[POWERPC] Use 1TB segments
[wandboard.git] / drivers / cpufreq / cpufreq_ondemand.c
blobe794527e49251d10564e703805b1965844c12b65
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE \
45 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
46 #define MIN_SAMPLING_RATE \
47 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
48 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
49 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
50 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
52 static void do_dbs_timer(struct work_struct *work);
54 /* Sampling types */
55 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 struct cpufreq_policy *cur_policy;
61 struct delayed_work work;
62 struct cpufreq_frequency_table *freq_table;
63 unsigned int freq_lo;
64 unsigned int freq_lo_jiffies;
65 unsigned int freq_hi_jiffies;
66 int cpu;
67 unsigned int enable:1,
68 sample_type:1;
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
82 static DEFINE_MUTEX(dbs_mutex);
84 static struct workqueue_struct *kondemand_wq;
86 static struct dbs_tuners {
87 unsigned int sampling_rate;
88 unsigned int up_threshold;
89 unsigned int ignore_nice;
90 unsigned int powersave_bias;
91 } dbs_tuners_ins = {
92 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
93 .ignore_nice = 0,
94 .powersave_bias = 0,
97 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
99 cputime64_t idle_time;
100 cputime64_t cur_jiffies;
101 cputime64_t busy_time;
103 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
104 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
105 kstat_cpu(cpu).cpustat.system);
107 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
108 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
109 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
111 if (!dbs_tuners_ins.ignore_nice) {
112 busy_time = cputime64_add(busy_time,
113 kstat_cpu(cpu).cpustat.nice);
116 idle_time = cputime64_sub(cur_jiffies, busy_time);
117 return idle_time;
121 * Find right freq to be set now with powersave_bias on.
122 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
123 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
125 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
126 unsigned int freq_next,
127 unsigned int relation)
129 unsigned int freq_req, freq_reduc, freq_avg;
130 unsigned int freq_hi, freq_lo;
131 unsigned int index = 0;
132 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
133 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
135 if (!dbs_info->freq_table) {
136 dbs_info->freq_lo = 0;
137 dbs_info->freq_lo_jiffies = 0;
138 return freq_next;
141 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
142 relation, &index);
143 freq_req = dbs_info->freq_table[index].frequency;
144 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
145 freq_avg = freq_req - freq_reduc;
147 /* Find freq bounds for freq_avg in freq_table */
148 index = 0;
149 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
150 CPUFREQ_RELATION_H, &index);
151 freq_lo = dbs_info->freq_table[index].frequency;
152 index = 0;
153 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
154 CPUFREQ_RELATION_L, &index);
155 freq_hi = dbs_info->freq_table[index].frequency;
157 /* Find out how long we have to be in hi and lo freqs */
158 if (freq_hi == freq_lo) {
159 dbs_info->freq_lo = 0;
160 dbs_info->freq_lo_jiffies = 0;
161 return freq_lo;
163 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
164 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
165 jiffies_hi += ((freq_hi - freq_lo) / 2);
166 jiffies_hi /= (freq_hi - freq_lo);
167 jiffies_lo = jiffies_total - jiffies_hi;
168 dbs_info->freq_lo = freq_lo;
169 dbs_info->freq_lo_jiffies = jiffies_lo;
170 dbs_info->freq_hi_jiffies = jiffies_hi;
171 return freq_hi;
174 static void ondemand_powersave_bias_init(void)
176 int i;
177 for_each_online_cpu(i) {
178 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
179 dbs_info->freq_table = cpufreq_frequency_get_table(i);
180 dbs_info->freq_lo = 0;
184 /************************** sysfs interface ************************/
185 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
187 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
190 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
192 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
195 #define define_one_ro(_name) \
196 static struct freq_attr _name = \
197 __ATTR(_name, 0444, show_##_name, NULL)
199 define_one_ro(sampling_rate_max);
200 define_one_ro(sampling_rate_min);
202 /* cpufreq_ondemand Governor Tunables */
203 #define show_one(file_name, object) \
204 static ssize_t show_##file_name \
205 (struct cpufreq_policy *unused, char *buf) \
207 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
209 show_one(sampling_rate, sampling_rate);
210 show_one(up_threshold, up_threshold);
211 show_one(ignore_nice_load, ignore_nice);
212 show_one(powersave_bias, powersave_bias);
214 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
215 const char *buf, size_t count)
217 unsigned int input;
218 int ret;
219 ret = sscanf(buf, "%u", &input);
221 mutex_lock(&dbs_mutex);
222 if (ret != 1 || input > MAX_SAMPLING_RATE
223 || input < MIN_SAMPLING_RATE) {
224 mutex_unlock(&dbs_mutex);
225 return -EINVAL;
228 dbs_tuners_ins.sampling_rate = input;
229 mutex_unlock(&dbs_mutex);
231 return count;
234 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
235 const char *buf, size_t count)
237 unsigned int input;
238 int ret;
239 ret = sscanf(buf, "%u", &input);
241 mutex_lock(&dbs_mutex);
242 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
243 input < MIN_FREQUENCY_UP_THRESHOLD) {
244 mutex_unlock(&dbs_mutex);
245 return -EINVAL;
248 dbs_tuners_ins.up_threshold = input;
249 mutex_unlock(&dbs_mutex);
251 return count;
254 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
255 const char *buf, size_t count)
257 unsigned int input;
258 int ret;
260 unsigned int j;
262 ret = sscanf(buf, "%u", &input);
263 if ( ret != 1 )
264 return -EINVAL;
266 if ( input > 1 )
267 input = 1;
269 mutex_lock(&dbs_mutex);
270 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
271 mutex_unlock(&dbs_mutex);
272 return count;
274 dbs_tuners_ins.ignore_nice = input;
276 /* we need to re-evaluate prev_cpu_idle */
277 for_each_online_cpu(j) {
278 struct cpu_dbs_info_s *dbs_info;
279 dbs_info = &per_cpu(cpu_dbs_info, j);
280 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
281 dbs_info->prev_cpu_wall = get_jiffies_64();
283 mutex_unlock(&dbs_mutex);
285 return count;
288 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
289 const char *buf, size_t count)
291 unsigned int input;
292 int ret;
293 ret = sscanf(buf, "%u", &input);
295 if (ret != 1)
296 return -EINVAL;
298 if (input > 1000)
299 input = 1000;
301 mutex_lock(&dbs_mutex);
302 dbs_tuners_ins.powersave_bias = input;
303 ondemand_powersave_bias_init();
304 mutex_unlock(&dbs_mutex);
306 return count;
309 #define define_one_rw(_name) \
310 static struct freq_attr _name = \
311 __ATTR(_name, 0644, show_##_name, store_##_name)
313 define_one_rw(sampling_rate);
314 define_one_rw(up_threshold);
315 define_one_rw(ignore_nice_load);
316 define_one_rw(powersave_bias);
318 static struct attribute * dbs_attributes[] = {
319 &sampling_rate_max.attr,
320 &sampling_rate_min.attr,
321 &sampling_rate.attr,
322 &up_threshold.attr,
323 &ignore_nice_load.attr,
324 &powersave_bias.attr,
325 NULL
328 static struct attribute_group dbs_attr_group = {
329 .attrs = dbs_attributes,
330 .name = "ondemand",
333 /************************** sysfs end ************************/
335 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
337 unsigned int idle_ticks, total_ticks;
338 unsigned int load = 0;
339 cputime64_t cur_jiffies;
341 struct cpufreq_policy *policy;
342 unsigned int j;
344 if (!this_dbs_info->enable)
345 return;
347 this_dbs_info->freq_lo = 0;
348 policy = this_dbs_info->cur_policy;
349 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
350 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
351 this_dbs_info->prev_cpu_wall);
352 this_dbs_info->prev_cpu_wall = get_jiffies_64();
354 if (!total_ticks)
355 return;
357 * Every sampling_rate, we check, if current idle time is less
358 * than 20% (default), then we try to increase frequency
359 * Every sampling_rate, we look for a the lowest
360 * frequency which can sustain the load while keeping idle time over
361 * 30%. If such a frequency exist, we try to decrease to this frequency.
363 * Any frequency increase takes it to the maximum frequency.
364 * Frequency reduction happens at minimum steps of
365 * 5% (default) of current frequency
368 /* Get Idle Time */
369 idle_ticks = UINT_MAX;
370 for_each_cpu_mask(j, policy->cpus) {
371 cputime64_t total_idle_ticks;
372 unsigned int tmp_idle_ticks;
373 struct cpu_dbs_info_s *j_dbs_info;
375 j_dbs_info = &per_cpu(cpu_dbs_info, j);
376 total_idle_ticks = get_cpu_idle_time(j);
377 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
378 j_dbs_info->prev_cpu_idle);
379 j_dbs_info->prev_cpu_idle = total_idle_ticks;
381 if (tmp_idle_ticks < idle_ticks)
382 idle_ticks = tmp_idle_ticks;
384 if (likely(total_ticks > idle_ticks))
385 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
387 /* Check for frequency increase */
388 if (load > dbs_tuners_ins.up_threshold) {
389 /* if we are already at full speed then break out early */
390 if (!dbs_tuners_ins.powersave_bias) {
391 if (policy->cur == policy->max)
392 return;
394 __cpufreq_driver_target(policy, policy->max,
395 CPUFREQ_RELATION_H);
396 } else {
397 int freq = powersave_bias_target(policy, policy->max,
398 CPUFREQ_RELATION_H);
399 __cpufreq_driver_target(policy, freq,
400 CPUFREQ_RELATION_L);
402 return;
405 /* Check for frequency decrease */
406 /* if we cannot reduce the frequency anymore, break out early */
407 if (policy->cur == policy->min)
408 return;
411 * The optimal frequency is the frequency that is the lowest that
412 * can support the current CPU usage without triggering the up
413 * policy. To be safe, we focus 10 points under the threshold.
415 if (load < (dbs_tuners_ins.up_threshold - 10)) {
416 unsigned int freq_next, freq_cur;
418 freq_cur = __cpufreq_driver_getavg(policy);
419 if (!freq_cur)
420 freq_cur = policy->cur;
422 freq_next = (freq_cur * load) /
423 (dbs_tuners_ins.up_threshold - 10);
425 if (!dbs_tuners_ins.powersave_bias) {
426 __cpufreq_driver_target(policy, freq_next,
427 CPUFREQ_RELATION_L);
428 } else {
429 int freq = powersave_bias_target(policy, freq_next,
430 CPUFREQ_RELATION_L);
431 __cpufreq_driver_target(policy, freq,
432 CPUFREQ_RELATION_L);
437 static void do_dbs_timer(struct work_struct *work)
439 struct cpu_dbs_info_s *dbs_info =
440 container_of(work, struct cpu_dbs_info_s, work.work);
441 unsigned int cpu = dbs_info->cpu;
442 int sample_type = dbs_info->sample_type;
444 /* We want all CPUs to do sampling nearly on same jiffy */
445 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
447 delay -= jiffies % delay;
449 if (lock_policy_rwsem_write(cpu) < 0)
450 return;
452 if (!dbs_info->enable) {
453 unlock_policy_rwsem_write(cpu);
454 return;
457 /* Common NORMAL_SAMPLE setup */
458 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
459 if (!dbs_tuners_ins.powersave_bias ||
460 sample_type == DBS_NORMAL_SAMPLE) {
461 dbs_check_cpu(dbs_info);
462 if (dbs_info->freq_lo) {
463 /* Setup timer for SUB_SAMPLE */
464 dbs_info->sample_type = DBS_SUB_SAMPLE;
465 delay = dbs_info->freq_hi_jiffies;
467 } else {
468 __cpufreq_driver_target(dbs_info->cur_policy,
469 dbs_info->freq_lo,
470 CPUFREQ_RELATION_H);
472 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
473 unlock_policy_rwsem_write(cpu);
476 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
478 /* We want all CPUs to do sampling nearly on same jiffy */
479 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
480 delay -= jiffies % delay;
482 dbs_info->enable = 1;
483 ondemand_powersave_bias_init();
484 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
485 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
486 queue_delayed_work_on(dbs_info->cpu, kondemand_wq, &dbs_info->work,
487 delay);
490 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
492 dbs_info->enable = 0;
493 cancel_delayed_work(&dbs_info->work);
496 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
497 unsigned int event)
499 unsigned int cpu = policy->cpu;
500 struct cpu_dbs_info_s *this_dbs_info;
501 unsigned int j;
502 int rc;
504 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
506 switch (event) {
507 case CPUFREQ_GOV_START:
508 if ((!cpu_online(cpu)) || (!policy->cur))
509 return -EINVAL;
511 if (policy->cpuinfo.transition_latency >
512 (TRANSITION_LATENCY_LIMIT * 1000)) {
513 printk(KERN_WARNING "ondemand governor failed to load "
514 "due to too long transition latency\n");
515 return -EINVAL;
517 if (this_dbs_info->enable) /* Already enabled */
518 break;
520 mutex_lock(&dbs_mutex);
521 dbs_enable++;
523 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
524 if (rc) {
525 dbs_enable--;
526 mutex_unlock(&dbs_mutex);
527 return rc;
530 for_each_cpu_mask(j, policy->cpus) {
531 struct cpu_dbs_info_s *j_dbs_info;
532 j_dbs_info = &per_cpu(cpu_dbs_info, j);
533 j_dbs_info->cur_policy = policy;
535 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
536 j_dbs_info->prev_cpu_wall = get_jiffies_64();
538 this_dbs_info->cpu = cpu;
540 * Start the timerschedule work, when this governor
541 * is used for first time
543 if (dbs_enable == 1) {
544 unsigned int latency;
545 /* policy latency is in nS. Convert it to uS first */
546 latency = policy->cpuinfo.transition_latency / 1000;
547 if (latency == 0)
548 latency = 1;
550 def_sampling_rate = latency *
551 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
553 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
554 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
556 dbs_tuners_ins.sampling_rate = def_sampling_rate;
558 dbs_timer_init(this_dbs_info);
560 mutex_unlock(&dbs_mutex);
561 break;
563 case CPUFREQ_GOV_STOP:
564 mutex_lock(&dbs_mutex);
565 dbs_timer_exit(this_dbs_info);
566 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
567 dbs_enable--;
568 mutex_unlock(&dbs_mutex);
570 break;
572 case CPUFREQ_GOV_LIMITS:
573 mutex_lock(&dbs_mutex);
574 if (policy->max < this_dbs_info->cur_policy->cur)
575 __cpufreq_driver_target(this_dbs_info->cur_policy,
576 policy->max,
577 CPUFREQ_RELATION_H);
578 else if (policy->min > this_dbs_info->cur_policy->cur)
579 __cpufreq_driver_target(this_dbs_info->cur_policy,
580 policy->min,
581 CPUFREQ_RELATION_L);
582 mutex_unlock(&dbs_mutex);
583 break;
585 return 0;
588 static struct cpufreq_governor cpufreq_gov_dbs = {
589 .name = "ondemand",
590 .governor = cpufreq_governor_dbs,
591 .owner = THIS_MODULE,
594 static int __init cpufreq_gov_dbs_init(void)
596 kondemand_wq = create_workqueue("kondemand");
597 if (!kondemand_wq) {
598 printk(KERN_ERR "Creation of kondemand failed\n");
599 return -EFAULT;
601 return cpufreq_register_governor(&cpufreq_gov_dbs);
604 static void __exit cpufreq_gov_dbs_exit(void)
606 cpufreq_unregister_governor(&cpufreq_gov_dbs);
607 destroy_workqueue(kondemand_wq);
611 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
612 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
613 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
614 "Low Latency Frequency Transition capable processors");
615 MODULE_LICENSE("GPL");
617 module_init(cpufreq_gov_dbs_init);
618 module_exit(cpufreq_gov_dbs_exit);