Input: lm8323 - fix error handling in lm8323_probe()
[wandboard.git] / fs / fs-writeback.c
blobea8592b906968913499b9847f35389a31e5dc1a3
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include "internal.h"
31 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
34 * We don't actually have pdflush, but this one is exported though /proc...
36 int nr_pdflush_threads;
39 * Passed into wb_writeback(), essentially a subset of writeback_control
41 struct wb_writeback_args {
42 long nr_pages;
43 struct super_block *sb;
44 enum writeback_sync_modes sync_mode;
45 unsigned int for_kupdate:1;
46 unsigned int range_cyclic:1;
47 unsigned int for_background:1;
48 unsigned int sb_pinned:1;
52 * Work items for the bdi_writeback threads
54 struct bdi_work {
55 struct list_head list; /* pending work list */
56 struct rcu_head rcu_head; /* for RCU free/clear of work */
58 unsigned long seen; /* threads that have seen this work */
59 atomic_t pending; /* number of threads still to do work */
61 struct wb_writeback_args args; /* writeback arguments */
63 unsigned long state; /* flag bits, see WS_* */
66 enum {
67 WS_USED_B = 0,
68 WS_ONSTACK_B,
71 #define WS_USED (1 << WS_USED_B)
72 #define WS_ONSTACK (1 << WS_ONSTACK_B)
74 static inline bool bdi_work_on_stack(struct bdi_work *work)
76 return test_bit(WS_ONSTACK_B, &work->state);
79 static inline void bdi_work_init(struct bdi_work *work,
80 struct wb_writeback_args *args)
82 INIT_RCU_HEAD(&work->rcu_head);
83 work->args = *args;
84 work->state = WS_USED;
87 /**
88 * writeback_in_progress - determine whether there is writeback in progress
89 * @bdi: the device's backing_dev_info structure.
91 * Determine whether there is writeback waiting to be handled against a
92 * backing device.
94 int writeback_in_progress(struct backing_dev_info *bdi)
96 return !list_empty(&bdi->work_list);
99 static void bdi_work_clear(struct bdi_work *work)
101 clear_bit(WS_USED_B, &work->state);
102 smp_mb__after_clear_bit();
104 * work can have disappeared at this point. bit waitq functions
105 * should be able to tolerate this, provided bdi_sched_wait does
106 * not dereference it's pointer argument.
108 wake_up_bit(&work->state, WS_USED_B);
111 static void bdi_work_free(struct rcu_head *head)
113 struct bdi_work *work = container_of(head, struct bdi_work, rcu_head);
115 if (!bdi_work_on_stack(work))
116 kfree(work);
117 else
118 bdi_work_clear(work);
121 static void wb_work_complete(struct bdi_work *work)
123 const enum writeback_sync_modes sync_mode = work->args.sync_mode;
124 int onstack = bdi_work_on_stack(work);
127 * For allocated work, we can clear the done/seen bit right here.
128 * For on-stack work, we need to postpone both the clear and free
129 * to after the RCU grace period, since the stack could be invalidated
130 * as soon as bdi_work_clear() has done the wakeup.
132 if (!onstack)
133 bdi_work_clear(work);
134 if (sync_mode == WB_SYNC_NONE || onstack)
135 call_rcu(&work->rcu_head, bdi_work_free);
138 static void wb_clear_pending(struct bdi_writeback *wb, struct bdi_work *work)
141 * The caller has retrieved the work arguments from this work,
142 * drop our reference. If this is the last ref, delete and free it
144 if (atomic_dec_and_test(&work->pending)) {
145 struct backing_dev_info *bdi = wb->bdi;
147 spin_lock(&bdi->wb_lock);
148 list_del_rcu(&work->list);
149 spin_unlock(&bdi->wb_lock);
151 wb_work_complete(work);
155 static void bdi_queue_work(struct backing_dev_info *bdi, struct bdi_work *work)
157 work->seen = bdi->wb_mask;
158 BUG_ON(!work->seen);
159 atomic_set(&work->pending, bdi->wb_cnt);
160 BUG_ON(!bdi->wb_cnt);
163 * list_add_tail_rcu() contains the necessary barriers to
164 * make sure the above stores are seen before the item is
165 * noticed on the list
167 spin_lock(&bdi->wb_lock);
168 list_add_tail_rcu(&work->list, &bdi->work_list);
169 spin_unlock(&bdi->wb_lock);
172 * If the default thread isn't there, make sure we add it. When
173 * it gets created and wakes up, we'll run this work.
175 if (unlikely(list_empty_careful(&bdi->wb_list)))
176 wake_up_process(default_backing_dev_info.wb.task);
177 else {
178 struct bdi_writeback *wb = &bdi->wb;
180 if (wb->task)
181 wake_up_process(wb->task);
186 * Used for on-stack allocated work items. The caller needs to wait until
187 * the wb threads have acked the work before it's safe to continue.
189 static void bdi_wait_on_work_clear(struct bdi_work *work)
191 wait_on_bit(&work->state, WS_USED_B, bdi_sched_wait,
192 TASK_UNINTERRUPTIBLE);
195 static void bdi_alloc_queue_work(struct backing_dev_info *bdi,
196 struct wb_writeback_args *args,
197 int wait)
199 struct bdi_work *work;
202 * This is WB_SYNC_NONE writeback, so if allocation fails just
203 * wakeup the thread for old dirty data writeback
205 work = kmalloc(sizeof(*work), GFP_ATOMIC);
206 if (work) {
207 bdi_work_init(work, args);
208 bdi_queue_work(bdi, work);
209 if (wait)
210 bdi_wait_on_work_clear(work);
211 } else {
212 struct bdi_writeback *wb = &bdi->wb;
214 if (wb->task)
215 wake_up_process(wb->task);
220 * bdi_sync_writeback - start and wait for writeback
221 * @bdi: the backing device to write from
222 * @sb: write inodes from this super_block
224 * Description:
225 * This does WB_SYNC_ALL data integrity writeback and waits for the
226 * IO to complete. Callers must hold the sb s_umount semaphore for
227 * reading, to avoid having the super disappear before we are done.
229 static void bdi_sync_writeback(struct backing_dev_info *bdi,
230 struct super_block *sb)
232 struct wb_writeback_args args = {
233 .sb = sb,
234 .sync_mode = WB_SYNC_ALL,
235 .nr_pages = LONG_MAX,
236 .range_cyclic = 0,
238 * Setting sb_pinned is not necessary for WB_SYNC_ALL, but
239 * lets make it explicitly clear.
241 .sb_pinned = 1,
243 struct bdi_work work;
245 bdi_work_init(&work, &args);
246 work.state |= WS_ONSTACK;
248 bdi_queue_work(bdi, &work);
249 bdi_wait_on_work_clear(&work);
253 * bdi_start_writeback - start writeback
254 * @bdi: the backing device to write from
255 * @sb: write inodes from this super_block
256 * @nr_pages: the number of pages to write
257 * @sb_locked: caller already holds sb umount sem.
259 * Description:
260 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
261 * started when this function returns, we make no guarentees on
262 * completion. Caller specifies whether sb umount sem is held already or not.
265 void bdi_start_writeback(struct backing_dev_info *bdi, struct super_block *sb,
266 long nr_pages, int sb_locked)
268 struct wb_writeback_args args = {
269 .sb = sb,
270 .sync_mode = WB_SYNC_NONE,
271 .nr_pages = nr_pages,
272 .range_cyclic = 1,
273 .sb_pinned = sb_locked,
277 * We treat @nr_pages=0 as the special case to do background writeback,
278 * ie. to sync pages until the background dirty threshold is reached.
280 if (!nr_pages) {
281 args.nr_pages = LONG_MAX;
282 args.for_background = 1;
285 bdi_alloc_queue_work(bdi, &args, sb_locked);
289 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
290 * furthest end of its superblock's dirty-inode list.
292 * Before stamping the inode's ->dirtied_when, we check to see whether it is
293 * already the most-recently-dirtied inode on the b_dirty list. If that is
294 * the case then the inode must have been redirtied while it was being written
295 * out and we don't reset its dirtied_when.
297 static void redirty_tail(struct inode *inode)
299 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
301 if (!list_empty(&wb->b_dirty)) {
302 struct inode *tail;
304 tail = list_entry(wb->b_dirty.next, struct inode, i_list);
305 if (time_before(inode->dirtied_when, tail->dirtied_when))
306 inode->dirtied_when = jiffies;
308 list_move(&inode->i_list, &wb->b_dirty);
312 * requeue inode for re-scanning after bdi->b_io list is exhausted.
314 static void requeue_io(struct inode *inode)
316 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
318 list_move(&inode->i_list, &wb->b_more_io);
321 static void inode_sync_complete(struct inode *inode)
324 * Prevent speculative execution through spin_unlock(&inode_lock);
326 smp_mb();
327 wake_up_bit(&inode->i_state, __I_SYNC);
330 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
332 bool ret = time_after(inode->dirtied_when, t);
333 #ifndef CONFIG_64BIT
335 * For inodes being constantly redirtied, dirtied_when can get stuck.
336 * It _appears_ to be in the future, but is actually in distant past.
337 * This test is necessary to prevent such wrapped-around relative times
338 * from permanently stopping the whole bdi writeback.
340 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
341 #endif
342 return ret;
346 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
348 static void move_expired_inodes(struct list_head *delaying_queue,
349 struct list_head *dispatch_queue,
350 unsigned long *older_than_this)
352 LIST_HEAD(tmp);
353 struct list_head *pos, *node;
354 struct super_block *sb = NULL;
355 struct inode *inode;
356 int do_sb_sort = 0;
358 while (!list_empty(delaying_queue)) {
359 inode = list_entry(delaying_queue->prev, struct inode, i_list);
360 if (older_than_this &&
361 inode_dirtied_after(inode, *older_than_this))
362 break;
363 if (sb && sb != inode->i_sb)
364 do_sb_sort = 1;
365 sb = inode->i_sb;
366 list_move(&inode->i_list, &tmp);
369 /* just one sb in list, splice to dispatch_queue and we're done */
370 if (!do_sb_sort) {
371 list_splice(&tmp, dispatch_queue);
372 return;
375 /* Move inodes from one superblock together */
376 while (!list_empty(&tmp)) {
377 inode = list_entry(tmp.prev, struct inode, i_list);
378 sb = inode->i_sb;
379 list_for_each_prev_safe(pos, node, &tmp) {
380 inode = list_entry(pos, struct inode, i_list);
381 if (inode->i_sb == sb)
382 list_move(&inode->i_list, dispatch_queue);
388 * Queue all expired dirty inodes for io, eldest first.
390 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
392 list_splice_init(&wb->b_more_io, wb->b_io.prev);
393 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
396 static int write_inode(struct inode *inode, struct writeback_control *wbc)
398 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
399 return inode->i_sb->s_op->write_inode(inode, wbc);
400 return 0;
404 * Wait for writeback on an inode to complete.
406 static void inode_wait_for_writeback(struct inode *inode)
408 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
409 wait_queue_head_t *wqh;
411 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
412 while (inode->i_state & I_SYNC) {
413 spin_unlock(&inode_lock);
414 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
415 spin_lock(&inode_lock);
420 * Write out an inode's dirty pages. Called under inode_lock. Either the
421 * caller has ref on the inode (either via __iget or via syscall against an fd)
422 * or the inode has I_WILL_FREE set (via generic_forget_inode)
424 * If `wait' is set, wait on the writeout.
426 * The whole writeout design is quite complex and fragile. We want to avoid
427 * starvation of particular inodes when others are being redirtied, prevent
428 * livelocks, etc.
430 * Called under inode_lock.
432 static int
433 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
435 struct address_space *mapping = inode->i_mapping;
436 unsigned dirty;
437 int ret;
439 if (!atomic_read(&inode->i_count))
440 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
441 else
442 WARN_ON(inode->i_state & I_WILL_FREE);
444 if (inode->i_state & I_SYNC) {
446 * If this inode is locked for writeback and we are not doing
447 * writeback-for-data-integrity, move it to b_more_io so that
448 * writeback can proceed with the other inodes on s_io.
450 * We'll have another go at writing back this inode when we
451 * completed a full scan of b_io.
453 if (wbc->sync_mode != WB_SYNC_ALL) {
454 requeue_io(inode);
455 return 0;
459 * It's a data-integrity sync. We must wait.
461 inode_wait_for_writeback(inode);
464 BUG_ON(inode->i_state & I_SYNC);
466 /* Set I_SYNC, reset I_DIRTY_PAGES */
467 inode->i_state |= I_SYNC;
468 inode->i_state &= ~I_DIRTY_PAGES;
469 spin_unlock(&inode_lock);
471 ret = do_writepages(mapping, wbc);
474 * Make sure to wait on the data before writing out the metadata.
475 * This is important for filesystems that modify metadata on data
476 * I/O completion.
478 if (wbc->sync_mode == WB_SYNC_ALL) {
479 int err = filemap_fdatawait(mapping);
480 if (ret == 0)
481 ret = err;
485 * Some filesystems may redirty the inode during the writeback
486 * due to delalloc, clear dirty metadata flags right before
487 * write_inode()
489 spin_lock(&inode_lock);
490 dirty = inode->i_state & I_DIRTY;
491 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
492 spin_unlock(&inode_lock);
493 /* Don't write the inode if only I_DIRTY_PAGES was set */
494 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
495 int err = write_inode(inode, wbc);
496 if (ret == 0)
497 ret = err;
500 spin_lock(&inode_lock);
501 inode->i_state &= ~I_SYNC;
502 if (!(inode->i_state & (I_FREEING | I_CLEAR))) {
503 if ((inode->i_state & I_DIRTY_PAGES) && wbc->for_kupdate) {
505 * More pages get dirtied by a fast dirtier.
507 goto select_queue;
508 } else if (inode->i_state & I_DIRTY) {
510 * At least XFS will redirty the inode during the
511 * writeback (delalloc) and on io completion (isize).
513 redirty_tail(inode);
514 } else if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
516 * We didn't write back all the pages. nfs_writepages()
517 * sometimes bales out without doing anything. Redirty
518 * the inode; Move it from b_io onto b_more_io/b_dirty.
521 * akpm: if the caller was the kupdate function we put
522 * this inode at the head of b_dirty so it gets first
523 * consideration. Otherwise, move it to the tail, for
524 * the reasons described there. I'm not really sure
525 * how much sense this makes. Presumably I had a good
526 * reasons for doing it this way, and I'd rather not
527 * muck with it at present.
529 if (wbc->for_kupdate) {
531 * For the kupdate function we move the inode
532 * to b_more_io so it will get more writeout as
533 * soon as the queue becomes uncongested.
535 inode->i_state |= I_DIRTY_PAGES;
536 select_queue:
537 if (wbc->nr_to_write <= 0) {
539 * slice used up: queue for next turn
541 requeue_io(inode);
542 } else {
544 * somehow blocked: retry later
546 redirty_tail(inode);
548 } else {
550 * Otherwise fully redirty the inode so that
551 * other inodes on this superblock will get some
552 * writeout. Otherwise heavy writing to one
553 * file would indefinitely suspend writeout of
554 * all the other files.
556 inode->i_state |= I_DIRTY_PAGES;
557 redirty_tail(inode);
559 } else if (atomic_read(&inode->i_count)) {
561 * The inode is clean, inuse
563 list_move(&inode->i_list, &inode_in_use);
564 } else {
566 * The inode is clean, unused
568 list_move(&inode->i_list, &inode_unused);
571 inode_sync_complete(inode);
572 return ret;
575 static void unpin_sb_for_writeback(struct super_block *sb)
577 up_read(&sb->s_umount);
578 put_super(sb);
581 enum sb_pin_state {
582 SB_PINNED,
583 SB_NOT_PINNED,
584 SB_PIN_FAILED
588 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
589 * before calling writeback. So make sure that we do pin it, so it doesn't
590 * go away while we are writing inodes from it.
592 static enum sb_pin_state pin_sb_for_writeback(struct writeback_control *wbc,
593 struct super_block *sb)
596 * Caller must already hold the ref for this
598 if (wbc->sync_mode == WB_SYNC_ALL || wbc->sb_pinned) {
599 WARN_ON(!rwsem_is_locked(&sb->s_umount));
600 return SB_NOT_PINNED;
602 spin_lock(&sb_lock);
603 sb->s_count++;
604 if (down_read_trylock(&sb->s_umount)) {
605 if (sb->s_root) {
606 spin_unlock(&sb_lock);
607 return SB_PINNED;
610 * umounted, drop rwsem again and fall through to failure
612 up_read(&sb->s_umount);
614 sb->s_count--;
615 spin_unlock(&sb_lock);
616 return SB_PIN_FAILED;
620 * Write a portion of b_io inodes which belong to @sb.
621 * If @wbc->sb != NULL, then find and write all such
622 * inodes. Otherwise write only ones which go sequentially
623 * in reverse order.
624 * Return 1, if the caller writeback routine should be
625 * interrupted. Otherwise return 0.
627 static int writeback_sb_inodes(struct super_block *sb,
628 struct bdi_writeback *wb,
629 struct writeback_control *wbc)
631 while (!list_empty(&wb->b_io)) {
632 long pages_skipped;
633 struct inode *inode = list_entry(wb->b_io.prev,
634 struct inode, i_list);
635 if (wbc->sb && sb != inode->i_sb) {
636 /* super block given and doesn't
637 match, skip this inode */
638 redirty_tail(inode);
639 continue;
641 if (sb != inode->i_sb)
642 /* finish with this superblock */
643 return 0;
644 if (inode->i_state & (I_NEW | I_WILL_FREE)) {
645 requeue_io(inode);
646 continue;
649 * Was this inode dirtied after sync_sb_inodes was called?
650 * This keeps sync from extra jobs and livelock.
652 if (inode_dirtied_after(inode, wbc->wb_start))
653 return 1;
655 BUG_ON(inode->i_state & (I_FREEING | I_CLEAR));
656 __iget(inode);
657 pages_skipped = wbc->pages_skipped;
658 writeback_single_inode(inode, wbc);
659 if (wbc->pages_skipped != pages_skipped) {
661 * writeback is not making progress due to locked
662 * buffers. Skip this inode for now.
664 redirty_tail(inode);
666 spin_unlock(&inode_lock);
667 iput(inode);
668 cond_resched();
669 spin_lock(&inode_lock);
670 if (wbc->nr_to_write <= 0) {
671 wbc->more_io = 1;
672 return 1;
674 if (!list_empty(&wb->b_more_io))
675 wbc->more_io = 1;
677 /* b_io is empty */
678 return 1;
681 static void writeback_inodes_wb(struct bdi_writeback *wb,
682 struct writeback_control *wbc)
684 int ret = 0;
686 wbc->wb_start = jiffies; /* livelock avoidance */
687 spin_lock(&inode_lock);
688 if (!wbc->for_kupdate || list_empty(&wb->b_io))
689 queue_io(wb, wbc->older_than_this);
691 while (!list_empty(&wb->b_io)) {
692 struct inode *inode = list_entry(wb->b_io.prev,
693 struct inode, i_list);
694 struct super_block *sb = inode->i_sb;
695 enum sb_pin_state state;
697 if (wbc->sb && sb != wbc->sb) {
698 /* super block given and doesn't
699 match, skip this inode */
700 redirty_tail(inode);
701 continue;
703 state = pin_sb_for_writeback(wbc, sb);
705 if (state == SB_PIN_FAILED) {
706 requeue_io(inode);
707 continue;
709 ret = writeback_sb_inodes(sb, wb, wbc);
711 if (state == SB_PINNED)
712 unpin_sb_for_writeback(sb);
713 if (ret)
714 break;
716 spin_unlock(&inode_lock);
717 /* Leave any unwritten inodes on b_io */
720 void writeback_inodes_wbc(struct writeback_control *wbc)
722 struct backing_dev_info *bdi = wbc->bdi;
724 writeback_inodes_wb(&bdi->wb, wbc);
728 * The maximum number of pages to writeout in a single bdi flush/kupdate
729 * operation. We do this so we don't hold I_SYNC against an inode for
730 * enormous amounts of time, which would block a userspace task which has
731 * been forced to throttle against that inode. Also, the code reevaluates
732 * the dirty each time it has written this many pages.
734 #define MAX_WRITEBACK_PAGES 1024
736 static inline bool over_bground_thresh(void)
738 unsigned long background_thresh, dirty_thresh;
740 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
742 return (global_page_state(NR_FILE_DIRTY) +
743 global_page_state(NR_UNSTABLE_NFS) >= background_thresh);
747 * Explicit flushing or periodic writeback of "old" data.
749 * Define "old": the first time one of an inode's pages is dirtied, we mark the
750 * dirtying-time in the inode's address_space. So this periodic writeback code
751 * just walks the superblock inode list, writing back any inodes which are
752 * older than a specific point in time.
754 * Try to run once per dirty_writeback_interval. But if a writeback event
755 * takes longer than a dirty_writeback_interval interval, then leave a
756 * one-second gap.
758 * older_than_this takes precedence over nr_to_write. So we'll only write back
759 * all dirty pages if they are all attached to "old" mappings.
761 static long wb_writeback(struct bdi_writeback *wb,
762 struct wb_writeback_args *args)
764 struct writeback_control wbc = {
765 .bdi = wb->bdi,
766 .sb = args->sb,
767 .sync_mode = args->sync_mode,
768 .older_than_this = NULL,
769 .for_kupdate = args->for_kupdate,
770 .for_background = args->for_background,
771 .range_cyclic = args->range_cyclic,
772 .sb_pinned = args->sb_pinned,
774 unsigned long oldest_jif;
775 long wrote = 0;
776 struct inode *inode;
778 if (wbc.for_kupdate) {
779 wbc.older_than_this = &oldest_jif;
780 oldest_jif = jiffies -
781 msecs_to_jiffies(dirty_expire_interval * 10);
783 if (!wbc.range_cyclic) {
784 wbc.range_start = 0;
785 wbc.range_end = LLONG_MAX;
788 for (;;) {
790 * Stop writeback when nr_pages has been consumed
792 if (args->nr_pages <= 0)
793 break;
796 * For background writeout, stop when we are below the
797 * background dirty threshold
799 if (args->for_background && !over_bground_thresh())
800 break;
802 wbc.more_io = 0;
803 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
804 wbc.pages_skipped = 0;
805 writeback_inodes_wb(wb, &wbc);
806 args->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
807 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
810 * If we consumed everything, see if we have more
812 if (wbc.nr_to_write <= 0)
813 continue;
815 * Didn't write everything and we don't have more IO, bail
817 if (!wbc.more_io)
818 break;
820 * Did we write something? Try for more
822 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
823 continue;
825 * Nothing written. Wait for some inode to
826 * become available for writeback. Otherwise
827 * we'll just busyloop.
829 spin_lock(&inode_lock);
830 if (!list_empty(&wb->b_more_io)) {
831 inode = list_entry(wb->b_more_io.prev,
832 struct inode, i_list);
833 inode_wait_for_writeback(inode);
835 spin_unlock(&inode_lock);
838 return wrote;
842 * Return the next bdi_work struct that hasn't been processed by this
843 * wb thread yet. ->seen is initially set for each thread that exists
844 * for this device, when a thread first notices a piece of work it
845 * clears its bit. Depending on writeback type, the thread will notify
846 * completion on either receiving the work (WB_SYNC_NONE) or after
847 * it is done (WB_SYNC_ALL).
849 static struct bdi_work *get_next_work_item(struct backing_dev_info *bdi,
850 struct bdi_writeback *wb)
852 struct bdi_work *work, *ret = NULL;
854 rcu_read_lock();
856 list_for_each_entry_rcu(work, &bdi->work_list, list) {
857 if (!test_bit(wb->nr, &work->seen))
858 continue;
859 clear_bit(wb->nr, &work->seen);
861 ret = work;
862 break;
865 rcu_read_unlock();
866 return ret;
869 static long wb_check_old_data_flush(struct bdi_writeback *wb)
871 unsigned long expired;
872 long nr_pages;
875 * When set to zero, disable periodic writeback
877 if (!dirty_writeback_interval)
878 return 0;
880 expired = wb->last_old_flush +
881 msecs_to_jiffies(dirty_writeback_interval * 10);
882 if (time_before(jiffies, expired))
883 return 0;
885 wb->last_old_flush = jiffies;
886 nr_pages = global_page_state(NR_FILE_DIRTY) +
887 global_page_state(NR_UNSTABLE_NFS) +
888 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
890 if (nr_pages) {
891 struct wb_writeback_args args = {
892 .nr_pages = nr_pages,
893 .sync_mode = WB_SYNC_NONE,
894 .for_kupdate = 1,
895 .range_cyclic = 1,
898 return wb_writeback(wb, &args);
901 return 0;
905 * Retrieve work items and do the writeback they describe
907 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
909 struct backing_dev_info *bdi = wb->bdi;
910 struct bdi_work *work;
911 long wrote = 0;
913 while ((work = get_next_work_item(bdi, wb)) != NULL) {
914 struct wb_writeback_args args = work->args;
915 int post_clear;
918 * Override sync mode, in case we must wait for completion
920 if (force_wait)
921 work->args.sync_mode = args.sync_mode = WB_SYNC_ALL;
923 post_clear = WB_SYNC_ALL || args.sb_pinned;
926 * If this isn't a data integrity operation, just notify
927 * that we have seen this work and we are now starting it.
929 if (!post_clear)
930 wb_clear_pending(wb, work);
932 wrote += wb_writeback(wb, &args);
935 * This is a data integrity writeback, so only do the
936 * notification when we have completed the work.
938 if (post_clear)
939 wb_clear_pending(wb, work);
943 * Check for periodic writeback, kupdated() style
945 wrote += wb_check_old_data_flush(wb);
947 return wrote;
951 * Handle writeback of dirty data for the device backed by this bdi. Also
952 * wakes up periodically and does kupdated style flushing.
954 int bdi_writeback_task(struct bdi_writeback *wb)
956 unsigned long last_active = jiffies;
957 unsigned long wait_jiffies = -1UL;
958 long pages_written;
960 while (!kthread_should_stop()) {
961 pages_written = wb_do_writeback(wb, 0);
963 if (pages_written)
964 last_active = jiffies;
965 else if (wait_jiffies != -1UL) {
966 unsigned long max_idle;
969 * Longest period of inactivity that we tolerate. If we
970 * see dirty data again later, the task will get
971 * recreated automatically.
973 max_idle = max(5UL * 60 * HZ, wait_jiffies);
974 if (time_after(jiffies, max_idle + last_active))
975 break;
978 if (dirty_writeback_interval) {
979 wait_jiffies = msecs_to_jiffies(dirty_writeback_interval * 10);
980 schedule_timeout_interruptible(wait_jiffies);
981 } else {
982 set_current_state(TASK_INTERRUPTIBLE);
983 if (list_empty_careful(&wb->bdi->work_list) &&
984 !kthread_should_stop())
985 schedule();
986 __set_current_state(TASK_RUNNING);
989 try_to_freeze();
992 return 0;
996 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
997 * writeback, for integrity writeback see bdi_sync_writeback().
999 static void bdi_writeback_all(struct super_block *sb, long nr_pages)
1001 struct wb_writeback_args args = {
1002 .sb = sb,
1003 .nr_pages = nr_pages,
1004 .sync_mode = WB_SYNC_NONE,
1006 struct backing_dev_info *bdi;
1008 rcu_read_lock();
1010 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1011 if (!bdi_has_dirty_io(bdi))
1012 continue;
1014 bdi_alloc_queue_work(bdi, &args, 0);
1017 rcu_read_unlock();
1021 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1022 * the whole world.
1024 void wakeup_flusher_threads(long nr_pages)
1026 if (nr_pages == 0)
1027 nr_pages = global_page_state(NR_FILE_DIRTY) +
1028 global_page_state(NR_UNSTABLE_NFS);
1029 bdi_writeback_all(NULL, nr_pages);
1032 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1034 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1035 struct dentry *dentry;
1036 const char *name = "?";
1038 dentry = d_find_alias(inode);
1039 if (dentry) {
1040 spin_lock(&dentry->d_lock);
1041 name = (const char *) dentry->d_name.name;
1043 printk(KERN_DEBUG
1044 "%s(%d): dirtied inode %lu (%s) on %s\n",
1045 current->comm, task_pid_nr(current), inode->i_ino,
1046 name, inode->i_sb->s_id);
1047 if (dentry) {
1048 spin_unlock(&dentry->d_lock);
1049 dput(dentry);
1055 * __mark_inode_dirty - internal function
1056 * @inode: inode to mark
1057 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1058 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1059 * mark_inode_dirty_sync.
1061 * Put the inode on the super block's dirty list.
1063 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1064 * dirty list only if it is hashed or if it refers to a blockdev.
1065 * If it was not hashed, it will never be added to the dirty list
1066 * even if it is later hashed, as it will have been marked dirty already.
1068 * In short, make sure you hash any inodes _before_ you start marking
1069 * them dirty.
1071 * This function *must* be atomic for the I_DIRTY_PAGES case -
1072 * set_page_dirty() is called under spinlock in several places.
1074 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1075 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1076 * the kernel-internal blockdev inode represents the dirtying time of the
1077 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1078 * page->mapping->host, so the page-dirtying time is recorded in the internal
1079 * blockdev inode.
1081 void __mark_inode_dirty(struct inode *inode, int flags)
1083 struct super_block *sb = inode->i_sb;
1086 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1087 * dirty the inode itself
1089 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1090 if (sb->s_op->dirty_inode)
1091 sb->s_op->dirty_inode(inode);
1095 * make sure that changes are seen by all cpus before we test i_state
1096 * -- mikulas
1098 smp_mb();
1100 /* avoid the locking if we can */
1101 if ((inode->i_state & flags) == flags)
1102 return;
1104 if (unlikely(block_dump))
1105 block_dump___mark_inode_dirty(inode);
1107 spin_lock(&inode_lock);
1108 if ((inode->i_state & flags) != flags) {
1109 const int was_dirty = inode->i_state & I_DIRTY;
1111 inode->i_state |= flags;
1114 * If the inode is being synced, just update its dirty state.
1115 * The unlocker will place the inode on the appropriate
1116 * superblock list, based upon its state.
1118 if (inode->i_state & I_SYNC)
1119 goto out;
1122 * Only add valid (hashed) inodes to the superblock's
1123 * dirty list. Add blockdev inodes as well.
1125 if (!S_ISBLK(inode->i_mode)) {
1126 if (hlist_unhashed(&inode->i_hash))
1127 goto out;
1129 if (inode->i_state & (I_FREEING|I_CLEAR))
1130 goto out;
1133 * If the inode was already on b_dirty/b_io/b_more_io, don't
1134 * reposition it (that would break b_dirty time-ordering).
1136 if (!was_dirty) {
1137 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1138 struct backing_dev_info *bdi = wb->bdi;
1140 if (bdi_cap_writeback_dirty(bdi) &&
1141 !test_bit(BDI_registered, &bdi->state)) {
1142 WARN_ON(1);
1143 printk(KERN_ERR "bdi-%s not registered\n",
1144 bdi->name);
1147 inode->dirtied_when = jiffies;
1148 list_move(&inode->i_list, &wb->b_dirty);
1151 out:
1152 spin_unlock(&inode_lock);
1154 EXPORT_SYMBOL(__mark_inode_dirty);
1157 * Write out a superblock's list of dirty inodes. A wait will be performed
1158 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1160 * If older_than_this is non-NULL, then only write out inodes which
1161 * had their first dirtying at a time earlier than *older_than_this.
1163 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1164 * This function assumes that the blockdev superblock's inodes are backed by
1165 * a variety of queues, so all inodes are searched. For other superblocks,
1166 * assume that all inodes are backed by the same queue.
1168 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1169 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1170 * on the writer throttling path, and we get decent balancing between many
1171 * throttled threads: we don't want them all piling up on inode_sync_wait.
1173 static void wait_sb_inodes(struct super_block *sb)
1175 struct inode *inode, *old_inode = NULL;
1178 * We need to be protected against the filesystem going from
1179 * r/o to r/w or vice versa.
1181 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1183 spin_lock(&inode_lock);
1186 * Data integrity sync. Must wait for all pages under writeback,
1187 * because there may have been pages dirtied before our sync
1188 * call, but which had writeout started before we write it out.
1189 * In which case, the inode may not be on the dirty list, but
1190 * we still have to wait for that writeout.
1192 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1193 struct address_space *mapping;
1195 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
1196 continue;
1197 mapping = inode->i_mapping;
1198 if (mapping->nrpages == 0)
1199 continue;
1200 __iget(inode);
1201 spin_unlock(&inode_lock);
1203 * We hold a reference to 'inode' so it couldn't have
1204 * been removed from s_inodes list while we dropped the
1205 * inode_lock. We cannot iput the inode now as we can
1206 * be holding the last reference and we cannot iput it
1207 * under inode_lock. So we keep the reference and iput
1208 * it later.
1210 iput(old_inode);
1211 old_inode = inode;
1213 filemap_fdatawait(mapping);
1215 cond_resched();
1217 spin_lock(&inode_lock);
1219 spin_unlock(&inode_lock);
1220 iput(old_inode);
1223 static void __writeback_inodes_sb(struct super_block *sb, int sb_locked)
1225 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
1226 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
1227 long nr_to_write;
1229 nr_to_write = nr_dirty + nr_unstable +
1230 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
1232 bdi_start_writeback(sb->s_bdi, sb, nr_to_write, sb_locked);
1236 * writeback_inodes_sb - writeback dirty inodes from given super_block
1237 * @sb: the superblock
1239 * Start writeback on some inodes on this super_block. No guarantees are made
1240 * on how many (if any) will be written, and this function does not wait
1241 * for IO completion of submitted IO. The number of pages submitted is
1242 * returned.
1244 void writeback_inodes_sb(struct super_block *sb)
1246 __writeback_inodes_sb(sb, 0);
1248 EXPORT_SYMBOL(writeback_inodes_sb);
1251 * writeback_inodes_sb_locked - writeback dirty inodes from given super_block
1252 * @sb: the superblock
1254 * Like writeback_inodes_sb(), except the caller already holds the
1255 * sb umount sem.
1257 void writeback_inodes_sb_locked(struct super_block *sb)
1259 __writeback_inodes_sb(sb, 1);
1263 * writeback_inodes_sb_if_idle - start writeback if none underway
1264 * @sb: the superblock
1266 * Invoke writeback_inodes_sb if no writeback is currently underway.
1267 * Returns 1 if writeback was started, 0 if not.
1269 int writeback_inodes_sb_if_idle(struct super_block *sb)
1271 if (!writeback_in_progress(sb->s_bdi)) {
1272 writeback_inodes_sb(sb);
1273 return 1;
1274 } else
1275 return 0;
1277 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1280 * sync_inodes_sb - sync sb inode pages
1281 * @sb: the superblock
1283 * This function writes and waits on any dirty inode belonging to this
1284 * super_block. The number of pages synced is returned.
1286 void sync_inodes_sb(struct super_block *sb)
1288 bdi_sync_writeback(sb->s_bdi, sb);
1289 wait_sb_inodes(sb);
1291 EXPORT_SYMBOL(sync_inodes_sb);
1294 * write_inode_now - write an inode to disk
1295 * @inode: inode to write to disk
1296 * @sync: whether the write should be synchronous or not
1298 * This function commits an inode to disk immediately if it is dirty. This is
1299 * primarily needed by knfsd.
1301 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1303 int write_inode_now(struct inode *inode, int sync)
1305 int ret;
1306 struct writeback_control wbc = {
1307 .nr_to_write = LONG_MAX,
1308 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1309 .range_start = 0,
1310 .range_end = LLONG_MAX,
1313 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1314 wbc.nr_to_write = 0;
1316 might_sleep();
1317 spin_lock(&inode_lock);
1318 ret = writeback_single_inode(inode, &wbc);
1319 spin_unlock(&inode_lock);
1320 if (sync)
1321 inode_sync_wait(inode);
1322 return ret;
1324 EXPORT_SYMBOL(write_inode_now);
1327 * sync_inode - write an inode and its pages to disk.
1328 * @inode: the inode to sync
1329 * @wbc: controls the writeback mode
1331 * sync_inode() will write an inode and its pages to disk. It will also
1332 * correctly update the inode on its superblock's dirty inode lists and will
1333 * update inode->i_state.
1335 * The caller must have a ref on the inode.
1337 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1339 int ret;
1341 spin_lock(&inode_lock);
1342 ret = writeback_single_inode(inode, wbc);
1343 spin_unlock(&inode_lock);
1344 return ret;
1346 EXPORT_SYMBOL(sync_inode);