(&x->wait.lock, flags);
3681 x->done += UINT_MAX/2;
3682 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3683 0, 0, NULL);
3684 spin_unlock_irqrestore(&x->wait.lock, flags);
3686 EXPORT_SYMBOL(complete_all);
3688 void fastcall __sched wait_for_completion(struct completion *x)
3690 might_sleep();
3692 spin_lock_irq(&x->wait.lock);
3693 if (!x->done) {
3694 DECLARE_WAITQUEUE(wait, current);
3696 wait.flags |= WQ_FLAG_EXCLUSIVE;
3697 __add_wait_queue_tail(&x->wait, &wait);
3698 do {
3699 __set_current_state(TASK_UNINTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 schedule();
3702 spin_lock_irq(&x->wait.lock);
3703 } while (!x->done);
3704 __remove_wait_queue(&x->wait, &wait);
3706 x->done--;
3707 spin_unlock_irq(&x->wait.lock);
3709 EXPORT_SYMBOL(wait_for_completion);
3711 unsigned long fastcall __sched
3712 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3714 might_sleep();
3716 spin_lock_irq(&x->wait.lock);
3717 if (!x->done) {
3718 DECLARE_WAITQUEUE(wait, current);
3720 wait.flags |= WQ_FLAG_EXCLUSIVE;
3721 __add_wait_queue_tail(&x->wait, &wait);
3722 do {
3723 __set_current_state(TASK_UNINTERRUPTIBLE);
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
3729 goto out;
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3734 x->done--;
3735 out:
3736 spin_unlock_irq(&x->wait.lock);
3737 return timeout;
3739 EXPORT_SYMBOL(wait_for_completion_timeout);
3741 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3743 int ret = 0;
3745 might_sleep();
3747 spin_lock_irq(&x->wait.lock);
3748 if (!x->done) {
3749 DECLARE_WAITQUEUE(wait, current);
3751 wait.flags |= WQ_FLAG_EXCLUSIVE;
3752 __add_wait_queue_tail(&x->wait, &wait);
3753 do {
3754 if (signal_pending(current)) {
3755 ret = -ERESTARTSYS;
3756 __remove_wait_queue(&x->wait, &wait);
3757 goto out;
3759 __set_current_state(TASK_INTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 schedule();
3762 spin_lock_irq(&x->wait.lock);
3763 } while (!x->done);
3764 __remove_wait_queue(&x->wait, &wait);
3766 x->done--;
3767 out:
3768 spin_unlock_irq(&x->wait.lock);
3770 return ret;
3772 EXPORT_SYMBOL(wait_for_completion_interruptible);
3774 unsigned long fastcall __sched
3775 wait_for_completion_interruptible_timeout(struct completion *x,
3776 unsigned long timeout)
3778 might_sleep();
3780 spin_lock_irq(&x->wait.lock);
3781 if (!x->done) {
3782 DECLARE_WAITQUEUE(wait, current);
3784 wait.flags |= WQ_FLAG_EXCLUSIVE;
3785 __add_wait_queue_tail(&x->wait, &wait);
3786 do {
3787 if (signal_pending(current)) {
3788 timeout = -ERESTARTSYS;
3789 __remove_wait_queue(&x->wait, &wait);
3790 goto out;
3792 __set_current_state(TASK_INTERRUPTIBLE);
3793 spin_unlock_irq(&x->wait.lock);
3794 timeout = schedule_timeout(timeout);
3795 spin_lock_irq(&x->wait.lock);
3796 if (!timeout) {
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3803 x->done--;
3804 out:
3805 spin_unlock_irq(&x->wait.lock);
3806 return timeout;
3808 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3811 #define SLEEP_ON_VAR \
3812 unsigned long flags; \
3813 wait_queue_t wait; \
3814 init_waitqueue_entry(&wait, current);
3816 #define SLEEP_ON_HEAD \
3817 spin_lock_irqsave(&q->lock,flags); \
3818 __add_wait_queue(q, &wait); \
3819 spin_unlock(&q->lock);
3821 #define SLEEP_ON_TAIL \
3822 spin_lock_irq(&q->lock); \
3823 __remove_wait_queue(q, &wait); \
3824 spin_unlock_irqrestore(&q->lock, flags);
3826 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3828 SLEEP_ON_VAR
3830 current->state = TASK_INTERRUPTIBLE;
3832 SLEEP_ON_HEAD
3833 schedule();
3834 SLEEP_ON_TAIL
3836 EXPORT_SYMBOL(interruptible_sleep_on);
3838 long fastcall __sched
3839 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3841 SLEEP_ON_VAR
3843 current->state = TASK_INTERRUPTIBLE;
3845 SLEEP_ON_HEAD
3846 timeout = schedule_timeout(timeout);
3847 SLEEP_ON_TAIL
3849 return timeout;
3851 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3853 void fastcall __sched sleep_on(wait_queue_head_t *q)
3855 SLEEP_ON_VAR
3857 current->state = TASK_UNINTERRUPTIBLE;
3859 SLEEP_ON_HEAD
3860 schedule();
3861 SLEEP_ON_TAIL
3863 EXPORT_SYMBOL(sleep_on);
3865 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3867 SLEEP_ON_VAR
3869 current->state = TASK_UNINTERRUPTIBLE;
3871 SLEEP_ON_HEAD
3872 timeout = schedule_timeout(timeout);
3873 SLEEP_ON_TAIL
3875 return timeout;
3878 EXPORT_SYMBOL(sleep_on_timeout);
3880 #ifdef CONFIG_RT_MUTEXES
3883 * rt_mutex_setprio - set the current priority of a task
3884 * @p: task
3885 * @prio: prio value (kernel-internal form)
3887 * This function changes the 'effective' priority of a task. It does
3888 * not touch ->normal_prio like __setscheduler().
3890 * Used by the rt_mutex code to implement priority inheritance logic.
3892 void rt_mutex_setprio(struct task_struct *p, int prio)
3894 struct prio_array *array;
3895 unsigned long flags;
3896 struct rq *rq;
3897 int oldprio;
3899 BUG_ON(prio < 0 || prio > MAX_PRIO);
3901 rq = task_rq_lock(p, &flags);
3903 oldprio = p->prio;
3904 array = p->array;
3905 if (array)
3906 dequeue_task(p, array);
3907 p->prio = prio;
3909 if (array) {
3911 * If changing to an RT priority then queue it
3912 * in the active array!
3914 if (rt_task(p))
3915 array = rq->active;
3916 enqueue_task(p, array);
3918 * Reschedule if we are currently running on this runqueue and
3919 * our priority decreased, or if we are not currently running on
3920 * this runqueue and our priority is higher than the current's
3922 if (task_running(rq, p)) {
3923 if (p->prio > oldprio)
3924 resched_task(rq->curr);
3925 } else if (TASK_PREEMPTS_CURR(p, rq))
3926 resched_task(rq->curr);
3928 task_rq_unlock(rq, &flags);
3931 #endif
3933 void set_user_nice(struct task_struct *p, long nice)
3935 struct prio_array *array;
3936 int old_prio, delta;
3937 unsigned long flags;
3938 struct rq *rq;
3940 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3941 return;
3943 * We have to be careful, if called from sys_setpriority(),
3944 * the task might be in the middle of scheduling on another CPU.
3946 rq = task_rq_lock(p, &flags);
3948 * The RT priorities are set via sched_setscheduler(), but we still
3949 * allow the 'normal' nice value to be set - but as expected
3950 * it wont have any effect on scheduling until the task is
3951 * not SCHED_NORMAL/SCHED_BATCH:
3953 if (has_rt_policy(p)) {
3954 p->static_prio = NICE_TO_PRIO(nice);
3955 goto out_unlock;
3957 array = p->array;
3958 if (array) {
3959 dequeue_task(p, array);
3960 dec_raw_weighted_load(rq, p);
3963 p->static_prio = NICE_TO_PRIO(nice);
3964 set_load_weight(p);
3965 old_prio = p->prio;
3966 p->prio = effective_prio(p);
3967 delta = p->prio - old_prio;
3969 if (array) {
3970 enqueue_task(p, array);
3971 inc_raw_weighted_load(rq, p);
3973 * If the task increased its priority or is running and
3974 * lowered its priority, then reschedule its CPU:
3976 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3977 resched_task(rq->curr);
3979 out_unlock:
3980 task_rq_unlock(rq, &flags);
3982 EXPORT_SYMBOL(set_user_nice);
3985 * can_nice - check if a task can reduce its nice value
3986 * @p: task
3987 * @nice: nice value
3989 int can_nice(const struct task_struct *p, const int nice)
3991 /* convert nice value [19,-20] to rlimit style value [1,40] */
3992 int nice_rlim = 20 - nice;
3994 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3995 capable(CAP_SYS_NICE));
3998 #ifdef __ARCH_WANT_SYS_NICE
4001 * sys_nice - change the priority of the current process.
4002 * @increment: priority increment
4004 * sys_setpriority is a more generic, but much slower function that
4005 * does similar things.
4007 asmlinkage long sys_nice(int increment)
4009 long nice, retval;
4012 * Setpriority might change our priority at the same moment.
4013 * We don't have to worry. Conceptually one call occurs first
4014 * and we have a single winner.
4016 if (increment < -40)
4017 increment = -40;
4018 if (increment > 40)
4019 increment = 40;
4021 nice = PRIO_TO_NICE(current->static_prio) + increment;
4022 if (nice < -20)
4023 nice = -20;
4024 if (nice > 19)
4025 nice = 19;
4027 if (increment < 0 && !can_nice(current, nice))
4028 return -EPERM;
4030 retval = security_task_setnice(current, nice);
4031 if (retval)
4032 return retval;
4034 set_user_nice(current, nice);
4035 return 0;
4038 #endif
4041 * task_prio - return the priority value of a given task.
4042 * @p: the task in question.
4044 * This is the priority value as seen by users in /proc.
4045 * RT tasks are offset by -200. Normal tasks are centered
4046 * around 0, value goes from -16 to +15.
4048 int task_prio(const struct task_struct *p)
4050 return p->prio - MAX_RT_PRIO;
4054 * task_nice - return the nice value of a given task.
4055 * @p: the task in question.
4057 int task_nice(const struct task_struct *p)
4059 return TASK_NICE(p);
4061 EXPORT_SYMBOL_GPL(task_nice);
4064 * idle_cpu - is a given cpu idle currently?
4065 * @cpu: the processor in question.
4067 int idle_cpu(int cpu)
4069 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4073 * idle_task - return the idle task for a given cpu.
4074 * @cpu: the processor in question.
4076 struct task_struct *idle_task(int cpu)
4078 return cpu_rq(cpu)->idle;
4082 * find_process_by_pid - find a process with a matching PID value.
4083 * @pid: the pid in question.
4085 static inline struct task_struct *find_process_by_pid(pid_t pid)
4087 return pid ? find_task_by_pid(pid) : current;
4090 /* Actually do priority change: must hold rq lock. */
4091 static void __setscheduler(struct task_struct *p, int policy, int prio)
4093 BUG_ON(p->array);
4095 p->policy = policy;
4096 p->rt_priority = prio;
4097 p->normal_prio = normal_prio(p);
4098 /* we are holding p->pi_lock already */
4099 p->prio = rt_mutex_getprio(p);
4101 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4103 if (policy == SCHED_BATCH)
4104 p->sleep_avg = 0;
4105 set_load_weight(p);
4109 * sched_setscheduler - change the scheduling policy and/or RT priority of
4110 * a thread.
4111 * @p: the task in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4115 * NOTE: the task may be already dead
4117 int sched_setscheduler(struct task_struct *p, int policy,
4118 struct sched_param *param)
4120 int retval, oldprio, oldpolicy = -1;
4121 struct prio_array *array;
4122 unsigned long flags;
4123 struct rq *rq;
4125 /* may grab non-irq protected spin_locks */
4126 BUG_ON(in_interrupt());
4127 recheck:
4128 /* double check policy once rq lock held */
4129 if (policy < 0)
4130 policy = oldpolicy = p->policy;
4131 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4132 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4133 return -EINVAL;
4135 * Valid priorities for SCHED_FIFO and SCHED_RR are
4136 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4137 * SCHED_BATCH is 0.
4139 if (param->sched_priority < 0 ||
4140 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4141 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4142 return -EINVAL;
4143 if (is_rt_policy(policy) != (param->sched_priority != 0))
4144 return -EINVAL;
4147 * Allow unprivileged RT tasks to decrease priority:
4149 if (!capable(CAP_SYS_NICE)) {
4150 if (is_rt_policy(policy)) {
4151 unsigned long rlim_rtprio;
4152 unsigned long flags;
4154 if (!lock_task_sighand(p, &flags))
4155 return -ESRCH;
4156 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4157 unlock_task_sighand(p, &flags);
4159 /* can't set/change the rt policy */
4160 if (policy != p->policy && !rlim_rtprio)
4161 return -EPERM;
4163 /* can't increase priority */
4164 if (param->sched_priority > p->rt_priority &&
4165 param->sched_priority > rlim_rtprio)
4166 return -EPERM;
4169 /* can't change other user's priorities */
4170 if ((current->euid != p->euid) &&
4171 (current->euid != p->uid))
4172 return -EPERM;
4175 retval = security_task_setscheduler(p, policy, param);
4176 if (retval)
4177 return retval;
4179 * make sure no PI-waiters arrive (or leave) while we are
4180 * changing the priority of the task:
4182 spin_lock_irqsave(&p->pi_lock, flags);
4184 * To be able to change p->policy safely, the apropriate
4185 * runqueue lock must be held.
4187 rq = __task_rq_lock(p);
4188 /* recheck policy now with rq lock held */
4189 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4190 policy = oldpolicy = -1;
4191 __task_rq_unlock(rq);
4192 spin_unlock_irqrestore(&p->pi_lock, flags);
4193 goto recheck;
4195 array = p->array;
4196 if (array)
4197 deactivate_task(p, rq);
4198 oldprio = p->prio;
4199 __setscheduler(p, policy, param->sched_priority);
4200 if (array) {
4201 __activate_task(p, rq);
4203 * Reschedule if we are currently running on this runqueue and
4204 * our priority decreased, or if we are not currently running on
4205 * this runqueue and our priority is higher than the current's
4207 if (task_running(rq, p)) {
4208 if (p->prio > oldprio)
4209 resched_task(rq->curr);
4210 } else if (TASK_PREEMPTS_CURR(p, rq))
4211 resched_task(rq->curr);
4213 __task_rq_unlock(rq);
4214 spin_unlock_irqrestore(&p->pi_lock, flags);
4216 rt_mutex_adjust_pi(p);
4218 return 0;
4220 EXPORT_SYMBOL_GPL(sched_setscheduler);
4222 static int
4223 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4225 struct sched_param lparam;
4226 struct task_struct *p;
4227 int retval;
4229 if (!param || pid < 0)
4230 return -EINVAL;
4231 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4232 return -EFAULT;
4234 rcu_read_lock();
4235 retval = -ESRCH;
4236 p = find_process_by_pid(pid);
4237 if (p != NULL)
4238 retval = sched_setscheduler(p, policy, &lparam);
4239 rcu_read_unlock();
4241 return retval;
4245 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4246 * @pid: the pid in question.
4247 * @policy: new policy.
4248 * @param: structure containing the new RT priority.
4250 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4251 struct sched_param __user *param)
4253 /* negative values for policy are not valid */
4254 if (policy < 0)
4255 return -EINVAL;
4257 return do_sched_setscheduler(pid, policy, param);
4261 * sys_sched_setparam - set/change the RT priority of a thread
4262 * @pid: the pid in question.
4263 * @param: structure containing the new RT priority.
4265 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4267 return do_sched_setscheduler(pid, -1, param);
4271 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4272 * @pid: the pid in question.
4274 asmlinkage long sys_sched_getscheduler(pid_t pid)
4276 struct task_struct *p;
4277 int retval = -EINVAL;
4279 if (pid < 0)
4280 goto out_nounlock;
4282 retval = -ESRCH;
4283 read_lock(&tasklist_lock);
4284 p = find_process_by_pid(pid);
4285 if (p) {
4286 retval = security_task_getscheduler(p);
4287 if (!retval)
4288 retval = p->policy;
4290 read_unlock(&tasklist_lock);
4292 out_nounlock:
4293 return retval;
4297 * sys_sched_getscheduler - get the RT priority of a thread
4298 * @pid: the pid in question.
4299 * @param: structure containing the RT priority.
4301 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4303 struct sched_param lp;
4304 struct task_struct *p;
4305 int retval = -EINVAL;
4307 if (!param || pid < 0)
4308 goto out_nounlock;
4310 read_lock(&tasklist_lock);
4311 p = find_process_by_pid(pid);
4312 retval = -ESRCH;
4313 if (!p)
4314 goto out_unlock;
4316 retval = security_task_getscheduler(p);
4317 if (retval)
4318 goto out_unlock;
4320 lp.sched_priority = p->rt_priority;
4321 read_unlock(&tasklist_lock);
4324 * This one might sleep, we cannot do it with a spinlock held ...
4326 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4328 out_nounlock:
4329 return retval;
4331 out_unlock:
4332 read_unlock(&tasklist_lock);
4333 return retval;
4336 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4338 cpumask_t cpus_allowed;
4339 struct task_struct *p;
4340 int retval;
4342 lock_cpu_hotplug();
4343 read_lock(&tasklist_lock);
4345 p = find_process_by_pid(pid);
4346 if (!p) {
4347 read_unlock(&tasklist_lock);
4348 unlock_cpu_hotplug();
4349 return -ESRCH;
4353 * It is not safe to call set_cpus_allowed with the
4354 * tasklist_lock held. We will bump the task_struct's
4355 * usage count and then drop tasklist_lock.
4357 get_task_struct(p);
4358 read_unlock(&tasklist_lock);
4360 retval = -EPERM;
4361 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4362 !capable(CAP_SYS_NICE))
4363 goto out_unlock;
4365 retval = security_task_setscheduler(p, 0, NULL);
4366 if (retval)
4367 goto out_unlock;
4369 cpus_allowed = cpuset_cpus_allowed(p);
4370 cpus_and(new_mask, new_mask, cpus_allowed);
4371 retval = set_cpus_allowed(p, new_mask);
4373 out_unlock:
4374 put_task_struct(p);
4375 unlock_cpu_hotplug();
4376 return retval;
4379 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4380 cpumask_t *new_mask)
4382 if (len < sizeof(cpumask_t)) {
4383 memset(new_mask, 0, sizeof(cpumask_t));
4384 } else if (len > sizeof(cpumask_t)) {
4385 len = sizeof(cpumask_t);
4387 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4391 * sys_sched_setaffinity - set the cpu affinity of a process
4392 * @pid: pid of the process
4393 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4394 * @user_mask_ptr: user-space pointer to the new cpu mask
4396 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4397 unsigned long __user *user_mask_ptr)
4399 cpumask_t new_mask;
4400 int retval;
4402 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4403 if (retval)
4404 return retval;
4406 return sched_setaffinity(pid, new_mask);
4410 * Represents all cpu's present in the system
4411 * In systems capable of hotplug, this map could dynamically grow
4412 * as new cpu's are detected in the system via any platform specific
4413 * method, such as ACPI for e.g.
4416 cpumask_t cpu_present_map __read_mostly;
4417 EXPORT_SYMBOL(cpu_present_map);
4419 #ifndef CONFIG_SMP
4420 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4421 EXPORT_SYMBOL(cpu_online_map);
4423 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4424 EXPORT_SYMBOL(cpu_possible_map);
4425 #endif
4427 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4429 struct task_struct *p;
4430 int retval;
4432 lock_cpu_hotplug();
4433 read_lock(&tasklist_lock);
4435 retval = -ESRCH;
4436 p = find_process_by_pid(pid);
4437 if (!p)
4438 goto out_unlock;
4440 retval = security_task_getscheduler(p);
4441 if (retval)
4442 goto out_unlock;
4444 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4446 out_unlock:
4447 read_unlock(&tasklist_lock);
4448 unlock_cpu_hotplug();
4449 if (retval)
4450 return retval;
4452 return 0;
4456 * sys_sched_getaffinity - get the cpu affinity of a process
4457 * @pid: pid of the process
4458 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4459 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4461 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4462 unsigned long __user *user_mask_ptr)
4464 int ret;
4465 cpumask_t mask;
4467 if (len < sizeof(cpumask_t))
4468 return -EINVAL;
4470 ret = sched_getaffinity(pid, &mask);
4471 if (ret < 0)
4472 return ret;
4474 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4475 return -EFAULT;
4477 return sizeof(cpumask_t);
4481 * sys_sched_yield - yield the current processor to other threads.
4483 * this function yields the current CPU by moving the calling thread
4484 * to the expired array. If there are no other threads running on this
4485 * CPU then this function will return.
4487 asmlinkage long sys_sched_yield(void)
4489 struct rq *rq = this_rq_lock();
4490 struct prio_array *array = current->array, *target = rq->expired;
4492 schedstat_inc(rq, yld_cnt);
4494 * We implement yielding by moving the task into the expired
4495 * queue.
4497 * (special rule: RT tasks will just roundrobin in the active
4498 * array.)
4500 if (rt_task(current))
4501 target = rq->active;
4503 if (array->nr_active == 1) {
4504 schedstat_inc(rq, yld_act_empty);
4505 if (!rq->expired->nr_active)
4506 schedstat_inc(rq, yld_both_empty);
4507 } else if (!rq->expired->nr_active)
4508 schedstat_inc(rq, yld_exp_empty);
4510 if (array != target) {
4511 dequeue_task(current, array);
4512 enqueue_task(current, target);
4513 } else
4515 * requeue_task is cheaper so perform that if possible.
4517 requeue_task(current, array);
4520 * Since we are going to call schedule() anyway, there's
4521 * no need to preempt or enable interrupts:
4523 __release(rq->lock);
4524 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4525 _raw_spin_unlock(&rq->lock);
4526 preempt_enable_no_resched();
4528 schedule();
4530 return 0;
4533 static inline int __resched_legal(int expected_preempt_count)
4535 if (unlikely(preempt_count() != expected_preempt_count))
4536 return 0;
4537 if (unlikely(system_state != SYSTEM_RUNNING))
4538 return 0;
4539 return 1;
4542 static void __cond_resched(void)
4544 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4545 __might_sleep(__FILE__, __LINE__);
4546 #endif
4548 * The BKS might be reacquired before we have dropped
4549 * PREEMPT_ACTIVE, which could trigger a second
4550 * cond_resched() call.
4552 do {
4553 add_preempt_count(PREEMPT_ACTIVE);
4554 schedule();
4555 sub_preempt_count(PREEMPT_ACTIVE);
4556 } while (need_resched());
4559 int __sched cond_resched(void)
4561 if (need_resched() && __resched_legal(0)) {
4562 __cond_resched();
4563 return 1;
4565 return 0;
4567 EXPORT_SYMBOL(cond_resched);
4570 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4571 * call schedule, and on return reacquire the lock.
4573 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4574 * operations here to prevent schedule() from being called twice (once via
4575 * spin_unlock(), once by hand).
4577 int cond_resched_lock(spinlock_t *lock)
4579 int ret = 0;
4581 if (need_lockbreak(lock)) {
4582 spin_unlock(lock);
4583 cpu_relax();
4584 ret = 1;
4585 spin_lock(lock);
4587 if (need_resched() && __resched_legal(1)) {
4588 spin_release(&lock->dep_map, 1, _THIS_IP_);
4589 _raw_spin_unlock(lock);
4590 preempt_enable_no_resched();
4591 __cond_resched();
4592 ret = 1;
4593 spin_lock(lock);
4595 return ret;
4597 EXPORT_SYMBOL(cond_resched_lock);
4599 int __sched cond_resched_softirq(void)
4601 BUG_ON(!in_softirq());
4603 if (need_resched() && __resched_legal(0)) {
4604 raw_local_irq_disable();
4605 _local_bh_enable();
4606 raw_local_irq_enable();
4607 __cond_resched();
4608 local_bh_disable();
4609 return 1;
4611 return 0;
4613 EXPORT_SYMBOL(cond_resched_softirq);
4616 * yield - yield the current processor to other threads.
4618 * this is a shortcut for kernel-space yielding - it marks the
4619 * thread runnable and calls sys_sched_yield().
4621 void __sched yield(void)
4623 set_current_state(TASK_RUNNING);
4624 sys_sched_yield();
4626 EXPORT_SYMBOL(yield);
4629 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4630 * that process accounting knows that this is a task in IO wait state.
4632 * But don't do that if it is a deliberate, throttling IO wait (this task
4633 * has set its backing_dev_info: the queue against which it should throttle)
4635 void __sched io_schedule(void)
4637 struct rq *rq = &__raw_get_cpu_var(runqueues);
4639 delayacct_blkio_start();
4640 atomic_inc(&rq->nr_iowait);
4641 schedule();
4642 atomic_dec(&rq->nr_iowait);
4643 delayacct_blkio_end();
4645 EXPORT_SYMBOL(io_schedule);
4647 long __sched io_schedule_timeout(long timeout)
4649 struct rq *rq = &__raw_get_cpu_var(runqueues);
4650 long ret;
4652 delayacct_blkio_start();
4653 atomic_inc(&rq->nr_iowait);
4654 ret = schedule_timeout(timeout);
4655 atomic_dec(&rq->nr_iowait);
4656 delayacct_blkio_end();
4657 return ret;
4661 * sys_sched_get_priority_max - return maximum RT priority.
4662 * @policy: scheduling class.
4664 * this syscall returns the maximum rt_priority that can be used
4665 * by a given scheduling class.
4667 asmlinkage long sys_sched_get_priority_max(int policy)
4669 int ret = -EINVAL;
4671 switch (policy) {
4672 case SCHED_FIFO:
4673 case SCHED_RR:
4674 ret = MAX_USER_RT_PRIO-1;
4675 break;
4676 case SCHED_NORMAL:
4677 case SCHED_BATCH:
4678 ret = 0;
4679 break;
4681 return ret;
4685 * sys_sched_get_priority_min - return minimum RT priority.
4686 * @policy: scheduling class.
4688 * this syscall returns the minimum rt_priority that can be used
4689 * by a given scheduling class.
4691 asmlinkage long sys_sched_get_priority_min(int policy)
4693 int ret = -EINVAL;
4695 switch (policy) {
4696 case SCHED_FIFO:
4697 case SCHED_RR:
4698 ret = 1;
4699 break;
4700 case SCHED_NORMAL:
4701 case SCHED_BATCH:
4702 ret = 0;
4704 return ret;
4708 * sys_sched_rr_get_interval - return the default timeslice of a process.
4709 * @pid: pid of the process.
4710 * @interval: userspace pointer to the timeslice value.
4712 * this syscall writes the default timeslice value of a given process
4713 * into the user-space timespec buffer. A value of '0' means infinity.
4715 asmlinkage
4716 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4718 struct task_struct *p;
4719 int retval = -EINVAL;
4720 struct timespec t;
4722 if (pid < 0)
4723 goto out_nounlock;
4725 retval = -ESRCH;
4726 read_lock(&tasklist_lock);
4727 p = find_process_by_pid(pid);
4728 if (!p)
4729 goto out_unlock;
4731 retval = security_task_getscheduler(p);
4732 if (retval)
4733 goto out_unlock;
4735 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4736 0 : task_timeslice(p), &t);
4737 read_unlock(&tasklist_lock);
4738 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4739 out_nounlock:
4740 return retval;
4741 out_unlock:
4742 read_unlock(&tasklist_lock);
4743 return retval;
4746 static inline struct task_struct *eldest_child(struct task_struct *p)
4748 if (list_empty(&p->children))
4749 return NULL;
4750 return list_entry(p->children.next,struct task_struct,sibling);
4753 static inline struct task_struct *older_sibling(struct task_struct *p)
4755 if (p->sibling.prev==&p->parent->children)
4756 return NULL;
4757 return list_entry(p->sibling.prev,struct task_struct,sibling);
4760 static inline struct task_struct *younger_sibling(struct task_struct *p)
4762 if (p->sibling.next==&p->parent->children)
4763 return NULL;
4764 return list_entry(p->sibling.next,struct task_struct,sibling);
4767 static const char stat_nam[] = "RSDTtZX";
4769 static void show_task(struct task_struct *p)
4771 struct task_struct *relative;
4772 unsigned long free = 0;
4773 unsigned state;
4775 state = p->state ? __ffs(p->state) + 1 : 0;
4776 printk("%-13.13s %c", p->comm,
4777 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4778 #if (BITS_PER_LONG == 32)
4779 if (state == TASK_RUNNING)
4780 printk(" running ");
4781 else
4782 printk(" %08lX ", thread_saved_pc(p));
4783 #else
4784 if (state == TASK_RUNNING)
4785 printk(" running task ");
4786 else
4787 printk(" %016lx ", thread_saved_pc(p));
4788 #endif
4789 #ifdef CONFIG_DEBUG_STACK_USAGE
4791 unsigned long *n = end_of_stack(p);
4792 while (!*n)
4793 n++;
4794 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4796 #endif
4797 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4798 if ((relative = eldest_child(p)))
4799 printk("%5d ", relative->pid);
4800 else
4801 printk(" ");
4802 if ((relative = younger_sibling(p)))
4803 printk("%7d", relative->pid);
4804 else
4805 printk(" ");
4806 if ((relative = older_sibling(p)))
4807 printk(" %5d", relative->pid);
4808 else
4809 printk(" ");
4810 if (!p->mm)
4811 printk(" (L-TLB)\n");
4812 else
4813 printk(" (NOTLB)\n");
4815 if (state != TASK_RUNNING)
4816 show_stack(p, NULL);
4819 void show_state_filter(unsigned long state_filter)
4821 struct task_struct *g, *p;
4823 #if (BITS_PER_LONG == 32)
4824 printk("\n"
4825 " free sibling\n");
4826 printk(" task PC stack pid father child younger older\n");
4827 #else
4828 printk("\n"
4829 " free sibling\n");
4830 printk(" task PC stack pid father child younger older\n");
4831 #endif
4832 read_lock(&tasklist_lock);
4833 do_each_thread(g, p) {
4835 * reset the NMI-timeout, listing all files on a slow
4836 * console might take alot of time:
4838 touch_nmi_watchdog();
4839 if (p->state & state_filter)
4840 show_task(p);
4841 } while_each_thread(g, p);
4843 read_unlock(&tasklist_lock);
4845 * Only show locks if all tasks are dumped:
4847 if (state_filter == -1)
4848 debug_show_all_locks();
4852 * init_idle - set up an idle thread for a given CPU
4853 * @idle: task in question
4854 * @cpu: cpu the idle task belongs to
4856 * NOTE: this function does not set the idle thread's NEED_RESCHED
4857 * flag, to make booting more robust.
4859 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4861 struct rq *rq = cpu_rq(cpu);
4862 unsigned long flags;
4864 idle->timestamp = sched_clock();
4865 idle->sleep_avg = 0;
4866 idle->array = NULL;
4867 idle->prio = idle->normal_prio = MAX_PRIO;
4868 idle->state = TASK_RUNNING;
4869 idle->cpus_allowed = cpumask_of_cpu(cpu);
4870 set_task_cpu(idle, cpu);
4872 spin_lock_irqsave(&rq->lock, flags);
4873 rq->curr = rq->idle = idle;
4874 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4875 idle->oncpu = 1;
4876 #endif
4877 spin_unlock_irqrestore(&rq->lock, flags);
4879 /* Set the preempt count _outside_ the spinlocks! */
4880 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4881 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4882 #else
4883 task_thread_info(idle)->preempt_count = 0;
4884 #endif
4888 * In a system that switches off the HZ timer nohz_cpu_mask
4889 * indicates which cpus entered this state. This is used
4890 * in the rcu update to wait only for active cpus. For system
4891 * which do not switch off the HZ timer nohz_cpu_mask should
4892 * always be CPU_MASK_NONE.
4894 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4896 #ifdef CONFIG_SMP
4898 * This is how migration works:
4900 * 1) we queue a struct migration_req structure in the source CPU's
4901 * runqueue and wake up that CPU's migration thread.
4902 * 2) we down() the locked semaphore => thread blocks.
4903 * 3) migration thread wakes up (implicitly it forces the migrated
4904 * thread off the CPU)
4905 * 4) it gets the migration request and checks whether the migrated
4906 * task is still in the wrong runqueue.
4907 * 5) if it's in the wrong runqueue then the migration thread removes
4908 * it and puts it into the right queue.
4909 * 6) migration thread up()s the semaphore.
4910 * 7) we wake up and the migration is done.
4914 * Change a given task's CPU affinity. Migrate the thread to a
4915 * proper CPU and schedule it away if the CPU it's executing on
4916 * is removed from the allowed bitmask.
4918 * NOTE: the caller must have a valid reference to the task, the
4919 * task must not exit() & deallocate itself prematurely. The
4920 * call is not atomic; no spinlocks may be held.
4922 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4924 struct migration_req req;
4925 unsigned long flags;
4926 struct rq *rq;
4927 int ret = 0;
4929 rq = task_rq_lock(p, &flags);
4930 if (!cpus_intersects(new_mask, cpu_online_map)) {
4931 ret = -EINVAL;
4932 goto out;
4935 p->cpus_allowed = new_mask;
4936 /* Can the task run on the task's current CPU? If so, we're done */
4937 if (cpu_isset(task_cpu(p), new_mask))
4938 goto out;
4940 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4941 /* Need help from migration thread: drop lock and wait. */
4942 task_rq_unlock(rq, &flags);
4943 wake_up_process(rq->migration_thread);
4944 wait_for_completion(&req.done);
4945 tlb_migrate_finish(p->mm);
4946 return 0;
4948 out:
4949 task_rq_unlock(rq, &flags);
4951 return ret;
4953 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4956 * Move (not current) task off this cpu, onto dest cpu. We're doing
4957 * this because either it can't run here any more (set_cpus_allowed()
4958 * away from this CPU, or CPU going down), or because we're
4959 * attempting to rebalance this task on exec (sched_exec).
4961 * So we race with normal scheduler movements, but that's OK, as long
4962 * as the task is no longer on this CPU.
4964 * Returns non-zero if task was successfully migrated.
4966 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4968 struct rq *rq_dest, *rq_src;
4969 int ret = 0;
4971 if (unlikely(cpu_is_offline(dest_cpu)))
4972 return ret;
4974 rq_src = cpu_rq(src_cpu);
4975 rq_dest = cpu_rq(dest_cpu);
4977 double_rq_lock(rq_src, rq_dest);
4978 /* Already moved. */
4979 if (task_cpu(p) != src_cpu)
4980 goto out;
4981 /* Affinity changed (again). */
4982 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4983 goto out;
4985 set_task_cpu(p, dest_cpu);
4986 if (p->array) {
4988 * Sync timestamp with rq_dest's before activating.
4989 * The same thing could be achieved by doing this step
4990 * afterwards, and pretending it was a local activate.
4991 * This way is cleaner and logically correct.
4993 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4994 + rq_dest->timestamp_last_tick;
4995 deactivate_task(p, rq_src);
4996 __activate_task(p, rq_dest);
4997 if (TASK_PREEMPTS_CURR(p, rq_dest))
4998 resched_task(rq_dest->curr);
5000 ret = 1;
5001 out:
5002 double_rq_unlock(rq_src, rq_dest);
5003 return ret;
5007 * migration_thread - this is a highprio system thread that performs
5008 * thread migration by bumping thread off CPU then 'pushing' onto
5009 * another runqueue.
5011 static int migration_thread(void *data)
5013 int cpu = (long)data;
5014 struct rq *rq;
5016 rq = cpu_rq(cpu);
5017 BUG_ON(rq->migration_thread != current);
5019 set_current_state(TASK_INTERRUPTIBLE);
5020 while (!kthread_should_stop()) {
5021 struct migration_req *req;
5022 struct list_head *head;
5024 try_to_freeze();
5026 spin_lock_irq(&rq->lock);
5028 if (cpu_is_offline(cpu)) {
5029 spin_unlock_irq(&rq->lock);
5030 goto wait_to_die;
5033 if (rq->active_balance) {
5034 active_load_balance(rq, cpu);
5035 rq->active_balance = 0;
5038 head = &rq->migration_queue;
5040 if (list_empty(head)) {
5041 spin_unlock_irq(&rq->lock);
5042 schedule();
5043 set_current_state(TASK_INTERRUPTIBLE);
5044 continue;
5046 req = list_entry(head->next, struct migration_req, list);
5047 list_del_init(head->next);
5049 spin_unlock(&rq->lock);
5050 __migrate_task(req->task, cpu, req->dest_cpu);
5051 local_irq_enable();
5053 complete(&req->done);
5055 __set_current_state(TASK_RUNNING);
5056 return 0;
5058 wait_to_die:
5059 /* Wait for kthread_stop */
5060 set_current_state(TASK_INTERRUPTIBLE);
5061 while (!kthread_should_stop()) {
5062 schedule();
5063 set_current_state(TASK_INTERRUPTIBLE);
5065 __set_current_state(TASK_RUNNING);
5066 return 0;
5069 #ifdef CONFIG_HOTPLUG_CPU
5070 /* Figure out where task on dead CPU should go, use force if neccessary. */
5071 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5073 unsigned long flags;
5074 cpumask_t mask;
5075 struct rq *rq;
5076 int dest_cpu;
5078 restart:
5079 /* On same node? */
5080 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5081 cpus_and(mask, mask, p->cpus_allowed);
5082 dest_cpu = any_online_cpu(mask);
5084 /* On any allowed CPU? */
5085 if (dest_cpu == NR_CPUS)
5086 dest_cpu = any_online_cpu(p->cpus_allowed);
5088 /* No more Mr. Nice Guy. */
5089 if (dest_cpu == NR_CPUS) {
5090 rq = task_rq_lock(p, &flags);
5091 cpus_setall(p->cpus_allowed);
5092 dest_cpu = any_online_cpu(p->cpus_allowed);
5093 task_rq_unlock(rq, &flags);
5096 * Don't tell them about moving exiting tasks or
5097 * kernel threads (both mm NULL), since they never
5098 * leave kernel.
5100 if (p->mm && printk_ratelimit())
5101 printk(KERN_INFO "process %d (%s) no "
5102 "longer affine to cpu%d\n",
5103 p->pid, p->comm, dead_cpu);
5105 if (!__migrate_task(p, dead_cpu, dest_cpu))
5106 goto restart;
5110 * While a dead CPU has no uninterruptible tasks queued at this point,
5111 * it might still have a nonzero ->nr_uninterruptible counter, because
5112 * for performance reasons the counter is not stricly tracking tasks to
5113 * their home CPUs. So we just add the counter to another CPU's counter,
5114 * to keep the global sum constant after CPU-down:
5116 static void migrate_nr_uninterruptible(struct rq *rq_src)
5118 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5119 unsigned long flags;
5121 local_irq_save(flags);
5122 double_rq_lock(rq_src, rq_dest);
5123 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5124 rq_src->nr_uninterruptible = 0;
5125 double_rq_unlock(rq_src, rq_dest);
5126 local_irq_restore(flags);
5129 /* Run through task list and migrate tasks from the dead cpu. */
5130 static void migrate_live_tasks(int src_cpu)
5132 struct task_struct *p, *t;
5134 write_lock_irq(&tasklist_lock);
5136 do_each_thread(t, p) {
5137 if (p == current)
5138 continue;
5140 if (task_cpu(p) == src_cpu)
5141 move_task_off_dead_cpu(src_cpu, p);
5142 } while_each_thread(t, p);
5144 write_unlock_irq(&tasklist_lock);
5147 /* Schedules idle task to be the next runnable task on current CPU.
5148 * It does so by boosting its priority to highest possible and adding it to
5149 * the _front_ of the runqueue. Used by CPU offline code.
5151 void sched_idle_next(void)
5153 int this_cpu = smp_processor_id();
5154 struct rq *rq = cpu_rq(this_cpu);
5155 struct task_struct *p = rq->idle;
5156 unsigned long flags;
5158 /* cpu has to be offline */
5159 BUG_ON(cpu_online(this_cpu));
5162 * Strictly not necessary since rest of the CPUs are stopped by now
5163 * and interrupts disabled on the current cpu.
5165 spin_lock_irqsave(&rq->lock, flags);
5167 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5169 /* Add idle task to the _front_ of its priority queue: */
5170 __activate_idle_task(p, rq);
5172 spin_unlock_irqrestore(&rq->lock, flags);
5176 * Ensures that the idle task is using init_mm right before its cpu goes
5177 * offline.
5179 void idle_task_exit(void)
5181 struct mm_struct *mm = current->active_mm;
5183 BUG_ON(cpu_online(smp_processor_id()));
5185 if (mm != &init_mm)
5186 switch_mm(mm, &init_mm, current);
5187 mmdrop(mm);
5190 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5192 struct rq *rq = cpu_rq(dead_cpu);
5194 /* Must be exiting, otherwise would be on tasklist. */
5195 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5197 /* Cannot have done final schedule yet: would have vanished. */
5198 BUG_ON(p->state == TASK_DEAD);
5200 get_task_struct(p);
5203 * Drop lock around migration; if someone else moves it,
5204 * that's OK. No task can be added to this CPU, so iteration is
5205 * fine.
5207 spin_unlock_irq(&rq->lock);
5208 move_task_off_dead_cpu(dead_cpu, p);
5209 spin_lock_irq(&rq->lock);
5211 put_task_struct(p);
5214 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5215 static void migrate_dead_tasks(unsigned int dead_cpu)
5217 struct rq *rq = cpu_rq(dead_cpu);
5218 unsigned int arr, i;
5220 for (arr = 0; arr < 2; arr++) {
5221 for (i = 0; i < MAX_PRIO; i++) {
5222 struct list_head *list = &rq->arrays[arr].queue[i];
5224 while (!list_empty(list))
5225 migrate_dead(dead_cpu, list_entry(list->next,
5226 struct task_struct, run_list));
5230 #endif /* CONFIG_HOTPLUG_CPU */
5233 * migration_call - callback that gets triggered when a CPU is added.
5234 * Here we can start up the necessary migration thread for the new CPU.
5236 static int __cpuinit
5237 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5239 struct task_struct *p;
5240 int cpu = (long)hcpu;
5241 unsigned long flags;
5242 struct rq *rq;
5244 switch (action) {
5245 case CPU_UP_PREPARE:
5246 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5247 if (IS_ERR(p))
5248 return NOTIFY_BAD;
5249 p->flags |= PF_NOFREEZE;
5250 kthread_bind(p, cpu);
5251 /* Must be high prio: stop_machine expects to yield to it. */
5252 rq = task_rq_lock(p, &flags);
5253 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5254 task_rq_unlock(rq, &flags);
5255 cpu_rq(cpu)->migration_thread = p;
5256 break;
5258 case CPU_ONLINE:
5259 /* Strictly unneccessary, as first user will wake it. */
5260 wake_up_process(cpu_rq(cpu)->migration_thread);
5261 break;
5263 #ifdef CONFIG_HOTPLUG_CPU
5264 case CPU_UP_CANCELED:
5265 if (!cpu_rq(cpu)->migration_thread)
5266 break;
5267 /* Unbind it from offline cpu so it can run. Fall thru. */
5268 kthread_bind(cpu_rq(cpu)->migration_thread,
5269 any_online_cpu(cpu_online_map));
5270 kthread_stop(cpu_rq(cpu)->migration_thread);
5271 cpu_rq(cpu)->migration_thread = NULL;
5272 break;
5274 case CPU_DEAD:
5275 migrate_live_tasks(cpu);
5276 rq = cpu_rq(cpu);
5277 kthread_stop(rq->migration_thread);
5278 rq->migration_thread = NULL;
5279 /* Idle task back to normal (off runqueue, low prio) */
5280 rq = task_rq_lock(rq->idle, &flags);
5281 deactivate_task(rq->idle, rq);
5282 rq->idle->static_prio = MAX_PRIO;
5283 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5284 migrate_dead_tasks(cpu);
5285 task_rq_unlock(rq, &flags);
5286 migrate_nr_uninterruptible(rq);
5287 BUG_ON(rq->nr_running != 0);
5289 /* No need to migrate the tasks: it was best-effort if
5290 * they didn't do lock_cpu_hotplug(). Just wake up
5291 * the requestors. */
5292 spin_lock_irq(&rq->lock);
5293 while (!list_empty(&rq->migration_queue)) {
5294 struct migration_req *req;
5296 req = list_entry(rq->migration_queue.next,
5297 struct migration_req, list);
5298 list_del_init(&req->list);
5299 complete(&req->done);
5301 spin_unlock_irq(&rq->lock);
5302 break;
5303 #endif
5305 return NOTIFY_OK;
5308 /* Register at highest priority so that task migration (migrate_all_tasks)
5309 * happens before everything else.
5311 static struct notifier_block __cpuinitdata migration_notifier = {
5312 .notifier_call = migration_call,
5313 .priority = 10
5316 int __init migration_init(void)
5318 void *cpu = (void *)(long)smp_processor_id();
5319 int err;
5321 /* Start one for the boot CPU: */
5322 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5323 BUG_ON(err == NOTIFY_BAD);
5324 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5325 register_cpu_notifier(&migration_notifier);
5327 return 0;
5329 #endif
5331 #ifdef CONFIG_SMP
5332 #undef SCHED_DOMAIN_DEBUG
5333 #ifdef SCHED_DOMAIN_DEBUG
5334 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5336 int level = 0;
5338 if (!sd) {
5339 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5340 return;
5343 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5345 do {
5346 int i;
5347 char str[NR_CPUS];
5348 struct sched_group *group = sd->groups;
5349 cpumask_t groupmask;
5351 cpumask_scnprintf(str, NR_CPUS, sd->span);
5352 cpus_clear(groupmask);
5354 printk(KERN_DEBUG);
5355 for (i = 0; i < level + 1; i++)
5356 printk(" ");
5357 printk("domain %d: ", level);
5359 if (!(sd->flags & SD_LOAD_BALANCE)) {
5360 printk("does not load-balance\n");
5361 if (sd->parent)
5362 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5363 break;
5366 printk("span %s\n", str);
5368 if (!cpu_isset(cpu, sd->span))
5369 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5370 if (!cpu_isset(cpu, group->cpumask))
5371 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5373 printk(KERN_DEBUG);
5374 for (i = 0; i < level + 2; i++)
5375 printk(" ");
5376 printk("groups:");
5377 do {
5378 if (!group) {
5379 printk("\n");
5380 printk(KERN_ERR "ERROR: group is NULL\n");
5381 break;
5384 if (!group->cpu_power) {
5385 printk("\n");
5386 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5389 if (!cpus_weight(group->cpumask)) {
5390 printk("\n");
5391 printk(KERN_ERR "ERROR: empty group\n");
5394 if (cpus_intersects(groupmask, group->cpumask)) {
5395 printk("\n");
5396 printk(KERN_ERR "ERROR: repeated CPUs\n");
5399 cpus_or(groupmask, groupmask, group->cpumask);
5401 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5402 printk(" %s", str);
5404 group = group->next;
5405 } while (group != sd->groups);
5406 printk("\n");
5408 if (!cpus_equal(sd->span, groupmask))
5409 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5411 level++;
5412 sd = sd->parent;
5414 if (sd) {
5415 if (!cpus_subset(groupmask, sd->span))
5416 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5419 } while (sd);
5421 #else
5422 # define sched_domain_debug(sd, cpu) do { } while (0)
5423 #endif
5425 static int sd_degenerate(struct sched_domain *sd)
5427 if (cpus_weight(sd->span) == 1)
5428 return 1;
5430 /* Following flags need at least 2 groups */
5431 if (sd->flags & (SD_LOAD_BALANCE |
5432 SD_BALANCE_NEWIDLE |
5433 SD_BALANCE_FORK |
5434 SD_BALANCE_EXEC |
5435 SD_SHARE_CPUPOWER |
5436 SD_SHARE_PKG_RESOURCES)) {
5437 if (sd->groups != sd->groups->next)
5438 return 0;
5441 /* Following flags don't use groups */
5442 if (sd->flags & (SD_WAKE_IDLE |
5443 SD_WAKE_AFFINE |
5444 SD_WAKE_BALANCE))
5445 return 0;
5447 return 1;
5450 static int
5451 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5453 unsigned long cflags = sd->flags, pflags = parent->flags;
5455 if (sd_degenerate(parent))
5456 return 1;
5458 if (!cpus_equal(sd->span, parent->span))
5459 return 0;
5461 /* Does parent contain flags not in child? */
5462 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5463 if (cflags & SD_WAKE_AFFINE)
5464 pflags &= ~SD_WAKE_BALANCE;
5465 /* Flags needing groups don't count if only 1 group in parent */
5466 if (parent->groups == parent->groups->next) {
5467 pflags &= ~(SD_LOAD_BALANCE |
5468 SD_BALANCE_NEWIDLE |
5469 SD_BALANCE_FORK |
5470 SD_BALANCE_EXEC |
5471 SD_SHARE_CPUPOWER |
5472 SD_SHARE_PKG_RESOURCES);
5474 if (~cflags & pflags)
5475 return 0;
5477 return 1;
5481 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5482 * hold the hotplug lock.
5484 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5486 struct rq *rq = cpu_rq(cpu);
5487 struct sched_domain *tmp;
5489 /* Remove the sched domains which do not contribute to scheduling. */
5490 for (tmp = sd; tmp; tmp = tmp->parent) {
5491 struct sched_domain *parent = tmp->parent;
5492 if (!parent)
5493 break;
5494 if (sd_parent_degenerate(tmp, parent)) {
5495 tmp->parent = parent->parent;
5496 if (parent->parent)
5497 parent->parent->child = tmp;
5501 if (sd && sd_degenerate(sd)) {
5502 sd = sd->parent;
5503 if (sd)
5504 sd->child = NULL;
5507 sched_domain_debug(sd, cpu);
5509 rcu_assign_pointer(rq->sd, sd);
5512 /* cpus with isolated domains */
5513 static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
5515 /* Setup the mask of cpus configured for isolated domains */
5516 static int __init isolated_cpu_setup(char *str)
5518 int ints[NR_CPUS], i;
5520 str = get_options(str, ARRAY_SIZE(ints), ints);
5521 cpus_clear(cpu_isolated_map);
5522 for (i = 1; i <= ints[0]; i++)
5523 if (ints[i] < NR_CPUS)
5524 cpu_set(ints[i], cpu_isolated_map);
5525 return 1;
5528 __setup ("isolcpus=", isolated_cpu_setup);
5531 * init_sched_build_groups takes an array of groups, the cpumask we wish
5532 * to span, and a pointer to a function which identifies what group a CPU
5533 * belongs to. The return value of group_fn must be a valid index into the
5534 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
5535 * keep track of groups covered with a cpumask_t).
5537 * init_sched_build_groups will build a circular linked list of the groups
5538 * covered by the given span, and will set each group's ->cpumask correctly,
5539 * and ->cpu_power to 0.
5541 static void
5542 init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5543 const cpumask_t *cpu_map,
5544 int (*group_fn)(int cpu, const cpumask_t *cpu_map))
5546 struct sched_group *first = NULL, *last = NULL;
5547 cpumask_t covered = CPU_MASK_NONE;
5548 int i;
5550 for_each_cpu_mask(i, span) {
5551 int group = group_fn(i, cpu_map);
5552 struct sched_group *sg = &groups[group];
5553 int j;
5555 if (cpu_isset(i, covered))
5556 continue;
5558 sg->cpumask = CPU_MASK_NONE;
5559 sg->cpu_power = 0;
5561 for_each_cpu_mask(j, span) {
5562 if (group_fn(j, cpu_map) != group)
5563 continue;
5565 cpu_set(j, covered);
5566 cpu_set(j, sg->cpumask);
5568 if (!first)
5569 first = sg;
5570 if (last)
5571 last->next = sg;
5572 last = sg;
5574 last->next = first;
5577 #define SD_NODES_PER_DOMAIN 16
5580 * Self-tuning task migration cost measurement between source and target CPUs.
5582 * This is done by measuring the cost of manipulating buffers of varying
5583 * sizes. For a given buffer-size here are the steps that are taken:
5585 * 1) the source CPU reads+dirties a shared buffer
5586 * 2) the target CPU reads+dirties the same shared buffer
5588 * We measure how long they take, in the following 4 scenarios:
5590 * - source: CPU1, target: CPU2 | cost1
5591 * - source: CPU2, target: CPU1 | cost2
5592 * - source: CPU1, target: CPU1 | cost3
5593 * - source: CPU2, target: CPU2 | cost4
5595 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5596 * the cost of migration.
5598 * We then start off from a small buffer-size and iterate up to larger
5599 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5600 * doing a maximum search for the cost. (The maximum cost for a migration
5601 * normally occurs when the working set size is around the effective cache
5602 * size.)
5604 #define SEARCH_SCOPE 2
5605 #define MIN_CACHE_SIZE (64*1024U)
5606 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5607 #define ITERATIONS 1
5608 #define SIZE_THRESH 130
5609 #define COST_THRESH 130
5612 * The migration cost is a function of 'domain distance'. Domain
5613 * distance is the number of steps a CPU has to iterate down its
5614 * domain tree to share a domain with the other CPU. The farther
5615 * two CPUs are from each other, the larger the distance gets.
5617 * Note that we use the distance only to cache measurement results,
5618 * the distance value is not used numerically otherwise. When two
5619 * CPUs have the same distance it is assumed that the migration
5620 * cost is the same. (this is a simplification but quite practical)
5622 #define MAX_DOMAIN_DISTANCE 32
5624 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5625 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5627 * Architectures may override the migration cost and thus avoid
5628 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5629 * virtualized hardware:
5631 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5632 CONFIG_DEFAULT_MIGRATION_COST
5633 #else
5634 -1LL
5635 #endif
5639 * Allow override of migration cost - in units of microseconds.
5640 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5641 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5643 static int __init migration_cost_setup(char *str)
5645 int ints[MAX_DOMAIN_DISTANCE+1], i;
5647 str = get_options(str, ARRAY_SIZE(ints), ints);
5649 printk("#ints: %d\n", ints[0]);
5650 for (i = 1; i <= ints[0]; i++) {
5651 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5652 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5654 return 1;
5657 __setup ("migration_cost=", migration_cost_setup);
5660 * Global multiplier (divisor) for migration-cutoff values,
5661 * in percentiles. E.g. use a value of 150 to get 1.5 times
5662 * longer cache-hot cutoff times.
5664 * (We scale it from 100 to 128 to long long handling easier.)
5667 #define MIGRATION_FACTOR_SCALE 128
5669 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5671 static int __init setup_migration_factor(char *str)
5673 get_option(&str, &migration_factor);
5674 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5675 return 1;
5678 __setup("migration_factor=", setup_migration_factor);
5681 * Estimated distance of two CPUs, measured via the number of domains
5682 * we have to pass for the two CPUs to be in the same span:
5684 static unsigned long domain_distance(int cpu1, int cpu2)
5686 unsigned long distance = 0;
5687 struct sched_domain *sd;
5689 for_each_domain(cpu1, sd) {
5690 WARN_ON(!cpu_isset(cpu1, sd->span));
5691 if (cpu_isset(cpu2, sd->span))
5692 return distance;
5693 distance++;
5695 if (distance >= MAX_DOMAIN_DISTANCE) {
5696 WARN_ON(1);
5697 distance = MAX_DOMAIN_DISTANCE-1;
5700 return distance;
5703 static unsigned int migration_debug;
5705 static int __init setup_migration_debug(char *str)
5707 get_option(&str, &migration_debug);
5708 return 1;
5711 __setup("migration_debug=", setup_migration_debug);
5714 * Maximum cache-size that the scheduler should try to measure.
5715 * Architectures with larger caches should tune this up during
5716 * bootup. Gets used in the domain-setup code (i.e. during SMP
5717 * bootup).
5719 unsigned int max_cache_size;
5721 static int __init setup_max_cache_size(char *str)
5723 get_option(&str, &max_cache_size);
5724 return 1;
5727 __setup("max_cache_size=", setup_max_cache_size);
5730 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5731 * is the operation that is timed, so we try to generate unpredictable
5732 * cachemisses that still end up filling the L2 cache:
5734 static void touch_cache(void *__cache, unsigned long __size)
5736 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5737 chunk2 = 2*size/3;
5738 unsigned long *cache = __cache;
5739 int i;
5741 for (i = 0; i < size/6; i += 8) {
5742 switch (i % 6) {
5743 case 0: cache[i]++;
5744 case 1: cache[size-1-i]++;
5745 case 2: cache[chunk1-i]++;
5746 case 3: cache[chunk1+i]++;
5747 case 4: cache[chunk2-i]++;
5748 case 5: cache[chunk2+i]++;
5754 * Measure the cache-cost of one task migration. Returns in units of nsec.
5756 static unsigned long long
5757 measure_one(void *cache, unsigned long size, int source, int target)
5759 cpumask_t mask, saved_mask;
5760 unsigned long long t0, t1, t2, t3, cost;
5762 saved_mask = current->cpus_allowed;
5765 * Flush source caches to RAM and invalidate them:
5767 sched_cacheflush();
5770 * Migrate to the source CPU:
5772 mask = cpumask_of_cpu(source);
5773 set_cpus_allowed(current, mask);
5774 WARN_ON(smp_processor_id() != source);
5777 * Dirty the working set:
5779 t0 = sched_clock();
5780 touch_cache(cache, size);
5781 t1 = sched_clock();
5784 * Migrate to the target CPU, dirty the L2 cache and access
5785 * the shared buffer. (which represents the working set
5786 * of a migrated task.)
5788 mask = cpumask_of_cpu(target);
5789 set_cpus_allowed(current, mask);
5790 WARN_ON(smp_processor_id() != target);
5792 t2 = sched_clock();
5793 touch_cache(cache, size);
5794 t3 = sched_clock();
5796 cost = t1-t0 + t3-t2;
5798 if (migration_debug >= 2)
5799 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5800 source, target, t1-t0, t1-t0, t3-t2, cost);
5802 * Flush target caches to RAM and invalidate them:
5804 sched_cacheflush();
5806 set_cpus_allowed(current, saved_mask);
5808 return cost;
5812 * Measure a series of task migrations and return the average
5813 * result. Since this code runs early during bootup the system
5814 * is 'undisturbed' and the average latency makes sense.
5816 * The algorithm in essence auto-detects the relevant cache-size,
5817 * so it will properly detect different cachesizes for different
5818 * cache-hierarchies, depending on how the CPUs are connected.
5820 * Architectures can prime the upper limit of the search range via
5821 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5823 static unsigned long long
5824 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5826 unsigned long long cost1, cost2;
5827 int i;
5830 * Measure the migration cost of 'size' bytes, over an
5831 * average of 10 runs:
5833 * (We perturb the cache size by a small (0..4k)
5834 * value to compensate size/alignment related artifacts.
5835 * We also subtract the cost of the operation done on
5836 * the same CPU.)
5838 cost1 = 0;
5841 * dry run, to make sure we start off cache-cold on cpu1,
5842 * and to get any vmalloc pagefaults in advance:
5844 measure_one(cache, size, cpu1, cpu2);
5845 for (i = 0; i < ITERATIONS; i++)
5846 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5848 measure_one(cache, size, cpu2, cpu1);
5849 for (i = 0; i < ITERATIONS; i++)
5850 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5853 * (We measure the non-migrating [cached] cost on both
5854 * cpu1 and cpu2, to handle CPUs with different speeds)
5856 cost2 = 0;
5858 measure_one(cache, size, cpu1, cpu1);
5859 for (i = 0; i < ITERATIONS; i++)
5860 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5862 measure_one(cache, size, cpu2, cpu2);
5863 for (i = 0; i < ITERATIONS; i++)
5864 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5867 * Get the per-iteration migration cost:
5869 do_div(cost1, 2*ITERATIONS);
5870 do_div(cost2, 2*ITERATIONS);
5872 return cost1 - cost2;
5875 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5877 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5878 unsigned int max_size, size, size_found = 0;
5879 long long cost = 0, prev_cost;
5880 void *cache;
5883 * Search from max_cache_size*5 down to 64K - the real relevant
5884 * cachesize has to lie somewhere inbetween.
5886 if (max_cache_size) {
5887 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5888 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5889 } else {
5891 * Since we have no estimation about the relevant
5892 * search range
5894 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5895 size = MIN_CACHE_SIZE;
5898 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5899 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5900 return 0;
5904 * Allocate the working set:
5906 cache = vmalloc(max_size);
5907 if (!cache) {
5908 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5909 return 1000000; /* return 1 msec on very small boxen */
5912 while (size <= max_size) {
5913 prev_cost = cost;
5914 cost = measure_cost(cpu1, cpu2, cache, size);
5917 * Update the max:
5919 if (cost > 0) {
5920 if (max_cost < cost) {
5921 max_cost = cost;
5922 size_found = size;
5926 * Calculate average fluctuation, we use this to prevent
5927 * noise from triggering an early break out of the loop:
5929 fluct = abs(cost - prev_cost);
5930 avg_fluct = (avg_fluct + fluct)/2;
5932 if (migration_debug)
5933 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5934 cpu1, cpu2, size,
5935 (long)cost / 1000000,
5936 ((long)cost / 100000) % 10,
5937 (long)max_cost / 1000000,
5938 ((long)max_cost / 100000) % 10,
5939 domain_distance(cpu1, cpu2),
5940 cost, avg_fluct);
5943 * If we iterated at least 20% past the previous maximum,
5944 * and the cost has dropped by more than 20% already,
5945 * (taking fluctuations into account) then we assume to
5946 * have found the maximum and break out of the loop early:
5948 if (size_found && (size*100 > size_found*SIZE_THRESH))
5949 if (cost+avg_fluct <= 0 ||
5950 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5952 if (migration_debug)
5953 printk("-> found max.\n");
5954 break;
5957 * Increase the cachesize in 10% steps:
5959 size = size * 10 / 9;
5962 if (migration_debug)
5963 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5964 cpu1, cpu2, size_found, max_cost);
5966 vfree(cache);
5969 * A task is considered 'cache cold' if at least 2 times
5970 * the worst-case cost of migration has passed.
5972 * (this limit is only listened to if the load-balancing
5973 * situation is 'nice' - if there is a large imbalance we
5974 * ignore it for the sake of CPU utilization and
5975 * processing fairness.)
5977 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5980 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5982 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5983 unsigned long j0, j1, distance, max_distance = 0;
5984 struct sched_domain *sd;
5986 j0 = jiffies;
5989 * First pass - calculate the cacheflush times:
5991 for_each_cpu_mask(cpu1, *cpu_map) {
5992 for_each_cpu_mask(cpu2, *cpu_map) {
5993 if (cpu1 == cpu2)
5994 continue;
5995 distance = domain_distance(cpu1, cpu2);
5996 max_distance = max(max_distance, distance);
5998 * No result cached yet?
6000 if (migration_cost[distance] == -1LL)
6001 migration_cost[distance] =
6002 measure_migration_cost(cpu1, cpu2);
6006 * Second pass - update the sched domain hierarchy with
6007 * the new cache-hot-time estimations:
6009 for_each_cpu_mask(cpu, *cpu_map) {
6010 distance = 0;
6011 for_each_domain(cpu, sd) {
6012 sd->cache_hot_time = migration_cost[distance];
6013 distance++;
6017 * Print the matrix:
6019 if (migration_debug)
6020 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6021 max_cache_size,
6022 #ifdef CONFIG_X86
6023 cpu_khz/1000
6024 #else
6026 #endif
6028 if (system_state == SYSTEM_BOOTING) {
6029 if (num_online_cpus() > 1) {
6030 printk("migration_cost=");
6031 for (distance = 0; distance <= max_distance; distance++) {
6032 if (distance)
6033 printk(",");
6034 printk("%ld", (long)migration_cost[distance] / 1000);
6036 printk("\n");
6039 j1 = jiffies;
6040 if (migration_debug)
6041 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6044 * Move back to the original CPU. NUMA-Q gets confused
6045 * if we migrate to another quad during bootup.
6047 if (raw_smp_processor_id() != orig_cpu) {
6048 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6049 saved_mask = current->cpus_allowed;
6051 set_cpus_allowed(current, mask);
6052 set_cpus_allowed(current, saved_mask);
6056 #ifdef CONFIG_NUMA
6059 * find_next_best_node - find the next node to include in a sched_domain
6060 * @node: node whose sched_domain we're building
6061 * @used_nodes: nodes already in the sched_domain
6063 * Find the next node to include in a given scheduling domain. Simply
6064 * finds the closest node not already in the @used_nodes map.
6066 * Should use nodemask_t.
6068 static int find_next_best_node(int node, unsigned long *used_nodes)
6070 int i, n, val, min_val, best_node = 0;
6072 min_val = INT_MAX;
6074 for (i = 0; i < MAX_NUMNODES; i++) {
6075 /* Start at @node */
6076 n = (node + i) % MAX_NUMNODES;
6078 if (!nr_cpus_node(n))
6079 continue;
6081 /* Skip already used nodes */
6082 if (test_bit(n, used_nodes))
6083 continue;
6085 /* Simple min distance search */
6086 val = node_distance(node, n);
6088 if (val < min_val) {
6089 min_val = val;
6090 best_node = n;
6094 set_bit(best_node, used_nodes);
6095 return best_node;
6099 * sched_domain_node_span - get a cpumask for a node's sched_domain
6100 * @node: node whose cpumask we're constructing
6101 * @size: number of nodes to include in this span
6103 * Given a node, construct a good cpumask for its sched_domain to span. It
6104 * should be one that prevents unnecessary balancing, but also spreads tasks
6105 * out optimally.
6107 static cpumask_t sched_domain_node_span(int node)
6109 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6110 cpumask_t span, nodemask;
6111 int i;
6113 cpus_clear(span);
6114 bitmap_zero(used_nodes, MAX_NUMNODES);
6116 nodemask = node_to_cpumask(node);
6117 cpus_or(span, span, nodemask);
6118 set_bit(node, used_nodes);
6120 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6121 int next_node = find_next_best_node(node, used_nodes);
6123 nodemask = node_to_cpumask(next_node);
6124 cpus_or(span, span, nodemask);
6127 return span;
6129 #endif
6131 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6134 * SMT sched-domains:
6136 #ifdef CONFIG_SCHED_SMT
6137 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6138 static struct sched_group sched_group_cpus[NR_CPUS];
6140 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map)
6142 return cpu;
6144 #endif
6147 * multi-core sched-domains:
6149 #ifdef CONFIG_SCHED_MC
6150 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6151 static struct sched_group sched_group_core[NR_CPUS];
6152 #endif
6154 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6155 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
6157 cpumask_t mask = cpu_sibling_map[cpu];
6158 cpus_and(mask, mask, *cpu_map);
6159 return first_cpu(mask);
6161 #elif defined(CONFIG_SCHED_MC)
6162 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map)
6164 return cpu;
6166 #endif
6168 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6169 static struct sched_group sched_group_phys[NR_CPUS];
6171 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map)
6173 #ifdef CONFIG_SCHED_MC
6174 cpumask_t mask = cpu_coregroup_map(cpu);
6175 cpus_and(mask, mask, *cpu_map);
6176 return first_cpu(mask);
6177 #elif defined(CONFIG_SCHED_SMT)
6178 cpumask_t mask = cpu_sibling_map[cpu];
6179 cpus_and(mask, mask, *cpu_map);
6180 return first_cpu(mask);
6181 #else
6182 return cpu;
6183 #endif
6186 #ifdef CONFIG_NUMA
6188 * The init_sched_build_groups can't handle what we want to do with node
6189 * groups, so roll our own. Now each node has its own list of groups which
6190 * gets dynamically allocated.
6192 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6193 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6195 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6196 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
6198 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map)
6200 return cpu_to_node(cpu);
6202 static void init_numa_sched_groups_power(struct sched_group *group_head)
6204 struct sched_group *sg = group_head;
6205 int j;
6207 if (!sg)
6208 return;
6209 next_sg:
6210 for_each_cpu_mask(j, sg->cpumask) {
6211 struct sched_domain *sd;
6213 sd = &per_cpu(phys_domains, j);
6214 if (j != first_cpu(sd->groups->cpumask)) {
6216 * Only add "power" once for each
6217 * physical package.
6219 continue;
6222 sg->cpu_power += sd->groups->cpu_power;
6224 sg = sg->next;
6225 if (sg != group_head)
6226 goto next_sg;
6228 #endif
6230 #ifdef CONFIG_NUMA
6231 /* Free memory allocated for various sched_group structures */
6232 static void free_sched_groups(const cpumask_t *cpu_map)
6234 int cpu, i;
6236 for_each_cpu_mask(cpu, *cpu_map) {
6237 struct sched_group *sched_group_allnodes
6238 = sched_group_allnodes_bycpu[cpu];
6239 struct sched_group **sched_group_nodes
6240 = sched_group_nodes_bycpu[cpu];
6242 if (sched_group_allnodes) {
6243 kfree(sched_group_allnodes);
6244 sched_group_allnodes_bycpu[cpu] = NULL;
6247 if (!sched_group_nodes)
6248 continue;
6250 for (i = 0; i < MAX_NUMNODES; i++) {
6251 cpumask_t nodemask = node_to_cpumask(i);
6252 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6254 cpus_and(nodemask, nodemask, *cpu_map);
6255 if (cpus_empty(nodemask))
6256 continue;
6258 if (sg == NULL)
6259 continue;
6260 sg = sg->next;
6261 next_sg:
6262 oldsg = sg;
6263 sg = sg->next;
6264 kfree(oldsg);
6265 if (oldsg != sched_group_nodes[i])
6266 goto next_sg;
6268 kfree(sched_group_nodes);
6269 sched_group_nodes_bycpu[cpu] = NULL;
6272 #else
6273 static void free_sched_groups(const cpumask_t *cpu_map)
6276 #endif
6279 * Initialize sched groups cpu_power.
6281 * cpu_power indicates the capacity of sched group, which is used while
6282 * distributing the load between different sched groups in a sched domain.
6283 * Typically cpu_power for all the groups in a sched domain will be same unless
6284 * there are asymmetries in the topology. If there are asymmetries, group
6285 * having more cpu_power will pickup more load compared to the group having
6286 * less cpu_power.
6288 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6289 * the maximum number of tasks a group can handle in the presence of other idle
6290 * or lightly loaded groups in the same sched domain.
6292 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6294 struct sched_domain *child;
6295 struct sched_group *group;
6297 WARN_ON(!sd || !sd->groups);
6299 if (cpu != first_cpu(sd->groups->cpumask))
6300 return;
6302 child = sd->child;
6305 * For perf policy, if the groups in child domain share resources
6306 * (for example cores sharing some portions of the cache hierarchy
6307 * or SMT), then set this domain groups cpu_power such that each group
6308 * can handle only one task, when there are other idle groups in the
6309 * same sched domain.
6311 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6312 (child->flags &
6313 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6314 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6315 return;
6318 sd->groups->cpu_power = 0;
6321 * add cpu_power of each child group to this groups cpu_power
6323 group = child->groups;
6324 do {
6325 sd->groups->cpu_power += group->cpu_power;
6326 group = group->next;
6327 } while (group != child->groups);
6331 * Build sched domains for a given set of cpus and attach the sched domains
6332 * to the individual cpus
6334 static int build_sched_domains(const cpumask_t *cpu_map)
6336 int i;
6337 struct sched_domain *sd;
6338 #ifdef CONFIG_NUMA
6339 struct sched_group **sched_group_nodes = NULL;
6340 struct sched_group *sched_group_allnodes = NULL;
6343 * Allocate the per-node list of sched groups
6345 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6346 GFP_KERNEL);
6347 if (!sched_group_nodes) {
6348 printk(KERN_WARNING "Can not alloc sched group node list\n");
6349 return -ENOMEM;
6351 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6352 #endif
6355 * Set up domains for cpus specified by the cpu_map.
6357 for_each_cpu_mask(i, *cpu_map) {
6358 int group;
6359 struct sched_domain *sd = NULL, *p;
6360 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6362 cpus_and(nodemask, nodemask, *cpu_map);
6364 #ifdef CONFIG_NUMA
6365 if (cpus_weight(*cpu_map)
6366 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6367 if (!sched_group_allnodes) {
6368 sched_group_allnodes
6369 = kmalloc_node(sizeof(struct sched_group)
6370 * MAX_NUMNODES,
6371 GFP_KERNEL,
6372 cpu_to_node(i));
6373 if (!sched_group_allnodes) {
6374 printk(KERN_WARNING
6375 "Can not alloc allnodes sched group\n");
6376 goto error;
6378 sched_group_allnodes_bycpu[i]
6379 = sched_group_allnodes;
6381 sd = &per_cpu(allnodes_domains, i);
6382 *sd = SD_ALLNODES_INIT;
6383 sd->span = *cpu_map;
6384 group = cpu_to_allnodes_group(i, cpu_map);
6385 sd->groups = &sched_group_allnodes[group];
6386 p = sd;
6387 } else
6388 p = NULL;
6390 sd = &per_cpu(node_domains, i);
6391 *sd = SD_NODE_INIT;
6392 sd->span = sched_domain_node_span(cpu_to_node(i));
6393 sd->parent = p;
6394 if (p)
6395 p->child = sd;
6396 cpus_and(sd->span, sd->span, *cpu_map);
6397 #endif
6399 p = sd;
6400 sd = &per_cpu(phys_domains, i);
6401 group = cpu_to_phys_group(i, cpu_map);
6402 *sd = SD_CPU_INIT;
6403 sd->span = nodemask;
6404 sd->parent = p;
6405 if (p)
6406 p->child = sd;
6407 sd->groups = &sched_group_phys[group];
6409 #ifdef CONFIG_SCHED_MC
6410 p = sd;
6411 sd = &per_cpu(core_domains, i);
6412 group = cpu_to_core_group(i, cpu_map);
6413 *sd = SD_MC_INIT;
6414 sd->span = cpu_coregroup_map(i);
6415 cpus_and(sd->span, sd->span, *cpu_map);
6416 sd->parent = p;
6417 p->child = sd;
6418 sd->groups = &sched_group_core[group];
6419 #endif
6421 #ifdef CONFIG_SCHED_SMT
6422 p = sd;
6423 sd = &per_cpu(cpu_domains, i);
6424 group = cpu_to_cpu_group(i, cpu_map);
6425 *sd = SD_SIBLING_INIT;
6426 sd->span = cpu_sibling_map[i];
6427 cpus_and(sd->span, sd->span, *cpu_map);
6428 sd->parent = p;
6429 p->child = sd;
6430 sd->groups = &sched_group_cpus[group];
6431 #endif
6434 #ifdef CONFIG_SCHED_SMT
6435 /* Set up CPU (sibling) groups */
6436 for_each_cpu_mask(i, *cpu_map) {
6437 cpumask_t this_sibling_map = cpu_sibling_map[i];
6438 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6439 if (i != first_cpu(this_sibling_map))
6440 continue;
6442 init_sched_build_groups(sched_group_cpus, this_sibling_map,
6443 cpu_map, &cpu_to_cpu_group);
6445 #endif
6447 #ifdef CONFIG_SCHED_MC
6448 /* Set up multi-core groups */
6449 for_each_cpu_mask(i, *cpu_map) {
6450 cpumask_t this_core_map = cpu_coregroup_map(i);
6451 cpus_and(this_core_map, this_core_map, *cpu_map);
6452 if (i != first_cpu(this_core_map))
6453 continue;
6454 init_sched_build_groups(sched_group_core, this_core_map,
6455 cpu_map, &cpu_to_core_group);
6457 #endif
6460 /* Set up physical groups */
6461 for (i = 0; i < MAX_NUMNODES; i++) {
6462 cpumask_t nodemask = node_to_cpumask(i);
6464 cpus_and(nodemask, nodemask, *cpu_map);
6465 if (cpus_empty(nodemask))
6466 continue;
6468 init_sched_build_groups(sched_group_phys, nodemask,
6469 cpu_map, &cpu_to_phys_group);
6472 #ifdef CONFIG_NUMA
6473 /* Set up node groups */
6474 if (sched_group_allnodes)
6475 init_sched_build_groups(sched_group_allnodes, *cpu_map,
6476 cpu_map, &cpu_to_allnodes_group);
6478 for (i = 0; i < MAX_NUMNODES; i++) {
6479 /* Set up node groups */
6480 struct sched_group *sg, *prev;
6481 cpumask_t nodemask = node_to_cpumask(i);
6482 cpumask_t domainspan;
6483 cpumask_t covered = CPU_MASK_NONE;
6484 int j;
6486 cpus_and(nodemask, nodemask, *cpu_map);
6487 if (cpus_empty(nodemask)) {
6488 sched_group_nodes[i] = NULL;
6489 continue;
6492 domainspan = sched_domain_node_span(i);
6493 cpus_and(domainspan, domainspan, *cpu_map);
6495 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6496 if (!sg) {
6497 printk(KERN_WARNING "Can not alloc domain group for "
6498 "node %d\n", i);
6499 goto error;
6501 sched_group_nodes[i] = sg;
6502 for_each_cpu_mask(j, nodemask) {
6503 struct sched_domain *sd;
6504 sd = &per_cpu(node_domains, j);
6505 sd->groups = sg;
6507 sg->cpu_power = 0;
6508 sg->cpumask = nodemask;
6509 sg->next = sg;
6510 cpus_or(covered, covered, nodemask);
6511 prev = sg;
6513 for (j = 0; j < MAX_NUMNODES; j++) {
6514 cpumask_t tmp, notcovered;
6515 int n = (i + j) % MAX_NUMNODES;
6517 cpus_complement(notcovered, covered);
6518 cpus_and(tmp, notcovered, *cpu_map);
6519 cpus_and(tmp, tmp, domainspan);
6520 if (cpus_empty(tmp))
6521 break;
6523 nodemask = node_to_cpumask(n);
6524 cpus_and(tmp, tmp, nodemask);
6525 if (cpus_empty(tmp))
6526 continue;
6528 sg = kmalloc_node(sizeof(struct sched_group),
6529 GFP_KERNEL, i);
6530 if (!sg) {
6531 printk(KERN_WARNING
6532 "Can not alloc domain group for node %d\n", j);
6533 goto error;
6535 sg->cpu_power = 0;
6536 sg->cpumask = tmp;
6537 sg->next = prev->next;
6538 cpus_or(covered, covered, tmp);
6539 prev->next = sg;
6540 prev = sg;
6543 #endif
6545 /* Calculate CPU power for physical packages and nodes */
6546 #ifdef CONFIG_SCHED_SMT
6547 for_each_cpu_mask(i, *cpu_map) {
6548 sd = &per_cpu(cpu_domains, i);
6549 init_sched_groups_power(i, sd);
6551 #endif
6552 #ifdef CONFIG_SCHED_MC
6553 for_each_cpu_mask(i, *cpu_map) {
6554 sd = &per_cpu(core_domains, i);
6555 init_sched_groups_power(i, sd);
6557 #endif
6559 for_each_cpu_mask(i, *cpu_map) {
6560 sd = &per_cpu(phys_domains, i);
6561 init_sched_groups_power(i, sd);
6564 #ifdef CONFIG_NUMA
6565 for (i = 0; i < MAX_NUMNODES; i++)
6566 init_numa_sched_groups_power(sched_group_nodes[i]);
6568 if (sched_group_allnodes) {
6569 int group = cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map);
6570 struct sched_group *sg = &sched_group_allnodes[group];
6572 init_numa_sched_groups_power(sg);
6574 #endif
6576 /* Attach the domains */
6577 for_each_cpu_mask(i, *cpu_map) {
6578 struct sched_domain *sd;
6579 #ifdef CONFIG_SCHED_SMT
6580 sd = &per_cpu(cpu_domains, i);
6581 #elif defined(CONFIG_SCHED_MC)
6582 sd = &per_cpu(core_domains, i);
6583 #else
6584 sd = &per_cpu(phys_domains, i);
6585 #endif
6586 cpu_attach_domain(sd, i);
6589 * Tune cache-hot values:
6591 calibrate_migration_costs(cpu_map);
6593 return 0;
6595 #ifdef CONFIG_NUMA
6596 error:
6597 free_sched_groups(cpu_map);
6598 return -ENOMEM;
6599 #endif
6602 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6604 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6606 cpumask_t cpu_default_map;
6607 int err;
6610 * Setup mask for cpus without special case scheduling requirements.
6611 * For now this just excludes isolated cpus, but could be used to
6612 * exclude other special cases in the future.
6614 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6616 err = build_sched_domains(&cpu_default_map);
6618 return err;
6621 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6623 free_sched_groups(cpu_map);
6627 * Detach sched domains from a group of cpus specified in cpu_map
6628 * These cpus will now be attached to the NULL domain
6630 static void detach_destroy_domains(const cpumask_t *cpu_map)
6632 int i;
6634 for_each_cpu_mask(i, *cpu_map)
6635 cpu_attach_domain(NULL, i);
6636 synchronize_sched();
6637 arch_destroy_sched_domains(cpu_map);
6641 * Partition sched domains as specified by the cpumasks below.
6642 * This attaches all cpus from the cpumasks to the NULL domain,
6643 * waits for a RCU quiescent period, recalculates sched
6644 * domain information and then attaches them back to the
6645 * correct sched domains
6646 * Call with hotplug lock held
6648 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6650 cpumask_t change_map;
6651 int err = 0;
6653 cpus_and(*partition1, *partition1, cpu_online_map);
6654 cpus_and(*partition2, *partition2, cpu_online_map);
6655 cpus_or(change_map, *partition1, *partition2);
6657 /* Detach sched domains from all of the affected cpus */
6658 detach_destroy_domains(&change_map);
6659 if (!cpus_empty(*partition1))
6660 err = build_sched_domains(partition1);
6661 if (!err && !cpus_empty(*partition2))
6662 err = build_sched_domains(partition2);
6664 return err;
6667 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6668 int arch_reinit_sched_domains(void)
6670 int err;
6672 lock_cpu_hotplug();
6673 detach_destroy_domains(&cpu_online_map);
6674 err = arch_init_sched_domains(&cpu_online_map);
6675 unlock_cpu_hotplug();
6677 return err;
6680 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6682 int ret;
6684 if (buf[0] != '0' && buf[0] != '1')
6685 return -EINVAL;
6687 if (smt)
6688 sched_smt_power_savings = (buf[0] == '1');
6689 else
6690 sched_mc_power_savings = (buf[0] == '1');
6692 ret = arch_reinit_sched_domains();
6694 return ret ? ret : count;
6697 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6699 int err = 0;
6701 #ifdef CONFIG_SCHED_SMT
6702 if (smt_capable())
6703 err = sysfs_create_file(&cls->kset.kobj,
6704 &attr_sched_smt_power_savings.attr);
6705 #endif
6706 #ifdef CONFIG_SCHED_MC
6707 if (!err && mc_capable())
6708 err = sysfs_create_file(&cls->kset.kobj,
6709 &attr_sched_mc_power_savings.attr);
6710 #endif
6711 return err;
6713 #endif
6715 #ifdef CONFIG_SCHED_MC
6716 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6718 return sprintf(page, "%u\n", sched_mc_power_savings);
6720 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6721 const char *buf, size_t count)
6723 return sched_power_savings_store(buf, count, 0);
6725 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6726 sched_mc_power_savings_store);
6727 #endif
6729 #ifdef CONFIG_SCHED_SMT
6730 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6732 return sprintf(page, "%u\n", sched_smt_power_savings);
6734 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6735 const char *buf, size_t count)
6737 return sched_power_savings_store(buf, count, 1);
6739 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6740 sched_smt_power_savings_store);
6741 #endif
6744 * Force a reinitialization of the sched domains hierarchy. The domains
6745 * and groups cannot be updated in place without racing with the balancing
6746 * code, so we temporarily attach all running cpus to the NULL domain
6747 * which will prevent rebalancing while the sched domains are recalculated.
6749 static int update_sched_domains(struct notifier_block *nfb,
6750 unsigned long action, void *hcpu)
6752 switch (action) {
6753 case CPU_UP_PREPARE:
6754 case CPU_DOWN_PREPARE:
6755 detach_destroy_domains(&cpu_online_map);
6756 return NOTIFY_OK;
6758 case CPU_UP_CANCELED:
6759 case CPU_DOWN_FAILED:
6760 case CPU_ONLINE:
6761 case CPU_DEAD:
6763 * Fall through and re-initialise the domains.
6765 break;
6766 default:
6767 return NOTIFY_DONE;
6770 /* The hotplug lock is already held by cpu_up/cpu_down */
6771 arch_init_sched_domains(&cpu_online_map);
6773 return NOTIFY_OK;
6776 void __init sched_init_smp(void)
6778 cpumask_t non_isolated_cpus;
6780 lock_cpu_hotplug();
6781 arch_init_sched_domains(&cpu_online_map);
6782 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6783 if (cpus_empty(non_isolated_cpus))
6784 cpu_set(smp_processor_id(), non_isolated_cpus);
6785 unlock_cpu_hotplug();
6786 /* XXX: Theoretical race here - CPU may be hotplugged now */
6787 hotcpu_notifier(update_sched_domains, 0);
6789 /* Move init over to a non-isolated CPU */
6790 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6791 BUG();
6793 #else
6794 void __init sched_init_smp(void)
6797 #endif /* CONFIG_SMP */
6799 int in_sched_functions(unsigned long addr)
6801 /* Linker adds these: start and end of __sched functions */
6802 extern char __sched_text_start[], __sched_text_end[];
6804 return in_lock_functions(addr) ||
6805 (addr >= (unsigned long)__sched_text_start
6806 && addr < (unsigned long)__sched_text_end);
6809 void __init sched_init(void)
6811 int i, j, k;
6813 for_each_possible_cpu(i) {
6814 struct prio_array *array;
6815 struct rq *rq;
6817 rq = cpu_rq(i);
6818 spin_lock_init(&rq->lock);
6819 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6820 rq->nr_running = 0;
6821 rq->active = rq->arrays;
6822 rq->expired = rq->arrays + 1;
6823 rq->best_expired_prio = MAX_PRIO;
6825 #ifdef CONFIG_SMP
6826 rq->sd = NULL;
6827 for (j = 1; j < 3; j++)
6828 rq->cpu_load[j] = 0;
6829 rq->active_balance = 0;
6830 rq->push_cpu = 0;
6831 rq->cpu = i;
6832 rq->migration_thread = NULL;
6833 INIT_LIST_HEAD(&rq->migration_queue);
6834 #endif
6835 atomic_set(&rq->nr_iowait, 0);
6837 for (j = 0; j < 2; j++) {
6838 array = rq->arrays + j;
6839 for (k = 0; k < MAX_PRIO; k++) {
6840 INIT_LIST_HEAD(array->queue + k);
6841 __clear_bit(k, array->bitmap);
6843 // delimiter for bitsearch
6844 __set_bit(MAX_PRIO, array->bitmap);
6848 set_load_weight(&init_task);
6850 #ifdef CONFIG_RT_MUTEXES
6851 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6852 #endif
6855 * The boot idle thread does lazy MMU switching as well:
6857 atomic_inc(&init_mm.mm_count);
6858 enter_lazy_tlb(&init_mm, current);
6861 * Make us the idle thread. Technically, schedule() should not be
6862 * called from this thread, however somewhere below it might be,
6863 * but because we are the idle thread, we just pick up running again
6864 * when this runqueue becomes "idle".
6866 init_idle(current, smp_processor_id());
6869 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6870 void __might_sleep(char *file, int line)
6872 #ifdef in_atomic
6873 static unsigned long prev_jiffy; /* ratelimiting */
6875 if ((in_atomic() || irqs_disabled()) &&
6876 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6877 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6878 return;
6879 prev_jiffy = jiffies;
6880 printk(KERN_ERR "BUG: sleeping function called from invalid"
6881 " context at %s:%d\n", file, line);
6882 printk("in_atomic():%d, irqs_disabled():%d\n",
6883 in_atomic(), irqs_disabled());
6884 debug_show_held_locks(current);
6885 dump_stack();
6887 #endif
6889 EXPORT_SYMBOL(__might_sleep);
6890 #endif
6892 #ifdef CONFIG_MAGIC_SYSRQ
6893 void normalize_rt_tasks(void)
6895 struct prio_array *array;
6896 struct task_struct *p;
6897 unsigned long flags;
6898 struct rq *rq;
6900 read_lock_irq(&tasklist_lock);
6901 for_each_process(p) {
6902 if (!rt_task(p))
6903 continue;
6905 spin_lock_irqsave(&p->pi_lock, flags);
6906 rq = __task_rq_lock(p);
6908 array = p->array;
6909 if (array)
6910 deactivate_task(p, task_rq(p));
6911 __setscheduler(p, SCHED_NORMAL, 0);
6912 if (array) {
6913 __activate_task(p, task_rq(p));
6914 resched_task(rq->curr);
6917 __task_rq_unlock(rq);
6918 spin_unlock_irqrestore(&p->pi_lock, flags);
6920 read_unlock_irq(&tasklist_lock);
6923 #endif /* CONFIG_MAGIC_SYSRQ */
6925 #ifdef CONFIG_IA64
6927 * These functions are only useful for the IA64 MCA handling.
6929 * They can only be called when the whole system has been
6930 * stopped - every CPU needs to be quiescent, and no scheduling
6931 * activity can take place. Using them for anything else would
6932 * be a serious bug, and as a result, they aren't even visible
6933 * under any other configuration.
6937 * curr_task - return the current task for a given cpu.
6938 * @cpu: the processor in question.
6940 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942 struct task_struct *curr_task(int cpu)
6944 return cpu_curr(cpu);
6948 * set_curr_task - set the current task for a given cpu.
6949 * @cpu: the processor in question.
6950 * @p: the task pointer to set.
6952 * Description: This function must only be used when non-maskable interrupts
6953 * are serviced on a separate stack. It allows the architecture to switch the
6954 * notion of the current task on a cpu in a non-blocking manner. This function
6955 * must be called with all CPU's synchronized, and interrupts disabled, the
6956 * and caller must save the original value of the current task (see
6957 * curr_task() above) and restore that value before reenabling interrupts and
6958 * re-starting the system.
6960 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6962 void set_curr_task(int cpu, struct task_struct *p)
6964 cpu_curr(cpu) = p;
6967 #endif