Revert "net: fix rds_iovec page count overflow"
[wandboard.git] / block / blk-settings.c
blobbda7d1587ca39a95d483e89b9487b92a159be7a8
1 /*
2 * Functions related to setting various queue properties from drivers
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
7 #include <linux/bio.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/jiffies.h>
13 #include "blk.h"
15 unsigned long blk_max_low_pfn;
16 EXPORT_SYMBOL(blk_max_low_pfn);
18 unsigned long blk_max_pfn;
20 /**
21 * blk_queue_prep_rq - set a prepare_request function for queue
22 * @q: queue
23 * @pfn: prepare_request function
25 * It's possible for a queue to register a prepare_request callback which
26 * is invoked before the request is handed to the request_fn. The goal of
27 * the function is to prepare a request for I/O, it can be used to build a
28 * cdb from the request data for instance.
31 void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
33 q->prep_rq_fn = pfn;
35 EXPORT_SYMBOL(blk_queue_prep_rq);
37 /**
38 * blk_queue_merge_bvec - set a merge_bvec function for queue
39 * @q: queue
40 * @mbfn: merge_bvec_fn
42 * Usually queues have static limitations on the max sectors or segments that
43 * we can put in a request. Stacking drivers may have some settings that
44 * are dynamic, and thus we have to query the queue whether it is ok to
45 * add a new bio_vec to a bio at a given offset or not. If the block device
46 * has such limitations, it needs to register a merge_bvec_fn to control
47 * the size of bio's sent to it. Note that a block device *must* allow a
48 * single page to be added to an empty bio. The block device driver may want
49 * to use the bio_split() function to deal with these bio's. By default
50 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
51 * honored.
53 void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
55 q->merge_bvec_fn = mbfn;
57 EXPORT_SYMBOL(blk_queue_merge_bvec);
59 void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
61 q->softirq_done_fn = fn;
63 EXPORT_SYMBOL(blk_queue_softirq_done);
65 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
67 q->rq_timeout = timeout;
69 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
71 void blk_queue_rq_timed_out(struct request_queue *q, rq_timed_out_fn *fn)
73 q->rq_timed_out_fn = fn;
75 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out);
77 void blk_queue_lld_busy(struct request_queue *q, lld_busy_fn *fn)
79 q->lld_busy_fn = fn;
81 EXPORT_SYMBOL_GPL(blk_queue_lld_busy);
83 /**
84 * blk_set_default_limits - reset limits to default values
85 * @lim: the queue_limits structure to reset
87 * Description:
88 * Returns a queue_limit struct to its default state. Can be used by
89 * stacking drivers like DM that stage table swaps and reuse an
90 * existing device queue.
92 void blk_set_default_limits(struct queue_limits *lim)
94 lim->max_phys_segments = MAX_PHYS_SEGMENTS;
95 lim->max_hw_segments = MAX_HW_SEGMENTS;
96 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
97 lim->max_segment_size = MAX_SEGMENT_SIZE;
98 lim->max_sectors = BLK_DEF_MAX_SECTORS;
99 lim->max_hw_sectors = INT_MAX;
100 lim->max_discard_sectors = 0;
101 lim->discard_granularity = 0;
102 lim->discard_alignment = 0;
103 lim->discard_misaligned = 0;
104 lim->discard_zeroes_data = -1;
105 lim->logical_block_size = lim->physical_block_size = lim->io_min = 512;
106 lim->bounce_pfn = (unsigned long)(BLK_BOUNCE_ANY >> PAGE_SHIFT);
107 lim->alignment_offset = 0;
108 lim->io_opt = 0;
109 lim->misaligned = 0;
110 lim->no_cluster = 0;
112 EXPORT_SYMBOL(blk_set_default_limits);
115 * blk_queue_make_request - define an alternate make_request function for a device
116 * @q: the request queue for the device to be affected
117 * @mfn: the alternate make_request function
119 * Description:
120 * The normal way for &struct bios to be passed to a device
121 * driver is for them to be collected into requests on a request
122 * queue, and then to allow the device driver to select requests
123 * off that queue when it is ready. This works well for many block
124 * devices. However some block devices (typically virtual devices
125 * such as md or lvm) do not benefit from the processing on the
126 * request queue, and are served best by having the requests passed
127 * directly to them. This can be achieved by providing a function
128 * to blk_queue_make_request().
130 * Caveat:
131 * The driver that does this *must* be able to deal appropriately
132 * with buffers in "highmemory". This can be accomplished by either calling
133 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
134 * blk_queue_bounce() to create a buffer in normal memory.
136 void blk_queue_make_request(struct request_queue *q, make_request_fn *mfn)
139 * set defaults
141 q->nr_requests = BLKDEV_MAX_RQ;
143 q->make_request_fn = mfn;
144 blk_queue_dma_alignment(q, 511);
145 blk_queue_congestion_threshold(q);
146 q->nr_batching = BLK_BATCH_REQ;
148 q->unplug_thresh = 4; /* hmm */
149 q->unplug_delay = msecs_to_jiffies(3); /* 3 milliseconds */
150 if (q->unplug_delay == 0)
151 q->unplug_delay = 1;
153 q->unplug_timer.function = blk_unplug_timeout;
154 q->unplug_timer.data = (unsigned long)q;
156 blk_set_default_limits(&q->limits);
157 blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
160 * If the caller didn't supply a lock, fall back to our embedded
161 * per-queue locks
163 if (!q->queue_lock)
164 q->queue_lock = &q->__queue_lock;
167 * by default assume old behaviour and bounce for any highmem page
169 blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
171 EXPORT_SYMBOL(blk_queue_make_request);
174 * blk_queue_bounce_limit - set bounce buffer limit for queue
175 * @q: the request queue for the device
176 * @dma_mask: the maximum address the device can handle
178 * Description:
179 * Different hardware can have different requirements as to what pages
180 * it can do I/O directly to. A low level driver can call
181 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
182 * buffers for doing I/O to pages residing above @dma_mask.
184 void blk_queue_bounce_limit(struct request_queue *q, u64 dma_mask)
186 unsigned long b_pfn = dma_mask >> PAGE_SHIFT;
187 int dma = 0;
189 q->bounce_gfp = GFP_NOIO;
190 #if BITS_PER_LONG == 64
192 * Assume anything <= 4GB can be handled by IOMMU. Actually
193 * some IOMMUs can handle everything, but I don't know of a
194 * way to test this here.
196 if (b_pfn < (min_t(u64, 0xffffffffUL, BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
197 dma = 1;
198 q->limits.bounce_pfn = max_low_pfn;
199 #else
200 if (b_pfn < blk_max_low_pfn)
201 dma = 1;
202 q->limits.bounce_pfn = b_pfn;
203 #endif
204 if (dma) {
205 init_emergency_isa_pool();
206 q->bounce_gfp = GFP_NOIO | GFP_DMA;
207 q->limits.bounce_pfn = b_pfn;
210 EXPORT_SYMBOL(blk_queue_bounce_limit);
213 * blk_queue_max_sectors - set max sectors for a request for this queue
214 * @q: the request queue for the device
215 * @max_sectors: max sectors in the usual 512b unit
217 * Description:
218 * Enables a low level driver to set an upper limit on the size of
219 * received requests.
221 void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
223 if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
224 max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
225 printk(KERN_INFO "%s: set to minimum %d\n",
226 __func__, max_sectors);
229 if (BLK_DEF_MAX_SECTORS > max_sectors)
230 q->limits.max_hw_sectors = q->limits.max_sectors = max_sectors;
231 else {
232 q->limits.max_sectors = BLK_DEF_MAX_SECTORS;
233 q->limits.max_hw_sectors = max_sectors;
236 EXPORT_SYMBOL(blk_queue_max_sectors);
238 void blk_queue_max_hw_sectors(struct request_queue *q, unsigned int max_sectors)
240 if (BLK_DEF_MAX_SECTORS > max_sectors)
241 q->limits.max_hw_sectors = BLK_DEF_MAX_SECTORS;
242 else
243 q->limits.max_hw_sectors = max_sectors;
245 EXPORT_SYMBOL(blk_queue_max_hw_sectors);
248 * blk_queue_max_discard_sectors - set max sectors for a single discard
249 * @q: the request queue for the device
250 * @max_discard_sectors: maximum number of sectors to discard
252 void blk_queue_max_discard_sectors(struct request_queue *q,
253 unsigned int max_discard_sectors)
255 q->limits.max_discard_sectors = max_discard_sectors;
257 EXPORT_SYMBOL(blk_queue_max_discard_sectors);
260 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
261 * @q: the request queue for the device
262 * @max_segments: max number of segments
264 * Description:
265 * Enables a low level driver to set an upper limit on the number of
266 * physical data segments in a request. This would be the largest sized
267 * scatter list the driver could handle.
269 void blk_queue_max_phys_segments(struct request_queue *q,
270 unsigned short max_segments)
272 if (!max_segments) {
273 max_segments = 1;
274 printk(KERN_INFO "%s: set to minimum %d\n",
275 __func__, max_segments);
278 q->limits.max_phys_segments = max_segments;
280 EXPORT_SYMBOL(blk_queue_max_phys_segments);
283 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
284 * @q: the request queue for the device
285 * @max_segments: max number of segments
287 * Description:
288 * Enables a low level driver to set an upper limit on the number of
289 * hw data segments in a request. This would be the largest number of
290 * address/length pairs the host adapter can actually give at once
291 * to the device.
293 void blk_queue_max_hw_segments(struct request_queue *q,
294 unsigned short max_segments)
296 if (!max_segments) {
297 max_segments = 1;
298 printk(KERN_INFO "%s: set to minimum %d\n",
299 __func__, max_segments);
302 q->limits.max_hw_segments = max_segments;
304 EXPORT_SYMBOL(blk_queue_max_hw_segments);
307 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
308 * @q: the request queue for the device
309 * @max_size: max size of segment in bytes
311 * Description:
312 * Enables a low level driver to set an upper limit on the size of a
313 * coalesced segment
315 void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
317 if (max_size < PAGE_CACHE_SIZE) {
318 max_size = PAGE_CACHE_SIZE;
319 printk(KERN_INFO "%s: set to minimum %d\n",
320 __func__, max_size);
323 q->limits.max_segment_size = max_size;
325 EXPORT_SYMBOL(blk_queue_max_segment_size);
328 * blk_queue_logical_block_size - set logical block size for the queue
329 * @q: the request queue for the device
330 * @size: the logical block size, in bytes
332 * Description:
333 * This should be set to the lowest possible block size that the
334 * storage device can address. The default of 512 covers most
335 * hardware.
337 void blk_queue_logical_block_size(struct request_queue *q, unsigned short size)
339 q->limits.logical_block_size = size;
341 if (q->limits.physical_block_size < size)
342 q->limits.physical_block_size = size;
344 if (q->limits.io_min < q->limits.physical_block_size)
345 q->limits.io_min = q->limits.physical_block_size;
347 EXPORT_SYMBOL(blk_queue_logical_block_size);
350 * blk_queue_physical_block_size - set physical block size for the queue
351 * @q: the request queue for the device
352 * @size: the physical block size, in bytes
354 * Description:
355 * This should be set to the lowest possible sector size that the
356 * hardware can operate on without reverting to read-modify-write
357 * operations.
359 void blk_queue_physical_block_size(struct request_queue *q, unsigned int size)
361 q->limits.physical_block_size = size;
363 if (q->limits.physical_block_size < q->limits.logical_block_size)
364 q->limits.physical_block_size = q->limits.logical_block_size;
366 if (q->limits.io_min < q->limits.physical_block_size)
367 q->limits.io_min = q->limits.physical_block_size;
369 EXPORT_SYMBOL(blk_queue_physical_block_size);
372 * blk_queue_alignment_offset - set physical block alignment offset
373 * @q: the request queue for the device
374 * @offset: alignment offset in bytes
376 * Description:
377 * Some devices are naturally misaligned to compensate for things like
378 * the legacy DOS partition table 63-sector offset. Low-level drivers
379 * should call this function for devices whose first sector is not
380 * naturally aligned.
382 void blk_queue_alignment_offset(struct request_queue *q, unsigned int offset)
384 q->limits.alignment_offset =
385 offset & (q->limits.physical_block_size - 1);
386 q->limits.misaligned = 0;
388 EXPORT_SYMBOL(blk_queue_alignment_offset);
391 * blk_limits_io_min - set minimum request size for a device
392 * @limits: the queue limits
393 * @min: smallest I/O size in bytes
395 * Description:
396 * Some devices have an internal block size bigger than the reported
397 * hardware sector size. This function can be used to signal the
398 * smallest I/O the device can perform without incurring a performance
399 * penalty.
401 void blk_limits_io_min(struct queue_limits *limits, unsigned int min)
403 limits->io_min = min;
405 if (limits->io_min < limits->logical_block_size)
406 limits->io_min = limits->logical_block_size;
408 if (limits->io_min < limits->physical_block_size)
409 limits->io_min = limits->physical_block_size;
411 EXPORT_SYMBOL(blk_limits_io_min);
414 * blk_queue_io_min - set minimum request size for the queue
415 * @q: the request queue for the device
416 * @min: smallest I/O size in bytes
418 * Description:
419 * Storage devices may report a granularity or preferred minimum I/O
420 * size which is the smallest request the device can perform without
421 * incurring a performance penalty. For disk drives this is often the
422 * physical block size. For RAID arrays it is often the stripe chunk
423 * size. A properly aligned multiple of minimum_io_size is the
424 * preferred request size for workloads where a high number of I/O
425 * operations is desired.
427 void blk_queue_io_min(struct request_queue *q, unsigned int min)
429 blk_limits_io_min(&q->limits, min);
431 EXPORT_SYMBOL(blk_queue_io_min);
434 * blk_limits_io_opt - set optimal request size for a device
435 * @limits: the queue limits
436 * @opt: smallest I/O size in bytes
438 * Description:
439 * Storage devices may report an optimal I/O size, which is the
440 * device's preferred unit for sustained I/O. This is rarely reported
441 * for disk drives. For RAID arrays it is usually the stripe width or
442 * the internal track size. A properly aligned multiple of
443 * optimal_io_size is the preferred request size for workloads where
444 * sustained throughput is desired.
446 void blk_limits_io_opt(struct queue_limits *limits, unsigned int opt)
448 limits->io_opt = opt;
450 EXPORT_SYMBOL(blk_limits_io_opt);
453 * blk_queue_io_opt - set optimal request size for the queue
454 * @q: the request queue for the device
455 * @opt: optimal request size in bytes
457 * Description:
458 * Storage devices may report an optimal I/O size, which is the
459 * device's preferred unit for sustained I/O. This is rarely reported
460 * for disk drives. For RAID arrays it is usually the stripe width or
461 * the internal track size. A properly aligned multiple of
462 * optimal_io_size is the preferred request size for workloads where
463 * sustained throughput is desired.
465 void blk_queue_io_opt(struct request_queue *q, unsigned int opt)
467 blk_limits_io_opt(&q->limits, opt);
469 EXPORT_SYMBOL(blk_queue_io_opt);
472 * Returns the minimum that is _not_ zero, unless both are zero.
474 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
477 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
478 * @t: the stacking driver (top)
479 * @b: the underlying device (bottom)
481 void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
483 blk_stack_limits(&t->limits, &b->limits, 0);
485 if (!t->queue_lock)
486 WARN_ON_ONCE(1);
487 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
488 unsigned long flags;
489 spin_lock_irqsave(t->queue_lock, flags);
490 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
491 spin_unlock_irqrestore(t->queue_lock, flags);
494 EXPORT_SYMBOL(blk_queue_stack_limits);
496 static unsigned int lcm(unsigned int a, unsigned int b)
498 if (a && b)
499 return (a * b) / gcd(a, b);
500 else if (b)
501 return b;
503 return a;
507 * blk_stack_limits - adjust queue_limits for stacked devices
508 * @t: the stacking driver limits (top device)
509 * @b: the underlying queue limits (bottom, component device)
510 * @offset: offset to beginning of data within component device
512 * Description:
513 * This function is used by stacking drivers like MD and DM to ensure
514 * that all component devices have compatible block sizes and
515 * alignments. The stacking driver must provide a queue_limits
516 * struct (top) and then iteratively call the stacking function for
517 * all component (bottom) devices. The stacking function will
518 * attempt to combine the values and ensure proper alignment.
520 * Returns 0 if the top and bottom queue_limits are compatible. The
521 * top device's block sizes and alignment offsets may be adjusted to
522 * ensure alignment with the bottom device. If no compatible sizes
523 * and alignments exist, -1 is returned and the resulting top
524 * queue_limits will have the misaligned flag set to indicate that
525 * the alignment_offset is undefined.
527 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
528 sector_t offset)
530 sector_t alignment;
531 unsigned int top, bottom, ret = 0;
533 t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
534 t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
535 t->bounce_pfn = min_not_zero(t->bounce_pfn, b->bounce_pfn);
537 t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
538 b->seg_boundary_mask);
540 t->max_phys_segments = min_not_zero(t->max_phys_segments,
541 b->max_phys_segments);
543 t->max_hw_segments = min_not_zero(t->max_hw_segments,
544 b->max_hw_segments);
546 t->max_segment_size = min_not_zero(t->max_segment_size,
547 b->max_segment_size);
549 t->misaligned |= b->misaligned;
551 alignment = queue_limit_alignment_offset(b, offset);
553 /* Bottom device has different alignment. Check that it is
554 * compatible with the current top alignment.
556 if (t->alignment_offset != alignment) {
558 top = max(t->physical_block_size, t->io_min)
559 + t->alignment_offset;
560 bottom = max(b->physical_block_size, b->io_min) + alignment;
562 /* Verify that top and bottom intervals line up */
563 if (max(top, bottom) & (min(top, bottom) - 1)) {
564 t->misaligned = 1;
565 ret = -1;
569 t->logical_block_size = max(t->logical_block_size,
570 b->logical_block_size);
572 t->physical_block_size = max(t->physical_block_size,
573 b->physical_block_size);
575 t->io_min = max(t->io_min, b->io_min);
576 t->io_opt = lcm(t->io_opt, b->io_opt);
578 t->no_cluster |= b->no_cluster;
579 t->discard_zeroes_data &= b->discard_zeroes_data;
581 /* Physical block size a multiple of the logical block size? */
582 if (t->physical_block_size & (t->logical_block_size - 1)) {
583 t->physical_block_size = t->logical_block_size;
584 t->misaligned = 1;
585 ret = -1;
588 /* Minimum I/O a multiple of the physical block size? */
589 if (t->io_min & (t->physical_block_size - 1)) {
590 t->io_min = t->physical_block_size;
591 t->misaligned = 1;
592 ret = -1;
595 /* Optimal I/O a multiple of the physical block size? */
596 if (t->io_opt & (t->physical_block_size - 1)) {
597 t->io_opt = 0;
598 t->misaligned = 1;
599 ret = -1;
602 /* Find lowest common alignment_offset */
603 t->alignment_offset = lcm(t->alignment_offset, alignment)
604 & (max(t->physical_block_size, t->io_min) - 1);
606 /* Verify that new alignment_offset is on a logical block boundary */
607 if (t->alignment_offset & (t->logical_block_size - 1)) {
608 t->misaligned = 1;
609 ret = -1;
612 /* Discard alignment and granularity */
613 if (b->discard_granularity) {
614 unsigned int granularity = b->discard_granularity;
615 offset &= granularity - 1;
617 alignment = (granularity + b->discard_alignment - offset)
618 & (granularity - 1);
620 if (t->discard_granularity != 0 &&
621 t->discard_alignment != alignment) {
622 top = t->discard_granularity + t->discard_alignment;
623 bottom = b->discard_granularity + alignment;
625 /* Verify that top and bottom intervals line up */
626 if (max(top, bottom) & (min(top, bottom) - 1))
627 t->discard_misaligned = 1;
630 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
631 b->max_discard_sectors);
632 t->discard_granularity = max(t->discard_granularity,
633 b->discard_granularity);
634 t->discard_alignment = lcm(t->discard_alignment, alignment) &
635 (t->discard_granularity - 1);
638 return ret;
640 EXPORT_SYMBOL(blk_stack_limits);
643 * bdev_stack_limits - adjust queue limits for stacked drivers
644 * @t: the stacking driver limits (top device)
645 * @bdev: the component block_device (bottom)
646 * @start: first data sector within component device
648 * Description:
649 * Merges queue limits for a top device and a block_device. Returns
650 * 0 if alignment didn't change. Returns -1 if adding the bottom
651 * device caused misalignment.
653 int bdev_stack_limits(struct queue_limits *t, struct block_device *bdev,
654 sector_t start)
656 struct request_queue *bq = bdev_get_queue(bdev);
658 start += get_start_sect(bdev);
660 return blk_stack_limits(t, &bq->limits, start << 9);
662 EXPORT_SYMBOL(bdev_stack_limits);
665 * disk_stack_limits - adjust queue limits for stacked drivers
666 * @disk: MD/DM gendisk (top)
667 * @bdev: the underlying block device (bottom)
668 * @offset: offset to beginning of data within component device
670 * Description:
671 * Merges the limits for two queues. Returns 0 if alignment
672 * didn't change. Returns -1 if adding the bottom device caused
673 * misalignment.
675 void disk_stack_limits(struct gendisk *disk, struct block_device *bdev,
676 sector_t offset)
678 struct request_queue *t = disk->queue;
679 struct request_queue *b = bdev_get_queue(bdev);
681 offset += get_start_sect(bdev) << 9;
683 if (blk_stack_limits(&t->limits, &b->limits, offset) < 0) {
684 char top[BDEVNAME_SIZE], bottom[BDEVNAME_SIZE];
686 disk_name(disk, 0, top);
687 bdevname(bdev, bottom);
689 printk(KERN_NOTICE "%s: Warning: Device %s is misaligned\n",
690 top, bottom);
693 if (!t->queue_lock)
694 WARN_ON_ONCE(1);
695 else if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags)) {
696 unsigned long flags;
698 spin_lock_irqsave(t->queue_lock, flags);
699 if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
700 queue_flag_clear(QUEUE_FLAG_CLUSTER, t);
701 spin_unlock_irqrestore(t->queue_lock, flags);
704 EXPORT_SYMBOL(disk_stack_limits);
707 * blk_queue_dma_pad - set pad mask
708 * @q: the request queue for the device
709 * @mask: pad mask
711 * Set dma pad mask.
713 * Appending pad buffer to a request modifies the last entry of a
714 * scatter list such that it includes the pad buffer.
716 void blk_queue_dma_pad(struct request_queue *q, unsigned int mask)
718 q->dma_pad_mask = mask;
720 EXPORT_SYMBOL(blk_queue_dma_pad);
723 * blk_queue_update_dma_pad - update pad mask
724 * @q: the request queue for the device
725 * @mask: pad mask
727 * Update dma pad mask.
729 * Appending pad buffer to a request modifies the last entry of a
730 * scatter list such that it includes the pad buffer.
732 void blk_queue_update_dma_pad(struct request_queue *q, unsigned int mask)
734 if (mask > q->dma_pad_mask)
735 q->dma_pad_mask = mask;
737 EXPORT_SYMBOL(blk_queue_update_dma_pad);
740 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
741 * @q: the request queue for the device
742 * @dma_drain_needed: fn which returns non-zero if drain is necessary
743 * @buf: physically contiguous buffer
744 * @size: size of the buffer in bytes
746 * Some devices have excess DMA problems and can't simply discard (or
747 * zero fill) the unwanted piece of the transfer. They have to have a
748 * real area of memory to transfer it into. The use case for this is
749 * ATAPI devices in DMA mode. If the packet command causes a transfer
750 * bigger than the transfer size some HBAs will lock up if there
751 * aren't DMA elements to contain the excess transfer. What this API
752 * does is adjust the queue so that the buf is always appended
753 * silently to the scatterlist.
755 * Note: This routine adjusts max_hw_segments to make room for
756 * appending the drain buffer. If you call
757 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
758 * calling this routine, you must set the limit to one fewer than your
759 * device can support otherwise there won't be room for the drain
760 * buffer.
762 int blk_queue_dma_drain(struct request_queue *q,
763 dma_drain_needed_fn *dma_drain_needed,
764 void *buf, unsigned int size)
766 if (queue_max_hw_segments(q) < 2 || queue_max_phys_segments(q) < 2)
767 return -EINVAL;
768 /* make room for appending the drain */
769 blk_queue_max_hw_segments(q, queue_max_hw_segments(q) - 1);
770 blk_queue_max_phys_segments(q, queue_max_phys_segments(q) - 1);
771 q->dma_drain_needed = dma_drain_needed;
772 q->dma_drain_buffer = buf;
773 q->dma_drain_size = size;
775 return 0;
777 EXPORT_SYMBOL_GPL(blk_queue_dma_drain);
780 * blk_queue_segment_boundary - set boundary rules for segment merging
781 * @q: the request queue for the device
782 * @mask: the memory boundary mask
784 void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
786 if (mask < PAGE_CACHE_SIZE - 1) {
787 mask = PAGE_CACHE_SIZE - 1;
788 printk(KERN_INFO "%s: set to minimum %lx\n",
789 __func__, mask);
792 q->limits.seg_boundary_mask = mask;
794 EXPORT_SYMBOL(blk_queue_segment_boundary);
797 * blk_queue_dma_alignment - set dma length and memory alignment
798 * @q: the request queue for the device
799 * @mask: alignment mask
801 * description:
802 * set required memory and length alignment for direct dma transactions.
803 * this is used when building direct io requests for the queue.
806 void blk_queue_dma_alignment(struct request_queue *q, int mask)
808 q->dma_alignment = mask;
810 EXPORT_SYMBOL(blk_queue_dma_alignment);
813 * blk_queue_update_dma_alignment - update dma length and memory alignment
814 * @q: the request queue for the device
815 * @mask: alignment mask
817 * description:
818 * update required memory and length alignment for direct dma transactions.
819 * If the requested alignment is larger than the current alignment, then
820 * the current queue alignment is updated to the new value, otherwise it
821 * is left alone. The design of this is to allow multiple objects
822 * (driver, device, transport etc) to set their respective
823 * alignments without having them interfere.
826 void blk_queue_update_dma_alignment(struct request_queue *q, int mask)
828 BUG_ON(mask > PAGE_SIZE);
830 if (mask > q->dma_alignment)
831 q->dma_alignment = mask;
833 EXPORT_SYMBOL(blk_queue_update_dma_alignment);
835 static int __init blk_settings_init(void)
837 blk_max_low_pfn = max_low_pfn - 1;
838 blk_max_pfn = max_pfn - 1;
839 return 0;
841 subsys_initcall(blk_settings_init);