1 /************************************************************************
2 * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3 * Copyright(c) 2002-2007 Neterion Inc.
5 * This software may be used and distributed according to the terms of
6 * the GNU General Public License (GPL), incorporated herein by reference.
7 * Drivers based on or derived from this code fall under the GPL and must
8 * retain the authorship, copyright and license notice. This file is not
9 * a complete program and may only be used when the entire operating
10 * system is licensed under the GPL.
11 * See the file COPYING in this distribution for more information.
14 * Jeff Garzik : For pointing out the improper error condition
15 * check in the s2io_xmit routine and also some
16 * issues in the Tx watch dog function. Also for
17 * patiently answering all those innumerable
18 * questions regaring the 2.6 porting issues.
19 * Stephen Hemminger : Providing proper 2.6 porting mechanism for some
20 * macros available only in 2.6 Kernel.
21 * Francois Romieu : For pointing out all code part that were
22 * deprecated and also styling related comments.
23 * Grant Grundler : For helping me get rid of some Architecture
25 * Christopher Hellwig : Some more 2.6 specific issues in the driver.
27 * The module loadable parameters that are supported by the driver and a brief
28 * explaination of all the variables.
30 * rx_ring_num : This can be used to program the number of receive rings used
32 * rx_ring_sz: This defines the number of receive blocks each ring can have.
33 * This is also an array of size 8.
34 * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
36 * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37 * tx_fifo_len: This too is an array of 8. Each element defines the number of
38 * Tx descriptors that can be associated with each corresponding FIFO.
39 * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40 * 2(MSI_X). Default value is '0(INTA)'
41 * lro: Specifies whether to enable Large Receive Offload (LRO) or not.
42 * Possible values '1' for enable '0' for disable. Default is '0'
43 * lro_max_pkts: This parameter defines maximum number of packets can be
44 * aggregated as a single large packet
45 * napi: This parameter used to enable/disable NAPI (polling Rx)
46 * Possible values '1' for enable and '0' for disable. Default is '1'
47 * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48 * Possible values '1' for enable and '0' for disable. Default is '0'
49 * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50 * Possible values '1' for enable , '0' for disable.
51 * Default is '2' - which means disable in promisc mode
52 * and enable in non-promiscuous mode.
53 ************************************************************************/
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
74 #include <linux/tcp.h>
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
80 #include <asm/div64.h>
85 #include "s2io-regs.h"
87 #define DRV_VERSION "2.0.25.1"
89 /* S2io Driver name & version. */
90 static char s2io_driver_name
[] = "Neterion";
91 static char s2io_driver_version
[] = DRV_VERSION
;
93 static int rxd_size
[2] = {32,48};
94 static int rxd_count
[2] = {127,85};
96 static inline int RXD_IS_UP2DT(struct RxD_t
*rxdp
)
100 ret
= ((!(rxdp
->Control_1
& RXD_OWN_XENA
)) &&
101 (GET_RXD_MARKER(rxdp
->Control_2
) != THE_RXD_MARK
));
107 * Cards with following subsystem_id have a link state indication
108 * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109 * macro below identifies these cards given the subsystem_id.
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112 (dev_type == XFRAME_I_DEVICE) ? \
113 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114 ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117 ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
121 static inline int rx_buffer_level(struct s2io_nic
* sp
, int rxb_size
, int ring
)
123 struct mac_info
*mac_control
;
125 mac_control
= &sp
->mac_control
;
126 if (rxb_size
<= rxd_count
[sp
->rxd_mode
])
128 else if ((mac_control
->rings
[ring
].pkt_cnt
- rxb_size
) > 16)
133 /* Ethtool related variables and Macros. */
134 static char s2io_gstrings
[][ETH_GSTRING_LEN
] = {
135 "Register test\t(offline)",
136 "Eeprom test\t(offline)",
137 "Link test\t(online)",
138 "RLDRAM test\t(offline)",
139 "BIST Test\t(offline)"
142 static char ethtool_xena_stats_keys
[][ETH_GSTRING_LEN
] = {
144 {"tmac_data_octets"},
148 {"tmac_pause_ctrl_frms"},
152 {"tmac_any_err_frms"},
153 {"tmac_ttl_less_fb_octets"},
154 {"tmac_vld_ip_octets"},
162 {"rmac_data_octets"},
163 {"rmac_fcs_err_frms"},
165 {"rmac_vld_mcst_frms"},
166 {"rmac_vld_bcst_frms"},
167 {"rmac_in_rng_len_err_frms"},
168 {"rmac_out_rng_len_err_frms"},
170 {"rmac_pause_ctrl_frms"},
171 {"rmac_unsup_ctrl_frms"},
173 {"rmac_accepted_ucst_frms"},
174 {"rmac_accepted_nucst_frms"},
175 {"rmac_discarded_frms"},
176 {"rmac_drop_events"},
177 {"rmac_ttl_less_fb_octets"},
179 {"rmac_usized_frms"},
180 {"rmac_osized_frms"},
182 {"rmac_jabber_frms"},
183 {"rmac_ttl_64_frms"},
184 {"rmac_ttl_65_127_frms"},
185 {"rmac_ttl_128_255_frms"},
186 {"rmac_ttl_256_511_frms"},
187 {"rmac_ttl_512_1023_frms"},
188 {"rmac_ttl_1024_1518_frms"},
196 {"rmac_err_drp_udp"},
197 {"rmac_xgmii_err_sym"},
215 {"rmac_xgmii_data_err_cnt"},
216 {"rmac_xgmii_ctrl_err_cnt"},
217 {"rmac_accepted_ip"},
221 {"new_rd_req_rtry_cnt"},
223 {"wr_rtry_rd_ack_cnt"},
226 {"new_wr_req_rtry_cnt"},
229 {"rd_rtry_wr_ack_cnt"},
239 static char ethtool_enhanced_stats_keys
[][ETH_GSTRING_LEN
] = {
240 {"rmac_ttl_1519_4095_frms"},
241 {"rmac_ttl_4096_8191_frms"},
242 {"rmac_ttl_8192_max_frms"},
243 {"rmac_ttl_gt_max_frms"},
244 {"rmac_osized_alt_frms"},
245 {"rmac_jabber_alt_frms"},
246 {"rmac_gt_max_alt_frms"},
248 {"rmac_len_discard"},
249 {"rmac_fcs_discard"},
252 {"rmac_red_discard"},
253 {"rmac_rts_discard"},
254 {"rmac_ingm_full_discard"},
258 static char ethtool_driver_stats_keys
[][ETH_GSTRING_LEN
] = {
259 {"\n DRIVER STATISTICS"},
260 {"single_bit_ecc_errs"},
261 {"double_bit_ecc_errs"},
267 ("alarm_transceiver_temp_high"),
268 ("alarm_transceiver_temp_low"),
269 ("alarm_laser_bias_current_high"),
270 ("alarm_laser_bias_current_low"),
271 ("alarm_laser_output_power_high"),
272 ("alarm_laser_output_power_low"),
273 ("warn_transceiver_temp_high"),
274 ("warn_transceiver_temp_low"),
275 ("warn_laser_bias_current_high"),
276 ("warn_laser_bias_current_low"),
277 ("warn_laser_output_power_high"),
278 ("warn_laser_output_power_low"),
279 ("lro_aggregated_pkts"),
280 ("lro_flush_both_count"),
281 ("lro_out_of_sequence_pkts"),
282 ("lro_flush_due_to_max_pkts"),
283 ("lro_avg_aggr_pkts"),
284 ("mem_alloc_fail_cnt"),
285 ("pci_map_fail_cnt"),
286 ("watchdog_timer_cnt"),
293 ("tx_tcode_buf_abort_cnt"),
294 ("tx_tcode_desc_abort_cnt"),
295 ("tx_tcode_parity_err_cnt"),
296 ("tx_tcode_link_loss_cnt"),
297 ("tx_tcode_list_proc_err_cnt"),
298 ("rx_tcode_parity_err_cnt"),
299 ("rx_tcode_abort_cnt"),
300 ("rx_tcode_parity_abort_cnt"),
301 ("rx_tcode_rda_fail_cnt"),
302 ("rx_tcode_unkn_prot_cnt"),
303 ("rx_tcode_fcs_err_cnt"),
304 ("rx_tcode_buf_size_err_cnt"),
305 ("rx_tcode_rxd_corrupt_cnt"),
306 ("rx_tcode_unkn_err_cnt")
309 #define S2IO_XENA_STAT_LEN sizeof(ethtool_xena_stats_keys)/ ETH_GSTRING_LEN
310 #define S2IO_ENHANCED_STAT_LEN sizeof(ethtool_enhanced_stats_keys)/ \
312 #define S2IO_DRIVER_STAT_LEN sizeof(ethtool_driver_stats_keys)/ ETH_GSTRING_LEN
314 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
315 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
317 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
318 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
320 #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN
321 #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN
323 #define S2IO_TIMER_CONF(timer, handle, arg, exp) \
324 init_timer(&timer); \
325 timer.function = handle; \
326 timer.data = (unsigned long) arg; \
327 mod_timer(&timer, (jiffies + exp)) \
330 static void s2io_vlan_rx_register(struct net_device
*dev
,
331 struct vlan_group
*grp
)
333 struct s2io_nic
*nic
= dev
->priv
;
336 spin_lock_irqsave(&nic
->tx_lock
, flags
);
338 spin_unlock_irqrestore(&nic
->tx_lock
, flags
);
341 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
342 static int vlan_strip_flag
;
345 * Constants to be programmed into the Xena's registers, to configure
350 static const u64 herc_act_dtx_cfg
[] = {
352 0x8000051536750000ULL
, 0x80000515367500E0ULL
,
354 0x8000051536750004ULL
, 0x80000515367500E4ULL
,
356 0x80010515003F0000ULL
, 0x80010515003F00E0ULL
,
358 0x80010515003F0004ULL
, 0x80010515003F00E4ULL
,
360 0x801205150D440000ULL
, 0x801205150D4400E0ULL
,
362 0x801205150D440004ULL
, 0x801205150D4400E4ULL
,
364 0x80020515F2100000ULL
, 0x80020515F21000E0ULL
,
366 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
371 static const u64 xena_dtx_cfg
[] = {
373 0x8000051500000000ULL
, 0x80000515000000E0ULL
,
375 0x80000515D9350004ULL
, 0x80000515D93500E4ULL
,
377 0x8001051500000000ULL
, 0x80010515000000E0ULL
,
379 0x80010515001E0004ULL
, 0x80010515001E00E4ULL
,
381 0x8002051500000000ULL
, 0x80020515000000E0ULL
,
383 0x80020515F2100004ULL
, 0x80020515F21000E4ULL
,
388 * Constants for Fixing the MacAddress problem seen mostly on
391 static const u64 fix_mac
[] = {
392 0x0060000000000000ULL
, 0x0060600000000000ULL
,
393 0x0040600000000000ULL
, 0x0000600000000000ULL
,
394 0x0020600000000000ULL
, 0x0060600000000000ULL
,
395 0x0020600000000000ULL
, 0x0060600000000000ULL
,
396 0x0020600000000000ULL
, 0x0060600000000000ULL
,
397 0x0020600000000000ULL
, 0x0060600000000000ULL
,
398 0x0020600000000000ULL
, 0x0060600000000000ULL
,
399 0x0020600000000000ULL
, 0x0060600000000000ULL
,
400 0x0020600000000000ULL
, 0x0060600000000000ULL
,
401 0x0020600000000000ULL
, 0x0060600000000000ULL
,
402 0x0020600000000000ULL
, 0x0060600000000000ULL
,
403 0x0020600000000000ULL
, 0x0060600000000000ULL
,
404 0x0020600000000000ULL
, 0x0000600000000000ULL
,
405 0x0040600000000000ULL
, 0x0060600000000000ULL
,
409 MODULE_LICENSE("GPL");
410 MODULE_VERSION(DRV_VERSION
);
413 /* Module Loadable parameters. */
414 S2IO_PARM_INT(tx_fifo_num
, 1);
415 S2IO_PARM_INT(rx_ring_num
, 1);
418 S2IO_PARM_INT(rx_ring_mode
, 1);
419 S2IO_PARM_INT(use_continuous_tx_intrs
, 1);
420 S2IO_PARM_INT(rmac_pause_time
, 0x100);
421 S2IO_PARM_INT(mc_pause_threshold_q0q3
, 187);
422 S2IO_PARM_INT(mc_pause_threshold_q4q7
, 187);
423 S2IO_PARM_INT(shared_splits
, 0);
424 S2IO_PARM_INT(tmac_util_period
, 5);
425 S2IO_PARM_INT(rmac_util_period
, 5);
426 S2IO_PARM_INT(bimodal
, 0);
427 S2IO_PARM_INT(l3l4hdr_size
, 128);
428 /* Frequency of Rx desc syncs expressed as power of 2 */
429 S2IO_PARM_INT(rxsync_frequency
, 3);
430 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
431 S2IO_PARM_INT(intr_type
, 0);
432 /* Large receive offload feature */
433 S2IO_PARM_INT(lro
, 0);
434 /* Max pkts to be aggregated by LRO at one time. If not specified,
435 * aggregation happens until we hit max IP pkt size(64K)
437 S2IO_PARM_INT(lro_max_pkts
, 0xFFFF);
438 S2IO_PARM_INT(indicate_max_pkts
, 0);
440 S2IO_PARM_INT(napi
, 1);
441 S2IO_PARM_INT(ufo
, 0);
442 S2IO_PARM_INT(vlan_tag_strip
, NO_STRIP_IN_PROMISC
);
444 static unsigned int tx_fifo_len
[MAX_TX_FIFOS
] =
445 {DEFAULT_FIFO_0_LEN
, [1 ...(MAX_TX_FIFOS
- 1)] = DEFAULT_FIFO_1_7_LEN
};
446 static unsigned int rx_ring_sz
[MAX_RX_RINGS
] =
447 {[0 ...(MAX_RX_RINGS
- 1)] = SMALL_BLK_CNT
};
448 static unsigned int rts_frm_len
[MAX_RX_RINGS
] =
449 {[0 ...(MAX_RX_RINGS
- 1)] = 0 };
451 module_param_array(tx_fifo_len
, uint
, NULL
, 0);
452 module_param_array(rx_ring_sz
, uint
, NULL
, 0);
453 module_param_array(rts_frm_len
, uint
, NULL
, 0);
457 * This table lists all the devices that this driver supports.
459 static struct pci_device_id s2io_tbl
[] __devinitdata
= {
460 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_WIN
,
461 PCI_ANY_ID
, PCI_ANY_ID
},
462 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_S2IO_UNI
,
463 PCI_ANY_ID
, PCI_ANY_ID
},
464 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_WIN
,
465 PCI_ANY_ID
, PCI_ANY_ID
},
466 {PCI_VENDOR_ID_S2IO
, PCI_DEVICE_ID_HERC_UNI
,
467 PCI_ANY_ID
, PCI_ANY_ID
},
471 MODULE_DEVICE_TABLE(pci
, s2io_tbl
);
473 static struct pci_error_handlers s2io_err_handler
= {
474 .error_detected
= s2io_io_error_detected
,
475 .slot_reset
= s2io_io_slot_reset
,
476 .resume
= s2io_io_resume
,
479 static struct pci_driver s2io_driver
= {
481 .id_table
= s2io_tbl
,
482 .probe
= s2io_init_nic
,
483 .remove
= __devexit_p(s2io_rem_nic
),
484 .err_handler
= &s2io_err_handler
,
487 /* A simplifier macro used both by init and free shared_mem Fns(). */
488 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
491 * init_shared_mem - Allocation and Initialization of Memory
492 * @nic: Device private variable.
493 * Description: The function allocates all the memory areas shared
494 * between the NIC and the driver. This includes Tx descriptors,
495 * Rx descriptors and the statistics block.
498 static int init_shared_mem(struct s2io_nic
*nic
)
501 void *tmp_v_addr
, *tmp_v_addr_next
;
502 dma_addr_t tmp_p_addr
, tmp_p_addr_next
;
503 struct RxD_block
*pre_rxd_blk
= NULL
;
505 int lst_size
, lst_per_page
;
506 struct net_device
*dev
= nic
->dev
;
510 struct mac_info
*mac_control
;
511 struct config_param
*config
;
512 unsigned long long mem_allocated
= 0;
514 mac_control
= &nic
->mac_control
;
515 config
= &nic
->config
;
518 /* Allocation and initialization of TXDLs in FIOFs */
520 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
521 size
+= config
->tx_cfg
[i
].fifo_len
;
523 if (size
> MAX_AVAILABLE_TXDS
) {
524 DBG_PRINT(ERR_DBG
, "s2io: Requested TxDs too high, ");
525 DBG_PRINT(ERR_DBG
, "Requested: %d, max supported: 8192\n", size
);
529 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
530 lst_per_page
= PAGE_SIZE
/ lst_size
;
532 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
533 int fifo_len
= config
->tx_cfg
[i
].fifo_len
;
534 int list_holder_size
= fifo_len
* sizeof(struct list_info_hold
);
535 mac_control
->fifos
[i
].list_info
= kmalloc(list_holder_size
,
537 if (!mac_control
->fifos
[i
].list_info
) {
539 "Malloc failed for list_info\n");
542 mem_allocated
+= list_holder_size
;
543 memset(mac_control
->fifos
[i
].list_info
, 0, list_holder_size
);
545 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
546 int page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
548 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
549 mac_control
->fifos
[i
].tx_curr_put_info
.fifo_len
=
550 config
->tx_cfg
[i
].fifo_len
- 1;
551 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
552 mac_control
->fifos
[i
].tx_curr_get_info
.fifo_len
=
553 config
->tx_cfg
[i
].fifo_len
- 1;
554 mac_control
->fifos
[i
].fifo_no
= i
;
555 mac_control
->fifos
[i
].nic
= nic
;
556 mac_control
->fifos
[i
].max_txds
= MAX_SKB_FRAGS
+ 2;
558 for (j
= 0; j
< page_num
; j
++) {
562 tmp_v
= pci_alloc_consistent(nic
->pdev
,
566 "pci_alloc_consistent ");
567 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
570 /* If we got a zero DMA address(can happen on
571 * certain platforms like PPC), reallocate.
572 * Store virtual address of page we don't want,
576 mac_control
->zerodma_virt_addr
= tmp_v
;
578 "%s: Zero DMA address for TxDL. ", dev
->name
);
580 "Virtual address %p\n", tmp_v
);
581 tmp_v
= pci_alloc_consistent(nic
->pdev
,
585 "pci_alloc_consistent ");
586 DBG_PRINT(INFO_DBG
, "failed for TxDL\n");
589 mem_allocated
+= PAGE_SIZE
;
591 while (k
< lst_per_page
) {
592 int l
= (j
* lst_per_page
) + k
;
593 if (l
== config
->tx_cfg
[i
].fifo_len
)
595 mac_control
->fifos
[i
].list_info
[l
].list_virt_addr
=
596 tmp_v
+ (k
* lst_size
);
597 mac_control
->fifos
[i
].list_info
[l
].list_phy_addr
=
598 tmp_p
+ (k
* lst_size
);
604 nic
->ufo_in_band_v
= kcalloc(size
, sizeof(u64
), GFP_KERNEL
);
605 if (!nic
->ufo_in_band_v
)
607 mem_allocated
+= (size
* sizeof(u64
));
609 /* Allocation and initialization of RXDs in Rings */
611 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
612 if (config
->rx_cfg
[i
].num_rxd
%
613 (rxd_count
[nic
->rxd_mode
] + 1)) {
614 DBG_PRINT(ERR_DBG
, "%s: RxD count of ", dev
->name
);
615 DBG_PRINT(ERR_DBG
, "Ring%d is not a multiple of ",
617 DBG_PRINT(ERR_DBG
, "RxDs per Block");
620 size
+= config
->rx_cfg
[i
].num_rxd
;
621 mac_control
->rings
[i
].block_count
=
622 config
->rx_cfg
[i
].num_rxd
/
623 (rxd_count
[nic
->rxd_mode
] + 1 );
624 mac_control
->rings
[i
].pkt_cnt
= config
->rx_cfg
[i
].num_rxd
-
625 mac_control
->rings
[i
].block_count
;
627 if (nic
->rxd_mode
== RXD_MODE_1
)
628 size
= (size
* (sizeof(struct RxD1
)));
630 size
= (size
* (sizeof(struct RxD3
)));
632 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
633 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
634 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
635 mac_control
->rings
[i
].rx_curr_get_info
.ring_len
=
636 config
->rx_cfg
[i
].num_rxd
- 1;
637 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
638 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
639 mac_control
->rings
[i
].rx_curr_put_info
.ring_len
=
640 config
->rx_cfg
[i
].num_rxd
- 1;
641 mac_control
->rings
[i
].nic
= nic
;
642 mac_control
->rings
[i
].ring_no
= i
;
644 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
645 (rxd_count
[nic
->rxd_mode
] + 1);
646 /* Allocating all the Rx blocks */
647 for (j
= 0; j
< blk_cnt
; j
++) {
648 struct rx_block_info
*rx_blocks
;
651 rx_blocks
= &mac_control
->rings
[i
].rx_blocks
[j
];
652 size
= SIZE_OF_BLOCK
; //size is always page size
653 tmp_v_addr
= pci_alloc_consistent(nic
->pdev
, size
,
655 if (tmp_v_addr
== NULL
) {
657 * In case of failure, free_shared_mem()
658 * is called, which should free any
659 * memory that was alloced till the
662 rx_blocks
->block_virt_addr
= tmp_v_addr
;
665 mem_allocated
+= size
;
666 memset(tmp_v_addr
, 0, size
);
667 rx_blocks
->block_virt_addr
= tmp_v_addr
;
668 rx_blocks
->block_dma_addr
= tmp_p_addr
;
669 rx_blocks
->rxds
= kmalloc(sizeof(struct rxd_info
)*
670 rxd_count
[nic
->rxd_mode
],
672 if (!rx_blocks
->rxds
)
675 (sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
676 for (l
=0; l
<rxd_count
[nic
->rxd_mode
];l
++) {
677 rx_blocks
->rxds
[l
].virt_addr
=
678 rx_blocks
->block_virt_addr
+
679 (rxd_size
[nic
->rxd_mode
] * l
);
680 rx_blocks
->rxds
[l
].dma_addr
=
681 rx_blocks
->block_dma_addr
+
682 (rxd_size
[nic
->rxd_mode
] * l
);
685 /* Interlinking all Rx Blocks */
686 for (j
= 0; j
< blk_cnt
; j
++) {
688 mac_control
->rings
[i
].rx_blocks
[j
].block_virt_addr
;
690 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
691 blk_cnt
].block_virt_addr
;
693 mac_control
->rings
[i
].rx_blocks
[j
].block_dma_addr
;
695 mac_control
->rings
[i
].rx_blocks
[(j
+ 1) %
696 blk_cnt
].block_dma_addr
;
698 pre_rxd_blk
= (struct RxD_block
*) tmp_v_addr
;
699 pre_rxd_blk
->reserved_2_pNext_RxD_block
=
700 (unsigned long) tmp_v_addr_next
;
701 pre_rxd_blk
->pNext_RxD_Blk_physical
=
702 (u64
) tmp_p_addr_next
;
705 if (nic
->rxd_mode
== RXD_MODE_3B
) {
707 * Allocation of Storages for buffer addresses in 2BUFF mode
708 * and the buffers as well.
710 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
711 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
712 (rxd_count
[nic
->rxd_mode
]+ 1);
713 mac_control
->rings
[i
].ba
=
714 kmalloc((sizeof(struct buffAdd
*) * blk_cnt
),
716 if (!mac_control
->rings
[i
].ba
)
718 mem_allocated
+=(sizeof(struct buffAdd
*) * blk_cnt
);
719 for (j
= 0; j
< blk_cnt
; j
++) {
721 mac_control
->rings
[i
].ba
[j
] =
722 kmalloc((sizeof(struct buffAdd
) *
723 (rxd_count
[nic
->rxd_mode
] + 1)),
725 if (!mac_control
->rings
[i
].ba
[j
])
727 mem_allocated
+= (sizeof(struct buffAdd
) * \
728 (rxd_count
[nic
->rxd_mode
] + 1));
729 while (k
!= rxd_count
[nic
->rxd_mode
]) {
730 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
732 ba
->ba_0_org
= (void *) kmalloc
733 (BUF0_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
737 (BUF0_LEN
+ ALIGN_SIZE
);
738 tmp
= (unsigned long)ba
->ba_0_org
;
740 tmp
&= ~((unsigned long) ALIGN_SIZE
);
741 ba
->ba_0
= (void *) tmp
;
743 ba
->ba_1_org
= (void *) kmalloc
744 (BUF1_LEN
+ ALIGN_SIZE
, GFP_KERNEL
);
748 += (BUF1_LEN
+ ALIGN_SIZE
);
749 tmp
= (unsigned long) ba
->ba_1_org
;
751 tmp
&= ~((unsigned long) ALIGN_SIZE
);
752 ba
->ba_1
= (void *) tmp
;
759 /* Allocation and initialization of Statistics block */
760 size
= sizeof(struct stat_block
);
761 mac_control
->stats_mem
= pci_alloc_consistent
762 (nic
->pdev
, size
, &mac_control
->stats_mem_phy
);
764 if (!mac_control
->stats_mem
) {
766 * In case of failure, free_shared_mem() is called, which
767 * should free any memory that was alloced till the
772 mem_allocated
+= size
;
773 mac_control
->stats_mem_sz
= size
;
775 tmp_v_addr
= mac_control
->stats_mem
;
776 mac_control
->stats_info
= (struct stat_block
*) tmp_v_addr
;
777 memset(tmp_v_addr
, 0, size
);
778 DBG_PRINT(INIT_DBG
, "%s:Ring Mem PHY: 0x%llx\n", dev
->name
,
779 (unsigned long long) tmp_p_addr
);
780 mac_control
->stats_info
->sw_stat
.mem_allocated
+= mem_allocated
;
785 * free_shared_mem - Free the allocated Memory
786 * @nic: Device private variable.
787 * Description: This function is to free all memory locations allocated by
788 * the init_shared_mem() function and return it to the kernel.
791 static void free_shared_mem(struct s2io_nic
*nic
)
793 int i
, j
, blk_cnt
, size
;
796 dma_addr_t tmp_p_addr
;
797 struct mac_info
*mac_control
;
798 struct config_param
*config
;
799 int lst_size
, lst_per_page
;
800 struct net_device
*dev
;
808 mac_control
= &nic
->mac_control
;
809 config
= &nic
->config
;
811 lst_size
= (sizeof(struct TxD
) * config
->max_txds
);
812 lst_per_page
= PAGE_SIZE
/ lst_size
;
814 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
815 ufo_size
+= config
->tx_cfg
[i
].fifo_len
;
816 page_num
= TXD_MEM_PAGE_CNT(config
->tx_cfg
[i
].fifo_len
,
818 for (j
= 0; j
< page_num
; j
++) {
819 int mem_blks
= (j
* lst_per_page
);
820 if (!mac_control
->fifos
[i
].list_info
)
822 if (!mac_control
->fifos
[i
].list_info
[mem_blks
].
825 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
826 mac_control
->fifos
[i
].
829 mac_control
->fifos
[i
].
832 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
835 /* If we got a zero DMA address during allocation,
838 if (mac_control
->zerodma_virt_addr
) {
839 pci_free_consistent(nic
->pdev
, PAGE_SIZE
,
840 mac_control
->zerodma_virt_addr
,
843 "%s: Freeing TxDL with zero DMA addr. ",
845 DBG_PRINT(INIT_DBG
, "Virtual address %p\n",
846 mac_control
->zerodma_virt_addr
);
847 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
850 kfree(mac_control
->fifos
[i
].list_info
);
851 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
852 (nic
->config
.tx_cfg
[i
].fifo_len
*sizeof(struct list_info_hold
));
855 size
= SIZE_OF_BLOCK
;
856 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
857 blk_cnt
= mac_control
->rings
[i
].block_count
;
858 for (j
= 0; j
< blk_cnt
; j
++) {
859 tmp_v_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
861 tmp_p_addr
= mac_control
->rings
[i
].rx_blocks
[j
].
863 if (tmp_v_addr
== NULL
)
865 pci_free_consistent(nic
->pdev
, size
,
866 tmp_v_addr
, tmp_p_addr
);
867 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= size
;
868 kfree(mac_control
->rings
[i
].rx_blocks
[j
].rxds
);
869 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
870 ( sizeof(struct rxd_info
)* rxd_count
[nic
->rxd_mode
]);
874 if (nic
->rxd_mode
== RXD_MODE_3B
) {
875 /* Freeing buffer storage addresses in 2BUFF mode. */
876 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
877 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
878 (rxd_count
[nic
->rxd_mode
] + 1);
879 for (j
= 0; j
< blk_cnt
; j
++) {
881 if (!mac_control
->rings
[i
].ba
[j
])
883 while (k
!= rxd_count
[nic
->rxd_mode
]) {
885 &mac_control
->rings
[i
].ba
[j
][k
];
887 nic
->mac_control
.stats_info
->sw_stat
.\
888 mem_freed
+= (BUF0_LEN
+ ALIGN_SIZE
);
890 nic
->mac_control
.stats_info
->sw_stat
.\
891 mem_freed
+= (BUF1_LEN
+ ALIGN_SIZE
);
894 kfree(mac_control
->rings
[i
].ba
[j
]);
895 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= (sizeof(struct buffAdd
) *
896 (rxd_count
[nic
->rxd_mode
] + 1));
898 kfree(mac_control
->rings
[i
].ba
);
899 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
900 (sizeof(struct buffAdd
*) * blk_cnt
);
904 if (mac_control
->stats_mem
) {
905 pci_free_consistent(nic
->pdev
,
906 mac_control
->stats_mem_sz
,
907 mac_control
->stats_mem
,
908 mac_control
->stats_mem_phy
);
909 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+=
910 mac_control
->stats_mem_sz
;
912 if (nic
->ufo_in_band_v
) {
913 kfree(nic
->ufo_in_band_v
);
914 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
915 += (ufo_size
* sizeof(u64
));
920 * s2io_verify_pci_mode -
923 static int s2io_verify_pci_mode(struct s2io_nic
*nic
)
925 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
926 register u64 val64
= 0;
929 val64
= readq(&bar0
->pci_mode
);
930 mode
= (u8
)GET_PCI_MODE(val64
);
932 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
933 return -1; /* Unknown PCI mode */
937 #define NEC_VENID 0x1033
938 #define NEC_DEVID 0x0125
939 static int s2io_on_nec_bridge(struct pci_dev
*s2io_pdev
)
941 struct pci_dev
*tdev
= NULL
;
942 while ((tdev
= pci_get_device(PCI_ANY_ID
, PCI_ANY_ID
, tdev
)) != NULL
) {
943 if (tdev
->vendor
== NEC_VENID
&& tdev
->device
== NEC_DEVID
) {
944 if (tdev
->bus
== s2io_pdev
->bus
->parent
)
952 static int bus_speed
[8] = {33, 133, 133, 200, 266, 133, 200, 266};
954 * s2io_print_pci_mode -
956 static int s2io_print_pci_mode(struct s2io_nic
*nic
)
958 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
959 register u64 val64
= 0;
961 struct config_param
*config
= &nic
->config
;
963 val64
= readq(&bar0
->pci_mode
);
964 mode
= (u8
)GET_PCI_MODE(val64
);
966 if ( val64
& PCI_MODE_UNKNOWN_MODE
)
967 return -1; /* Unknown PCI mode */
969 config
->bus_speed
= bus_speed
[mode
];
971 if (s2io_on_nec_bridge(nic
->pdev
)) {
972 DBG_PRINT(ERR_DBG
, "%s: Device is on PCI-E bus\n",
977 if (val64
& PCI_MODE_32_BITS
) {
978 DBG_PRINT(ERR_DBG
, "%s: Device is on 32 bit ", nic
->dev
->name
);
980 DBG_PRINT(ERR_DBG
, "%s: Device is on 64 bit ", nic
->dev
->name
);
984 case PCI_MODE_PCI_33
:
985 DBG_PRINT(ERR_DBG
, "33MHz PCI bus\n");
987 case PCI_MODE_PCI_66
:
988 DBG_PRINT(ERR_DBG
, "66MHz PCI bus\n");
990 case PCI_MODE_PCIX_M1_66
:
991 DBG_PRINT(ERR_DBG
, "66MHz PCIX(M1) bus\n");
993 case PCI_MODE_PCIX_M1_100
:
994 DBG_PRINT(ERR_DBG
, "100MHz PCIX(M1) bus\n");
996 case PCI_MODE_PCIX_M1_133
:
997 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M1) bus\n");
999 case PCI_MODE_PCIX_M2_66
:
1000 DBG_PRINT(ERR_DBG
, "133MHz PCIX(M2) bus\n");
1002 case PCI_MODE_PCIX_M2_100
:
1003 DBG_PRINT(ERR_DBG
, "200MHz PCIX(M2) bus\n");
1005 case PCI_MODE_PCIX_M2_133
:
1006 DBG_PRINT(ERR_DBG
, "266MHz PCIX(M2) bus\n");
1009 return -1; /* Unsupported bus speed */
1016 * init_nic - Initialization of hardware
1017 * @nic: device peivate variable
1018 * Description: The function sequentially configures every block
1019 * of the H/W from their reset values.
1020 * Return Value: SUCCESS on success and
1021 * '-1' on failure (endian settings incorrect).
1024 static int init_nic(struct s2io_nic
*nic
)
1026 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1027 struct net_device
*dev
= nic
->dev
;
1028 register u64 val64
= 0;
1032 struct mac_info
*mac_control
;
1033 struct config_param
*config
;
1035 unsigned long long mem_share
;
1038 mac_control
= &nic
->mac_control
;
1039 config
= &nic
->config
;
1041 /* to set the swapper controle on the card */
1042 if(s2io_set_swapper(nic
)) {
1043 DBG_PRINT(ERR_DBG
,"ERROR: Setting Swapper failed\n");
1048 * Herc requires EOI to be removed from reset before XGXS, so..
1050 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1051 val64
= 0xA500000000ULL
;
1052 writeq(val64
, &bar0
->sw_reset
);
1054 val64
= readq(&bar0
->sw_reset
);
1057 /* Remove XGXS from reset state */
1059 writeq(val64
, &bar0
->sw_reset
);
1061 val64
= readq(&bar0
->sw_reset
);
1063 /* Enable Receiving broadcasts */
1064 add
= &bar0
->mac_cfg
;
1065 val64
= readq(&bar0
->mac_cfg
);
1066 val64
|= MAC_RMAC_BCAST_ENABLE
;
1067 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1068 writel((u32
) val64
, add
);
1069 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1070 writel((u32
) (val64
>> 32), (add
+ 4));
1072 /* Read registers in all blocks */
1073 val64
= readq(&bar0
->mac_int_mask
);
1074 val64
= readq(&bar0
->mc_int_mask
);
1075 val64
= readq(&bar0
->xgxs_int_mask
);
1079 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
1081 if (nic
->device_type
& XFRAME_II_DEVICE
) {
1082 while (herc_act_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1083 SPECIAL_REG_WRITE(herc_act_dtx_cfg
[dtx_cnt
],
1084 &bar0
->dtx_control
, UF
);
1086 msleep(1); /* Necessary!! */
1090 while (xena_dtx_cfg
[dtx_cnt
] != END_SIGN
) {
1091 SPECIAL_REG_WRITE(xena_dtx_cfg
[dtx_cnt
],
1092 &bar0
->dtx_control
, UF
);
1093 val64
= readq(&bar0
->dtx_control
);
1098 /* Tx DMA Initialization */
1100 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1101 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1102 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1103 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1106 for (i
= 0, j
= 0; i
< config
->tx_fifo_num
; i
++) {
1108 vBIT(config
->tx_cfg
[i
].fifo_len
- 1, ((i
* 32) + 19),
1109 13) | vBIT(config
->tx_cfg
[i
].fifo_priority
,
1112 if (i
== (config
->tx_fifo_num
- 1)) {
1119 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1123 writeq(val64
, &bar0
->tx_fifo_partition_1
);
1127 writeq(val64
, &bar0
->tx_fifo_partition_2
);
1131 writeq(val64
, &bar0
->tx_fifo_partition_3
);
1137 * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1138 * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1140 if ((nic
->device_type
== XFRAME_I_DEVICE
) &&
1141 (nic
->pdev
->revision
< 4))
1142 writeq(PCC_ENABLE_FOUR
, &bar0
->pcc_enable
);
1144 val64
= readq(&bar0
->tx_fifo_partition_0
);
1145 DBG_PRINT(INIT_DBG
, "Fifo partition at: 0x%p is: 0x%llx\n",
1146 &bar0
->tx_fifo_partition_0
, (unsigned long long) val64
);
1149 * Initialization of Tx_PA_CONFIG register to ignore packet
1150 * integrity checking.
1152 val64
= readq(&bar0
->tx_pa_cfg
);
1153 val64
|= TX_PA_CFG_IGNORE_FRM_ERR
| TX_PA_CFG_IGNORE_SNAP_OUI
|
1154 TX_PA_CFG_IGNORE_LLC_CTRL
| TX_PA_CFG_IGNORE_L2_ERR
;
1155 writeq(val64
, &bar0
->tx_pa_cfg
);
1157 /* Rx DMA intialization. */
1159 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1161 vBIT(config
->rx_cfg
[i
].ring_priority
, (5 + (i
* 8)),
1164 writeq(val64
, &bar0
->rx_queue_priority
);
1167 * Allocating equal share of memory to all the
1171 if (nic
->device_type
& XFRAME_II_DEVICE
)
1176 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1179 mem_share
= (mem_size
/ config
->rx_ring_num
+
1180 mem_size
% config
->rx_ring_num
);
1181 val64
|= RX_QUEUE_CFG_Q0_SZ(mem_share
);
1184 mem_share
= (mem_size
/ config
->rx_ring_num
);
1185 val64
|= RX_QUEUE_CFG_Q1_SZ(mem_share
);
1188 mem_share
= (mem_size
/ config
->rx_ring_num
);
1189 val64
|= RX_QUEUE_CFG_Q2_SZ(mem_share
);
1192 mem_share
= (mem_size
/ config
->rx_ring_num
);
1193 val64
|= RX_QUEUE_CFG_Q3_SZ(mem_share
);
1196 mem_share
= (mem_size
/ config
->rx_ring_num
);
1197 val64
|= RX_QUEUE_CFG_Q4_SZ(mem_share
);
1200 mem_share
= (mem_size
/ config
->rx_ring_num
);
1201 val64
|= RX_QUEUE_CFG_Q5_SZ(mem_share
);
1204 mem_share
= (mem_size
/ config
->rx_ring_num
);
1205 val64
|= RX_QUEUE_CFG_Q6_SZ(mem_share
);
1208 mem_share
= (mem_size
/ config
->rx_ring_num
);
1209 val64
|= RX_QUEUE_CFG_Q7_SZ(mem_share
);
1213 writeq(val64
, &bar0
->rx_queue_cfg
);
1216 * Filling Tx round robin registers
1217 * as per the number of FIFOs
1219 switch (config
->tx_fifo_num
) {
1221 val64
= 0x0000000000000000ULL
;
1222 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1223 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1224 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1225 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1226 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1229 val64
= 0x0000010000010000ULL
;
1230 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1231 val64
= 0x0100000100000100ULL
;
1232 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1233 val64
= 0x0001000001000001ULL
;
1234 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1235 val64
= 0x0000010000010000ULL
;
1236 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1237 val64
= 0x0100000000000000ULL
;
1238 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1241 val64
= 0x0001000102000001ULL
;
1242 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1243 val64
= 0x0001020000010001ULL
;
1244 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1245 val64
= 0x0200000100010200ULL
;
1246 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1247 val64
= 0x0001000102000001ULL
;
1248 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1249 val64
= 0x0001020000000000ULL
;
1250 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1253 val64
= 0x0001020300010200ULL
;
1254 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1255 val64
= 0x0100000102030001ULL
;
1256 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1257 val64
= 0x0200010000010203ULL
;
1258 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1259 val64
= 0x0001020001000001ULL
;
1260 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1261 val64
= 0x0203000100000000ULL
;
1262 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1265 val64
= 0x0001000203000102ULL
;
1266 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1267 val64
= 0x0001020001030004ULL
;
1268 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1269 val64
= 0x0001000203000102ULL
;
1270 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1271 val64
= 0x0001020001030004ULL
;
1272 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1273 val64
= 0x0001000000000000ULL
;
1274 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1277 val64
= 0x0001020304000102ULL
;
1278 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1279 val64
= 0x0304050001020001ULL
;
1280 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1281 val64
= 0x0203000100000102ULL
;
1282 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1283 val64
= 0x0304000102030405ULL
;
1284 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1285 val64
= 0x0001000200000000ULL
;
1286 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1289 val64
= 0x0001020001020300ULL
;
1290 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1291 val64
= 0x0102030400010203ULL
;
1292 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1293 val64
= 0x0405060001020001ULL
;
1294 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1295 val64
= 0x0304050000010200ULL
;
1296 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1297 val64
= 0x0102030000000000ULL
;
1298 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1301 val64
= 0x0001020300040105ULL
;
1302 writeq(val64
, &bar0
->tx_w_round_robin_0
);
1303 val64
= 0x0200030106000204ULL
;
1304 writeq(val64
, &bar0
->tx_w_round_robin_1
);
1305 val64
= 0x0103000502010007ULL
;
1306 writeq(val64
, &bar0
->tx_w_round_robin_2
);
1307 val64
= 0x0304010002060500ULL
;
1308 writeq(val64
, &bar0
->tx_w_round_robin_3
);
1309 val64
= 0x0103020400000000ULL
;
1310 writeq(val64
, &bar0
->tx_w_round_robin_4
);
1314 /* Enable all configured Tx FIFO partitions */
1315 val64
= readq(&bar0
->tx_fifo_partition_0
);
1316 val64
|= (TX_FIFO_PARTITION_EN
);
1317 writeq(val64
, &bar0
->tx_fifo_partition_0
);
1319 /* Filling the Rx round robin registers as per the
1320 * number of Rings and steering based on QoS.
1322 switch (config
->rx_ring_num
) {
1324 val64
= 0x8080808080808080ULL
;
1325 writeq(val64
, &bar0
->rts_qos_steering
);
1328 val64
= 0x0000010000010000ULL
;
1329 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1330 val64
= 0x0100000100000100ULL
;
1331 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1332 val64
= 0x0001000001000001ULL
;
1333 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1334 val64
= 0x0000010000010000ULL
;
1335 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1336 val64
= 0x0100000000000000ULL
;
1337 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1339 val64
= 0x8080808040404040ULL
;
1340 writeq(val64
, &bar0
->rts_qos_steering
);
1343 val64
= 0x0001000102000001ULL
;
1344 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1345 val64
= 0x0001020000010001ULL
;
1346 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1347 val64
= 0x0200000100010200ULL
;
1348 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1349 val64
= 0x0001000102000001ULL
;
1350 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1351 val64
= 0x0001020000000000ULL
;
1352 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1354 val64
= 0x8080804040402020ULL
;
1355 writeq(val64
, &bar0
->rts_qos_steering
);
1358 val64
= 0x0001020300010200ULL
;
1359 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1360 val64
= 0x0100000102030001ULL
;
1361 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1362 val64
= 0x0200010000010203ULL
;
1363 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1364 val64
= 0x0001020001000001ULL
;
1365 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1366 val64
= 0x0203000100000000ULL
;
1367 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1369 val64
= 0x8080404020201010ULL
;
1370 writeq(val64
, &bar0
->rts_qos_steering
);
1373 val64
= 0x0001000203000102ULL
;
1374 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1375 val64
= 0x0001020001030004ULL
;
1376 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1377 val64
= 0x0001000203000102ULL
;
1378 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1379 val64
= 0x0001020001030004ULL
;
1380 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1381 val64
= 0x0001000000000000ULL
;
1382 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1384 val64
= 0x8080404020201008ULL
;
1385 writeq(val64
, &bar0
->rts_qos_steering
);
1388 val64
= 0x0001020304000102ULL
;
1389 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1390 val64
= 0x0304050001020001ULL
;
1391 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1392 val64
= 0x0203000100000102ULL
;
1393 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1394 val64
= 0x0304000102030405ULL
;
1395 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1396 val64
= 0x0001000200000000ULL
;
1397 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1399 val64
= 0x8080404020100804ULL
;
1400 writeq(val64
, &bar0
->rts_qos_steering
);
1403 val64
= 0x0001020001020300ULL
;
1404 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1405 val64
= 0x0102030400010203ULL
;
1406 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1407 val64
= 0x0405060001020001ULL
;
1408 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1409 val64
= 0x0304050000010200ULL
;
1410 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1411 val64
= 0x0102030000000000ULL
;
1412 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1414 val64
= 0x8080402010080402ULL
;
1415 writeq(val64
, &bar0
->rts_qos_steering
);
1418 val64
= 0x0001020300040105ULL
;
1419 writeq(val64
, &bar0
->rx_w_round_robin_0
);
1420 val64
= 0x0200030106000204ULL
;
1421 writeq(val64
, &bar0
->rx_w_round_robin_1
);
1422 val64
= 0x0103000502010007ULL
;
1423 writeq(val64
, &bar0
->rx_w_round_robin_2
);
1424 val64
= 0x0304010002060500ULL
;
1425 writeq(val64
, &bar0
->rx_w_round_robin_3
);
1426 val64
= 0x0103020400000000ULL
;
1427 writeq(val64
, &bar0
->rx_w_round_robin_4
);
1429 val64
= 0x8040201008040201ULL
;
1430 writeq(val64
, &bar0
->rts_qos_steering
);
1436 for (i
= 0; i
< 8; i
++)
1437 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1439 /* Set the default rts frame length for the rings configured */
1440 val64
= MAC_RTS_FRM_LEN_SET(dev
->mtu
+22);
1441 for (i
= 0 ; i
< config
->rx_ring_num
; i
++)
1442 writeq(val64
, &bar0
->rts_frm_len_n
[i
]);
1444 /* Set the frame length for the configured rings
1445 * desired by the user
1447 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1448 /* If rts_frm_len[i] == 0 then it is assumed that user not
1449 * specified frame length steering.
1450 * If the user provides the frame length then program
1451 * the rts_frm_len register for those values or else
1452 * leave it as it is.
1454 if (rts_frm_len
[i
] != 0) {
1455 writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len
[i
]),
1456 &bar0
->rts_frm_len_n
[i
]);
1460 /* Disable differentiated services steering logic */
1461 for (i
= 0; i
< 64; i
++) {
1462 if (rts_ds_steer(nic
, i
, 0) == FAILURE
) {
1463 DBG_PRINT(ERR_DBG
, "%s: failed rts ds steering",
1465 DBG_PRINT(ERR_DBG
, "set on codepoint %d\n", i
);
1470 /* Program statistics memory */
1471 writeq(mac_control
->stats_mem_phy
, &bar0
->stat_addr
);
1473 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1474 val64
= STAT_BC(0x320);
1475 writeq(val64
, &bar0
->stat_byte_cnt
);
1479 * Initializing the sampling rate for the device to calculate the
1480 * bandwidth utilization.
1482 val64
= MAC_TX_LINK_UTIL_VAL(tmac_util_period
) |
1483 MAC_RX_LINK_UTIL_VAL(rmac_util_period
);
1484 writeq(val64
, &bar0
->mac_link_util
);
1488 * Initializing the Transmit and Receive Traffic Interrupt
1492 * TTI Initialization. Default Tx timer gets us about
1493 * 250 interrupts per sec. Continuous interrupts are enabled
1496 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1497 int count
= (nic
->config
.bus_speed
* 125)/2;
1498 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(count
);
1501 val64
= TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1503 val64
|= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1504 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1505 TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN
;
1506 if (use_continuous_tx_intrs
)
1507 val64
|= TTI_DATA1_MEM_TX_TIMER_CI_EN
;
1508 writeq(val64
, &bar0
->tti_data1_mem
);
1510 val64
= TTI_DATA2_MEM_TX_UFC_A(0x10) |
1511 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1512 TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80);
1513 writeq(val64
, &bar0
->tti_data2_mem
);
1515 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1516 writeq(val64
, &bar0
->tti_command_mem
);
1519 * Once the operation completes, the Strobe bit of the command
1520 * register will be reset. We poll for this particular condition
1521 * We wait for a maximum of 500ms for the operation to complete,
1522 * if it's not complete by then we return error.
1526 val64
= readq(&bar0
->tti_command_mem
);
1527 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1531 DBG_PRINT(ERR_DBG
, "%s: TTI init Failed\n",
1539 if (nic
->config
.bimodal
) {
1541 for (k
= 0; k
< config
->rx_ring_num
; k
++) {
1542 val64
= TTI_CMD_MEM_WE
| TTI_CMD_MEM_STROBE_NEW_CMD
;
1543 val64
|= TTI_CMD_MEM_OFFSET(0x38+k
);
1544 writeq(val64
, &bar0
->tti_command_mem
);
1547 * Once the operation completes, the Strobe bit of the command
1548 * register will be reset. We poll for this particular condition
1549 * We wait for a maximum of 500ms for the operation to complete,
1550 * if it's not complete by then we return error.
1554 val64
= readq(&bar0
->tti_command_mem
);
1555 if (!(val64
& TTI_CMD_MEM_STROBE_NEW_CMD
)) {
1560 "%s: TTI init Failed\n",
1570 /* RTI Initialization */
1571 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1573 * Programmed to generate Apprx 500 Intrs per
1576 int count
= (nic
->config
.bus_speed
* 125)/4;
1577 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(count
);
1579 val64
= RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1581 val64
|= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1582 RTI_DATA1_MEM_RX_URNG_B(0x10) |
1583 RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN
;
1585 writeq(val64
, &bar0
->rti_data1_mem
);
1587 val64
= RTI_DATA2_MEM_RX_UFC_A(0x1) |
1588 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1589 if (nic
->intr_type
== MSI_X
)
1590 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1591 RTI_DATA2_MEM_RX_UFC_D(0x40));
1593 val64
|= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1594 RTI_DATA2_MEM_RX_UFC_D(0x80));
1595 writeq(val64
, &bar0
->rti_data2_mem
);
1597 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
1598 val64
= RTI_CMD_MEM_WE
| RTI_CMD_MEM_STROBE_NEW_CMD
1599 | RTI_CMD_MEM_OFFSET(i
);
1600 writeq(val64
, &bar0
->rti_command_mem
);
1603 * Once the operation completes, the Strobe bit of the
1604 * command register will be reset. We poll for this
1605 * particular condition. We wait for a maximum of 500ms
1606 * for the operation to complete, if it's not complete
1607 * by then we return error.
1611 val64
= readq(&bar0
->rti_command_mem
);
1612 if (!(val64
& RTI_CMD_MEM_STROBE_NEW_CMD
)) {
1616 DBG_PRINT(ERR_DBG
, "%s: RTI init Failed\n",
1627 * Initializing proper values as Pause threshold into all
1628 * the 8 Queues on Rx side.
1630 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q0q3
);
1631 writeq(0xffbbffbbffbbffbbULL
, &bar0
->mc_pause_thresh_q4q7
);
1633 /* Disable RMAC PAD STRIPPING */
1634 add
= &bar0
->mac_cfg
;
1635 val64
= readq(&bar0
->mac_cfg
);
1636 val64
&= ~(MAC_CFG_RMAC_STRIP_PAD
);
1637 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1638 writel((u32
) (val64
), add
);
1639 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1640 writel((u32
) (val64
>> 32), (add
+ 4));
1641 val64
= readq(&bar0
->mac_cfg
);
1643 /* Enable FCS stripping by adapter */
1644 add
= &bar0
->mac_cfg
;
1645 val64
= readq(&bar0
->mac_cfg
);
1646 val64
|= MAC_CFG_RMAC_STRIP_FCS
;
1647 if (nic
->device_type
== XFRAME_II_DEVICE
)
1648 writeq(val64
, &bar0
->mac_cfg
);
1650 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1651 writel((u32
) (val64
), add
);
1652 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
1653 writel((u32
) (val64
>> 32), (add
+ 4));
1657 * Set the time value to be inserted in the pause frame
1658 * generated by xena.
1660 val64
= readq(&bar0
->rmac_pause_cfg
);
1661 val64
&= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1662 val64
|= RMAC_PAUSE_HG_PTIME(nic
->mac_control
.rmac_pause_time
);
1663 writeq(val64
, &bar0
->rmac_pause_cfg
);
1666 * Set the Threshold Limit for Generating the pause frame
1667 * If the amount of data in any Queue exceeds ratio of
1668 * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1669 * pause frame is generated
1672 for (i
= 0; i
< 4; i
++) {
1674 (((u64
) 0xFF00 | nic
->mac_control
.
1675 mc_pause_threshold_q0q3
)
1678 writeq(val64
, &bar0
->mc_pause_thresh_q0q3
);
1681 for (i
= 0; i
< 4; i
++) {
1683 (((u64
) 0xFF00 | nic
->mac_control
.
1684 mc_pause_threshold_q4q7
)
1687 writeq(val64
, &bar0
->mc_pause_thresh_q4q7
);
1690 * TxDMA will stop Read request if the number of read split has
1691 * exceeded the limit pointed by shared_splits
1693 val64
= readq(&bar0
->pic_control
);
1694 val64
|= PIC_CNTL_SHARED_SPLITS(shared_splits
);
1695 writeq(val64
, &bar0
->pic_control
);
1697 if (nic
->config
.bus_speed
== 266) {
1698 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN
, &bar0
->txreqtimeout
);
1699 writeq(0x0, &bar0
->read_retry_delay
);
1700 writeq(0x0, &bar0
->write_retry_delay
);
1704 * Programming the Herc to split every write transaction
1705 * that does not start on an ADB to reduce disconnects.
1707 if (nic
->device_type
== XFRAME_II_DEVICE
) {
1708 val64
= FAULT_BEHAVIOUR
| EXT_REQ_EN
|
1709 MISC_LINK_STABILITY_PRD(3);
1710 writeq(val64
, &bar0
->misc_control
);
1711 val64
= readq(&bar0
->pic_control2
);
1712 val64
&= ~(BIT(13)|BIT(14)|BIT(15));
1713 writeq(val64
, &bar0
->pic_control2
);
1715 if (strstr(nic
->product_name
, "CX4")) {
1716 val64
= TMAC_AVG_IPG(0x17);
1717 writeq(val64
, &bar0
->tmac_avg_ipg
);
1722 #define LINK_UP_DOWN_INTERRUPT 1
1723 #define MAC_RMAC_ERR_TIMER 2
1725 static int s2io_link_fault_indication(struct s2io_nic
*nic
)
1727 if (nic
->intr_type
!= INTA
)
1728 return MAC_RMAC_ERR_TIMER
;
1729 if (nic
->device_type
== XFRAME_II_DEVICE
)
1730 return LINK_UP_DOWN_INTERRUPT
;
1732 return MAC_RMAC_ERR_TIMER
;
1736 * en_dis_able_nic_intrs - Enable or Disable the interrupts
1737 * @nic: device private variable,
1738 * @mask: A mask indicating which Intr block must be modified and,
1739 * @flag: A flag indicating whether to enable or disable the Intrs.
1740 * Description: This function will either disable or enable the interrupts
1741 * depending on the flag argument. The mask argument can be used to
1742 * enable/disable any Intr block.
1743 * Return Value: NONE.
1746 static void en_dis_able_nic_intrs(struct s2io_nic
*nic
, u16 mask
, int flag
)
1748 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
1749 register u64 val64
= 0, temp64
= 0;
1751 /* Top level interrupt classification */
1752 /* PIC Interrupts */
1753 if ((mask
& (TX_PIC_INTR
| RX_PIC_INTR
))) {
1754 /* Enable PIC Intrs in the general intr mask register */
1755 val64
= TXPIC_INT_M
;
1756 if (flag
== ENABLE_INTRS
) {
1757 temp64
= readq(&bar0
->general_int_mask
);
1758 temp64
&= ~((u64
) val64
);
1759 writeq(temp64
, &bar0
->general_int_mask
);
1761 * If Hercules adapter enable GPIO otherwise
1762 * disable all PCIX, Flash, MDIO, IIC and GPIO
1763 * interrupts for now.
1766 if (s2io_link_fault_indication(nic
) ==
1767 LINK_UP_DOWN_INTERRUPT
) {
1768 temp64
= readq(&bar0
->pic_int_mask
);
1769 temp64
&= ~((u64
) PIC_INT_GPIO
);
1770 writeq(temp64
, &bar0
->pic_int_mask
);
1771 temp64
= readq(&bar0
->gpio_int_mask
);
1772 temp64
&= ~((u64
) GPIO_INT_MASK_LINK_UP
);
1773 writeq(temp64
, &bar0
->gpio_int_mask
);
1775 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1778 * No MSI Support is available presently, so TTI and
1779 * RTI interrupts are also disabled.
1781 } else if (flag
== DISABLE_INTRS
) {
1783 * Disable PIC Intrs in the general
1784 * intr mask register
1786 writeq(DISABLE_ALL_INTRS
, &bar0
->pic_int_mask
);
1787 temp64
= readq(&bar0
->general_int_mask
);
1789 writeq(val64
, &bar0
->general_int_mask
);
1793 /* MAC Interrupts */
1794 /* Enabling/Disabling MAC interrupts */
1795 if (mask
& (TX_MAC_INTR
| RX_MAC_INTR
)) {
1796 val64
= TXMAC_INT_M
| RXMAC_INT_M
;
1797 if (flag
== ENABLE_INTRS
) {
1798 temp64
= readq(&bar0
->general_int_mask
);
1799 temp64
&= ~((u64
) val64
);
1800 writeq(temp64
, &bar0
->general_int_mask
);
1802 * All MAC block error interrupts are disabled for now
1805 } else if (flag
== DISABLE_INTRS
) {
1807 * Disable MAC Intrs in the general intr mask register
1809 writeq(DISABLE_ALL_INTRS
, &bar0
->mac_int_mask
);
1810 writeq(DISABLE_ALL_INTRS
,
1811 &bar0
->mac_rmac_err_mask
);
1813 temp64
= readq(&bar0
->general_int_mask
);
1815 writeq(val64
, &bar0
->general_int_mask
);
1819 /* Tx traffic interrupts */
1820 if (mask
& TX_TRAFFIC_INTR
) {
1821 val64
= TXTRAFFIC_INT_M
;
1822 if (flag
== ENABLE_INTRS
) {
1823 temp64
= readq(&bar0
->general_int_mask
);
1824 temp64
&= ~((u64
) val64
);
1825 writeq(temp64
, &bar0
->general_int_mask
);
1827 * Enable all the Tx side interrupts
1828 * writing 0 Enables all 64 TX interrupt levels
1830 writeq(0x0, &bar0
->tx_traffic_mask
);
1831 } else if (flag
== DISABLE_INTRS
) {
1833 * Disable Tx Traffic Intrs in the general intr mask
1836 writeq(DISABLE_ALL_INTRS
, &bar0
->tx_traffic_mask
);
1837 temp64
= readq(&bar0
->general_int_mask
);
1839 writeq(val64
, &bar0
->general_int_mask
);
1843 /* Rx traffic interrupts */
1844 if (mask
& RX_TRAFFIC_INTR
) {
1845 val64
= RXTRAFFIC_INT_M
;
1846 if (flag
== ENABLE_INTRS
) {
1847 temp64
= readq(&bar0
->general_int_mask
);
1848 temp64
&= ~((u64
) val64
);
1849 writeq(temp64
, &bar0
->general_int_mask
);
1850 /* writing 0 Enables all 8 RX interrupt levels */
1851 writeq(0x0, &bar0
->rx_traffic_mask
);
1852 } else if (flag
== DISABLE_INTRS
) {
1854 * Disable Rx Traffic Intrs in the general intr mask
1857 writeq(DISABLE_ALL_INTRS
, &bar0
->rx_traffic_mask
);
1858 temp64
= readq(&bar0
->general_int_mask
);
1860 writeq(val64
, &bar0
->general_int_mask
);
1866 * verify_pcc_quiescent- Checks for PCC quiescent state
1867 * Return: 1 If PCC is quiescence
1868 * 0 If PCC is not quiescence
1870 static int verify_pcc_quiescent(struct s2io_nic
*sp
, int flag
)
1873 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1874 u64 val64
= readq(&bar0
->adapter_status
);
1876 herc
= (sp
->device_type
== XFRAME_II_DEVICE
);
1878 if (flag
== FALSE
) {
1879 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
1880 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
))
1883 if (!(val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1887 if ((!herc
&& (sp
->pdev
->revision
>= 4)) || herc
) {
1888 if (((val64
& ADAPTER_STATUS_RMAC_PCC_IDLE
) ==
1889 ADAPTER_STATUS_RMAC_PCC_IDLE
))
1892 if (((val64
& ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
) ==
1893 ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE
))
1901 * verify_xena_quiescence - Checks whether the H/W is ready
1902 * Description: Returns whether the H/W is ready to go or not. Depending
1903 * on whether adapter enable bit was written or not the comparison
1904 * differs and the calling function passes the input argument flag to
1906 * Return: 1 If xena is quiescence
1907 * 0 If Xena is not quiescence
1910 static int verify_xena_quiescence(struct s2io_nic
*sp
)
1913 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1914 u64 val64
= readq(&bar0
->adapter_status
);
1915 mode
= s2io_verify_pci_mode(sp
);
1917 if (!(val64
& ADAPTER_STATUS_TDMA_READY
)) {
1918 DBG_PRINT(ERR_DBG
, "%s", "TDMA is not ready!");
1921 if (!(val64
& ADAPTER_STATUS_RDMA_READY
)) {
1922 DBG_PRINT(ERR_DBG
, "%s", "RDMA is not ready!");
1925 if (!(val64
& ADAPTER_STATUS_PFC_READY
)) {
1926 DBG_PRINT(ERR_DBG
, "%s", "PFC is not ready!");
1929 if (!(val64
& ADAPTER_STATUS_TMAC_BUF_EMPTY
)) {
1930 DBG_PRINT(ERR_DBG
, "%s", "TMAC BUF is not empty!");
1933 if (!(val64
& ADAPTER_STATUS_PIC_QUIESCENT
)) {
1934 DBG_PRINT(ERR_DBG
, "%s", "PIC is not QUIESCENT!");
1937 if (!(val64
& ADAPTER_STATUS_MC_DRAM_READY
)) {
1938 DBG_PRINT(ERR_DBG
, "%s", "MC_DRAM is not ready!");
1941 if (!(val64
& ADAPTER_STATUS_MC_QUEUES_READY
)) {
1942 DBG_PRINT(ERR_DBG
, "%s", "MC_QUEUES is not ready!");
1945 if (!(val64
& ADAPTER_STATUS_M_PLL_LOCK
)) {
1946 DBG_PRINT(ERR_DBG
, "%s", "M_PLL is not locked!");
1951 * In PCI 33 mode, the P_PLL is not used, and therefore,
1952 * the the P_PLL_LOCK bit in the adapter_status register will
1955 if (!(val64
& ADAPTER_STATUS_P_PLL_LOCK
) &&
1956 sp
->device_type
== XFRAME_II_DEVICE
&& mode
!=
1958 DBG_PRINT(ERR_DBG
, "%s", "P_PLL is not locked!");
1961 if (!((val64
& ADAPTER_STATUS_RC_PRC_QUIESCENT
) ==
1962 ADAPTER_STATUS_RC_PRC_QUIESCENT
)) {
1963 DBG_PRINT(ERR_DBG
, "%s", "RC_PRC is not QUIESCENT!");
1970 * fix_mac_address - Fix for Mac addr problem on Alpha platforms
1971 * @sp: Pointer to device specifc structure
1973 * New procedure to clear mac address reading problems on Alpha platforms
1977 static void fix_mac_address(struct s2io_nic
* sp
)
1979 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
1983 while (fix_mac
[i
] != END_SIGN
) {
1984 writeq(fix_mac
[i
++], &bar0
->gpio_control
);
1986 val64
= readq(&bar0
->gpio_control
);
1991 * start_nic - Turns the device on
1992 * @nic : device private variable.
1994 * This function actually turns the device on. Before this function is
1995 * called,all Registers are configured from their reset states
1996 * and shared memory is allocated but the NIC is still quiescent. On
1997 * calling this function, the device interrupts are cleared and the NIC is
1998 * literally switched on by writing into the adapter control register.
2000 * SUCCESS on success and -1 on failure.
2003 static int start_nic(struct s2io_nic
*nic
)
2005 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2006 struct net_device
*dev
= nic
->dev
;
2007 register u64 val64
= 0;
2009 struct mac_info
*mac_control
;
2010 struct config_param
*config
;
2012 mac_control
= &nic
->mac_control
;
2013 config
= &nic
->config
;
2015 /* PRC Initialization and configuration */
2016 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2017 writeq((u64
) mac_control
->rings
[i
].rx_blocks
[0].block_dma_addr
,
2018 &bar0
->prc_rxd0_n
[i
]);
2020 val64
= readq(&bar0
->prc_ctrl_n
[i
]);
2021 if (nic
->config
.bimodal
)
2022 val64
|= PRC_CTRL_BIMODAL_INTERRUPT
;
2023 if (nic
->rxd_mode
== RXD_MODE_1
)
2024 val64
|= PRC_CTRL_RC_ENABLED
;
2026 val64
|= PRC_CTRL_RC_ENABLED
| PRC_CTRL_RING_MODE_3
;
2027 if (nic
->device_type
== XFRAME_II_DEVICE
)
2028 val64
|= PRC_CTRL_GROUP_READS
;
2029 val64
&= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2030 val64
|= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2031 writeq(val64
, &bar0
->prc_ctrl_n
[i
]);
2034 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2035 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2036 val64
= readq(&bar0
->rx_pa_cfg
);
2037 val64
|= RX_PA_CFG_IGNORE_L2_ERR
;
2038 writeq(val64
, &bar0
->rx_pa_cfg
);
2041 if (vlan_tag_strip
== 0) {
2042 val64
= readq(&bar0
->rx_pa_cfg
);
2043 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
2044 writeq(val64
, &bar0
->rx_pa_cfg
);
2045 vlan_strip_flag
= 0;
2049 * Enabling MC-RLDRAM. After enabling the device, we timeout
2050 * for around 100ms, which is approximately the time required
2051 * for the device to be ready for operation.
2053 val64
= readq(&bar0
->mc_rldram_mrs
);
2054 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
| MC_RLDRAM_MRS_ENABLE
;
2055 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
2056 val64
= readq(&bar0
->mc_rldram_mrs
);
2058 msleep(100); /* Delay by around 100 ms. */
2060 /* Enabling ECC Protection. */
2061 val64
= readq(&bar0
->adapter_control
);
2062 val64
&= ~ADAPTER_ECC_EN
;
2063 writeq(val64
, &bar0
->adapter_control
);
2066 * Clearing any possible Link state change interrupts that
2067 * could have popped up just before Enabling the card.
2069 val64
= readq(&bar0
->mac_rmac_err_reg
);
2071 writeq(val64
, &bar0
->mac_rmac_err_reg
);
2074 * Verify if the device is ready to be enabled, if so enable
2077 val64
= readq(&bar0
->adapter_status
);
2078 if (!verify_xena_quiescence(nic
)) {
2079 DBG_PRINT(ERR_DBG
, "%s: device is not ready, ", dev
->name
);
2080 DBG_PRINT(ERR_DBG
, "Adapter status reads: 0x%llx\n",
2081 (unsigned long long) val64
);
2086 * With some switches, link might be already up at this point.
2087 * Because of this weird behavior, when we enable laser,
2088 * we may not get link. We need to handle this. We cannot
2089 * figure out which switch is misbehaving. So we are forced to
2090 * make a global change.
2093 /* Enabling Laser. */
2094 val64
= readq(&bar0
->adapter_control
);
2095 val64
|= ADAPTER_EOI_TX_ON
;
2096 writeq(val64
, &bar0
->adapter_control
);
2098 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
2100 * Dont see link state interrupts initally on some switches,
2101 * so directly scheduling the link state task here.
2103 schedule_work(&nic
->set_link_task
);
2105 /* SXE-002: Initialize link and activity LED */
2106 subid
= nic
->pdev
->subsystem_device
;
2107 if (((subid
& 0xFF) >= 0x07) &&
2108 (nic
->device_type
== XFRAME_I_DEVICE
)) {
2109 val64
= readq(&bar0
->gpio_control
);
2110 val64
|= 0x0000800000000000ULL
;
2111 writeq(val64
, &bar0
->gpio_control
);
2112 val64
= 0x0411040400000000ULL
;
2113 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
2119 * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2121 static struct sk_buff
*s2io_txdl_getskb(struct fifo_info
*fifo_data
, struct \
2122 TxD
*txdlp
, int get_off
)
2124 struct s2io_nic
*nic
= fifo_data
->nic
;
2125 struct sk_buff
*skb
;
2130 if (txds
->Host_Control
== (u64
)(long)nic
->ufo_in_band_v
) {
2131 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2132 txds
->Buffer_Pointer
, sizeof(u64
),
2137 skb
= (struct sk_buff
*) ((unsigned long)
2138 txds
->Host_Control
);
2140 memset(txdlp
, 0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2143 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2144 txds
->Buffer_Pointer
,
2145 skb
->len
- skb
->data_len
,
2147 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
2150 for (j
= 0; j
< frg_cnt
; j
++, txds
++) {
2151 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[j
];
2152 if (!txds
->Buffer_Pointer
)
2154 pci_unmap_page(nic
->pdev
, (dma_addr_t
)
2155 txds
->Buffer_Pointer
,
2156 frag
->size
, PCI_DMA_TODEVICE
);
2159 memset(txdlp
,0, (sizeof(struct TxD
) * fifo_data
->max_txds
));
2164 * free_tx_buffers - Free all queued Tx buffers
2165 * @nic : device private variable.
2167 * Free all queued Tx buffers.
2168 * Return Value: void
2171 static void free_tx_buffers(struct s2io_nic
*nic
)
2173 struct net_device
*dev
= nic
->dev
;
2174 struct sk_buff
*skb
;
2177 struct mac_info
*mac_control
;
2178 struct config_param
*config
;
2181 mac_control
= &nic
->mac_control
;
2182 config
= &nic
->config
;
2184 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
2185 for (j
= 0; j
< config
->tx_cfg
[i
].fifo_len
- 1; j
++) {
2186 txdp
= (struct TxD
*) \
2187 mac_control
->fifos
[i
].list_info
[j
].list_virt_addr
;
2188 skb
= s2io_txdl_getskb(&mac_control
->fifos
[i
], txdp
, j
);
2190 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
2197 "%s:forcibly freeing %d skbs on FIFO%d\n",
2199 mac_control
->fifos
[i
].tx_curr_get_info
.offset
= 0;
2200 mac_control
->fifos
[i
].tx_curr_put_info
.offset
= 0;
2205 * stop_nic - To stop the nic
2206 * @nic ; device private variable.
2208 * This function does exactly the opposite of what the start_nic()
2209 * function does. This function is called to stop the device.
2214 static void stop_nic(struct s2io_nic
*nic
)
2216 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2217 register u64 val64
= 0;
2219 struct mac_info
*mac_control
;
2220 struct config_param
*config
;
2222 mac_control
= &nic
->mac_control
;
2223 config
= &nic
->config
;
2225 /* Disable all interrupts */
2226 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
2227 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
2228 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
2229 en_dis_able_nic_intrs(nic
, interruptible
, DISABLE_INTRS
);
2231 /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2232 val64
= readq(&bar0
->adapter_control
);
2233 val64
&= ~(ADAPTER_CNTL_EN
);
2234 writeq(val64
, &bar0
->adapter_control
);
2238 * fill_rx_buffers - Allocates the Rx side skbs
2239 * @nic: device private variable
2240 * @ring_no: ring number
2242 * The function allocates Rx side skbs and puts the physical
2243 * address of these buffers into the RxD buffer pointers, so that the NIC
2244 * can DMA the received frame into these locations.
2245 * The NIC supports 3 receive modes, viz
2247 * 2. three buffer and
2248 * 3. Five buffer modes.
2249 * Each mode defines how many fragments the received frame will be split
2250 * up into by the NIC. The frame is split into L3 header, L4 Header,
2251 * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2252 * is split into 3 fragments. As of now only single buffer mode is
2255 * SUCCESS on success or an appropriate -ve value on failure.
2258 static int fill_rx_buffers(struct s2io_nic
*nic
, int ring_no
)
2260 struct net_device
*dev
= nic
->dev
;
2261 struct sk_buff
*skb
;
2263 int off
, off1
, size
, block_no
, block_no1
;
2266 struct mac_info
*mac_control
;
2267 struct config_param
*config
;
2270 unsigned long flags
;
2271 struct RxD_t
*first_rxdp
= NULL
;
2272 u64 Buffer0_ptr
= 0, Buffer1_ptr
= 0;
2275 struct swStat
*stats
= &nic
->mac_control
.stats_info
->sw_stat
;
2277 mac_control
= &nic
->mac_control
;
2278 config
= &nic
->config
;
2279 alloc_cnt
= mac_control
->rings
[ring_no
].pkt_cnt
-
2280 atomic_read(&nic
->rx_bufs_left
[ring_no
]);
2282 block_no1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.block_index
;
2283 off1
= mac_control
->rings
[ring_no
].rx_curr_get_info
.offset
;
2284 while (alloc_tab
< alloc_cnt
) {
2285 block_no
= mac_control
->rings
[ring_no
].rx_curr_put_info
.
2287 off
= mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
;
2289 rxdp
= mac_control
->rings
[ring_no
].
2290 rx_blocks
[block_no
].rxds
[off
].virt_addr
;
2292 if ((block_no
== block_no1
) && (off
== off1
) &&
2293 (rxdp
->Host_Control
)) {
2294 DBG_PRINT(INTR_DBG
, "%s: Get and Put",
2296 DBG_PRINT(INTR_DBG
, " info equated\n");
2299 if (off
&& (off
== rxd_count
[nic
->rxd_mode
])) {
2300 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2302 if (mac_control
->rings
[ring_no
].rx_curr_put_info
.
2303 block_index
== mac_control
->rings
[ring_no
].
2305 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2307 block_no
= mac_control
->rings
[ring_no
].
2308 rx_curr_put_info
.block_index
;
2309 if (off
== rxd_count
[nic
->rxd_mode
])
2311 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2313 rxdp
= mac_control
->rings
[ring_no
].
2314 rx_blocks
[block_no
].block_virt_addr
;
2315 DBG_PRINT(INTR_DBG
, "%s: Next block at: %p\n",
2319 spin_lock_irqsave(&nic
->put_lock
, flags
);
2320 mac_control
->rings
[ring_no
].put_pos
=
2321 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2322 spin_unlock_irqrestore(&nic
->put_lock
, flags
);
2324 mac_control
->rings
[ring_no
].put_pos
=
2325 (block_no
* (rxd_count
[nic
->rxd_mode
] + 1)) + off
;
2327 if ((rxdp
->Control_1
& RXD_OWN_XENA
) &&
2328 ((nic
->rxd_mode
== RXD_MODE_3B
) &&
2329 (rxdp
->Control_2
& BIT(0)))) {
2330 mac_control
->rings
[ring_no
].rx_curr_put_info
.
2334 /* calculate size of skb based on ring mode */
2335 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
2336 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
2337 if (nic
->rxd_mode
== RXD_MODE_1
)
2338 size
+= NET_IP_ALIGN
;
2340 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
2343 skb
= dev_alloc_skb(size
);
2345 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
2346 DBG_PRINT(INFO_DBG
, "memory to allocate SKBs\n");
2349 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2351 nic
->mac_control
.stats_info
->sw_stat
. \
2352 mem_alloc_fail_cnt
++;
2355 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
2357 if (nic
->rxd_mode
== RXD_MODE_1
) {
2358 /* 1 buffer mode - normal operation mode */
2359 rxdp1
= (struct RxD1
*)rxdp
;
2360 memset(rxdp
, 0, sizeof(struct RxD1
));
2361 skb_reserve(skb
, NET_IP_ALIGN
);
2362 rxdp1
->Buffer0_ptr
= pci_map_single
2363 (nic
->pdev
, skb
->data
, size
- NET_IP_ALIGN
,
2364 PCI_DMA_FROMDEVICE
);
2365 if( (rxdp1
->Buffer0_ptr
== 0) ||
2366 (rxdp1
->Buffer0_ptr
==
2368 goto pci_map_failed
;
2371 SET_BUFFER0_SIZE_1(size
- NET_IP_ALIGN
);
2373 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2376 * 2 buffer mode provides 128
2377 * byte aligned receive buffers.
2380 rxdp3
= (struct RxD3
*)rxdp
;
2381 /* save buffer pointers to avoid frequent dma mapping */
2382 Buffer0_ptr
= rxdp3
->Buffer0_ptr
;
2383 Buffer1_ptr
= rxdp3
->Buffer1_ptr
;
2384 memset(rxdp
, 0, sizeof(struct RxD3
));
2385 /* restore the buffer pointers for dma sync*/
2386 rxdp3
->Buffer0_ptr
= Buffer0_ptr
;
2387 rxdp3
->Buffer1_ptr
= Buffer1_ptr
;
2389 ba
= &mac_control
->rings
[ring_no
].ba
[block_no
][off
];
2390 skb_reserve(skb
, BUF0_LEN
);
2391 tmp
= (u64
)(unsigned long) skb
->data
;
2394 skb
->data
= (void *) (unsigned long)tmp
;
2395 skb_reset_tail_pointer(skb
);
2397 if (!(rxdp3
->Buffer0_ptr
))
2398 rxdp3
->Buffer0_ptr
=
2399 pci_map_single(nic
->pdev
, ba
->ba_0
, BUF0_LEN
,
2400 PCI_DMA_FROMDEVICE
);
2402 pci_dma_sync_single_for_device(nic
->pdev
,
2403 (dma_addr_t
) rxdp3
->Buffer0_ptr
,
2404 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2405 if( (rxdp3
->Buffer0_ptr
== 0) ||
2406 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
))
2407 goto pci_map_failed
;
2409 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
2410 if (nic
->rxd_mode
== RXD_MODE_3B
) {
2411 /* Two buffer mode */
2414 * Buffer2 will have L3/L4 header plus
2417 rxdp3
->Buffer2_ptr
= pci_map_single
2418 (nic
->pdev
, skb
->data
, dev
->mtu
+ 4,
2419 PCI_DMA_FROMDEVICE
);
2421 if( (rxdp3
->Buffer2_ptr
== 0) ||
2422 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
))
2423 goto pci_map_failed
;
2425 rxdp3
->Buffer1_ptr
=
2426 pci_map_single(nic
->pdev
,
2428 PCI_DMA_FROMDEVICE
);
2429 if( (rxdp3
->Buffer1_ptr
== 0) ||
2430 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
2433 (dma_addr_t
)skb
->data
,
2435 PCI_DMA_FROMDEVICE
);
2436 goto pci_map_failed
;
2438 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
2439 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3
2442 rxdp
->Control_2
|= BIT(0);
2444 rxdp
->Host_Control
= (unsigned long) (skb
);
2445 if (alloc_tab
& ((1 << rxsync_frequency
) - 1))
2446 rxdp
->Control_1
|= RXD_OWN_XENA
;
2448 if (off
== (rxd_count
[nic
->rxd_mode
] + 1))
2450 mac_control
->rings
[ring_no
].rx_curr_put_info
.offset
= off
;
2452 rxdp
->Control_2
|= SET_RXD_MARKER
;
2453 if (!(alloc_tab
& ((1 << rxsync_frequency
) - 1))) {
2456 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2460 atomic_inc(&nic
->rx_bufs_left
[ring_no
]);
2465 /* Transfer ownership of first descriptor to adapter just before
2466 * exiting. Before that, use memory barrier so that ownership
2467 * and other fields are seen by adapter correctly.
2471 first_rxdp
->Control_1
|= RXD_OWN_XENA
;
2476 stats
->pci_map_fail_cnt
++;
2477 stats
->mem_freed
+= skb
->truesize
;
2478 dev_kfree_skb_irq(skb
);
2482 static void free_rxd_blk(struct s2io_nic
*sp
, int ring_no
, int blk
)
2484 struct net_device
*dev
= sp
->dev
;
2486 struct sk_buff
*skb
;
2488 struct mac_info
*mac_control
;
2493 mac_control
= &sp
->mac_control
;
2494 for (j
= 0 ; j
< rxd_count
[sp
->rxd_mode
]; j
++) {
2495 rxdp
= mac_control
->rings
[ring_no
].
2496 rx_blocks
[blk
].rxds
[j
].virt_addr
;
2497 skb
= (struct sk_buff
*)
2498 ((unsigned long) rxdp
->Host_Control
);
2502 if (sp
->rxd_mode
== RXD_MODE_1
) {
2503 rxdp1
= (struct RxD1
*)rxdp
;
2504 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2507 HEADER_ETHERNET_II_802_3_SIZE
2508 + HEADER_802_2_SIZE
+
2510 PCI_DMA_FROMDEVICE
);
2511 memset(rxdp
, 0, sizeof(struct RxD1
));
2512 } else if(sp
->rxd_mode
== RXD_MODE_3B
) {
2513 rxdp3
= (struct RxD3
*)rxdp
;
2514 ba
= &mac_control
->rings
[ring_no
].
2516 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2519 PCI_DMA_FROMDEVICE
);
2520 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2523 PCI_DMA_FROMDEVICE
);
2524 pci_unmap_single(sp
->pdev
, (dma_addr_t
)
2527 PCI_DMA_FROMDEVICE
);
2528 memset(rxdp
, 0, sizeof(struct RxD3
));
2530 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2532 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
2537 * free_rx_buffers - Frees all Rx buffers
2538 * @sp: device private variable.
2540 * This function will free all Rx buffers allocated by host.
2545 static void free_rx_buffers(struct s2io_nic
*sp
)
2547 struct net_device
*dev
= sp
->dev
;
2548 int i
, blk
= 0, buf_cnt
= 0;
2549 struct mac_info
*mac_control
;
2550 struct config_param
*config
;
2552 mac_control
= &sp
->mac_control
;
2553 config
= &sp
->config
;
2555 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2556 for (blk
= 0; blk
< rx_ring_sz
[i
]; blk
++)
2557 free_rxd_blk(sp
,i
,blk
);
2559 mac_control
->rings
[i
].rx_curr_put_info
.block_index
= 0;
2560 mac_control
->rings
[i
].rx_curr_get_info
.block_index
= 0;
2561 mac_control
->rings
[i
].rx_curr_put_info
.offset
= 0;
2562 mac_control
->rings
[i
].rx_curr_get_info
.offset
= 0;
2563 atomic_set(&sp
->rx_bufs_left
[i
], 0);
2564 DBG_PRINT(INIT_DBG
, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2565 dev
->name
, buf_cnt
, i
);
2570 * s2io_poll - Rx interrupt handler for NAPI support
2571 * @dev : pointer to the device structure.
2572 * @budget : The number of packets that were budgeted to be processed
2573 * during one pass through the 'Poll" function.
2575 * Comes into picture only if NAPI support has been incorporated. It does
2576 * the same thing that rx_intr_handler does, but not in a interrupt context
2577 * also It will process only a given number of packets.
2579 * 0 on success and 1 if there are No Rx packets to be processed.
2582 static int s2io_poll(struct net_device
*dev
, int *budget
)
2584 struct s2io_nic
*nic
= dev
->priv
;
2585 int pkt_cnt
= 0, org_pkts_to_process
;
2586 struct mac_info
*mac_control
;
2587 struct config_param
*config
;
2588 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2591 atomic_inc(&nic
->isr_cnt
);
2592 mac_control
= &nic
->mac_control
;
2593 config
= &nic
->config
;
2595 nic
->pkts_to_process
= *budget
;
2596 if (nic
->pkts_to_process
> dev
->quota
)
2597 nic
->pkts_to_process
= dev
->quota
;
2598 org_pkts_to_process
= nic
->pkts_to_process
;
2600 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
2601 readl(&bar0
->rx_traffic_int
);
2603 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2604 rx_intr_handler(&mac_control
->rings
[i
]);
2605 pkt_cnt
= org_pkts_to_process
- nic
->pkts_to_process
;
2606 if (!nic
->pkts_to_process
) {
2607 /* Quota for the current iteration has been met */
2614 dev
->quota
-= pkt_cnt
;
2616 netif_rx_complete(dev
);
2618 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2619 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2620 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2621 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2625 /* Re enable the Rx interrupts. */
2626 writeq(0x0, &bar0
->rx_traffic_mask
);
2627 readl(&bar0
->rx_traffic_mask
);
2628 atomic_dec(&nic
->isr_cnt
);
2632 dev
->quota
-= pkt_cnt
;
2635 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2636 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2637 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2638 DBG_PRINT(INFO_DBG
, " in Rx Poll!!\n");
2642 atomic_dec(&nic
->isr_cnt
);
2646 #ifdef CONFIG_NET_POLL_CONTROLLER
2648 * s2io_netpoll - netpoll event handler entry point
2649 * @dev : pointer to the device structure.
2651 * This function will be called by upper layer to check for events on the
2652 * interface in situations where interrupts are disabled. It is used for
2653 * specific in-kernel networking tasks, such as remote consoles and kernel
2654 * debugging over the network (example netdump in RedHat).
2656 static void s2io_netpoll(struct net_device
*dev
)
2658 struct s2io_nic
*nic
= dev
->priv
;
2659 struct mac_info
*mac_control
;
2660 struct config_param
*config
;
2661 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
2662 u64 val64
= 0xFFFFFFFFFFFFFFFFULL
;
2665 if (pci_channel_offline(nic
->pdev
))
2668 disable_irq(dev
->irq
);
2670 atomic_inc(&nic
->isr_cnt
);
2671 mac_control
= &nic
->mac_control
;
2672 config
= &nic
->config
;
2674 writeq(val64
, &bar0
->rx_traffic_int
);
2675 writeq(val64
, &bar0
->tx_traffic_int
);
2677 /* we need to free up the transmitted skbufs or else netpoll will
2678 * run out of skbs and will fail and eventually netpoll application such
2679 * as netdump will fail.
2681 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
2682 tx_intr_handler(&mac_control
->fifos
[i
]);
2684 /* check for received packet and indicate up to network */
2685 for (i
= 0; i
< config
->rx_ring_num
; i
++)
2686 rx_intr_handler(&mac_control
->rings
[i
]);
2688 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
2689 if (fill_rx_buffers(nic
, i
) == -ENOMEM
) {
2690 DBG_PRINT(INFO_DBG
, "%s:Out of memory", dev
->name
);
2691 DBG_PRINT(INFO_DBG
, " in Rx Netpoll!!\n");
2695 atomic_dec(&nic
->isr_cnt
);
2696 enable_irq(dev
->irq
);
2702 * rx_intr_handler - Rx interrupt handler
2703 * @nic: device private variable.
2705 * If the interrupt is because of a received frame or if the
2706 * receive ring contains fresh as yet un-processed frames,this function is
2707 * called. It picks out the RxD at which place the last Rx processing had
2708 * stopped and sends the skb to the OSM's Rx handler and then increments
2713 static void rx_intr_handler(struct ring_info
*ring_data
)
2715 struct s2io_nic
*nic
= ring_data
->nic
;
2716 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2717 int get_block
, put_block
, put_offset
;
2718 struct rx_curr_get_info get_info
, put_info
;
2720 struct sk_buff
*skb
;
2726 spin_lock(&nic
->rx_lock
);
2727 if (atomic_read(&nic
->card_state
) == CARD_DOWN
) {
2728 DBG_PRINT(INTR_DBG
, "%s: %s going down for reset\n",
2729 __FUNCTION__
, dev
->name
);
2730 spin_unlock(&nic
->rx_lock
);
2734 get_info
= ring_data
->rx_curr_get_info
;
2735 get_block
= get_info
.block_index
;
2736 memcpy(&put_info
, &ring_data
->rx_curr_put_info
, sizeof(put_info
));
2737 put_block
= put_info
.block_index
;
2738 rxdp
= ring_data
->rx_blocks
[get_block
].rxds
[get_info
.offset
].virt_addr
;
2740 spin_lock(&nic
->put_lock
);
2741 put_offset
= ring_data
->put_pos
;
2742 spin_unlock(&nic
->put_lock
);
2744 put_offset
= ring_data
->put_pos
;
2746 while (RXD_IS_UP2DT(rxdp
)) {
2748 * If your are next to put index then it's
2749 * FIFO full condition
2751 if ((get_block
== put_block
) &&
2752 (get_info
.offset
+ 1) == put_info
.offset
) {
2753 DBG_PRINT(INTR_DBG
, "%s: Ring Full\n",dev
->name
);
2756 skb
= (struct sk_buff
*) ((unsigned long)rxdp
->Host_Control
);
2758 DBG_PRINT(ERR_DBG
, "%s: The skb is ",
2760 DBG_PRINT(ERR_DBG
, "Null in Rx Intr\n");
2761 spin_unlock(&nic
->rx_lock
);
2764 if (nic
->rxd_mode
== RXD_MODE_1
) {
2765 rxdp1
= (struct RxD1
*)rxdp
;
2766 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2769 HEADER_ETHERNET_II_802_3_SIZE
+
2772 PCI_DMA_FROMDEVICE
);
2773 } else if (nic
->rxd_mode
== RXD_MODE_3B
) {
2774 rxdp3
= (struct RxD3
*)rxdp
;
2775 pci_dma_sync_single_for_cpu(nic
->pdev
, (dma_addr_t
)
2777 BUF0_LEN
, PCI_DMA_FROMDEVICE
);
2778 pci_unmap_single(nic
->pdev
, (dma_addr_t
)
2781 PCI_DMA_FROMDEVICE
);
2783 prefetch(skb
->data
);
2784 rx_osm_handler(ring_data
, rxdp
);
2786 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2787 rxdp
= ring_data
->rx_blocks
[get_block
].
2788 rxds
[get_info
.offset
].virt_addr
;
2789 if (get_info
.offset
== rxd_count
[nic
->rxd_mode
]) {
2790 get_info
.offset
= 0;
2791 ring_data
->rx_curr_get_info
.offset
= get_info
.offset
;
2793 if (get_block
== ring_data
->block_count
)
2795 ring_data
->rx_curr_get_info
.block_index
= get_block
;
2796 rxdp
= ring_data
->rx_blocks
[get_block
].block_virt_addr
;
2799 nic
->pkts_to_process
-= 1;
2800 if ((napi
) && (!nic
->pkts_to_process
))
2803 if ((indicate_max_pkts
) && (pkt_cnt
> indicate_max_pkts
))
2807 /* Clear all LRO sessions before exiting */
2808 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
2809 struct lro
*lro
= &nic
->lro0_n
[i
];
2811 update_L3L4_header(nic
, lro
);
2812 queue_rx_frame(lro
->parent
);
2813 clear_lro_session(lro
);
2818 spin_unlock(&nic
->rx_lock
);
2822 * tx_intr_handler - Transmit interrupt handler
2823 * @nic : device private variable
2825 * If an interrupt was raised to indicate DMA complete of the
2826 * Tx packet, this function is called. It identifies the last TxD
2827 * whose buffer was freed and frees all skbs whose data have already
2828 * DMA'ed into the NICs internal memory.
2833 static void tx_intr_handler(struct fifo_info
*fifo_data
)
2835 struct s2io_nic
*nic
= fifo_data
->nic
;
2836 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
2837 struct tx_curr_get_info get_info
, put_info
;
2838 struct sk_buff
*skb
;
2842 get_info
= fifo_data
->tx_curr_get_info
;
2843 memcpy(&put_info
, &fifo_data
->tx_curr_put_info
, sizeof(put_info
));
2844 txdlp
= (struct TxD
*) fifo_data
->list_info
[get_info
.offset
].
2846 while ((!(txdlp
->Control_1
& TXD_LIST_OWN_XENA
)) &&
2847 (get_info
.offset
!= put_info
.offset
) &&
2848 (txdlp
->Host_Control
)) {
2849 /* Check for TxD errors */
2850 if (txdlp
->Control_1
& TXD_T_CODE
) {
2851 unsigned long long err
;
2852 err
= txdlp
->Control_1
& TXD_T_CODE
;
2854 nic
->mac_control
.stats_info
->sw_stat
.
2858 /* update t_code statistics */
2859 err_mask
= err
>> 48;
2862 nic
->mac_control
.stats_info
->sw_stat
.
2867 nic
->mac_control
.stats_info
->sw_stat
.
2868 tx_desc_abort_cnt
++;
2872 nic
->mac_control
.stats_info
->sw_stat
.
2873 tx_parity_err_cnt
++;
2877 nic
->mac_control
.stats_info
->sw_stat
.
2882 nic
->mac_control
.stats_info
->sw_stat
.
2883 tx_list_proc_err_cnt
++;
2888 skb
= s2io_txdl_getskb(fifo_data
, txdlp
, get_info
.offset
);
2890 DBG_PRINT(ERR_DBG
, "%s: Null skb ",
2892 DBG_PRINT(ERR_DBG
, "in Tx Free Intr\n");
2896 /* Updating the statistics block */
2897 nic
->stats
.tx_bytes
+= skb
->len
;
2898 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
2899 dev_kfree_skb_irq(skb
);
2902 if (get_info
.offset
== get_info
.fifo_len
+ 1)
2903 get_info
.offset
= 0;
2904 txdlp
= (struct TxD
*) fifo_data
->list_info
2905 [get_info
.offset
].list_virt_addr
;
2906 fifo_data
->tx_curr_get_info
.offset
=
2910 spin_lock(&nic
->tx_lock
);
2911 if (netif_queue_stopped(dev
))
2912 netif_wake_queue(dev
);
2913 spin_unlock(&nic
->tx_lock
);
2917 * s2io_mdio_write - Function to write in to MDIO registers
2918 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2919 * @addr : address value
2920 * @value : data value
2921 * @dev : pointer to net_device structure
2923 * This function is used to write values to the MDIO registers
2926 static void s2io_mdio_write(u32 mmd_type
, u64 addr
, u16 value
, struct net_device
*dev
)
2929 struct s2io_nic
*sp
= dev
->priv
;
2930 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2932 //address transaction
2933 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2934 | MDIO_MMD_DEV_ADDR(mmd_type
)
2935 | MDIO_MMS_PRT_ADDR(0x0);
2936 writeq(val64
, &bar0
->mdio_control
);
2937 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2938 writeq(val64
, &bar0
->mdio_control
);
2943 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2944 | MDIO_MMD_DEV_ADDR(mmd_type
)
2945 | MDIO_MMS_PRT_ADDR(0x0)
2946 | MDIO_MDIO_DATA(value
)
2947 | MDIO_OP(MDIO_OP_WRITE_TRANS
);
2948 writeq(val64
, &bar0
->mdio_control
);
2949 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2950 writeq(val64
, &bar0
->mdio_control
);
2954 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2955 | MDIO_MMD_DEV_ADDR(mmd_type
)
2956 | MDIO_MMS_PRT_ADDR(0x0)
2957 | MDIO_OP(MDIO_OP_READ_TRANS
);
2958 writeq(val64
, &bar0
->mdio_control
);
2959 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2960 writeq(val64
, &bar0
->mdio_control
);
2966 * s2io_mdio_read - Function to write in to MDIO registers
2967 * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
2968 * @addr : address value
2969 * @dev : pointer to net_device structure
2971 * This function is used to read values to the MDIO registers
2974 static u64
s2io_mdio_read(u32 mmd_type
, u64 addr
, struct net_device
*dev
)
2978 struct s2io_nic
*sp
= dev
->priv
;
2979 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
2981 /* address transaction */
2982 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2983 | MDIO_MMD_DEV_ADDR(mmd_type
)
2984 | MDIO_MMS_PRT_ADDR(0x0);
2985 writeq(val64
, &bar0
->mdio_control
);
2986 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2987 writeq(val64
, &bar0
->mdio_control
);
2990 /* Data transaction */
2992 val64
= val64
| MDIO_MMD_INDX_ADDR(addr
)
2993 | MDIO_MMD_DEV_ADDR(mmd_type
)
2994 | MDIO_MMS_PRT_ADDR(0x0)
2995 | MDIO_OP(MDIO_OP_READ_TRANS
);
2996 writeq(val64
, &bar0
->mdio_control
);
2997 val64
= val64
| MDIO_CTRL_START_TRANS(0xE);
2998 writeq(val64
, &bar0
->mdio_control
);
3001 /* Read the value from regs */
3002 rval64
= readq(&bar0
->mdio_control
);
3003 rval64
= rval64
& 0xFFFF0000;
3004 rval64
= rval64
>> 16;
3008 * s2io_chk_xpak_counter - Function to check the status of the xpak counters
3009 * @counter : couter value to be updated
3010 * @flag : flag to indicate the status
3011 * @type : counter type
3013 * This function is to check the status of the xpak counters value
3017 static void s2io_chk_xpak_counter(u64
*counter
, u64
* regs_stat
, u32 index
, u16 flag
, u16 type
)
3022 for(i
= 0; i
<index
; i
++)
3027 *counter
= *counter
+ 1;
3028 val64
= *regs_stat
& mask
;
3029 val64
= val64
>> (index
* 0x2);
3036 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3037 "service. Excessive temperatures may "
3038 "result in premature transceiver "
3042 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3043 "service Excessive bias currents may "
3044 "indicate imminent laser diode "
3048 DBG_PRINT(ERR_DBG
, "Take Xframe NIC out of "
3049 "service Excessive laser output "
3050 "power may saturate far-end "
3054 DBG_PRINT(ERR_DBG
, "Incorrect XPAK Alarm "
3059 val64
= val64
<< (index
* 0x2);
3060 *regs_stat
= (*regs_stat
& (~mask
)) | (val64
);
3063 *regs_stat
= *regs_stat
& (~mask
);
3068 * s2io_updt_xpak_counter - Function to update the xpak counters
3069 * @dev : pointer to net_device struct
3071 * This function is to upate the status of the xpak counters value
3074 static void s2io_updt_xpak_counter(struct net_device
*dev
)
3082 struct s2io_nic
*sp
= dev
->priv
;
3083 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
3085 /* Check the communication with the MDIO slave */
3088 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3089 if((val64
== 0xFFFF) || (val64
== 0x0000))
3091 DBG_PRINT(ERR_DBG
, "ERR: MDIO slave access failed - "
3092 "Returned %llx\n", (unsigned long long)val64
);
3096 /* Check for the expecte value of 2040 at PMA address 0x0000 */
3099 DBG_PRINT(ERR_DBG
, "Incorrect value at PMA address 0x0000 - ");
3100 DBG_PRINT(ERR_DBG
, "Returned: %llx- Expected: 0x2040\n",
3101 (unsigned long long)val64
);
3105 /* Loading the DOM register to MDIO register */
3107 s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR
, addr
, val16
, dev
);
3108 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3110 /* Reading the Alarm flags */
3113 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3115 flag
= CHECKBIT(val64
, 0x7);
3117 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_transceiver_temp_high
,
3118 &stat_info
->xpak_stat
.xpak_regs_stat
,
3121 if(CHECKBIT(val64
, 0x6))
3122 stat_info
->xpak_stat
.alarm_transceiver_temp_low
++;
3124 flag
= CHECKBIT(val64
, 0x3);
3126 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_bias_current_high
,
3127 &stat_info
->xpak_stat
.xpak_regs_stat
,
3130 if(CHECKBIT(val64
, 0x2))
3131 stat_info
->xpak_stat
.alarm_laser_bias_current_low
++;
3133 flag
= CHECKBIT(val64
, 0x1);
3135 s2io_chk_xpak_counter(&stat_info
->xpak_stat
.alarm_laser_output_power_high
,
3136 &stat_info
->xpak_stat
.xpak_regs_stat
,
3139 if(CHECKBIT(val64
, 0x0))
3140 stat_info
->xpak_stat
.alarm_laser_output_power_low
++;
3142 /* Reading the Warning flags */
3145 val64
= s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR
, addr
, dev
);
3147 if(CHECKBIT(val64
, 0x7))
3148 stat_info
->xpak_stat
.warn_transceiver_temp_high
++;
3150 if(CHECKBIT(val64
, 0x6))
3151 stat_info
->xpak_stat
.warn_transceiver_temp_low
++;
3153 if(CHECKBIT(val64
, 0x3))
3154 stat_info
->xpak_stat
.warn_laser_bias_current_high
++;
3156 if(CHECKBIT(val64
, 0x2))
3157 stat_info
->xpak_stat
.warn_laser_bias_current_low
++;
3159 if(CHECKBIT(val64
, 0x1))
3160 stat_info
->xpak_stat
.warn_laser_output_power_high
++;
3162 if(CHECKBIT(val64
, 0x0))
3163 stat_info
->xpak_stat
.warn_laser_output_power_low
++;
3167 * alarm_intr_handler - Alarm Interrrupt handler
3168 * @nic: device private variable
3169 * Description: If the interrupt was neither because of Rx packet or Tx
3170 * complete, this function is called. If the interrupt was to indicate
3171 * a loss of link, the OSM link status handler is invoked for any other
3172 * alarm interrupt the block that raised the interrupt is displayed
3173 * and a H/W reset is issued.
3178 static void alarm_intr_handler(struct s2io_nic
*nic
)
3180 struct net_device
*dev
= (struct net_device
*) nic
->dev
;
3181 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3182 register u64 val64
= 0, err_reg
= 0;
3185 if (atomic_read(&nic
->card_state
) == CARD_DOWN
)
3187 if (pci_channel_offline(nic
->pdev
))
3189 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
= 0;
3190 /* Handling the XPAK counters update */
3191 if(nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
< 72000) {
3192 /* waiting for an hour */
3193 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
++;
3195 s2io_updt_xpak_counter(dev
);
3196 /* reset the count to zero */
3197 nic
->mac_control
.stats_info
->xpak_stat
.xpak_timer_count
= 0;
3200 /* Handling link status change error Intr */
3201 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
3202 err_reg
= readq(&bar0
->mac_rmac_err_reg
);
3203 writeq(err_reg
, &bar0
->mac_rmac_err_reg
);
3204 if (err_reg
& RMAC_LINK_STATE_CHANGE_INT
) {
3205 schedule_work(&nic
->set_link_task
);
3209 /* Handling Ecc errors */
3210 val64
= readq(&bar0
->mc_err_reg
);
3211 writeq(val64
, &bar0
->mc_err_reg
);
3212 if (val64
& (MC_ERR_REG_ECC_ALL_SNG
| MC_ERR_REG_ECC_ALL_DBL
)) {
3213 if (val64
& MC_ERR_REG_ECC_ALL_DBL
) {
3214 nic
->mac_control
.stats_info
->sw_stat
.
3216 DBG_PRINT(INIT_DBG
, "%s: Device indicates ",
3218 DBG_PRINT(INIT_DBG
, "double ECC error!!\n");
3219 if (nic
->device_type
!= XFRAME_II_DEVICE
) {
3220 /* Reset XframeI only if critical error */
3221 if (val64
& (MC_ERR_REG_MIRI_ECC_DB_ERR_0
|
3222 MC_ERR_REG_MIRI_ECC_DB_ERR_1
)) {
3223 netif_stop_queue(dev
);
3224 schedule_work(&nic
->rst_timer_task
);
3225 nic
->mac_control
.stats_info
->sw_stat
.
3230 nic
->mac_control
.stats_info
->sw_stat
.
3235 /* In case of a serious error, the device will be Reset. */
3236 val64
= readq(&bar0
->serr_source
);
3237 if (val64
& SERR_SOURCE_ANY
) {
3238 nic
->mac_control
.stats_info
->sw_stat
.serious_err_cnt
++;
3239 DBG_PRINT(ERR_DBG
, "%s: Device indicates ", dev
->name
);
3240 DBG_PRINT(ERR_DBG
, "serious error %llx!!\n",
3241 (unsigned long long)val64
);
3242 netif_stop_queue(dev
);
3243 schedule_work(&nic
->rst_timer_task
);
3244 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3248 * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC
3249 * Error occurs, the adapter will be recycled by disabling the
3250 * adapter enable bit and enabling it again after the device
3251 * becomes Quiescent.
3253 val64
= readq(&bar0
->pcc_err_reg
);
3254 writeq(val64
, &bar0
->pcc_err_reg
);
3255 if (val64
& PCC_FB_ECC_DB_ERR
) {
3256 u64 ac
= readq(&bar0
->adapter_control
);
3257 ac
&= ~(ADAPTER_CNTL_EN
);
3258 writeq(ac
, &bar0
->adapter_control
);
3259 ac
= readq(&bar0
->adapter_control
);
3260 schedule_work(&nic
->set_link_task
);
3262 /* Check for data parity error */
3263 val64
= readq(&bar0
->pic_int_status
);
3264 if (val64
& PIC_INT_GPIO
) {
3265 val64
= readq(&bar0
->gpio_int_reg
);
3266 if (val64
& GPIO_INT_REG_DP_ERR_INT
) {
3267 nic
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
3268 schedule_work(&nic
->rst_timer_task
);
3269 nic
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
3273 /* Check for ring full counter */
3274 if (nic
->device_type
& XFRAME_II_DEVICE
) {
3275 val64
= readq(&bar0
->ring_bump_counter1
);
3276 for (i
=0; i
<4; i
++) {
3277 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3278 cnt
>>= 64 - ((i
+1)*16);
3279 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3283 val64
= readq(&bar0
->ring_bump_counter2
);
3284 for (i
=0; i
<4; i
++) {
3285 cnt
= ( val64
& vBIT(0xFFFF,(i
*16),16));
3286 cnt
>>= 64 - ((i
+1)*16);
3287 nic
->mac_control
.stats_info
->sw_stat
.ring_full_cnt
3292 /* Other type of interrupts are not being handled now, TODO */
3296 * wait_for_cmd_complete - waits for a command to complete.
3297 * @sp : private member of the device structure, which is a pointer to the
3298 * s2io_nic structure.
3299 * Description: Function that waits for a command to Write into RMAC
3300 * ADDR DATA registers to be completed and returns either success or
3301 * error depending on whether the command was complete or not.
3303 * SUCCESS on success and FAILURE on failure.
3306 static int wait_for_cmd_complete(void __iomem
*addr
, u64 busy_bit
,
3309 int ret
= FAILURE
, cnt
= 0, delay
= 1;
3312 if ((bit_state
!= S2IO_BIT_RESET
) && (bit_state
!= S2IO_BIT_SET
))
3316 val64
= readq(addr
);
3317 if (bit_state
== S2IO_BIT_RESET
) {
3318 if (!(val64
& busy_bit
)) {
3323 if (!(val64
& busy_bit
)) {
3340 * check_pci_device_id - Checks if the device id is supported
3342 * Description: Function to check if the pci device id is supported by driver.
3343 * Return value: Actual device id if supported else PCI_ANY_ID
3345 static u16
check_pci_device_id(u16 id
)
3348 case PCI_DEVICE_ID_HERC_WIN
:
3349 case PCI_DEVICE_ID_HERC_UNI
:
3350 return XFRAME_II_DEVICE
;
3351 case PCI_DEVICE_ID_S2IO_UNI
:
3352 case PCI_DEVICE_ID_S2IO_WIN
:
3353 return XFRAME_I_DEVICE
;
3360 * s2io_reset - Resets the card.
3361 * @sp : private member of the device structure.
3362 * Description: Function to Reset the card. This function then also
3363 * restores the previously saved PCI configuration space registers as
3364 * the card reset also resets the configuration space.
3369 static void s2io_reset(struct s2io_nic
* sp
)
3371 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3376 unsigned long long up_cnt
, down_cnt
, up_time
, down_time
, reset_cnt
;
3377 unsigned long long mem_alloc_cnt
, mem_free_cnt
, watchdog_cnt
;
3379 DBG_PRINT(INIT_DBG
,"%s - Resetting XFrame card %s\n",
3380 __FUNCTION__
, sp
->dev
->name
);
3382 /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3383 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, &(pci_cmd
));
3385 val64
= SW_RESET_ALL
;
3386 writeq(val64
, &bar0
->sw_reset
);
3387 if (strstr(sp
->product_name
, "CX4")) {
3391 for (i
= 0; i
< S2IO_MAX_PCI_CONFIG_SPACE_REINIT
; i
++) {
3393 /* Restore the PCI state saved during initialization. */
3394 pci_restore_state(sp
->pdev
);
3395 pci_read_config_word(sp
->pdev
, 0x2, &val16
);
3396 if (check_pci_device_id(val16
) != (u16
)PCI_ANY_ID
)
3401 if (check_pci_device_id(val16
) == (u16
)PCI_ANY_ID
) {
3402 DBG_PRINT(ERR_DBG
,"%s SW_Reset failed!\n", __FUNCTION__
);
3405 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
, pci_cmd
);
3409 /* Set swapper to enable I/O register access */
3410 s2io_set_swapper(sp
);
3412 /* Restore the MSIX table entries from local variables */
3413 restore_xmsi_data(sp
);
3415 /* Clear certain PCI/PCI-X fields after reset */
3416 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3417 /* Clear "detected parity error" bit */
3418 pci_write_config_word(sp
->pdev
, PCI_STATUS
, 0x8000);
3420 /* Clearing PCIX Ecc status register */
3421 pci_write_config_dword(sp
->pdev
, 0x68, 0x7C);
3423 /* Clearing PCI_STATUS error reflected here */
3424 writeq(BIT(62), &bar0
->txpic_int_reg
);
3427 /* Reset device statistics maintained by OS */
3428 memset(&sp
->stats
, 0, sizeof (struct net_device_stats
));
3430 up_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
;
3431 down_cnt
= sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
;
3432 up_time
= sp
->mac_control
.stats_info
->sw_stat
.link_up_time
;
3433 down_time
= sp
->mac_control
.stats_info
->sw_stat
.link_down_time
;
3434 reset_cnt
= sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
;
3435 mem_alloc_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
;
3436 mem_free_cnt
= sp
->mac_control
.stats_info
->sw_stat
.mem_freed
;
3437 watchdog_cnt
= sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
;
3438 /* save link up/down time/cnt, reset/memory/watchdog cnt */
3439 memset(sp
->mac_control
.stats_info
, 0, sizeof(struct stat_block
));
3440 /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3441 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
= up_cnt
;
3442 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
= down_cnt
;
3443 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
= up_time
;
3444 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
= down_time
;
3445 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
= reset_cnt
;
3446 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
= mem_alloc_cnt
;
3447 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
= mem_free_cnt
;
3448 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
= watchdog_cnt
;
3450 /* SXE-002: Configure link and activity LED to turn it off */
3451 subid
= sp
->pdev
->subsystem_device
;
3452 if (((subid
& 0xFF) >= 0x07) &&
3453 (sp
->device_type
== XFRAME_I_DEVICE
)) {
3454 val64
= readq(&bar0
->gpio_control
);
3455 val64
|= 0x0000800000000000ULL
;
3456 writeq(val64
, &bar0
->gpio_control
);
3457 val64
= 0x0411040400000000ULL
;
3458 writeq(val64
, (void __iomem
*)bar0
+ 0x2700);
3462 * Clear spurious ECC interrupts that would have occured on
3463 * XFRAME II cards after reset.
3465 if (sp
->device_type
== XFRAME_II_DEVICE
) {
3466 val64
= readq(&bar0
->pcc_err_reg
);
3467 writeq(val64
, &bar0
->pcc_err_reg
);
3470 /* restore the previously assigned mac address */
3471 s2io_set_mac_addr(sp
->dev
, (u8
*)&sp
->def_mac_addr
[0].mac_addr
);
3473 sp
->device_enabled_once
= FALSE
;
3477 * s2io_set_swapper - to set the swapper controle on the card
3478 * @sp : private member of the device structure,
3479 * pointer to the s2io_nic structure.
3480 * Description: Function to set the swapper control on the card
3481 * correctly depending on the 'endianness' of the system.
3483 * SUCCESS on success and FAILURE on failure.
3486 static int s2io_set_swapper(struct s2io_nic
* sp
)
3488 struct net_device
*dev
= sp
->dev
;
3489 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
3490 u64 val64
, valt
, valr
;
3493 * Set proper endian settings and verify the same by reading
3494 * the PIF Feed-back register.
3497 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3498 if (val64
!= 0x0123456789ABCDEFULL
) {
3500 u64 value
[] = { 0xC30000C3C30000C3ULL
, /* FE=1, SE=1 */
3501 0x8100008181000081ULL
, /* FE=1, SE=0 */
3502 0x4200004242000042ULL
, /* FE=0, SE=1 */
3503 0}; /* FE=0, SE=0 */
3506 writeq(value
[i
], &bar0
->swapper_ctrl
);
3507 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3508 if (val64
== 0x0123456789ABCDEFULL
)
3513 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3515 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3516 (unsigned long long) val64
);
3521 valr
= readq(&bar0
->swapper_ctrl
);
3524 valt
= 0x0123456789ABCDEFULL
;
3525 writeq(valt
, &bar0
->xmsi_address
);
3526 val64
= readq(&bar0
->xmsi_address
);
3530 u64 value
[] = { 0x00C3C30000C3C300ULL
, /* FE=1, SE=1 */
3531 0x0081810000818100ULL
, /* FE=1, SE=0 */
3532 0x0042420000424200ULL
, /* FE=0, SE=1 */
3533 0}; /* FE=0, SE=0 */
3536 writeq((value
[i
] | valr
), &bar0
->swapper_ctrl
);
3537 writeq(valt
, &bar0
->xmsi_address
);
3538 val64
= readq(&bar0
->xmsi_address
);
3544 unsigned long long x
= val64
;
3545 DBG_PRINT(ERR_DBG
, "Write failed, Xmsi_addr ");
3546 DBG_PRINT(ERR_DBG
, "reads:0x%llx\n", x
);
3550 val64
= readq(&bar0
->swapper_ctrl
);
3551 val64
&= 0xFFFF000000000000ULL
;
3555 * The device by default set to a big endian format, so a
3556 * big endian driver need not set anything.
3558 val64
|= (SWAPPER_CTRL_TXP_FE
|
3559 SWAPPER_CTRL_TXP_SE
|
3560 SWAPPER_CTRL_TXD_R_FE
|
3561 SWAPPER_CTRL_TXD_W_FE
|
3562 SWAPPER_CTRL_TXF_R_FE
|
3563 SWAPPER_CTRL_RXD_R_FE
|
3564 SWAPPER_CTRL_RXD_W_FE
|
3565 SWAPPER_CTRL_RXF_W_FE
|
3566 SWAPPER_CTRL_XMSI_FE
|
3567 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3568 if (sp
->intr_type
== INTA
)
3569 val64
|= SWAPPER_CTRL_XMSI_SE
;
3570 writeq(val64
, &bar0
->swapper_ctrl
);
3573 * Initially we enable all bits to make it accessible by the
3574 * driver, then we selectively enable only those bits that
3577 val64
|= (SWAPPER_CTRL_TXP_FE
|
3578 SWAPPER_CTRL_TXP_SE
|
3579 SWAPPER_CTRL_TXD_R_FE
|
3580 SWAPPER_CTRL_TXD_R_SE
|
3581 SWAPPER_CTRL_TXD_W_FE
|
3582 SWAPPER_CTRL_TXD_W_SE
|
3583 SWAPPER_CTRL_TXF_R_FE
|
3584 SWAPPER_CTRL_RXD_R_FE
|
3585 SWAPPER_CTRL_RXD_R_SE
|
3586 SWAPPER_CTRL_RXD_W_FE
|
3587 SWAPPER_CTRL_RXD_W_SE
|
3588 SWAPPER_CTRL_RXF_W_FE
|
3589 SWAPPER_CTRL_XMSI_FE
|
3590 SWAPPER_CTRL_STATS_FE
| SWAPPER_CTRL_STATS_SE
);
3591 if (sp
->intr_type
== INTA
)
3592 val64
|= SWAPPER_CTRL_XMSI_SE
;
3593 writeq(val64
, &bar0
->swapper_ctrl
);
3595 val64
= readq(&bar0
->swapper_ctrl
);
3598 * Verifying if endian settings are accurate by reading a
3599 * feedback register.
3601 val64
= readq(&bar0
->pif_rd_swapper_fb
);
3602 if (val64
!= 0x0123456789ABCDEFULL
) {
3603 /* Endian settings are incorrect, calls for another dekko. */
3604 DBG_PRINT(ERR_DBG
, "%s: Endian settings are wrong, ",
3606 DBG_PRINT(ERR_DBG
, "feedback read %llx\n",
3607 (unsigned long long) val64
);
3614 static int wait_for_msix_trans(struct s2io_nic
*nic
, int i
)
3616 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3618 int ret
= 0, cnt
= 0;
3621 val64
= readq(&bar0
->xmsi_access
);
3622 if (!(val64
& BIT(15)))
3628 DBG_PRINT(ERR_DBG
, "XMSI # %d Access failed\n", i
);
3635 static void restore_xmsi_data(struct s2io_nic
*nic
)
3637 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3641 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3642 writeq(nic
->msix_info
[i
].addr
, &bar0
->xmsi_address
);
3643 writeq(nic
->msix_info
[i
].data
, &bar0
->xmsi_data
);
3644 val64
= (BIT(7) | BIT(15) | vBIT(i
, 26, 6));
3645 writeq(val64
, &bar0
->xmsi_access
);
3646 if (wait_for_msix_trans(nic
, i
)) {
3647 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3653 static void store_xmsi_data(struct s2io_nic
*nic
)
3655 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3656 u64 val64
, addr
, data
;
3659 /* Store and display */
3660 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3661 val64
= (BIT(15) | vBIT(i
, 26, 6));
3662 writeq(val64
, &bar0
->xmsi_access
);
3663 if (wait_for_msix_trans(nic
, i
)) {
3664 DBG_PRINT(ERR_DBG
, "failed in %s\n", __FUNCTION__
);
3667 addr
= readq(&bar0
->xmsi_address
);
3668 data
= readq(&bar0
->xmsi_data
);
3670 nic
->msix_info
[i
].addr
= addr
;
3671 nic
->msix_info
[i
].data
= data
;
3676 static int s2io_enable_msi_x(struct s2io_nic
*nic
)
3678 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
3680 u16 msi_control
; /* Temp variable */
3681 int ret
, i
, j
, msix_indx
= 1;
3683 nic
->entries
= kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
),
3685 if (nic
->entries
== NULL
) {
3686 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n", \
3688 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3691 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3692 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3693 memset(nic
->entries
, 0,MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3696 kmalloc(MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
),
3698 if (nic
->s2io_entries
== NULL
) {
3699 DBG_PRINT(INFO_DBG
, "%s: Memory allocation failed\n",
3701 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
3702 kfree(nic
->entries
);
3703 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3704 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3707 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
3708 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3709 memset(nic
->s2io_entries
, 0,
3710 MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3712 for (i
=0; i
< MAX_REQUESTED_MSI_X
; i
++) {
3713 nic
->entries
[i
].entry
= i
;
3714 nic
->s2io_entries
[i
].entry
= i
;
3715 nic
->s2io_entries
[i
].arg
= NULL
;
3716 nic
->s2io_entries
[i
].in_use
= 0;
3719 tx_mat
= readq(&bar0
->tx_mat0_n
[0]);
3720 for (i
=0; i
<nic
->config
.tx_fifo_num
; i
++, msix_indx
++) {
3721 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3722 nic
->s2io_entries
[msix_indx
].arg
= &nic
->mac_control
.fifos
[i
];
3723 nic
->s2io_entries
[msix_indx
].type
= MSIX_FIFO_TYPE
;
3724 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3726 writeq(tx_mat
, &bar0
->tx_mat0_n
[0]);
3728 if (!nic
->config
.bimodal
) {
3729 rx_mat
= readq(&bar0
->rx_mat
);
3730 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3731 rx_mat
|= RX_MAT_SET(j
, msix_indx
);
3732 nic
->s2io_entries
[msix_indx
].arg
3733 = &nic
->mac_control
.rings
[j
];
3734 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3735 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3737 writeq(rx_mat
, &bar0
->rx_mat
);
3739 tx_mat
= readq(&bar0
->tx_mat0_n
[7]);
3740 for (j
=0; j
<nic
->config
.rx_ring_num
; j
++, msix_indx
++) {
3741 tx_mat
|= TX_MAT_SET(i
, msix_indx
);
3742 nic
->s2io_entries
[msix_indx
].arg
3743 = &nic
->mac_control
.rings
[j
];
3744 nic
->s2io_entries
[msix_indx
].type
= MSIX_RING_TYPE
;
3745 nic
->s2io_entries
[msix_indx
].in_use
= MSIX_FLG
;
3747 writeq(tx_mat
, &bar0
->tx_mat0_n
[7]);
3750 nic
->avail_msix_vectors
= 0;
3751 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, MAX_REQUESTED_MSI_X
);
3752 /* We fail init if error or we get less vectors than min required */
3753 if (ret
>= (nic
->config
.tx_fifo_num
+ nic
->config
.rx_ring_num
+ 1)) {
3754 nic
->avail_msix_vectors
= ret
;
3755 ret
= pci_enable_msix(nic
->pdev
, nic
->entries
, ret
);
3758 DBG_PRINT(ERR_DBG
, "%s: Enabling MSIX failed\n", nic
->dev
->name
);
3759 kfree(nic
->entries
);
3760 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3761 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3762 kfree(nic
->s2io_entries
);
3763 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
3764 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3765 nic
->entries
= NULL
;
3766 nic
->s2io_entries
= NULL
;
3767 nic
->avail_msix_vectors
= 0;
3770 if (!nic
->avail_msix_vectors
)
3771 nic
->avail_msix_vectors
= MAX_REQUESTED_MSI_X
;
3774 * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775 * in the herc NIC. (Temp change, needs to be removed later)
3777 pci_read_config_word(nic
->pdev
, 0x42, &msi_control
);
3778 msi_control
|= 0x1; /* Enable MSI */
3779 pci_write_config_word(nic
->pdev
, 0x42, msi_control
);
3784 /* ********************************************************* *
3785 * Functions defined below concern the OS part of the driver *
3786 * ********************************************************* */
3789 * s2io_open - open entry point of the driver
3790 * @dev : pointer to the device structure.
3792 * This function is the open entry point of the driver. It mainly calls a
3793 * function to allocate Rx buffers and inserts them into the buffer
3794 * descriptors and then enables the Rx part of the NIC.
3796 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3800 static int s2io_open(struct net_device
*dev
)
3802 struct s2io_nic
*sp
= dev
->priv
;
3806 * Make sure you have link off by default every time
3807 * Nic is initialized
3809 netif_carrier_off(dev
);
3810 sp
->last_link_state
= 0;
3812 /* Initialize H/W and enable interrupts */
3813 err
= s2io_card_up(sp
);
3815 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
3817 goto hw_init_failed
;
3820 if (s2io_set_mac_addr(dev
, dev
->dev_addr
) == FAILURE
) {
3821 DBG_PRINT(ERR_DBG
, "Set Mac Address Failed\n");
3824 goto hw_init_failed
;
3827 netif_start_queue(dev
);
3831 if (sp
->intr_type
== MSI_X
) {
3834 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3835 += (MAX_REQUESTED_MSI_X
* sizeof(struct msix_entry
));
3837 if (sp
->s2io_entries
) {
3838 kfree(sp
->s2io_entries
);
3839 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
3840 += (MAX_REQUESTED_MSI_X
* sizeof(struct s2io_msix_entry
));
3847 * s2io_close -close entry point of the driver
3848 * @dev : device pointer.
3850 * This is the stop entry point of the driver. It needs to undo exactly
3851 * whatever was done by the open entry point,thus it's usually referred to
3852 * as the close function.Among other things this function mainly stops the
3853 * Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3855 * 0 on success and an appropriate (-)ve integer as defined in errno.h
3859 static int s2io_close(struct net_device
*dev
)
3861 struct s2io_nic
*sp
= dev
->priv
;
3863 netif_stop_queue(dev
);
3864 /* Reset card, kill tasklet and free Tx and Rx buffers. */
3871 * s2io_xmit - Tx entry point of te driver
3872 * @skb : the socket buffer containing the Tx data.
3873 * @dev : device pointer.
3875 * This function is the Tx entry point of the driver. S2IO NIC supports
3876 * certain protocol assist features on Tx side, namely CSO, S/G, LSO.
3877 * NOTE: when device cant queue the pkt,just the trans_start variable will
3880 * 0 on success & 1 on failure.
3883 static int s2io_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
3885 struct s2io_nic
*sp
= dev
->priv
;
3886 u16 frg_cnt
, frg_len
, i
, queue
, queue_len
, put_off
, get_off
;
3889 struct TxFIFO_element __iomem
*tx_fifo
;
3890 unsigned long flags
;
3892 int vlan_priority
= 0;
3893 struct mac_info
*mac_control
;
3894 struct config_param
*config
;
3896 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
3898 mac_control
= &sp
->mac_control
;
3899 config
= &sp
->config
;
3901 DBG_PRINT(TX_DBG
, "%s: In Neterion Tx routine\n", dev
->name
);
3903 if (unlikely(skb
->len
<= 0)) {
3904 DBG_PRINT(TX_DBG
, "%s:Buffer has no data..\n", dev
->name
);
3905 dev_kfree_skb_any(skb
);
3909 spin_lock_irqsave(&sp
->tx_lock
, flags
);
3910 if (atomic_read(&sp
->card_state
) == CARD_DOWN
) {
3911 DBG_PRINT(TX_DBG
, "%s: Card going down for reset\n",
3913 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3919 /* Get Fifo number to Transmit based on vlan priority */
3920 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3921 vlan_tag
= vlan_tx_tag_get(skb
);
3922 vlan_priority
= vlan_tag
>> 13;
3923 queue
= config
->fifo_mapping
[vlan_priority
];
3926 put_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_put_info
.offset
;
3927 get_off
= (u16
) mac_control
->fifos
[queue
].tx_curr_get_info
.offset
;
3928 txdp
= (struct TxD
*) mac_control
->fifos
[queue
].list_info
[put_off
].
3931 queue_len
= mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1;
3932 /* Avoid "put" pointer going beyond "get" pointer */
3933 if (txdp
->Host_Control
||
3934 ((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
3935 DBG_PRINT(TX_DBG
, "Error in xmit, No free TXDs.\n");
3936 netif_stop_queue(dev
);
3938 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
3942 offload_type
= s2io_offload_type(skb
);
3943 if (offload_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
)) {
3944 txdp
->Control_1
|= TXD_TCP_LSO_EN
;
3945 txdp
->Control_1
|= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb
));
3947 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3949 (TXD_TX_CKO_IPV4_EN
| TXD_TX_CKO_TCP_EN
|
3952 txdp
->Control_1
|= TXD_GATHER_CODE_FIRST
;
3953 txdp
->Control_1
|= TXD_LIST_OWN_XENA
;
3954 txdp
->Control_2
|= config
->tx_intr_type
;
3956 if (sp
->vlgrp
&& vlan_tx_tag_present(skb
)) {
3957 txdp
->Control_2
|= TXD_VLAN_ENABLE
;
3958 txdp
->Control_2
|= TXD_VLAN_TAG(vlan_tag
);
3961 frg_len
= skb
->len
- skb
->data_len
;
3962 if (offload_type
== SKB_GSO_UDP
) {
3965 ufo_size
= s2io_udp_mss(skb
);
3967 txdp
->Control_1
|= TXD_UFO_EN
;
3968 txdp
->Control_1
|= TXD_UFO_MSS(ufo_size
);
3969 txdp
->Control_1
|= TXD_BUFFER0_SIZE(8);
3971 sp
->ufo_in_band_v
[put_off
] =
3972 (u64
)skb_shinfo(skb
)->ip6_frag_id
;
3974 sp
->ufo_in_band_v
[put_off
] =
3975 (u64
)skb_shinfo(skb
)->ip6_frag_id
<< 32;
3977 txdp
->Host_Control
= (unsigned long)sp
->ufo_in_band_v
;
3978 txdp
->Buffer_Pointer
= pci_map_single(sp
->pdev
,
3980 sizeof(u64
), PCI_DMA_TODEVICE
);
3981 if((txdp
->Buffer_Pointer
== 0) ||
3982 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
3983 goto pci_map_failed
;
3987 txdp
->Buffer_Pointer
= pci_map_single
3988 (sp
->pdev
, skb
->data
, frg_len
, PCI_DMA_TODEVICE
);
3989 if((txdp
->Buffer_Pointer
== 0) ||
3990 (txdp
->Buffer_Pointer
== DMA_ERROR_CODE
))
3991 goto pci_map_failed
;
3993 txdp
->Host_Control
= (unsigned long) skb
;
3994 txdp
->Control_1
|= TXD_BUFFER0_SIZE(frg_len
);
3995 if (offload_type
== SKB_GSO_UDP
)
3996 txdp
->Control_1
|= TXD_UFO_EN
;
3998 frg_cnt
= skb_shinfo(skb
)->nr_frags
;
3999 /* For fragmented SKB. */
4000 for (i
= 0; i
< frg_cnt
; i
++) {
4001 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
4002 /* A '0' length fragment will be ignored */
4006 txdp
->Buffer_Pointer
= (u64
) pci_map_page
4007 (sp
->pdev
, frag
->page
, frag
->page_offset
,
4008 frag
->size
, PCI_DMA_TODEVICE
);
4009 txdp
->Control_1
= TXD_BUFFER0_SIZE(frag
->size
);
4010 if (offload_type
== SKB_GSO_UDP
)
4011 txdp
->Control_1
|= TXD_UFO_EN
;
4013 txdp
->Control_1
|= TXD_GATHER_CODE_LAST
;
4015 if (offload_type
== SKB_GSO_UDP
)
4016 frg_cnt
++; /* as Txd0 was used for inband header */
4018 tx_fifo
= mac_control
->tx_FIFO_start
[queue
];
4019 val64
= mac_control
->fifos
[queue
].list_info
[put_off
].list_phy_addr
;
4020 writeq(val64
, &tx_fifo
->TxDL_Pointer
);
4022 val64
= (TX_FIFO_LAST_TXD_NUM(frg_cnt
) | TX_FIFO_FIRST_LIST
|
4025 val64
|= TX_FIFO_SPECIAL_FUNC
;
4027 writeq(val64
, &tx_fifo
->List_Control
);
4032 if (put_off
== mac_control
->fifos
[queue
].tx_curr_put_info
.fifo_len
+ 1)
4034 mac_control
->fifos
[queue
].tx_curr_put_info
.offset
= put_off
;
4036 /* Avoid "put" pointer going beyond "get" pointer */
4037 if (((put_off
+1) == queue_len
? 0 : (put_off
+1)) == get_off
) {
4038 sp
->mac_control
.stats_info
->sw_stat
.fifo_full_cnt
++;
4040 "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4042 netif_stop_queue(dev
);
4044 mac_control
->stats_info
->sw_stat
.mem_allocated
+= skb
->truesize
;
4045 dev
->trans_start
= jiffies
;
4046 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4050 stats
->pci_map_fail_cnt
++;
4051 netif_stop_queue(dev
);
4052 stats
->mem_freed
+= skb
->truesize
;
4054 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
4059 s2io_alarm_handle(unsigned long data
)
4061 struct s2io_nic
*sp
= (struct s2io_nic
*)data
;
4063 alarm_intr_handler(sp
);
4064 mod_timer(&sp
->alarm_timer
, jiffies
+ HZ
/ 2);
4067 static int s2io_chk_rx_buffers(struct s2io_nic
*sp
, int rng_n
)
4069 int rxb_size
, level
;
4072 rxb_size
= atomic_read(&sp
->rx_bufs_left
[rng_n
]);
4073 level
= rx_buffer_level(sp
, rxb_size
, rng_n
);
4075 if ((level
== PANIC
) && (!TASKLET_IN_USE
)) {
4077 DBG_PRINT(INTR_DBG
, "%s: Rx BD hit ", __FUNCTION__
);
4078 DBG_PRINT(INTR_DBG
, "PANIC levels\n");
4079 if ((ret
= fill_rx_buffers(sp
, rng_n
)) == -ENOMEM
) {
4080 DBG_PRINT(INFO_DBG
, "Out of memory in %s",
4082 clear_bit(0, (&sp
->tasklet_status
));
4085 clear_bit(0, (&sp
->tasklet_status
));
4086 } else if (level
== LOW
)
4087 tasklet_schedule(&sp
->task
);
4089 } else if (fill_rx_buffers(sp
, rng_n
) == -ENOMEM
) {
4090 DBG_PRINT(INFO_DBG
, "%s:Out of memory", sp
->dev
->name
);
4091 DBG_PRINT(INFO_DBG
, " in Rx Intr!!\n");
4096 static irqreturn_t
s2io_msix_ring_handle(int irq
, void *dev_id
)
4098 struct ring_info
*ring
= (struct ring_info
*)dev_id
;
4099 struct s2io_nic
*sp
= ring
->nic
;
4101 atomic_inc(&sp
->isr_cnt
);
4103 rx_intr_handler(ring
);
4104 s2io_chk_rx_buffers(sp
, ring
->ring_no
);
4106 atomic_dec(&sp
->isr_cnt
);
4110 static irqreturn_t
s2io_msix_fifo_handle(int irq
, void *dev_id
)
4112 struct fifo_info
*fifo
= (struct fifo_info
*)dev_id
;
4113 struct s2io_nic
*sp
= fifo
->nic
;
4115 atomic_inc(&sp
->isr_cnt
);
4116 tx_intr_handler(fifo
);
4117 atomic_dec(&sp
->isr_cnt
);
4120 static void s2io_txpic_intr_handle(struct s2io_nic
*sp
)
4122 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4125 val64
= readq(&bar0
->pic_int_status
);
4126 if (val64
& PIC_INT_GPIO
) {
4127 val64
= readq(&bar0
->gpio_int_reg
);
4128 if ((val64
& GPIO_INT_REG_LINK_DOWN
) &&
4129 (val64
& GPIO_INT_REG_LINK_UP
)) {
4131 * This is unstable state so clear both up/down
4132 * interrupt and adapter to re-evaluate the link state.
4134 val64
|= GPIO_INT_REG_LINK_DOWN
;
4135 val64
|= GPIO_INT_REG_LINK_UP
;
4136 writeq(val64
, &bar0
->gpio_int_reg
);
4137 val64
= readq(&bar0
->gpio_int_mask
);
4138 val64
&= ~(GPIO_INT_MASK_LINK_UP
|
4139 GPIO_INT_MASK_LINK_DOWN
);
4140 writeq(val64
, &bar0
->gpio_int_mask
);
4142 else if (val64
& GPIO_INT_REG_LINK_UP
) {
4143 val64
= readq(&bar0
->adapter_status
);
4144 /* Enable Adapter */
4145 val64
= readq(&bar0
->adapter_control
);
4146 val64
|= ADAPTER_CNTL_EN
;
4147 writeq(val64
, &bar0
->adapter_control
);
4148 val64
|= ADAPTER_LED_ON
;
4149 writeq(val64
, &bar0
->adapter_control
);
4150 if (!sp
->device_enabled_once
)
4151 sp
->device_enabled_once
= 1;
4153 s2io_link(sp
, LINK_UP
);
4155 * unmask link down interrupt and mask link-up
4158 val64
= readq(&bar0
->gpio_int_mask
);
4159 val64
&= ~GPIO_INT_MASK_LINK_DOWN
;
4160 val64
|= GPIO_INT_MASK_LINK_UP
;
4161 writeq(val64
, &bar0
->gpio_int_mask
);
4163 }else if (val64
& GPIO_INT_REG_LINK_DOWN
) {
4164 val64
= readq(&bar0
->adapter_status
);
4165 s2io_link(sp
, LINK_DOWN
);
4166 /* Link is down so unmaks link up interrupt */
4167 val64
= readq(&bar0
->gpio_int_mask
);
4168 val64
&= ~GPIO_INT_MASK_LINK_UP
;
4169 val64
|= GPIO_INT_MASK_LINK_DOWN
;
4170 writeq(val64
, &bar0
->gpio_int_mask
);
4173 val64
= readq(&bar0
->adapter_control
);
4174 val64
= val64
&(~ADAPTER_LED_ON
);
4175 writeq(val64
, &bar0
->adapter_control
);
4178 val64
= readq(&bar0
->gpio_int_mask
);
4182 * s2io_isr - ISR handler of the device .
4183 * @irq: the irq of the device.
4184 * @dev_id: a void pointer to the dev structure of the NIC.
4185 * Description: This function is the ISR handler of the device. It
4186 * identifies the reason for the interrupt and calls the relevant
4187 * service routines. As a contongency measure, this ISR allocates the
4188 * recv buffers, if their numbers are below the panic value which is
4189 * presently set to 25% of the original number of rcv buffers allocated.
4191 * IRQ_HANDLED: will be returned if IRQ was handled by this routine
4192 * IRQ_NONE: will be returned if interrupt is not from our device
4194 static irqreturn_t
s2io_isr(int irq
, void *dev_id
)
4196 struct net_device
*dev
= (struct net_device
*) dev_id
;
4197 struct s2io_nic
*sp
= dev
->priv
;
4198 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4201 struct mac_info
*mac_control
;
4202 struct config_param
*config
;
4204 /* Pretend we handled any irq's from a disconnected card */
4205 if (pci_channel_offline(sp
->pdev
))
4208 atomic_inc(&sp
->isr_cnt
);
4209 mac_control
= &sp
->mac_control
;
4210 config
= &sp
->config
;
4213 * Identify the cause for interrupt and call the appropriate
4214 * interrupt handler. Causes for the interrupt could be;
4218 * 4. Error in any functional blocks of the NIC.
4220 reason
= readq(&bar0
->general_int_status
);
4223 /* The interrupt was not raised by us. */
4224 atomic_dec(&sp
->isr_cnt
);
4227 else if (unlikely(reason
== S2IO_MINUS_ONE
) ) {
4228 /* Disable device and get out */
4229 atomic_dec(&sp
->isr_cnt
);
4234 if (reason
& GEN_INTR_RXTRAFFIC
) {
4235 if ( likely ( netif_rx_schedule_prep(dev
)) ) {
4236 __netif_rx_schedule(dev
);
4237 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_mask
);
4240 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4244 * Rx handler is called by default, without checking for the
4245 * cause of interrupt.
4246 * rx_traffic_int reg is an R1 register, writing all 1's
4247 * will ensure that the actual interrupt causing bit get's
4248 * cleared and hence a read can be avoided.
4250 if (reason
& GEN_INTR_RXTRAFFIC
)
4251 writeq(S2IO_MINUS_ONE
, &bar0
->rx_traffic_int
);
4253 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
4254 rx_intr_handler(&mac_control
->rings
[i
]);
4259 * tx_traffic_int reg is an R1 register, writing all 1's
4260 * will ensure that the actual interrupt causing bit get's
4261 * cleared and hence a read can be avoided.
4263 if (reason
& GEN_INTR_TXTRAFFIC
)
4264 writeq(S2IO_MINUS_ONE
, &bar0
->tx_traffic_int
);
4266 for (i
= 0; i
< config
->tx_fifo_num
; i
++)
4267 tx_intr_handler(&mac_control
->fifos
[i
]);
4269 if (reason
& GEN_INTR_TXPIC
)
4270 s2io_txpic_intr_handle(sp
);
4272 * If the Rx buffer count is below the panic threshold then
4273 * reallocate the buffers from the interrupt handler itself,
4274 * else schedule a tasklet to reallocate the buffers.
4277 for (i
= 0; i
< config
->rx_ring_num
; i
++)
4278 s2io_chk_rx_buffers(sp
, i
);
4281 writeq(0, &bar0
->general_int_mask
);
4282 readl(&bar0
->general_int_status
);
4284 atomic_dec(&sp
->isr_cnt
);
4291 static void s2io_updt_stats(struct s2io_nic
*sp
)
4293 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4297 if (atomic_read(&sp
->card_state
) == CARD_UP
) {
4298 /* Apprx 30us on a 133 MHz bus */
4299 val64
= SET_UPDT_CLICKS(10) |
4300 STAT_CFG_ONE_SHOT_EN
| STAT_CFG_STAT_EN
;
4301 writeq(val64
, &bar0
->stat_cfg
);
4304 val64
= readq(&bar0
->stat_cfg
);
4305 if (!(val64
& BIT(0)))
4309 break; /* Updt failed */
4315 * s2io_get_stats - Updates the device statistics structure.
4316 * @dev : pointer to the device structure.
4318 * This function updates the device statistics structure in the s2io_nic
4319 * structure and returns a pointer to the same.
4321 * pointer to the updated net_device_stats structure.
4324 static struct net_device_stats
*s2io_get_stats(struct net_device
*dev
)
4326 struct s2io_nic
*sp
= dev
->priv
;
4327 struct mac_info
*mac_control
;
4328 struct config_param
*config
;
4331 mac_control
= &sp
->mac_control
;
4332 config
= &sp
->config
;
4334 /* Configure Stats for immediate updt */
4335 s2io_updt_stats(sp
);
4337 sp
->stats
.tx_packets
=
4338 le32_to_cpu(mac_control
->stats_info
->tmac_frms
);
4339 sp
->stats
.tx_errors
=
4340 le32_to_cpu(mac_control
->stats_info
->tmac_any_err_frms
);
4341 sp
->stats
.rx_errors
=
4342 le64_to_cpu(mac_control
->stats_info
->rmac_drop_frms
);
4343 sp
->stats
.multicast
=
4344 le32_to_cpu(mac_control
->stats_info
->rmac_vld_mcst_frms
);
4345 sp
->stats
.rx_length_errors
=
4346 le64_to_cpu(mac_control
->stats_info
->rmac_long_frms
);
4348 return (&sp
->stats
);
4352 * s2io_set_multicast - entry point for multicast address enable/disable.
4353 * @dev : pointer to the device structure
4355 * This function is a driver entry point which gets called by the kernel
4356 * whenever multicast addresses must be enabled/disabled. This also gets
4357 * called to set/reset promiscuous mode. Depending on the deivce flag, we
4358 * determine, if multicast address must be enabled or if promiscuous mode
4359 * is to be disabled etc.
4364 static void s2io_set_multicast(struct net_device
*dev
)
4367 struct dev_mc_list
*mclist
;
4368 struct s2io_nic
*sp
= dev
->priv
;
4369 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4370 u64 val64
= 0, multi_mac
= 0x010203040506ULL
, mask
=
4372 u64 dis_addr
= 0xffffffffffffULL
, mac_addr
= 0;
4375 if ((dev
->flags
& IFF_ALLMULTI
) && (!sp
->m_cast_flg
)) {
4376 /* Enable all Multicast addresses */
4377 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac
),
4378 &bar0
->rmac_addr_data0_mem
);
4379 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask
),
4380 &bar0
->rmac_addr_data1_mem
);
4381 val64
= RMAC_ADDR_CMD_MEM_WE
|
4382 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4383 RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET
);
4384 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4385 /* Wait till command completes */
4386 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4387 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4391 sp
->all_multi_pos
= MAC_MC_ALL_MC_ADDR_OFFSET
;
4392 } else if ((dev
->flags
& IFF_ALLMULTI
) && (sp
->m_cast_flg
)) {
4393 /* Disable all Multicast addresses */
4394 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4395 &bar0
->rmac_addr_data0_mem
);
4396 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4397 &bar0
->rmac_addr_data1_mem
);
4398 val64
= RMAC_ADDR_CMD_MEM_WE
|
4399 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4400 RMAC_ADDR_CMD_MEM_OFFSET(sp
->all_multi_pos
);
4401 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4402 /* Wait till command completes */
4403 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4404 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4408 sp
->all_multi_pos
= 0;
4411 if ((dev
->flags
& IFF_PROMISC
) && (!sp
->promisc_flg
)) {
4412 /* Put the NIC into promiscuous mode */
4413 add
= &bar0
->mac_cfg
;
4414 val64
= readq(&bar0
->mac_cfg
);
4415 val64
|= MAC_CFG_RMAC_PROM_ENABLE
;
4417 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4418 writel((u32
) val64
, add
);
4419 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4420 writel((u32
) (val64
>> 32), (add
+ 4));
4422 if (vlan_tag_strip
!= 1) {
4423 val64
= readq(&bar0
->rx_pa_cfg
);
4424 val64
&= ~RX_PA_CFG_STRIP_VLAN_TAG
;
4425 writeq(val64
, &bar0
->rx_pa_cfg
);
4426 vlan_strip_flag
= 0;
4429 val64
= readq(&bar0
->mac_cfg
);
4430 sp
->promisc_flg
= 1;
4431 DBG_PRINT(INFO_DBG
, "%s: entered promiscuous mode\n",
4433 } else if (!(dev
->flags
& IFF_PROMISC
) && (sp
->promisc_flg
)) {
4434 /* Remove the NIC from promiscuous mode */
4435 add
= &bar0
->mac_cfg
;
4436 val64
= readq(&bar0
->mac_cfg
);
4437 val64
&= ~MAC_CFG_RMAC_PROM_ENABLE
;
4439 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4440 writel((u32
) val64
, add
);
4441 writeq(RMAC_CFG_KEY(0x4C0D), &bar0
->rmac_cfg_key
);
4442 writel((u32
) (val64
>> 32), (add
+ 4));
4444 if (vlan_tag_strip
!= 0) {
4445 val64
= readq(&bar0
->rx_pa_cfg
);
4446 val64
|= RX_PA_CFG_STRIP_VLAN_TAG
;
4447 writeq(val64
, &bar0
->rx_pa_cfg
);
4448 vlan_strip_flag
= 1;
4451 val64
= readq(&bar0
->mac_cfg
);
4452 sp
->promisc_flg
= 0;
4453 DBG_PRINT(INFO_DBG
, "%s: left promiscuous mode\n",
4457 /* Update individual M_CAST address list */
4458 if ((!sp
->m_cast_flg
) && dev
->mc_count
) {
4460 (MAX_ADDRS_SUPPORTED
- MAC_MC_ADDR_START_OFFSET
- 1)) {
4461 DBG_PRINT(ERR_DBG
, "%s: No more Rx filters ",
4463 DBG_PRINT(ERR_DBG
, "can be added, please enable ");
4464 DBG_PRINT(ERR_DBG
, "ALL_MULTI instead\n");
4468 prev_cnt
= sp
->mc_addr_count
;
4469 sp
->mc_addr_count
= dev
->mc_count
;
4471 /* Clear out the previous list of Mc in the H/W. */
4472 for (i
= 0; i
< prev_cnt
; i
++) {
4473 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr
),
4474 &bar0
->rmac_addr_data0_mem
);
4475 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4476 &bar0
->rmac_addr_data1_mem
);
4477 val64
= RMAC_ADDR_CMD_MEM_WE
|
4478 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4479 RMAC_ADDR_CMD_MEM_OFFSET
4480 (MAC_MC_ADDR_START_OFFSET
+ i
);
4481 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4483 /* Wait for command completes */
4484 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4485 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4487 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4489 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4494 /* Create the new Rx filter list and update the same in H/W. */
4495 for (i
= 0, mclist
= dev
->mc_list
; i
< dev
->mc_count
;
4496 i
++, mclist
= mclist
->next
) {
4497 memcpy(sp
->usr_addrs
[i
].addr
, mclist
->dmi_addr
,
4500 for (j
= 0; j
< ETH_ALEN
; j
++) {
4501 mac_addr
|= mclist
->dmi_addr
[j
];
4505 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4506 &bar0
->rmac_addr_data0_mem
);
4507 writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4508 &bar0
->rmac_addr_data1_mem
);
4509 val64
= RMAC_ADDR_CMD_MEM_WE
|
4510 RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4511 RMAC_ADDR_CMD_MEM_OFFSET
4512 (i
+ MAC_MC_ADDR_START_OFFSET
);
4513 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4515 /* Wait for command completes */
4516 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4517 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
,
4519 DBG_PRINT(ERR_DBG
, "%s: Adding ",
4521 DBG_PRINT(ERR_DBG
, "Multicasts failed\n");
4529 * s2io_set_mac_addr - Programs the Xframe mac address
4530 * @dev : pointer to the device structure.
4531 * @addr: a uchar pointer to the new mac address which is to be set.
4532 * Description : This procedure will program the Xframe to receive
4533 * frames with new Mac Address
4534 * Return value: SUCCESS on success and an appropriate (-)ve integer
4535 * as defined in errno.h file on failure.
4538 static int s2io_set_mac_addr(struct net_device
*dev
, u8
* addr
)
4540 struct s2io_nic
*sp
= dev
->priv
;
4541 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4542 register u64 val64
, mac_addr
= 0;
4544 u64 old_mac_addr
= 0;
4547 * Set the new MAC address as the new unicast filter and reflect this
4548 * change on the device address registered with the OS. It will be
4551 for (i
= 0; i
< ETH_ALEN
; i
++) {
4553 mac_addr
|= addr
[i
];
4555 old_mac_addr
|= sp
->def_mac_addr
[0].mac_addr
[i
];
4561 /* Update the internal structure with this new mac address */
4562 if(mac_addr
!= old_mac_addr
) {
4563 memset(sp
->def_mac_addr
[0].mac_addr
, 0, sizeof(ETH_ALEN
));
4564 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_addr
);
4565 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_addr
>> 8);
4566 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_addr
>> 16);
4567 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_addr
>> 24);
4568 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_addr
>> 32);
4569 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_addr
>> 40);
4572 writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr
),
4573 &bar0
->rmac_addr_data0_mem
);
4576 RMAC_ADDR_CMD_MEM_WE
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
4577 RMAC_ADDR_CMD_MEM_OFFSET(0);
4578 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
4579 /* Wait till command completes */
4580 if (wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
4581 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
)) {
4582 DBG_PRINT(ERR_DBG
, "%s: set_mac_addr failed\n", dev
->name
);
4590 * s2io_ethtool_sset - Sets different link parameters.
4591 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
4592 * @info: pointer to the structure with parameters given by ethtool to set
4595 * The function sets different link parameters provided by the user onto
4601 static int s2io_ethtool_sset(struct net_device
*dev
,
4602 struct ethtool_cmd
*info
)
4604 struct s2io_nic
*sp
= dev
->priv
;
4605 if ((info
->autoneg
== AUTONEG_ENABLE
) ||
4606 (info
->speed
!= SPEED_10000
) || (info
->duplex
!= DUPLEX_FULL
))
4609 s2io_close(sp
->dev
);
4617 * s2io_ethtol_gset - Return link specific information.
4618 * @sp : private member of the device structure, pointer to the
4619 * s2io_nic structure.
4620 * @info : pointer to the structure with parameters given by ethtool
4621 * to return link information.
4623 * Returns link specific information like speed, duplex etc.. to ethtool.
4625 * return 0 on success.
4628 static int s2io_ethtool_gset(struct net_device
*dev
, struct ethtool_cmd
*info
)
4630 struct s2io_nic
*sp
= dev
->priv
;
4631 info
->supported
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4632 info
->advertising
= (SUPPORTED_10000baseT_Full
| SUPPORTED_FIBRE
);
4633 info
->port
= PORT_FIBRE
;
4634 /* info->transceiver?? TODO */
4636 if (netif_carrier_ok(sp
->dev
)) {
4637 info
->speed
= 10000;
4638 info
->duplex
= DUPLEX_FULL
;
4644 info
->autoneg
= AUTONEG_DISABLE
;
4649 * s2io_ethtool_gdrvinfo - Returns driver specific information.
4650 * @sp : private member of the device structure, which is a pointer to the
4651 * s2io_nic structure.
4652 * @info : pointer to the structure with parameters given by ethtool to
4653 * return driver information.
4655 * Returns driver specefic information like name, version etc.. to ethtool.
4660 static void s2io_ethtool_gdrvinfo(struct net_device
*dev
,
4661 struct ethtool_drvinfo
*info
)
4663 struct s2io_nic
*sp
= dev
->priv
;
4665 strncpy(info
->driver
, s2io_driver_name
, sizeof(info
->driver
));
4666 strncpy(info
->version
, s2io_driver_version
, sizeof(info
->version
));
4667 strncpy(info
->fw_version
, "", sizeof(info
->fw_version
));
4668 strncpy(info
->bus_info
, pci_name(sp
->pdev
), sizeof(info
->bus_info
));
4669 info
->regdump_len
= XENA_REG_SPACE
;
4670 info
->eedump_len
= XENA_EEPROM_SPACE
;
4671 info
->testinfo_len
= S2IO_TEST_LEN
;
4673 if (sp
->device_type
== XFRAME_I_DEVICE
)
4674 info
->n_stats
= XFRAME_I_STAT_LEN
;
4676 info
->n_stats
= XFRAME_II_STAT_LEN
;
4680 * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
4681 * @sp: private member of the device structure, which is a pointer to the
4682 * s2io_nic structure.
4683 * @regs : pointer to the structure with parameters given by ethtool for
4684 * dumping the registers.
4685 * @reg_space: The input argumnet into which all the registers are dumped.
4687 * Dumps the entire register space of xFrame NIC into the user given
4693 static void s2io_ethtool_gregs(struct net_device
*dev
,
4694 struct ethtool_regs
*regs
, void *space
)
4698 u8
*reg_space
= (u8
*) space
;
4699 struct s2io_nic
*sp
= dev
->priv
;
4701 regs
->len
= XENA_REG_SPACE
;
4702 regs
->version
= sp
->pdev
->subsystem_device
;
4704 for (i
= 0; i
< regs
->len
; i
+= 8) {
4705 reg
= readq(sp
->bar0
+ i
);
4706 memcpy((reg_space
+ i
), ®
, 8);
4711 * s2io_phy_id - timer function that alternates adapter LED.
4712 * @data : address of the private member of the device structure, which
4713 * is a pointer to the s2io_nic structure, provided as an u32.
4714 * Description: This is actually the timer function that alternates the
4715 * adapter LED bit of the adapter control bit to set/reset every time on
4716 * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
4717 * once every second.
4719 static void s2io_phy_id(unsigned long data
)
4721 struct s2io_nic
*sp
= (struct s2io_nic
*) data
;
4722 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4726 subid
= sp
->pdev
->subsystem_device
;
4727 if ((sp
->device_type
== XFRAME_II_DEVICE
) ||
4728 ((subid
& 0xFF) >= 0x07)) {
4729 val64
= readq(&bar0
->gpio_control
);
4730 val64
^= GPIO_CTRL_GPIO_0
;
4731 writeq(val64
, &bar0
->gpio_control
);
4733 val64
= readq(&bar0
->adapter_control
);
4734 val64
^= ADAPTER_LED_ON
;
4735 writeq(val64
, &bar0
->adapter_control
);
4738 mod_timer(&sp
->id_timer
, jiffies
+ HZ
/ 2);
4742 * s2io_ethtool_idnic - To physically identify the nic on the system.
4743 * @sp : private member of the device structure, which is a pointer to the
4744 * s2io_nic structure.
4745 * @id : pointer to the structure with identification parameters given by
4747 * Description: Used to physically identify the NIC on the system.
4748 * The Link LED will blink for a time specified by the user for
4750 * NOTE: The Link has to be Up to be able to blink the LED. Hence
4751 * identification is possible only if it's link is up.
4753 * int , returns 0 on success
4756 static int s2io_ethtool_idnic(struct net_device
*dev
, u32 data
)
4758 u64 val64
= 0, last_gpio_ctrl_val
;
4759 struct s2io_nic
*sp
= dev
->priv
;
4760 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4763 subid
= sp
->pdev
->subsystem_device
;
4764 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4765 if ((sp
->device_type
== XFRAME_I_DEVICE
) &&
4766 ((subid
& 0xFF) < 0x07)) {
4767 val64
= readq(&bar0
->adapter_control
);
4768 if (!(val64
& ADAPTER_CNTL_EN
)) {
4770 "Adapter Link down, cannot blink LED\n");
4774 if (sp
->id_timer
.function
== NULL
) {
4775 init_timer(&sp
->id_timer
);
4776 sp
->id_timer
.function
= s2io_phy_id
;
4777 sp
->id_timer
.data
= (unsigned long) sp
;
4779 mod_timer(&sp
->id_timer
, jiffies
);
4781 msleep_interruptible(data
* HZ
);
4783 msleep_interruptible(MAX_FLICKER_TIME
);
4784 del_timer_sync(&sp
->id_timer
);
4786 if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp
->device_type
, subid
)) {
4787 writeq(last_gpio_ctrl_val
, &bar0
->gpio_control
);
4788 last_gpio_ctrl_val
= readq(&bar0
->gpio_control
);
4794 static void s2io_ethtool_gringparam(struct net_device
*dev
,
4795 struct ethtool_ringparam
*ering
)
4797 struct s2io_nic
*sp
= dev
->priv
;
4798 int i
,tx_desc_count
=0,rx_desc_count
=0;
4800 if (sp
->rxd_mode
== RXD_MODE_1
)
4801 ering
->rx_max_pending
= MAX_RX_DESC_1
;
4802 else if (sp
->rxd_mode
== RXD_MODE_3B
)
4803 ering
->rx_max_pending
= MAX_RX_DESC_2
;
4805 ering
->tx_max_pending
= MAX_TX_DESC
;
4806 for (i
= 0 ; i
< sp
->config
.tx_fifo_num
; i
++)
4807 tx_desc_count
+= sp
->config
.tx_cfg
[i
].fifo_len
;
4809 DBG_PRINT(INFO_DBG
,"\nmax txds : %d\n",sp
->config
.max_txds
);
4810 ering
->tx_pending
= tx_desc_count
;
4812 for (i
= 0 ; i
< sp
->config
.rx_ring_num
; i
++)
4813 rx_desc_count
+= sp
->config
.rx_cfg
[i
].num_rxd
;
4815 ering
->rx_pending
= rx_desc_count
;
4817 ering
->rx_mini_max_pending
= 0;
4818 ering
->rx_mini_pending
= 0;
4819 if(sp
->rxd_mode
== RXD_MODE_1
)
4820 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_1
;
4821 else if (sp
->rxd_mode
== RXD_MODE_3B
)
4822 ering
->rx_jumbo_max_pending
= MAX_RX_DESC_2
;
4823 ering
->rx_jumbo_pending
= rx_desc_count
;
4827 * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
4828 * @sp : private member of the device structure, which is a pointer to the
4829 * s2io_nic structure.
4830 * @ep : pointer to the structure with pause parameters given by ethtool.
4832 * Returns the Pause frame generation and reception capability of the NIC.
4836 static void s2io_ethtool_getpause_data(struct net_device
*dev
,
4837 struct ethtool_pauseparam
*ep
)
4840 struct s2io_nic
*sp
= dev
->priv
;
4841 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4843 val64
= readq(&bar0
->rmac_pause_cfg
);
4844 if (val64
& RMAC_PAUSE_GEN_ENABLE
)
4845 ep
->tx_pause
= TRUE
;
4846 if (val64
& RMAC_PAUSE_RX_ENABLE
)
4847 ep
->rx_pause
= TRUE
;
4848 ep
->autoneg
= FALSE
;
4852 * s2io_ethtool_setpause_data - set/reset pause frame generation.
4853 * @sp : private member of the device structure, which is a pointer to the
4854 * s2io_nic structure.
4855 * @ep : pointer to the structure with pause parameters given by ethtool.
4857 * It can be used to set or reset Pause frame generation or reception
4858 * support of the NIC.
4860 * int, returns 0 on Success
4863 static int s2io_ethtool_setpause_data(struct net_device
*dev
,
4864 struct ethtool_pauseparam
*ep
)
4867 struct s2io_nic
*sp
= dev
->priv
;
4868 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4870 val64
= readq(&bar0
->rmac_pause_cfg
);
4872 val64
|= RMAC_PAUSE_GEN_ENABLE
;
4874 val64
&= ~RMAC_PAUSE_GEN_ENABLE
;
4876 val64
|= RMAC_PAUSE_RX_ENABLE
;
4878 val64
&= ~RMAC_PAUSE_RX_ENABLE
;
4879 writeq(val64
, &bar0
->rmac_pause_cfg
);
4884 * read_eeprom - reads 4 bytes of data from user given offset.
4885 * @sp : private member of the device structure, which is a pointer to the
4886 * s2io_nic structure.
4887 * @off : offset at which the data must be written
4888 * @data : Its an output parameter where the data read at the given
4891 * Will read 4 bytes of data from the user given offset and return the
4893 * NOTE: Will allow to read only part of the EEPROM visible through the
4896 * -1 on failure and 0 on success.
4899 #define S2IO_DEV_ID 5
4900 static int read_eeprom(struct s2io_nic
* sp
, int off
, u64
* data
)
4905 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4907 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4908 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4909 I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ
|
4910 I2C_CONTROL_CNTL_START
;
4911 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4913 while (exit_cnt
< 5) {
4914 val64
= readq(&bar0
->i2c_control
);
4915 if (I2C_CONTROL_CNTL_END(val64
)) {
4916 *data
= I2C_CONTROL_GET_DATA(val64
);
4925 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4926 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4927 SPI_CONTROL_BYTECNT(0x3) |
4928 SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off
);
4929 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4930 val64
|= SPI_CONTROL_REQ
;
4931 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4932 while (exit_cnt
< 5) {
4933 val64
= readq(&bar0
->spi_control
);
4934 if (val64
& SPI_CONTROL_NACK
) {
4937 } else if (val64
& SPI_CONTROL_DONE
) {
4938 *data
= readq(&bar0
->spi_data
);
4951 * write_eeprom - actually writes the relevant part of the data value.
4952 * @sp : private member of the device structure, which is a pointer to the
4953 * s2io_nic structure.
4954 * @off : offset at which the data must be written
4955 * @data : The data that is to be written
4956 * @cnt : Number of bytes of the data that are actually to be written into
4957 * the Eeprom. (max of 3)
4959 * Actually writes the relevant part of the data value into the Eeprom
4960 * through the I2C bus.
4962 * 0 on success, -1 on failure.
4965 static int write_eeprom(struct s2io_nic
* sp
, int off
, u64 data
, int cnt
)
4967 int exit_cnt
= 0, ret
= -1;
4969 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
4971 if (sp
->device_type
== XFRAME_I_DEVICE
) {
4972 val64
= I2C_CONTROL_DEV_ID(S2IO_DEV_ID
) | I2C_CONTROL_ADDR(off
) |
4973 I2C_CONTROL_BYTE_CNT(cnt
) | I2C_CONTROL_SET_DATA((u32
)data
) |
4974 I2C_CONTROL_CNTL_START
;
4975 SPECIAL_REG_WRITE(val64
, &bar0
->i2c_control
, LF
);
4977 while (exit_cnt
< 5) {
4978 val64
= readq(&bar0
->i2c_control
);
4979 if (I2C_CONTROL_CNTL_END(val64
)) {
4980 if (!(val64
& I2C_CONTROL_NACK
))
4989 if (sp
->device_type
== XFRAME_II_DEVICE
) {
4990 int write_cnt
= (cnt
== 8) ? 0 : cnt
;
4991 writeq(SPI_DATA_WRITE(data
,(cnt
<<3)), &bar0
->spi_data
);
4993 val64
= SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1
|
4994 SPI_CONTROL_BYTECNT(write_cnt
) |
4995 SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off
);
4996 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4997 val64
|= SPI_CONTROL_REQ
;
4998 SPECIAL_REG_WRITE(val64
, &bar0
->spi_control
, LF
);
4999 while (exit_cnt
< 5) {
5000 val64
= readq(&bar0
->spi_control
);
5001 if (val64
& SPI_CONTROL_NACK
) {
5004 } else if (val64
& SPI_CONTROL_DONE
) {
5014 static void s2io_vpd_read(struct s2io_nic
*nic
)
5018 int i
=0, cnt
, fail
= 0;
5019 int vpd_addr
= 0x80;
5021 if (nic
->device_type
== XFRAME_II_DEVICE
) {
5022 strcpy(nic
->product_name
, "Xframe II 10GbE network adapter");
5026 strcpy(nic
->product_name
, "Xframe I 10GbE network adapter");
5029 strcpy(nic
->serial_num
, "NOT AVAILABLE");
5031 vpd_data
= kmalloc(256, GFP_KERNEL
);
5033 nic
->mac_control
.stats_info
->sw_stat
.mem_alloc_fail_cnt
++;
5036 nic
->mac_control
.stats_info
->sw_stat
.mem_allocated
+= 256;
5038 for (i
= 0; i
< 256; i
+=4 ) {
5039 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 2), i
);
5040 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 2), &data
);
5041 pci_write_config_byte(nic
->pdev
, (vpd_addr
+ 3), 0);
5042 for (cnt
= 0; cnt
<5; cnt
++) {
5044 pci_read_config_byte(nic
->pdev
, (vpd_addr
+ 3), &data
);
5049 DBG_PRINT(ERR_DBG
, "Read of VPD data failed\n");
5053 pci_read_config_dword(nic
->pdev
, (vpd_addr
+ 4),
5054 (u32
*)&vpd_data
[i
]);
5058 /* read serial number of adapter */
5059 for (cnt
= 0; cnt
< 256; cnt
++) {
5060 if ((vpd_data
[cnt
] == 'S') &&
5061 (vpd_data
[cnt
+1] == 'N') &&
5062 (vpd_data
[cnt
+2] < VPD_STRING_LEN
)) {
5063 memset(nic
->serial_num
, 0, VPD_STRING_LEN
);
5064 memcpy(nic
->serial_num
, &vpd_data
[cnt
+ 3],
5071 if ((!fail
) && (vpd_data
[1] < VPD_STRING_LEN
)) {
5072 memset(nic
->product_name
, 0, vpd_data
[1]);
5073 memcpy(nic
->product_name
, &vpd_data
[3], vpd_data
[1]);
5076 nic
->mac_control
.stats_info
->sw_stat
.mem_freed
+= 256;
5080 * s2io_ethtool_geeprom - reads the value stored in the Eeprom.
5081 * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure.
5082 * @eeprom : pointer to the user level structure provided by ethtool,
5083 * containing all relevant information.
5084 * @data_buf : user defined value to be written into Eeprom.
5085 * Description: Reads the values stored in the Eeprom at given offset
5086 * for a given length. Stores these values int the input argument data
5087 * buffer 'data_buf' and returns these to the caller (ethtool.)
5092 static int s2io_ethtool_geeprom(struct net_device
*dev
,
5093 struct ethtool_eeprom
*eeprom
, u8
* data_buf
)
5097 struct s2io_nic
*sp
= dev
->priv
;
5099 eeprom
->magic
= sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16);
5101 if ((eeprom
->offset
+ eeprom
->len
) > (XENA_EEPROM_SPACE
))
5102 eeprom
->len
= XENA_EEPROM_SPACE
- eeprom
->offset
;
5104 for (i
= 0; i
< eeprom
->len
; i
+= 4) {
5105 if (read_eeprom(sp
, (eeprom
->offset
+ i
), &data
)) {
5106 DBG_PRINT(ERR_DBG
, "Read of EEPROM failed\n");
5110 memcpy((data_buf
+ i
), &valid
, 4);
5116 * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5117 * @sp : private member of the device structure, which is a pointer to the
5118 * s2io_nic structure.
5119 * @eeprom : pointer to the user level structure provided by ethtool,
5120 * containing all relevant information.
5121 * @data_buf ; user defined value to be written into Eeprom.
5123 * Tries to write the user provided value in the Eeprom, at the offset
5124 * given by the user.
5126 * 0 on success, -EFAULT on failure.
5129 static int s2io_ethtool_seeprom(struct net_device
*dev
,
5130 struct ethtool_eeprom
*eeprom
,
5133 int len
= eeprom
->len
, cnt
= 0;
5134 u64 valid
= 0, data
;
5135 struct s2io_nic
*sp
= dev
->priv
;
5137 if (eeprom
->magic
!= (sp
->pdev
->vendor
| (sp
->pdev
->device
<< 16))) {
5139 "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5140 DBG_PRINT(ERR_DBG
, "is wrong, Its not 0x%x\n",
5146 data
= (u32
) data_buf
[cnt
] & 0x000000FF;
5148 valid
= (u32
) (data
<< 24);
5152 if (write_eeprom(sp
, (eeprom
->offset
+ cnt
), valid
, 0)) {
5154 "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5156 "write into the specified offset\n");
5167 * s2io_register_test - reads and writes into all clock domains.
5168 * @sp : private member of the device structure, which is a pointer to the
5169 * s2io_nic structure.
5170 * @data : variable that returns the result of each of the test conducted b
5173 * Read and write into all clock domains. The NIC has 3 clock domains,
5174 * see that registers in all the three regions are accessible.
5179 static int s2io_register_test(struct s2io_nic
* sp
, uint64_t * data
)
5181 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5182 u64 val64
= 0, exp_val
;
5185 val64
= readq(&bar0
->pif_rd_swapper_fb
);
5186 if (val64
!= 0x123456789abcdefULL
) {
5188 DBG_PRINT(INFO_DBG
, "Read Test level 1 fails\n");
5191 val64
= readq(&bar0
->rmac_pause_cfg
);
5192 if (val64
!= 0xc000ffff00000000ULL
) {
5194 DBG_PRINT(INFO_DBG
, "Read Test level 2 fails\n");
5197 val64
= readq(&bar0
->rx_queue_cfg
);
5198 if (sp
->device_type
== XFRAME_II_DEVICE
)
5199 exp_val
= 0x0404040404040404ULL
;
5201 exp_val
= 0x0808080808080808ULL
;
5202 if (val64
!= exp_val
) {
5204 DBG_PRINT(INFO_DBG
, "Read Test level 3 fails\n");
5207 val64
= readq(&bar0
->xgxs_efifo_cfg
);
5208 if (val64
!= 0x000000001923141EULL
) {
5210 DBG_PRINT(INFO_DBG
, "Read Test level 4 fails\n");
5213 val64
= 0x5A5A5A5A5A5A5A5AULL
;
5214 writeq(val64
, &bar0
->xmsi_data
);
5215 val64
= readq(&bar0
->xmsi_data
);
5216 if (val64
!= 0x5A5A5A5A5A5A5A5AULL
) {
5218 DBG_PRINT(ERR_DBG
, "Write Test level 1 fails\n");
5221 val64
= 0xA5A5A5A5A5A5A5A5ULL
;
5222 writeq(val64
, &bar0
->xmsi_data
);
5223 val64
= readq(&bar0
->xmsi_data
);
5224 if (val64
!= 0xA5A5A5A5A5A5A5A5ULL
) {
5226 DBG_PRINT(ERR_DBG
, "Write Test level 2 fails\n");
5234 * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5235 * @sp : private member of the device structure, which is a pointer to the
5236 * s2io_nic structure.
5237 * @data:variable that returns the result of each of the test conducted by
5240 * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5246 static int s2io_eeprom_test(struct s2io_nic
* sp
, uint64_t * data
)
5249 u64 ret_data
, org_4F0
, org_7F0
;
5250 u8 saved_4F0
= 0, saved_7F0
= 0;
5251 struct net_device
*dev
= sp
->dev
;
5253 /* Test Write Error at offset 0 */
5254 /* Note that SPI interface allows write access to all areas
5255 * of EEPROM. Hence doing all negative testing only for Xframe I.
5257 if (sp
->device_type
== XFRAME_I_DEVICE
)
5258 if (!write_eeprom(sp
, 0, 0, 3))
5261 /* Save current values at offsets 0x4F0 and 0x7F0 */
5262 if (!read_eeprom(sp
, 0x4F0, &org_4F0
))
5264 if (!read_eeprom(sp
, 0x7F0, &org_7F0
))
5267 /* Test Write at offset 4f0 */
5268 if (write_eeprom(sp
, 0x4F0, 0x012345, 3))
5270 if (read_eeprom(sp
, 0x4F0, &ret_data
))
5273 if (ret_data
!= 0x012345) {
5274 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x4F0. "
5275 "Data written %llx Data read %llx\n",
5276 dev
->name
, (unsigned long long)0x12345,
5277 (unsigned long long)ret_data
);
5281 /* Reset the EEPROM data go FFFF */
5282 write_eeprom(sp
, 0x4F0, 0xFFFFFF, 3);
5284 /* Test Write Request Error at offset 0x7c */
5285 if (sp
->device_type
== XFRAME_I_DEVICE
)
5286 if (!write_eeprom(sp
, 0x07C, 0, 3))
5289 /* Test Write Request at offset 0x7f0 */
5290 if (write_eeprom(sp
, 0x7F0, 0x012345, 3))
5292 if (read_eeprom(sp
, 0x7F0, &ret_data
))
5295 if (ret_data
!= 0x012345) {
5296 DBG_PRINT(ERR_DBG
, "%s: eeprom test error at offset 0x7F0. "
5297 "Data written %llx Data read %llx\n",
5298 dev
->name
, (unsigned long long)0x12345,
5299 (unsigned long long)ret_data
);
5303 /* Reset the EEPROM data go FFFF */
5304 write_eeprom(sp
, 0x7F0, 0xFFFFFF, 3);
5306 if (sp
->device_type
== XFRAME_I_DEVICE
) {
5307 /* Test Write Error at offset 0x80 */
5308 if (!write_eeprom(sp
, 0x080, 0, 3))
5311 /* Test Write Error at offset 0xfc */
5312 if (!write_eeprom(sp
, 0x0FC, 0, 3))
5315 /* Test Write Error at offset 0x100 */
5316 if (!write_eeprom(sp
, 0x100, 0, 3))
5319 /* Test Write Error at offset 4ec */
5320 if (!write_eeprom(sp
, 0x4EC, 0, 3))
5324 /* Restore values at offsets 0x4F0 and 0x7F0 */
5326 write_eeprom(sp
, 0x4F0, org_4F0
, 3);
5328 write_eeprom(sp
, 0x7F0, org_7F0
, 3);
5335 * s2io_bist_test - invokes the MemBist test of the card .
5336 * @sp : private member of the device structure, which is a pointer to the
5337 * s2io_nic structure.
5338 * @data:variable that returns the result of each of the test conducted by
5341 * This invokes the MemBist test of the card. We give around
5342 * 2 secs time for the Test to complete. If it's still not complete
5343 * within this peiod, we consider that the test failed.
5345 * 0 on success and -1 on failure.
5348 static int s2io_bist_test(struct s2io_nic
* sp
, uint64_t * data
)
5351 int cnt
= 0, ret
= -1;
5353 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5354 bist
|= PCI_BIST_START
;
5355 pci_write_config_word(sp
->pdev
, PCI_BIST
, bist
);
5358 pci_read_config_byte(sp
->pdev
, PCI_BIST
, &bist
);
5359 if (!(bist
& PCI_BIST_START
)) {
5360 *data
= (bist
& PCI_BIST_CODE_MASK
);
5372 * s2io-link_test - verifies the link state of the nic
5373 * @sp ; private member of the device structure, which is a pointer to the
5374 * s2io_nic structure.
5375 * @data: variable that returns the result of each of the test conducted by
5378 * The function verifies the link state of the NIC and updates the input
5379 * argument 'data' appropriately.
5384 static int s2io_link_test(struct s2io_nic
* sp
, uint64_t * data
)
5386 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5389 val64
= readq(&bar0
->adapter_status
);
5390 if(!(LINK_IS_UP(val64
)))
5399 * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5400 * @sp - private member of the device structure, which is a pointer to the
5401 * s2io_nic structure.
5402 * @data - variable that returns the result of each of the test
5403 * conducted by the driver.
5405 * This is one of the offline test that tests the read and write
5406 * access to the RldRam chip on the NIC.
5411 static int s2io_rldram_test(struct s2io_nic
* sp
, uint64_t * data
)
5413 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
5415 int cnt
, iteration
= 0, test_fail
= 0;
5417 val64
= readq(&bar0
->adapter_control
);
5418 val64
&= ~ADAPTER_ECC_EN
;
5419 writeq(val64
, &bar0
->adapter_control
);
5421 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5422 val64
|= MC_RLDRAM_TEST_MODE
;
5423 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5425 val64
= readq(&bar0
->mc_rldram_mrs
);
5426 val64
|= MC_RLDRAM_QUEUE_SIZE_ENABLE
;
5427 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5429 val64
|= MC_RLDRAM_MRS_ENABLE
;
5430 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_mrs
, UF
);
5432 while (iteration
< 2) {
5433 val64
= 0x55555555aaaa0000ULL
;
5434 if (iteration
== 1) {
5435 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5437 writeq(val64
, &bar0
->mc_rldram_test_d0
);
5439 val64
= 0xaaaa5a5555550000ULL
;
5440 if (iteration
== 1) {
5441 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5443 writeq(val64
, &bar0
->mc_rldram_test_d1
);
5445 val64
= 0x55aaaaaaaa5a0000ULL
;
5446 if (iteration
== 1) {
5447 val64
^= 0xFFFFFFFFFFFF0000ULL
;
5449 writeq(val64
, &bar0
->mc_rldram_test_d2
);
5451 val64
= (u64
) (0x0000003ffffe0100ULL
);
5452 writeq(val64
, &bar0
->mc_rldram_test_add
);
5454 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_WRITE
|
5456 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5458 for (cnt
= 0; cnt
< 5; cnt
++) {
5459 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5460 if (val64
& MC_RLDRAM_TEST_DONE
)
5468 val64
= MC_RLDRAM_TEST_MODE
| MC_RLDRAM_TEST_GO
;
5469 SPECIAL_REG_WRITE(val64
, &bar0
->mc_rldram_test_ctrl
, LF
);
5471 for (cnt
= 0; cnt
< 5; cnt
++) {
5472 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5473 if (val64
& MC_RLDRAM_TEST_DONE
)
5481 val64
= readq(&bar0
->mc_rldram_test_ctrl
);
5482 if (!(val64
& MC_RLDRAM_TEST_PASS
))
5490 /* Bring the adapter out of test mode */
5491 SPECIAL_REG_WRITE(0, &bar0
->mc_rldram_test_ctrl
, LF
);
5497 * s2io_ethtool_test - conducts 6 tsets to determine the health of card.
5498 * @sp : private member of the device structure, which is a pointer to the
5499 * s2io_nic structure.
5500 * @ethtest : pointer to a ethtool command specific structure that will be
5501 * returned to the user.
5502 * @data : variable that returns the result of each of the test
5503 * conducted by the driver.
5505 * This function conducts 6 tests ( 4 offline and 2 online) to determine
5506 * the health of the card.
5511 static void s2io_ethtool_test(struct net_device
*dev
,
5512 struct ethtool_test
*ethtest
,
5515 struct s2io_nic
*sp
= dev
->priv
;
5516 int orig_state
= netif_running(sp
->dev
);
5518 if (ethtest
->flags
== ETH_TEST_FL_OFFLINE
) {
5519 /* Offline Tests. */
5521 s2io_close(sp
->dev
);
5523 if (s2io_register_test(sp
, &data
[0]))
5524 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5528 if (s2io_rldram_test(sp
, &data
[3]))
5529 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5533 if (s2io_eeprom_test(sp
, &data
[1]))
5534 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5536 if (s2io_bist_test(sp
, &data
[4]))
5537 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5547 "%s: is not up, cannot run test\n",
5556 if (s2io_link_test(sp
, &data
[2]))
5557 ethtest
->flags
|= ETH_TEST_FL_FAILED
;
5566 static void s2io_get_ethtool_stats(struct net_device
*dev
,
5567 struct ethtool_stats
*estats
,
5571 struct s2io_nic
*sp
= dev
->priv
;
5572 struct stat_block
*stat_info
= sp
->mac_control
.stats_info
;
5574 s2io_updt_stats(sp
);
5576 (u64
)le32_to_cpu(stat_info
->tmac_frms_oflow
) << 32 |
5577 le32_to_cpu(stat_info
->tmac_frms
);
5579 (u64
)le32_to_cpu(stat_info
->tmac_data_octets_oflow
) << 32 |
5580 le32_to_cpu(stat_info
->tmac_data_octets
);
5581 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_drop_frms
);
5583 (u64
)le32_to_cpu(stat_info
->tmac_mcst_frms_oflow
) << 32 |
5584 le32_to_cpu(stat_info
->tmac_mcst_frms
);
5586 (u64
)le32_to_cpu(stat_info
->tmac_bcst_frms_oflow
) << 32 |
5587 le32_to_cpu(stat_info
->tmac_bcst_frms
);
5588 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_pause_ctrl_frms
);
5590 (u64
)le32_to_cpu(stat_info
->tmac_ttl_octets_oflow
) << 32 |
5591 le32_to_cpu(stat_info
->tmac_ttl_octets
);
5593 (u64
)le32_to_cpu(stat_info
->tmac_ucst_frms_oflow
) << 32 |
5594 le32_to_cpu(stat_info
->tmac_ucst_frms
);
5596 (u64
)le32_to_cpu(stat_info
->tmac_nucst_frms_oflow
) << 32 |
5597 le32_to_cpu(stat_info
->tmac_nucst_frms
);
5599 (u64
)le32_to_cpu(stat_info
->tmac_any_err_frms_oflow
) << 32 |
5600 le32_to_cpu(stat_info
->tmac_any_err_frms
);
5601 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_ttl_less_fb_octets
);
5602 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_vld_ip_octets
);
5604 (u64
)le32_to_cpu(stat_info
->tmac_vld_ip_oflow
) << 32 |
5605 le32_to_cpu(stat_info
->tmac_vld_ip
);
5607 (u64
)le32_to_cpu(stat_info
->tmac_drop_ip_oflow
) << 32 |
5608 le32_to_cpu(stat_info
->tmac_drop_ip
);
5610 (u64
)le32_to_cpu(stat_info
->tmac_icmp_oflow
) << 32 |
5611 le32_to_cpu(stat_info
->tmac_icmp
);
5613 (u64
)le32_to_cpu(stat_info
->tmac_rst_tcp_oflow
) << 32 |
5614 le32_to_cpu(stat_info
->tmac_rst_tcp
);
5615 tmp_stats
[i
++] = le64_to_cpu(stat_info
->tmac_tcp
);
5616 tmp_stats
[i
++] = (u64
)le32_to_cpu(stat_info
->tmac_udp_oflow
) << 32 |
5617 le32_to_cpu(stat_info
->tmac_udp
);
5619 (u64
)le32_to_cpu(stat_info
->rmac_vld_frms_oflow
) << 32 |
5620 le32_to_cpu(stat_info
->rmac_vld_frms
);
5622 (u64
)le32_to_cpu(stat_info
->rmac_data_octets_oflow
) << 32 |
5623 le32_to_cpu(stat_info
->rmac_data_octets
);
5624 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_fcs_err_frms
);
5625 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_drop_frms
);
5627 (u64
)le32_to_cpu(stat_info
->rmac_vld_mcst_frms_oflow
) << 32 |
5628 le32_to_cpu(stat_info
->rmac_vld_mcst_frms
);
5630 (u64
)le32_to_cpu(stat_info
->rmac_vld_bcst_frms_oflow
) << 32 |
5631 le32_to_cpu(stat_info
->rmac_vld_bcst_frms
);
5632 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_in_rng_len_err_frms
);
5633 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_out_rng_len_err_frms
);
5634 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_long_frms
);
5635 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_pause_ctrl_frms
);
5636 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_unsup_ctrl_frms
);
5638 (u64
)le32_to_cpu(stat_info
->rmac_ttl_octets_oflow
) << 32 |
5639 le32_to_cpu(stat_info
->rmac_ttl_octets
);
5641 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ucst_frms_oflow
)
5642 << 32 | le32_to_cpu(stat_info
->rmac_accepted_ucst_frms
);
5644 (u64
)le32_to_cpu(stat_info
->rmac_accepted_nucst_frms_oflow
)
5645 << 32 | le32_to_cpu(stat_info
->rmac_accepted_nucst_frms
);
5647 (u64
)le32_to_cpu(stat_info
->rmac_discarded_frms_oflow
) << 32 |
5648 le32_to_cpu(stat_info
->rmac_discarded_frms
);
5650 (u64
)le32_to_cpu(stat_info
->rmac_drop_events_oflow
)
5651 << 32 | le32_to_cpu(stat_info
->rmac_drop_events
);
5652 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_less_fb_octets
);
5653 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_frms
);
5655 (u64
)le32_to_cpu(stat_info
->rmac_usized_frms_oflow
) << 32 |
5656 le32_to_cpu(stat_info
->rmac_usized_frms
);
5658 (u64
)le32_to_cpu(stat_info
->rmac_osized_frms_oflow
) << 32 |
5659 le32_to_cpu(stat_info
->rmac_osized_frms
);
5661 (u64
)le32_to_cpu(stat_info
->rmac_frag_frms_oflow
) << 32 |
5662 le32_to_cpu(stat_info
->rmac_frag_frms
);
5664 (u64
)le32_to_cpu(stat_info
->rmac_jabber_frms_oflow
) << 32 |
5665 le32_to_cpu(stat_info
->rmac_jabber_frms
);
5666 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_64_frms
);
5667 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_65_127_frms
);
5668 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_128_255_frms
);
5669 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_256_511_frms
);
5670 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_512_1023_frms
);
5671 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_1024_1518_frms
);
5673 (u64
)le32_to_cpu(stat_info
->rmac_ip_oflow
) << 32 |
5674 le32_to_cpu(stat_info
->rmac_ip
);
5675 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ip_octets
);
5676 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_hdr_err_ip
);
5678 (u64
)le32_to_cpu(stat_info
->rmac_drop_ip_oflow
) << 32 |
5679 le32_to_cpu(stat_info
->rmac_drop_ip
);
5681 (u64
)le32_to_cpu(stat_info
->rmac_icmp_oflow
) << 32 |
5682 le32_to_cpu(stat_info
->rmac_icmp
);
5683 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_tcp
);
5685 (u64
)le32_to_cpu(stat_info
->rmac_udp_oflow
) << 32 |
5686 le32_to_cpu(stat_info
->rmac_udp
);
5688 (u64
)le32_to_cpu(stat_info
->rmac_err_drp_udp_oflow
) << 32 |
5689 le32_to_cpu(stat_info
->rmac_err_drp_udp
);
5690 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_err_sym
);
5691 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q0
);
5692 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q1
);
5693 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q2
);
5694 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q3
);
5695 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q4
);
5696 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q5
);
5697 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q6
);
5698 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_frms_q7
);
5699 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q0
);
5700 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q1
);
5701 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q2
);
5702 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q3
);
5703 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q4
);
5704 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q5
);
5705 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q6
);
5706 tmp_stats
[i
++] = le16_to_cpu(stat_info
->rmac_full_q7
);
5708 (u64
)le32_to_cpu(stat_info
->rmac_pause_cnt_oflow
) << 32 |
5709 le32_to_cpu(stat_info
->rmac_pause_cnt
);
5710 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_data_err_cnt
);
5711 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_xgmii_ctrl_err_cnt
);
5713 (u64
)le32_to_cpu(stat_info
->rmac_accepted_ip_oflow
) << 32 |
5714 le32_to_cpu(stat_info
->rmac_accepted_ip
);
5715 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_err_tcp
);
5716 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_req_cnt
);
5717 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_cnt
);
5718 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_rd_req_rtry_cnt
);
5719 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_cnt
);
5720 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_rd_ack_cnt
);
5721 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_req_cnt
);
5722 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_cnt
);
5723 tmp_stats
[i
++] = le32_to_cpu(stat_info
->new_wr_req_rtry_cnt
);
5724 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_rtry_cnt
);
5725 tmp_stats
[i
++] = le32_to_cpu(stat_info
->wr_disc_cnt
);
5726 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rd_rtry_wr_ack_cnt
);
5727 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txp_wr_cnt
);
5728 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_rd_cnt
);
5729 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txd_wr_cnt
);
5730 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_rd_cnt
);
5731 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxd_wr_cnt
);
5732 tmp_stats
[i
++] = le32_to_cpu(stat_info
->txf_rd_cnt
);
5733 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rxf_wr_cnt
);
5735 /* Enhanced statistics exist only for Hercules */
5736 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5738 le64_to_cpu(stat_info
->rmac_ttl_1519_4095_frms
);
5740 le64_to_cpu(stat_info
->rmac_ttl_4096_8191_frms
);
5742 le64_to_cpu(stat_info
->rmac_ttl_8192_max_frms
);
5743 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_ttl_gt_max_frms
);
5744 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_osized_alt_frms
);
5745 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_jabber_alt_frms
);
5746 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_gt_max_alt_frms
);
5747 tmp_stats
[i
++] = le64_to_cpu(stat_info
->rmac_vlan_frms
);
5748 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_len_discard
);
5749 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_fcs_discard
);
5750 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_pf_discard
);
5751 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_da_discard
);
5752 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_red_discard
);
5753 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_rts_discard
);
5754 tmp_stats
[i
++] = le32_to_cpu(stat_info
->rmac_ingm_full_discard
);
5755 tmp_stats
[i
++] = le32_to_cpu(stat_info
->link_fault_cnt
);
5759 tmp_stats
[i
++] = stat_info
->sw_stat
.single_ecc_errs
;
5760 tmp_stats
[i
++] = stat_info
->sw_stat
.double_ecc_errs
;
5761 tmp_stats
[i
++] = stat_info
->sw_stat
.parity_err_cnt
;
5762 tmp_stats
[i
++] = stat_info
->sw_stat
.serious_err_cnt
;
5763 tmp_stats
[i
++] = stat_info
->sw_stat
.soft_reset_cnt
;
5764 tmp_stats
[i
++] = stat_info
->sw_stat
.fifo_full_cnt
;
5765 tmp_stats
[i
++] = stat_info
->sw_stat
.ring_full_cnt
;
5766 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_high
;
5767 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_transceiver_temp_low
;
5768 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_high
;
5769 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_bias_current_low
;
5770 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_high
;
5771 tmp_stats
[i
++] = stat_info
->xpak_stat
.alarm_laser_output_power_low
;
5772 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_high
;
5773 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_transceiver_temp_low
;
5774 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_high
;
5775 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_bias_current_low
;
5776 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_high
;
5777 tmp_stats
[i
++] = stat_info
->xpak_stat
.warn_laser_output_power_low
;
5778 tmp_stats
[i
++] = stat_info
->sw_stat
.clubbed_frms_cnt
;
5779 tmp_stats
[i
++] = stat_info
->sw_stat
.sending_both
;
5780 tmp_stats
[i
++] = stat_info
->sw_stat
.outof_sequence_pkts
;
5781 tmp_stats
[i
++] = stat_info
->sw_stat
.flush_max_pkts
;
5782 if (stat_info
->sw_stat
.num_aggregations
) {
5783 u64 tmp
= stat_info
->sw_stat
.sum_avg_pkts_aggregated
;
5786 * Since 64-bit divide does not work on all platforms,
5787 * do repeated subtraction.
5789 while (tmp
>= stat_info
->sw_stat
.num_aggregations
) {
5790 tmp
-= stat_info
->sw_stat
.num_aggregations
;
5793 tmp_stats
[i
++] = count
;
5797 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_alloc_fail_cnt
;
5798 tmp_stats
[i
++] = stat_info
->sw_stat
.pci_map_fail_cnt
;
5799 tmp_stats
[i
++] = stat_info
->sw_stat
.watchdog_timer_cnt
;
5800 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_allocated
;
5801 tmp_stats
[i
++] = stat_info
->sw_stat
.mem_freed
;
5802 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_cnt
;
5803 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_cnt
;
5804 tmp_stats
[i
++] = stat_info
->sw_stat
.link_up_time
;
5805 tmp_stats
[i
++] = stat_info
->sw_stat
.link_down_time
;
5807 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_buf_abort_cnt
;
5808 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_desc_abort_cnt
;
5809 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_parity_err_cnt
;
5810 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_link_loss_cnt
;
5811 tmp_stats
[i
++] = stat_info
->sw_stat
.tx_list_proc_err_cnt
;
5813 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_err_cnt
;
5814 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_abort_cnt
;
5815 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_parity_abort_cnt
;
5816 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rda_fail_cnt
;
5817 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_prot_cnt
;
5818 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_fcs_err_cnt
;
5819 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_buf_size_err_cnt
;
5820 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_rxd_corrupt_cnt
;
5821 tmp_stats
[i
++] = stat_info
->sw_stat
.rx_unkn_err_cnt
;
5824 static int s2io_ethtool_get_regs_len(struct net_device
*dev
)
5826 return (XENA_REG_SPACE
);
5830 static u32
s2io_ethtool_get_rx_csum(struct net_device
* dev
)
5832 struct s2io_nic
*sp
= dev
->priv
;
5834 return (sp
->rx_csum
);
5837 static int s2io_ethtool_set_rx_csum(struct net_device
*dev
, u32 data
)
5839 struct s2io_nic
*sp
= dev
->priv
;
5849 static int s2io_get_eeprom_len(struct net_device
*dev
)
5851 return (XENA_EEPROM_SPACE
);
5854 static int s2io_ethtool_self_test_count(struct net_device
*dev
)
5856 return (S2IO_TEST_LEN
);
5859 static void s2io_ethtool_get_strings(struct net_device
*dev
,
5860 u32 stringset
, u8
* data
)
5863 struct s2io_nic
*sp
= dev
->priv
;
5865 switch (stringset
) {
5867 memcpy(data
, s2io_gstrings
, S2IO_STRINGS_LEN
);
5870 stat_size
= sizeof(ethtool_xena_stats_keys
);
5871 memcpy(data
, ðtool_xena_stats_keys
,stat_size
);
5872 if(sp
->device_type
== XFRAME_II_DEVICE
) {
5873 memcpy(data
+ stat_size
,
5874 ðtool_enhanced_stats_keys
,
5875 sizeof(ethtool_enhanced_stats_keys
));
5876 stat_size
+= sizeof(ethtool_enhanced_stats_keys
);
5879 memcpy(data
+ stat_size
, ðtool_driver_stats_keys
,
5880 sizeof(ethtool_driver_stats_keys
));
5883 static int s2io_ethtool_get_stats_count(struct net_device
*dev
)
5885 struct s2io_nic
*sp
= dev
->priv
;
5887 switch(sp
->device_type
) {
5888 case XFRAME_I_DEVICE
:
5889 stat_count
= XFRAME_I_STAT_LEN
;
5892 case XFRAME_II_DEVICE
:
5893 stat_count
= XFRAME_II_STAT_LEN
;
5900 static int s2io_ethtool_op_set_tx_csum(struct net_device
*dev
, u32 data
)
5903 dev
->features
|= NETIF_F_IP_CSUM
;
5905 dev
->features
&= ~NETIF_F_IP_CSUM
;
5910 static u32
s2io_ethtool_op_get_tso(struct net_device
*dev
)
5912 return (dev
->features
& NETIF_F_TSO
) != 0;
5914 static int s2io_ethtool_op_set_tso(struct net_device
*dev
, u32 data
)
5917 dev
->features
|= (NETIF_F_TSO
| NETIF_F_TSO6
);
5919 dev
->features
&= ~(NETIF_F_TSO
| NETIF_F_TSO6
);
5924 static const struct ethtool_ops netdev_ethtool_ops
= {
5925 .get_settings
= s2io_ethtool_gset
,
5926 .set_settings
= s2io_ethtool_sset
,
5927 .get_drvinfo
= s2io_ethtool_gdrvinfo
,
5928 .get_regs_len
= s2io_ethtool_get_regs_len
,
5929 .get_regs
= s2io_ethtool_gregs
,
5930 .get_link
= ethtool_op_get_link
,
5931 .get_eeprom_len
= s2io_get_eeprom_len
,
5932 .get_eeprom
= s2io_ethtool_geeprom
,
5933 .set_eeprom
= s2io_ethtool_seeprom
,
5934 .get_ringparam
= s2io_ethtool_gringparam
,
5935 .get_pauseparam
= s2io_ethtool_getpause_data
,
5936 .set_pauseparam
= s2io_ethtool_setpause_data
,
5937 .get_rx_csum
= s2io_ethtool_get_rx_csum
,
5938 .set_rx_csum
= s2io_ethtool_set_rx_csum
,
5939 .get_tx_csum
= ethtool_op_get_tx_csum
,
5940 .set_tx_csum
= s2io_ethtool_op_set_tx_csum
,
5941 .get_sg
= ethtool_op_get_sg
,
5942 .set_sg
= ethtool_op_set_sg
,
5943 .get_tso
= s2io_ethtool_op_get_tso
,
5944 .set_tso
= s2io_ethtool_op_set_tso
,
5945 .get_ufo
= ethtool_op_get_ufo
,
5946 .set_ufo
= ethtool_op_set_ufo
,
5947 .self_test_count
= s2io_ethtool_self_test_count
,
5948 .self_test
= s2io_ethtool_test
,
5949 .get_strings
= s2io_ethtool_get_strings
,
5950 .phys_id
= s2io_ethtool_idnic
,
5951 .get_stats_count
= s2io_ethtool_get_stats_count
,
5952 .get_ethtool_stats
= s2io_get_ethtool_stats
5956 * s2io_ioctl - Entry point for the Ioctl
5957 * @dev : Device pointer.
5958 * @ifr : An IOCTL specefic structure, that can contain a pointer to
5959 * a proprietary structure used to pass information to the driver.
5960 * @cmd : This is used to distinguish between the different commands that
5961 * can be passed to the IOCTL functions.
5963 * Currently there are no special functionality supported in IOCTL, hence
5964 * function always return EOPNOTSUPPORTED
5967 static int s2io_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
5973 * s2io_change_mtu - entry point to change MTU size for the device.
5974 * @dev : device pointer.
5975 * @new_mtu : the new MTU size for the device.
5976 * Description: A driver entry point to change MTU size for the device.
5977 * Before changing the MTU the device must be stopped.
5979 * 0 on success and an appropriate (-)ve integer as defined in errno.h
5983 static int s2io_change_mtu(struct net_device
*dev
, int new_mtu
)
5985 struct s2io_nic
*sp
= dev
->priv
;
5987 if ((new_mtu
< MIN_MTU
) || (new_mtu
> S2IO_JUMBO_SIZE
)) {
5988 DBG_PRINT(ERR_DBG
, "%s: MTU size is invalid.\n",
5994 if (netif_running(dev
)) {
5996 netif_stop_queue(dev
);
5997 if (s2io_card_up(sp
)) {
5998 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6001 if (netif_queue_stopped(dev
))
6002 netif_wake_queue(dev
);
6003 } else { /* Device is down */
6004 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6005 u64 val64
= new_mtu
;
6007 writeq(vBIT(val64
, 2, 14), &bar0
->rmac_max_pyld_len
);
6014 * s2io_tasklet - Bottom half of the ISR.
6015 * @dev_adr : address of the device structure in dma_addr_t format.
6017 * This is the tasklet or the bottom half of the ISR. This is
6018 * an extension of the ISR which is scheduled by the scheduler to be run
6019 * when the load on the CPU is low. All low priority tasks of the ISR can
6020 * be pushed into the tasklet. For now the tasklet is used only to
6021 * replenish the Rx buffers in the Rx buffer descriptors.
6026 static void s2io_tasklet(unsigned long dev_addr
)
6028 struct net_device
*dev
= (struct net_device
*) dev_addr
;
6029 struct s2io_nic
*sp
= dev
->priv
;
6031 struct mac_info
*mac_control
;
6032 struct config_param
*config
;
6034 mac_control
= &sp
->mac_control
;
6035 config
= &sp
->config
;
6037 if (!TASKLET_IN_USE
) {
6038 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6039 ret
= fill_rx_buffers(sp
, i
);
6040 if (ret
== -ENOMEM
) {
6041 DBG_PRINT(INFO_DBG
, "%s: Out of ",
6043 DBG_PRINT(INFO_DBG
, "memory in tasklet\n");
6045 } else if (ret
== -EFILL
) {
6047 "%s: Rx Ring %d is full\n",
6052 clear_bit(0, (&sp
->tasklet_status
));
6057 * s2io_set_link - Set the LInk status
6058 * @data: long pointer to device private structue
6059 * Description: Sets the link status for the adapter
6062 static void s2io_set_link(struct work_struct
*work
)
6064 struct s2io_nic
*nic
= container_of(work
, struct s2io_nic
, set_link_task
);
6065 struct net_device
*dev
= nic
->dev
;
6066 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6072 if (!netif_running(dev
))
6075 if (test_and_set_bit(0, &(nic
->link_state
))) {
6076 /* The card is being reset, no point doing anything */
6080 subid
= nic
->pdev
->subsystem_device
;
6081 if (s2io_link_fault_indication(nic
) == MAC_RMAC_ERR_TIMER
) {
6083 * Allow a small delay for the NICs self initiated
6084 * cleanup to complete.
6089 val64
= readq(&bar0
->adapter_status
);
6090 if (LINK_IS_UP(val64
)) {
6091 if (!(readq(&bar0
->adapter_control
) & ADAPTER_CNTL_EN
)) {
6092 if (verify_xena_quiescence(nic
)) {
6093 val64
= readq(&bar0
->adapter_control
);
6094 val64
|= ADAPTER_CNTL_EN
;
6095 writeq(val64
, &bar0
->adapter_control
);
6096 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6097 nic
->device_type
, subid
)) {
6098 val64
= readq(&bar0
->gpio_control
);
6099 val64
|= GPIO_CTRL_GPIO_0
;
6100 writeq(val64
, &bar0
->gpio_control
);
6101 val64
= readq(&bar0
->gpio_control
);
6103 val64
|= ADAPTER_LED_ON
;
6104 writeq(val64
, &bar0
->adapter_control
);
6106 nic
->device_enabled_once
= TRUE
;
6108 DBG_PRINT(ERR_DBG
, "%s: Error: ", dev
->name
);
6109 DBG_PRINT(ERR_DBG
, "device is not Quiescent\n");
6110 netif_stop_queue(dev
);
6113 val64
= readq(&bar0
->adapter_status
);
6114 if (!LINK_IS_UP(val64
)) {
6115 DBG_PRINT(ERR_DBG
, "%s:", dev
->name
);
6116 DBG_PRINT(ERR_DBG
, " Link down after enabling ");
6117 DBG_PRINT(ERR_DBG
, "device \n");
6119 s2io_link(nic
, LINK_UP
);
6121 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic
->device_type
,
6123 val64
= readq(&bar0
->gpio_control
);
6124 val64
&= ~GPIO_CTRL_GPIO_0
;
6125 writeq(val64
, &bar0
->gpio_control
);
6126 val64
= readq(&bar0
->gpio_control
);
6128 s2io_link(nic
, LINK_DOWN
);
6130 clear_bit(0, &(nic
->link_state
));
6136 static int set_rxd_buffer_pointer(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6138 struct sk_buff
**skb
, u64
*temp0
, u64
*temp1
,
6139 u64
*temp2
, int size
)
6141 struct net_device
*dev
= sp
->dev
;
6142 struct swStat
*stats
= &sp
->mac_control
.stats_info
->sw_stat
;
6144 if ((sp
->rxd_mode
== RXD_MODE_1
) && (rxdp
->Host_Control
== 0)) {
6145 struct RxD1
*rxdp1
= (struct RxD1
*)rxdp
;
6148 DBG_PRINT(INFO_DBG
, "SKB is not NULL\n");
6150 * As Rx frame are not going to be processed,
6151 * using same mapped address for the Rxd
6154 rxdp1
->Buffer0_ptr
= *temp0
;
6156 *skb
= dev_alloc_skb(size
);
6158 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6159 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6160 DBG_PRINT(INFO_DBG
, "1 buf mode SKBs\n");
6161 sp
->mac_control
.stats_info
->sw_stat
. \
6162 mem_alloc_fail_cnt
++;
6165 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6166 += (*skb
)->truesize
;
6167 /* storing the mapped addr in a temp variable
6168 * such it will be used for next rxd whose
6169 * Host Control is NULL
6171 rxdp1
->Buffer0_ptr
= *temp0
=
6172 pci_map_single( sp
->pdev
, (*skb
)->data
,
6173 size
- NET_IP_ALIGN
,
6174 PCI_DMA_FROMDEVICE
);
6175 if( (rxdp1
->Buffer0_ptr
== 0) ||
6176 (rxdp1
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6177 goto memalloc_failed
;
6179 rxdp
->Host_Control
= (unsigned long) (*skb
);
6181 } else if ((sp
->rxd_mode
== RXD_MODE_3B
) && (rxdp
->Host_Control
== 0)) {
6182 struct RxD3
*rxdp3
= (struct RxD3
*)rxdp
;
6183 /* Two buffer Mode */
6185 rxdp3
->Buffer2_ptr
= *temp2
;
6186 rxdp3
->Buffer0_ptr
= *temp0
;
6187 rxdp3
->Buffer1_ptr
= *temp1
;
6189 *skb
= dev_alloc_skb(size
);
6191 DBG_PRINT(INFO_DBG
, "%s: Out of ", dev
->name
);
6192 DBG_PRINT(INFO_DBG
, "memory to allocate ");
6193 DBG_PRINT(INFO_DBG
, "2 buf mode SKBs\n");
6194 sp
->mac_control
.stats_info
->sw_stat
. \
6195 mem_alloc_fail_cnt
++;
6198 sp
->mac_control
.stats_info
->sw_stat
.mem_allocated
6199 += (*skb
)->truesize
;
6200 rxdp3
->Buffer2_ptr
= *temp2
=
6201 pci_map_single(sp
->pdev
, (*skb
)->data
,
6203 PCI_DMA_FROMDEVICE
);
6204 if( (rxdp3
->Buffer2_ptr
== 0) ||
6205 (rxdp3
->Buffer2_ptr
== DMA_ERROR_CODE
)) {
6206 goto memalloc_failed
;
6208 rxdp3
->Buffer0_ptr
= *temp0
=
6209 pci_map_single( sp
->pdev
, ba
->ba_0
, BUF0_LEN
,
6210 PCI_DMA_FROMDEVICE
);
6211 if( (rxdp3
->Buffer0_ptr
== 0) ||
6212 (rxdp3
->Buffer0_ptr
== DMA_ERROR_CODE
)) {
6213 pci_unmap_single (sp
->pdev
,
6214 (dma_addr_t
)(*skb
)->data
,
6215 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6216 goto memalloc_failed
;
6218 rxdp
->Host_Control
= (unsigned long) (*skb
);
6220 /* Buffer-1 will be dummy buffer not used */
6221 rxdp3
->Buffer1_ptr
= *temp1
=
6222 pci_map_single(sp
->pdev
, ba
->ba_1
, BUF1_LEN
,
6223 PCI_DMA_FROMDEVICE
);
6224 if( (rxdp3
->Buffer1_ptr
== 0) ||
6225 (rxdp3
->Buffer1_ptr
== DMA_ERROR_CODE
)) {
6226 pci_unmap_single (sp
->pdev
,
6227 (dma_addr_t
)(*skb
)->data
,
6228 dev
->mtu
+ 4, PCI_DMA_FROMDEVICE
);
6229 goto memalloc_failed
;
6235 stats
->pci_map_fail_cnt
++;
6236 stats
->mem_freed
+= (*skb
)->truesize
;
6237 dev_kfree_skb(*skb
);
6241 static void set_rxd_buffer_size(struct s2io_nic
*sp
, struct RxD_t
*rxdp
,
6244 struct net_device
*dev
= sp
->dev
;
6245 if (sp
->rxd_mode
== RXD_MODE_1
) {
6246 rxdp
->Control_2
= SET_BUFFER0_SIZE_1( size
- NET_IP_ALIGN
);
6247 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6248 rxdp
->Control_2
= SET_BUFFER0_SIZE_3(BUF0_LEN
);
6249 rxdp
->Control_2
|= SET_BUFFER1_SIZE_3(1);
6250 rxdp
->Control_2
|= SET_BUFFER2_SIZE_3( dev
->mtu
+ 4);
6254 static int rxd_owner_bit_reset(struct s2io_nic
*sp
)
6256 int i
, j
, k
, blk_cnt
= 0, size
;
6257 struct mac_info
* mac_control
= &sp
->mac_control
;
6258 struct config_param
*config
= &sp
->config
;
6259 struct net_device
*dev
= sp
->dev
;
6260 struct RxD_t
*rxdp
= NULL
;
6261 struct sk_buff
*skb
= NULL
;
6262 struct buffAdd
*ba
= NULL
;
6263 u64 temp0_64
= 0, temp1_64
= 0, temp2_64
= 0;
6265 /* Calculate the size based on ring mode */
6266 size
= dev
->mtu
+ HEADER_ETHERNET_II_802_3_SIZE
+
6267 HEADER_802_2_SIZE
+ HEADER_SNAP_SIZE
;
6268 if (sp
->rxd_mode
== RXD_MODE_1
)
6269 size
+= NET_IP_ALIGN
;
6270 else if (sp
->rxd_mode
== RXD_MODE_3B
)
6271 size
= dev
->mtu
+ ALIGN_SIZE
+ BUF0_LEN
+ 4;
6273 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6274 blk_cnt
= config
->rx_cfg
[i
].num_rxd
/
6275 (rxd_count
[sp
->rxd_mode
] +1);
6277 for (j
= 0; j
< blk_cnt
; j
++) {
6278 for (k
= 0; k
< rxd_count
[sp
->rxd_mode
]; k
++) {
6279 rxdp
= mac_control
->rings
[i
].
6280 rx_blocks
[j
].rxds
[k
].virt_addr
;
6281 if(sp
->rxd_mode
== RXD_MODE_3B
)
6282 ba
= &mac_control
->rings
[i
].ba
[j
][k
];
6283 if (set_rxd_buffer_pointer(sp
, rxdp
, ba
,
6284 &skb
,(u64
*)&temp0_64
,
6291 set_rxd_buffer_size(sp
, rxdp
, size
);
6293 /* flip the Ownership bit to Hardware */
6294 rxdp
->Control_1
|= RXD_OWN_XENA
;
6302 static int s2io_add_isr(struct s2io_nic
* sp
)
6305 struct net_device
*dev
= sp
->dev
;
6308 if (sp
->intr_type
== MSI_X
)
6309 ret
= s2io_enable_msi_x(sp
);
6311 DBG_PRINT(ERR_DBG
, "%s: Defaulting to INTA\n", dev
->name
);
6312 sp
->intr_type
= INTA
;
6315 /* Store the values of the MSIX table in the struct s2io_nic structure */
6316 store_xmsi_data(sp
);
6318 /* After proper initialization of H/W, register ISR */
6319 if (sp
->intr_type
== MSI_X
) {
6320 int i
, msix_tx_cnt
=0,msix_rx_cnt
=0;
6322 for (i
=1; (sp
->s2io_entries
[i
].in_use
== MSIX_FLG
); i
++) {
6323 if (sp
->s2io_entries
[i
].type
== MSIX_FIFO_TYPE
) {
6324 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-TX",
6326 err
= request_irq(sp
->entries
[i
].vector
,
6327 s2io_msix_fifo_handle
, 0, sp
->desc
[i
],
6328 sp
->s2io_entries
[i
].arg
);
6329 /* If either data or addr is zero print it */
6330 if(!(sp
->msix_info
[i
].addr
&&
6331 sp
->msix_info
[i
].data
)) {
6332 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6333 "Data:0x%lx\n",sp
->desc
[i
],
6334 (unsigned long long)
6335 sp
->msix_info
[i
].addr
,
6337 ntohl(sp
->msix_info
[i
].data
));
6342 sprintf(sp
->desc
[i
], "%s:MSI-X-%d-RX",
6344 err
= request_irq(sp
->entries
[i
].vector
,
6345 s2io_msix_ring_handle
, 0, sp
->desc
[i
],
6346 sp
->s2io_entries
[i
].arg
);
6347 /* If either data or addr is zero print it */
6348 if(!(sp
->msix_info
[i
].addr
&&
6349 sp
->msix_info
[i
].data
)) {
6350 DBG_PRINT(ERR_DBG
, "%s @ Addr:0x%llx"
6351 "Data:0x%lx\n",sp
->desc
[i
],
6352 (unsigned long long)
6353 sp
->msix_info
[i
].addr
,
6355 ntohl(sp
->msix_info
[i
].data
));
6361 DBG_PRINT(ERR_DBG
,"%s:MSI-X-%d registration "
6362 "failed\n", dev
->name
, i
);
6363 DBG_PRINT(ERR_DBG
, "Returned: %d\n", err
);
6366 sp
->s2io_entries
[i
].in_use
= MSIX_REGISTERED_SUCCESS
;
6368 printk("MSI-X-TX %d entries enabled\n",msix_tx_cnt
);
6369 printk("MSI-X-RX %d entries enabled\n",msix_rx_cnt
);
6371 if (sp
->intr_type
== INTA
) {
6372 err
= request_irq((int) sp
->pdev
->irq
, s2io_isr
, IRQF_SHARED
,
6375 DBG_PRINT(ERR_DBG
, "%s: ISR registration failed\n",
6382 static void s2io_rem_isr(struct s2io_nic
* sp
)
6385 struct net_device
*dev
= sp
->dev
;
6387 if (sp
->intr_type
== MSI_X
) {
6391 for (i
=1; (sp
->s2io_entries
[i
].in_use
==
6392 MSIX_REGISTERED_SUCCESS
); i
++) {
6393 int vector
= sp
->entries
[i
].vector
;
6394 void *arg
= sp
->s2io_entries
[i
].arg
;
6396 free_irq(vector
, arg
);
6398 pci_read_config_word(sp
->pdev
, 0x42, &msi_control
);
6399 msi_control
&= 0xFFFE; /* Disable MSI */
6400 pci_write_config_word(sp
->pdev
, 0x42, msi_control
);
6402 pci_disable_msix(sp
->pdev
);
6404 free_irq(sp
->pdev
->irq
, dev
);
6406 /* Waiting till all Interrupt handlers are complete */
6410 if (!atomic_read(&sp
->isr_cnt
))
6416 static void do_s2io_card_down(struct s2io_nic
* sp
, int do_io
)
6419 struct XENA_dev_config __iomem
*bar0
= sp
->bar0
;
6420 unsigned long flags
;
6421 register u64 val64
= 0;
6423 del_timer_sync(&sp
->alarm_timer
);
6424 /* If s2io_set_link task is executing, wait till it completes. */
6425 while (test_and_set_bit(0, &(sp
->link_state
))) {
6428 atomic_set(&sp
->card_state
, CARD_DOWN
);
6430 /* disable Tx and Rx traffic on the NIC */
6437 tasklet_kill(&sp
->task
);
6439 /* Check if the device is Quiescent and then Reset the NIC */
6441 /* As per the HW requirement we need to replenish the
6442 * receive buffer to avoid the ring bump. Since there is
6443 * no intention of processing the Rx frame at this pointwe are
6444 * just settting the ownership bit of rxd in Each Rx
6445 * ring to HW and set the appropriate buffer size
6446 * based on the ring mode
6448 rxd_owner_bit_reset(sp
);
6450 val64
= readq(&bar0
->adapter_status
);
6451 if (verify_xena_quiescence(sp
)) {
6452 if(verify_pcc_quiescent(sp
, sp
->device_enabled_once
))
6460 "s2io_close:Device not Quiescent ");
6461 DBG_PRINT(ERR_DBG
, "adaper status reads 0x%llx\n",
6462 (unsigned long long) val64
);
6469 spin_lock_irqsave(&sp
->tx_lock
, flags
);
6470 /* Free all Tx buffers */
6471 free_tx_buffers(sp
);
6472 spin_unlock_irqrestore(&sp
->tx_lock
, flags
);
6474 /* Free all Rx buffers */
6475 spin_lock_irqsave(&sp
->rx_lock
, flags
);
6476 free_rx_buffers(sp
);
6477 spin_unlock_irqrestore(&sp
->rx_lock
, flags
);
6479 clear_bit(0, &(sp
->link_state
));
6482 static void s2io_card_down(struct s2io_nic
* sp
)
6484 do_s2io_card_down(sp
, 1);
6487 static int s2io_card_up(struct s2io_nic
* sp
)
6490 struct mac_info
*mac_control
;
6491 struct config_param
*config
;
6492 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6495 /* Initialize the H/W I/O registers */
6496 if (init_nic(sp
) != 0) {
6497 DBG_PRINT(ERR_DBG
, "%s: H/W initialization failed\n",
6504 * Initializing the Rx buffers. For now we are considering only 1
6505 * Rx ring and initializing buffers into 30 Rx blocks
6507 mac_control
= &sp
->mac_control
;
6508 config
= &sp
->config
;
6510 for (i
= 0; i
< config
->rx_ring_num
; i
++) {
6511 if ((ret
= fill_rx_buffers(sp
, i
))) {
6512 DBG_PRINT(ERR_DBG
, "%s: Out of memory in Open\n",
6515 free_rx_buffers(sp
);
6518 DBG_PRINT(INFO_DBG
, "Buf in ring:%d is %d:\n", i
,
6519 atomic_read(&sp
->rx_bufs_left
[i
]));
6521 /* Maintain the state prior to the open */
6522 if (sp
->promisc_flg
)
6523 sp
->promisc_flg
= 0;
6524 if (sp
->m_cast_flg
) {
6526 sp
->all_multi_pos
= 0;
6529 /* Setting its receive mode */
6530 s2io_set_multicast(dev
);
6533 /* Initialize max aggregatable pkts per session based on MTU */
6534 sp
->lro_max_aggr_per_sess
= ((1<<16) - 1) / dev
->mtu
;
6535 /* Check if we can use(if specified) user provided value */
6536 if (lro_max_pkts
< sp
->lro_max_aggr_per_sess
)
6537 sp
->lro_max_aggr_per_sess
= lro_max_pkts
;
6540 /* Enable Rx Traffic and interrupts on the NIC */
6541 if (start_nic(sp
)) {
6542 DBG_PRINT(ERR_DBG
, "%s: Starting NIC failed\n", dev
->name
);
6544 free_rx_buffers(sp
);
6548 /* Add interrupt service routine */
6549 if (s2io_add_isr(sp
) != 0) {
6550 if (sp
->intr_type
== MSI_X
)
6553 free_rx_buffers(sp
);
6557 S2IO_TIMER_CONF(sp
->alarm_timer
, s2io_alarm_handle
, sp
, (HZ
/2));
6559 /* Enable tasklet for the device */
6560 tasklet_init(&sp
->task
, s2io_tasklet
, (unsigned long) dev
);
6562 /* Enable select interrupts */
6563 if (sp
->intr_type
!= INTA
)
6564 en_dis_able_nic_intrs(sp
, ENA_ALL_INTRS
, DISABLE_INTRS
);
6566 interruptible
= TX_TRAFFIC_INTR
| RX_TRAFFIC_INTR
;
6567 interruptible
|= TX_PIC_INTR
| RX_PIC_INTR
;
6568 interruptible
|= TX_MAC_INTR
| RX_MAC_INTR
;
6569 en_dis_able_nic_intrs(sp
, interruptible
, ENABLE_INTRS
);
6573 atomic_set(&sp
->card_state
, CARD_UP
);
6578 * s2io_restart_nic - Resets the NIC.
6579 * @data : long pointer to the device private structure
6581 * This function is scheduled to be run by the s2io_tx_watchdog
6582 * function after 0.5 secs to reset the NIC. The idea is to reduce
6583 * the run time of the watch dog routine which is run holding a
6587 static void s2io_restart_nic(struct work_struct
*work
)
6589 struct s2io_nic
*sp
= container_of(work
, struct s2io_nic
, rst_timer_task
);
6590 struct net_device
*dev
= sp
->dev
;
6594 if (!netif_running(dev
))
6598 if (s2io_card_up(sp
)) {
6599 DBG_PRINT(ERR_DBG
, "%s: Device bring up failed\n",
6602 netif_wake_queue(dev
);
6603 DBG_PRINT(ERR_DBG
, "%s: was reset by Tx watchdog timer\n",
6610 * s2io_tx_watchdog - Watchdog for transmit side.
6611 * @dev : Pointer to net device structure
6613 * This function is triggered if the Tx Queue is stopped
6614 * for a pre-defined amount of time when the Interface is still up.
6615 * If the Interface is jammed in such a situation, the hardware is
6616 * reset (by s2io_close) and restarted again (by s2io_open) to
6617 * overcome any problem that might have been caused in the hardware.
6622 static void s2io_tx_watchdog(struct net_device
*dev
)
6624 struct s2io_nic
*sp
= dev
->priv
;
6626 if (netif_carrier_ok(dev
)) {
6627 sp
->mac_control
.stats_info
->sw_stat
.watchdog_timer_cnt
++;
6628 schedule_work(&sp
->rst_timer_task
);
6629 sp
->mac_control
.stats_info
->sw_stat
.soft_reset_cnt
++;
6634 * rx_osm_handler - To perform some OS related operations on SKB.
6635 * @sp: private member of the device structure,pointer to s2io_nic structure.
6636 * @skb : the socket buffer pointer.
6637 * @len : length of the packet
6638 * @cksum : FCS checksum of the frame.
6639 * @ring_no : the ring from which this RxD was extracted.
6641 * This function is called by the Rx interrupt serivce routine to perform
6642 * some OS related operations on the SKB before passing it to the upper
6643 * layers. It mainly checks if the checksum is OK, if so adds it to the
6644 * SKBs cksum variable, increments the Rx packet count and passes the SKB
6645 * to the upper layer. If the checksum is wrong, it increments the Rx
6646 * packet error count, frees the SKB and returns error.
6648 * SUCCESS on success and -1 on failure.
6650 static int rx_osm_handler(struct ring_info
*ring_data
, struct RxD_t
* rxdp
)
6652 struct s2io_nic
*sp
= ring_data
->nic
;
6653 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6654 struct sk_buff
*skb
= (struct sk_buff
*)
6655 ((unsigned long) rxdp
->Host_Control
);
6656 int ring_no
= ring_data
->ring_no
;
6657 u16 l3_csum
, l4_csum
;
6658 unsigned long long err
= rxdp
->Control_1
& RXD_T_CODE
;
6665 /* Check for parity error */
6667 sp
->mac_control
.stats_info
->sw_stat
.parity_err_cnt
++;
6669 err_mask
= err
>> 48;
6672 sp
->mac_control
.stats_info
->sw_stat
.
6673 rx_parity_err_cnt
++;
6677 sp
->mac_control
.stats_info
->sw_stat
.
6682 sp
->mac_control
.stats_info
->sw_stat
.
6683 rx_parity_abort_cnt
++;
6687 sp
->mac_control
.stats_info
->sw_stat
.
6692 sp
->mac_control
.stats_info
->sw_stat
.
6697 sp
->mac_control
.stats_info
->sw_stat
.
6702 sp
->mac_control
.stats_info
->sw_stat
.
6703 rx_buf_size_err_cnt
++;
6707 sp
->mac_control
.stats_info
->sw_stat
.
6708 rx_rxd_corrupt_cnt
++;
6712 sp
->mac_control
.stats_info
->sw_stat
.
6717 * Drop the packet if bad transfer code. Exception being
6718 * 0x5, which could be due to unsupported IPv6 extension header.
6719 * In this case, we let stack handle the packet.
6720 * Note that in this case, since checksum will be incorrect,
6721 * stack will validate the same.
6723 if (err_mask
!= 0x5) {
6724 DBG_PRINT(ERR_DBG
, "%s: Rx error Value: 0x%x\n",
6725 dev
->name
, err_mask
);
6726 sp
->stats
.rx_crc_errors
++;
6727 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
6730 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6731 rxdp
->Host_Control
= 0;
6736 /* Updating statistics */
6737 sp
->stats
.rx_packets
++;
6738 rxdp
->Host_Control
= 0;
6739 if (sp
->rxd_mode
== RXD_MODE_1
) {
6740 int len
= RXD_GET_BUFFER0_SIZE_1(rxdp
->Control_2
);
6742 sp
->stats
.rx_bytes
+= len
;
6745 } else if (sp
->rxd_mode
== RXD_MODE_3B
) {
6746 int get_block
= ring_data
->rx_curr_get_info
.block_index
;
6747 int get_off
= ring_data
->rx_curr_get_info
.offset
;
6748 int buf0_len
= RXD_GET_BUFFER0_SIZE_3(rxdp
->Control_2
);
6749 int buf2_len
= RXD_GET_BUFFER2_SIZE_3(rxdp
->Control_2
);
6750 unsigned char *buff
= skb_push(skb
, buf0_len
);
6752 struct buffAdd
*ba
= &ring_data
->ba
[get_block
][get_off
];
6753 sp
->stats
.rx_bytes
+= buf0_len
+ buf2_len
;
6754 memcpy(buff
, ba
->ba_0
, buf0_len
);
6755 skb_put(skb
, buf2_len
);
6758 if ((rxdp
->Control_1
& TCP_OR_UDP_FRAME
) && ((!sp
->lro
) ||
6759 (sp
->lro
&& (!(rxdp
->Control_1
& RXD_FRAME_IP_FRAG
)))) &&
6761 l3_csum
= RXD_GET_L3_CKSUM(rxdp
->Control_1
);
6762 l4_csum
= RXD_GET_L4_CKSUM(rxdp
->Control_1
);
6763 if ((l3_csum
== L3_CKSUM_OK
) && (l4_csum
== L4_CKSUM_OK
)) {
6765 * NIC verifies if the Checksum of the received
6766 * frame is Ok or not and accordingly returns
6767 * a flag in the RxD.
6769 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
6775 ret
= s2io_club_tcp_session(skb
->data
, &tcp
,
6776 &tcp_len
, &lro
, rxdp
, sp
);
6778 case 3: /* Begin anew */
6781 case 1: /* Aggregate */
6783 lro_append_pkt(sp
, lro
,
6787 case 4: /* Flush session */
6789 lro_append_pkt(sp
, lro
,
6791 queue_rx_frame(lro
->parent
);
6792 clear_lro_session(lro
);
6793 sp
->mac_control
.stats_info
->
6794 sw_stat
.flush_max_pkts
++;
6797 case 2: /* Flush both */
6798 lro
->parent
->data_len
=
6800 sp
->mac_control
.stats_info
->
6801 sw_stat
.sending_both
++;
6802 queue_rx_frame(lro
->parent
);
6803 clear_lro_session(lro
);
6805 case 0: /* sessions exceeded */
6806 case -1: /* non-TCP or not
6810 * First pkt in session not
6811 * L3/L4 aggregatable
6816 "%s: Samadhana!!\n",
6823 * Packet with erroneous checksum, let the
6824 * upper layers deal with it.
6826 skb
->ip_summed
= CHECKSUM_NONE
;
6829 skb
->ip_summed
= CHECKSUM_NONE
;
6831 sp
->mac_control
.stats_info
->sw_stat
.mem_freed
+= skb
->truesize
;
6833 skb
->protocol
= eth_type_trans(skb
, dev
);
6834 if ((sp
->vlgrp
&& RXD_GET_VLAN_TAG(rxdp
->Control_2
) &&
6836 /* Queueing the vlan frame to the upper layer */
6838 vlan_hwaccel_receive_skb(skb
, sp
->vlgrp
,
6839 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6841 vlan_hwaccel_rx(skb
, sp
->vlgrp
,
6842 RXD_GET_VLAN_TAG(rxdp
->Control_2
));
6845 netif_receive_skb(skb
);
6851 queue_rx_frame(skb
);
6853 dev
->last_rx
= jiffies
;
6855 atomic_dec(&sp
->rx_bufs_left
[ring_no
]);
6860 * s2io_link - stops/starts the Tx queue.
6861 * @sp : private member of the device structure, which is a pointer to the
6862 * s2io_nic structure.
6863 * @link : inidicates whether link is UP/DOWN.
6865 * This function stops/starts the Tx queue depending on whether the link
6866 * status of the NIC is is down or up. This is called by the Alarm
6867 * interrupt handler whenever a link change interrupt comes up.
6872 static void s2io_link(struct s2io_nic
* sp
, int link
)
6874 struct net_device
*dev
= (struct net_device
*) sp
->dev
;
6876 if (link
!= sp
->last_link_state
) {
6877 if (link
== LINK_DOWN
) {
6878 DBG_PRINT(ERR_DBG
, "%s: Link down\n", dev
->name
);
6879 netif_carrier_off(dev
);
6880 if(sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
)
6881 sp
->mac_control
.stats_info
->sw_stat
.link_up_time
=
6882 jiffies
- sp
->start_time
;
6883 sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
++;
6885 DBG_PRINT(ERR_DBG
, "%s: Link Up\n", dev
->name
);
6886 if (sp
->mac_control
.stats_info
->sw_stat
.link_down_cnt
)
6887 sp
->mac_control
.stats_info
->sw_stat
.link_down_time
=
6888 jiffies
- sp
->start_time
;
6889 sp
->mac_control
.stats_info
->sw_stat
.link_up_cnt
++;
6890 netif_carrier_on(dev
);
6893 sp
->last_link_state
= link
;
6894 sp
->start_time
= jiffies
;
6898 * s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
6899 * @sp : private member of the device structure, which is a pointer to the
6900 * s2io_nic structure.
6902 * This function initializes a few of the PCI and PCI-X configuration registers
6903 * with recommended values.
6908 static void s2io_init_pci(struct s2io_nic
* sp
)
6910 u16 pci_cmd
= 0, pcix_cmd
= 0;
6912 /* Enable Data Parity Error Recovery in PCI-X command register. */
6913 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6915 pci_write_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6917 pci_read_config_word(sp
->pdev
, PCIX_COMMAND_REGISTER
,
6920 /* Set the PErr Response bit in PCI command register. */
6921 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6922 pci_write_config_word(sp
->pdev
, PCI_COMMAND
,
6923 (pci_cmd
| PCI_COMMAND_PARITY
));
6924 pci_read_config_word(sp
->pdev
, PCI_COMMAND
, &pci_cmd
);
6927 static int s2io_verify_parm(struct pci_dev
*pdev
, u8
*dev_intr_type
)
6929 if ( tx_fifo_num
> 8) {
6930 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Tx fifos not "
6932 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Tx fifos\n");
6935 if ( rx_ring_num
> 8) {
6936 DBG_PRINT(ERR_DBG
, "s2io: Requested number of Rx rings not "
6938 DBG_PRINT(ERR_DBG
, "s2io: Default to 8 Rx rings\n");
6941 if (*dev_intr_type
!= INTA
)
6944 #ifndef CONFIG_PCI_MSI
6945 if (*dev_intr_type
!= INTA
) {
6946 DBG_PRINT(ERR_DBG
, "s2io: This kernel does not support"
6947 "MSI/MSI-X. Defaulting to INTA\n");
6948 *dev_intr_type
= INTA
;
6951 if ((*dev_intr_type
!= INTA
) && (*dev_intr_type
!= MSI_X
)) {
6952 DBG_PRINT(ERR_DBG
, "s2io: Wrong intr_type requested. "
6953 "Defaulting to INTA\n");
6954 *dev_intr_type
= INTA
;
6957 if ((*dev_intr_type
== MSI_X
) &&
6958 ((pdev
->device
!= PCI_DEVICE_ID_HERC_WIN
) &&
6959 (pdev
->device
!= PCI_DEVICE_ID_HERC_UNI
))) {
6960 DBG_PRINT(ERR_DBG
, "s2io: Xframe I does not support MSI_X. "
6961 "Defaulting to INTA\n");
6962 *dev_intr_type
= INTA
;
6965 if ((rx_ring_mode
!= 1) && (rx_ring_mode
!= 2)) {
6966 DBG_PRINT(ERR_DBG
, "s2io: Requested ring mode not supported\n");
6967 DBG_PRINT(ERR_DBG
, "s2io: Defaulting to 1-buffer mode\n");
6974 * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
6975 * or Traffic class respectively.
6976 * @nic: device peivate variable
6977 * Description: The function configures the receive steering to
6978 * desired receive ring.
6979 * Return Value: SUCCESS on success and
6980 * '-1' on failure (endian settings incorrect).
6982 static int rts_ds_steer(struct s2io_nic
*nic
, u8 ds_codepoint
, u8 ring
)
6984 struct XENA_dev_config __iomem
*bar0
= nic
->bar0
;
6985 register u64 val64
= 0;
6987 if (ds_codepoint
> 63)
6990 val64
= RTS_DS_MEM_DATA(ring
);
6991 writeq(val64
, &bar0
->rts_ds_mem_data
);
6993 val64
= RTS_DS_MEM_CTRL_WE
|
6994 RTS_DS_MEM_CTRL_STROBE_NEW_CMD
|
6995 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint
);
6997 writeq(val64
, &bar0
->rts_ds_mem_ctrl
);
6999 return wait_for_cmd_complete(&bar0
->rts_ds_mem_ctrl
,
7000 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED
,
7005 * s2io_init_nic - Initialization of the adapter .
7006 * @pdev : structure containing the PCI related information of the device.
7007 * @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7009 * The function initializes an adapter identified by the pci_dec structure.
7010 * All OS related initialization including memory and device structure and
7011 * initlaization of the device private variable is done. Also the swapper
7012 * control register is initialized to enable read and write into the I/O
7013 * registers of the device.
7015 * returns 0 on success and negative on failure.
7018 static int __devinit
7019 s2io_init_nic(struct pci_dev
*pdev
, const struct pci_device_id
*pre
)
7021 struct s2io_nic
*sp
;
7022 struct net_device
*dev
;
7024 int dma_flag
= FALSE
;
7025 u32 mac_up
, mac_down
;
7026 u64 val64
= 0, tmp64
= 0;
7027 struct XENA_dev_config __iomem
*bar0
= NULL
;
7029 struct mac_info
*mac_control
;
7030 struct config_param
*config
;
7032 u8 dev_intr_type
= intr_type
;
7034 if ((ret
= s2io_verify_parm(pdev
, &dev_intr_type
)))
7037 if ((ret
= pci_enable_device(pdev
))) {
7039 "s2io_init_nic: pci_enable_device failed\n");
7043 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
7044 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 64bit DMA\n");
7046 if (pci_set_consistent_dma_mask
7047 (pdev
, DMA_64BIT_MASK
)) {
7049 "Unable to obtain 64bit DMA for \
7050 consistent allocations\n");
7051 pci_disable_device(pdev
);
7054 } else if (!pci_set_dma_mask(pdev
, DMA_32BIT_MASK
)) {
7055 DBG_PRINT(INIT_DBG
, "s2io_init_nic: Using 32bit DMA\n");
7057 pci_disable_device(pdev
);
7060 if ((ret
= pci_request_regions(pdev
, s2io_driver_name
))) {
7061 DBG_PRINT(ERR_DBG
, "%s: Request Regions failed - %x \n", __FUNCTION__
, ret
);
7062 pci_disable_device(pdev
);
7066 dev
= alloc_etherdev(sizeof(struct s2io_nic
));
7068 DBG_PRINT(ERR_DBG
, "Device allocation failed\n");
7069 pci_disable_device(pdev
);
7070 pci_release_regions(pdev
);
7074 pci_set_master(pdev
);
7075 pci_set_drvdata(pdev
, dev
);
7076 SET_MODULE_OWNER(dev
);
7077 SET_NETDEV_DEV(dev
, &pdev
->dev
);
7079 /* Private member variable initialized to s2io NIC structure */
7081 memset(sp
, 0, sizeof(struct s2io_nic
));
7084 sp
->high_dma_flag
= dma_flag
;
7085 sp
->device_enabled_once
= FALSE
;
7086 if (rx_ring_mode
== 1)
7087 sp
->rxd_mode
= RXD_MODE_1
;
7088 if (rx_ring_mode
== 2)
7089 sp
->rxd_mode
= RXD_MODE_3B
;
7091 sp
->intr_type
= dev_intr_type
;
7093 if ((pdev
->device
== PCI_DEVICE_ID_HERC_WIN
) ||
7094 (pdev
->device
== PCI_DEVICE_ID_HERC_UNI
))
7095 sp
->device_type
= XFRAME_II_DEVICE
;
7097 sp
->device_type
= XFRAME_I_DEVICE
;
7101 /* Initialize some PCI/PCI-X fields of the NIC. */
7105 * Setting the device configuration parameters.
7106 * Most of these parameters can be specified by the user during
7107 * module insertion as they are module loadable parameters. If
7108 * these parameters are not not specified during load time, they
7109 * are initialized with default values.
7111 mac_control
= &sp
->mac_control
;
7112 config
= &sp
->config
;
7114 /* Tx side parameters. */
7115 config
->tx_fifo_num
= tx_fifo_num
;
7116 for (i
= 0; i
< MAX_TX_FIFOS
; i
++) {
7117 config
->tx_cfg
[i
].fifo_len
= tx_fifo_len
[i
];
7118 config
->tx_cfg
[i
].fifo_priority
= i
;
7121 /* mapping the QoS priority to the configured fifos */
7122 for (i
= 0; i
< MAX_TX_FIFOS
; i
++)
7123 config
->fifo_mapping
[i
] = fifo_map
[config
->tx_fifo_num
][i
];
7125 config
->tx_intr_type
= TXD_INT_TYPE_UTILZ
;
7126 for (i
= 0; i
< config
->tx_fifo_num
; i
++) {
7127 config
->tx_cfg
[i
].f_no_snoop
=
7128 (NO_SNOOP_TXD
| NO_SNOOP_TXD_BUFFER
);
7129 if (config
->tx_cfg
[i
].fifo_len
< 65) {
7130 config
->tx_intr_type
= TXD_INT_TYPE_PER_LIST
;
7134 /* + 2 because one Txd for skb->data and one Txd for UFO */
7135 config
->max_txds
= MAX_SKB_FRAGS
+ 2;
7137 /* Rx side parameters. */
7138 config
->rx_ring_num
= rx_ring_num
;
7139 for (i
= 0; i
< MAX_RX_RINGS
; i
++) {
7140 config
->rx_cfg
[i
].num_rxd
= rx_ring_sz
[i
] *
7141 (rxd_count
[sp
->rxd_mode
] + 1);
7142 config
->rx_cfg
[i
].ring_priority
= i
;
7145 for (i
= 0; i
< rx_ring_num
; i
++) {
7146 config
->rx_cfg
[i
].ring_org
= RING_ORG_BUFF1
;
7147 config
->rx_cfg
[i
].f_no_snoop
=
7148 (NO_SNOOP_RXD
| NO_SNOOP_RXD_BUFFER
);
7151 /* Setting Mac Control parameters */
7152 mac_control
->rmac_pause_time
= rmac_pause_time
;
7153 mac_control
->mc_pause_threshold_q0q3
= mc_pause_threshold_q0q3
;
7154 mac_control
->mc_pause_threshold_q4q7
= mc_pause_threshold_q4q7
;
7157 /* Initialize Ring buffer parameters. */
7158 for (i
= 0; i
< config
->rx_ring_num
; i
++)
7159 atomic_set(&sp
->rx_bufs_left
[i
], 0);
7161 /* Initialize the number of ISRs currently running */
7162 atomic_set(&sp
->isr_cnt
, 0);
7164 /* initialize the shared memory used by the NIC and the host */
7165 if (init_shared_mem(sp
)) {
7166 DBG_PRINT(ERR_DBG
, "%s: Memory allocation failed\n",
7169 goto mem_alloc_failed
;
7172 sp
->bar0
= ioremap(pci_resource_start(pdev
, 0),
7173 pci_resource_len(pdev
, 0));
7175 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem1\n",
7178 goto bar0_remap_failed
;
7181 sp
->bar1
= ioremap(pci_resource_start(pdev
, 2),
7182 pci_resource_len(pdev
, 2));
7184 DBG_PRINT(ERR_DBG
, "%s: Neterion: cannot remap io mem2\n",
7187 goto bar1_remap_failed
;
7190 dev
->irq
= pdev
->irq
;
7191 dev
->base_addr
= (unsigned long) sp
->bar0
;
7193 /* Initializing the BAR1 address as the start of the FIFO pointer. */
7194 for (j
= 0; j
< MAX_TX_FIFOS
; j
++) {
7195 mac_control
->tx_FIFO_start
[j
] = (struct TxFIFO_element __iomem
*)
7196 (sp
->bar1
+ (j
* 0x00020000));
7199 /* Driver entry points */
7200 dev
->open
= &s2io_open
;
7201 dev
->stop
= &s2io_close
;
7202 dev
->hard_start_xmit
= &s2io_xmit
;
7203 dev
->get_stats
= &s2io_get_stats
;
7204 dev
->set_multicast_list
= &s2io_set_multicast
;
7205 dev
->do_ioctl
= &s2io_ioctl
;
7206 dev
->change_mtu
= &s2io_change_mtu
;
7207 SET_ETHTOOL_OPS(dev
, &netdev_ethtool_ops
);
7208 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
7209 dev
->vlan_rx_register
= s2io_vlan_rx_register
;
7212 * will use eth_mac_addr() for dev->set_mac_address
7213 * mac address will be set every time dev->open() is called
7215 dev
->poll
= s2io_poll
;
7218 #ifdef CONFIG_NET_POLL_CONTROLLER
7219 dev
->poll_controller
= s2io_netpoll
;
7222 dev
->features
|= NETIF_F_SG
| NETIF_F_IP_CSUM
;
7223 if (sp
->high_dma_flag
== TRUE
)
7224 dev
->features
|= NETIF_F_HIGHDMA
;
7225 dev
->features
|= NETIF_F_TSO
;
7226 dev
->features
|= NETIF_F_TSO6
;
7227 if ((sp
->device_type
& XFRAME_II_DEVICE
) && (ufo
)) {
7228 dev
->features
|= NETIF_F_UFO
;
7229 dev
->features
|= NETIF_F_HW_CSUM
;
7232 dev
->tx_timeout
= &s2io_tx_watchdog
;
7233 dev
->watchdog_timeo
= WATCH_DOG_TIMEOUT
;
7234 INIT_WORK(&sp
->rst_timer_task
, s2io_restart_nic
);
7235 INIT_WORK(&sp
->set_link_task
, s2io_set_link
);
7237 pci_save_state(sp
->pdev
);
7239 /* Setting swapper control on the NIC, for proper reset operation */
7240 if (s2io_set_swapper(sp
)) {
7241 DBG_PRINT(ERR_DBG
, "%s:swapper settings are wrong\n",
7244 goto set_swap_failed
;
7247 /* Verify if the Herc works on the slot its placed into */
7248 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7249 mode
= s2io_verify_pci_mode(sp
);
7251 DBG_PRINT(ERR_DBG
, "%s: ", __FUNCTION__
);
7252 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7254 goto set_swap_failed
;
7258 /* Not needed for Herc */
7259 if (sp
->device_type
& XFRAME_I_DEVICE
) {
7261 * Fix for all "FFs" MAC address problems observed on
7264 fix_mac_address(sp
);
7269 * MAC address initialization.
7270 * For now only one mac address will be read and used.
7273 val64
= RMAC_ADDR_CMD_MEM_RD
| RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD
|
7274 RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET
);
7275 writeq(val64
, &bar0
->rmac_addr_cmd_mem
);
7276 wait_for_cmd_complete(&bar0
->rmac_addr_cmd_mem
,
7277 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING
, S2IO_BIT_RESET
);
7278 tmp64
= readq(&bar0
->rmac_addr_data0_mem
);
7279 mac_down
= (u32
) tmp64
;
7280 mac_up
= (u32
) (tmp64
>> 32);
7282 sp
->def_mac_addr
[0].mac_addr
[3] = (u8
) (mac_up
);
7283 sp
->def_mac_addr
[0].mac_addr
[2] = (u8
) (mac_up
>> 8);
7284 sp
->def_mac_addr
[0].mac_addr
[1] = (u8
) (mac_up
>> 16);
7285 sp
->def_mac_addr
[0].mac_addr
[0] = (u8
) (mac_up
>> 24);
7286 sp
->def_mac_addr
[0].mac_addr
[5] = (u8
) (mac_down
>> 16);
7287 sp
->def_mac_addr
[0].mac_addr
[4] = (u8
) (mac_down
>> 24);
7289 /* Set the factory defined MAC address initially */
7290 dev
->addr_len
= ETH_ALEN
;
7291 memcpy(dev
->dev_addr
, sp
->def_mac_addr
, ETH_ALEN
);
7293 /* reset Nic and bring it to known state */
7297 * Initialize the tasklet status and link state flags
7298 * and the card state parameter
7300 atomic_set(&(sp
->card_state
), 0);
7301 sp
->tasklet_status
= 0;
7304 /* Initialize spinlocks */
7305 spin_lock_init(&sp
->tx_lock
);
7308 spin_lock_init(&sp
->put_lock
);
7309 spin_lock_init(&sp
->rx_lock
);
7312 * SXE-002: Configure link and activity LED to init state
7315 subid
= sp
->pdev
->subsystem_device
;
7316 if ((subid
& 0xFF) >= 0x07) {
7317 val64
= readq(&bar0
->gpio_control
);
7318 val64
|= 0x0000800000000000ULL
;
7319 writeq(val64
, &bar0
->gpio_control
);
7320 val64
= 0x0411040400000000ULL
;
7321 writeq(val64
, (void __iomem
*) bar0
+ 0x2700);
7322 val64
= readq(&bar0
->gpio_control
);
7325 sp
->rx_csum
= 1; /* Rx chksum verify enabled by default */
7327 if (register_netdev(dev
)) {
7328 DBG_PRINT(ERR_DBG
, "Device registration failed\n");
7330 goto register_failed
;
7333 DBG_PRINT(ERR_DBG
, "Copyright(c) 2002-2007 Neterion Inc.\n");
7334 DBG_PRINT(ERR_DBG
, "%s: Neterion %s (rev %d)\n",dev
->name
,
7335 sp
->product_name
, pdev
->revision
);
7336 DBG_PRINT(ERR_DBG
, "%s: Driver version %s\n", dev
->name
,
7337 s2io_driver_version
);
7338 DBG_PRINT(ERR_DBG
, "%s: MAC ADDR: "
7339 "%02x:%02x:%02x:%02x:%02x:%02x", dev
->name
,
7340 sp
->def_mac_addr
[0].mac_addr
[0],
7341 sp
->def_mac_addr
[0].mac_addr
[1],
7342 sp
->def_mac_addr
[0].mac_addr
[2],
7343 sp
->def_mac_addr
[0].mac_addr
[3],
7344 sp
->def_mac_addr
[0].mac_addr
[4],
7345 sp
->def_mac_addr
[0].mac_addr
[5]);
7346 DBG_PRINT(ERR_DBG
, "SERIAL NUMBER: %s\n", sp
->serial_num
);
7347 if (sp
->device_type
& XFRAME_II_DEVICE
) {
7348 mode
= s2io_print_pci_mode(sp
);
7350 DBG_PRINT(ERR_DBG
, " Unsupported PCI bus mode\n");
7352 unregister_netdev(dev
);
7353 goto set_swap_failed
;
7356 switch(sp
->rxd_mode
) {
7358 DBG_PRINT(ERR_DBG
, "%s: 1-Buffer receive mode enabled\n",
7362 DBG_PRINT(ERR_DBG
, "%s: 2-Buffer receive mode enabled\n",
7368 DBG_PRINT(ERR_DBG
, "%s: NAPI enabled\n", dev
->name
);
7369 switch(sp
->intr_type
) {
7371 DBG_PRINT(ERR_DBG
, "%s: Interrupt type INTA\n", dev
->name
);
7374 DBG_PRINT(ERR_DBG
, "%s: Interrupt type MSI-X\n", dev
->name
);
7378 DBG_PRINT(ERR_DBG
, "%s: Large receive offload enabled\n",
7381 DBG_PRINT(ERR_DBG
, "%s: UDP Fragmentation Offload(UFO)"
7382 " enabled\n", dev
->name
);
7383 /* Initialize device name */
7384 sprintf(sp
->name
, "%s Neterion %s", dev
->name
, sp
->product_name
);
7386 /* Initialize bimodal Interrupts */
7387 sp
->config
.bimodal
= bimodal
;
7388 if (!(sp
->device_type
& XFRAME_II_DEVICE
) && bimodal
) {
7389 sp
->config
.bimodal
= 0;
7390 DBG_PRINT(ERR_DBG
,"%s:Bimodal intr not supported by Xframe I\n",
7395 * Make Link state as off at this point, when the Link change
7396 * interrupt comes the state will be automatically changed to
7399 netif_carrier_off(dev
);
7410 free_shared_mem(sp
);
7411 pci_disable_device(pdev
);
7412 pci_release_regions(pdev
);
7413 pci_set_drvdata(pdev
, NULL
);
7420 * s2io_rem_nic - Free the PCI device
7421 * @pdev: structure containing the PCI related information of the device.
7422 * Description: This function is called by the Pci subsystem to release a
7423 * PCI device and free up all resource held up by the device. This could
7424 * be in response to a Hot plug event or when the driver is to be removed
7428 static void __devexit
s2io_rem_nic(struct pci_dev
*pdev
)
7430 struct net_device
*dev
=
7431 (struct net_device
*) pci_get_drvdata(pdev
);
7432 struct s2io_nic
*sp
;
7435 DBG_PRINT(ERR_DBG
, "Driver Data is NULL!!\n");
7439 flush_scheduled_work();
7442 unregister_netdev(dev
);
7444 free_shared_mem(sp
);
7447 pci_release_regions(pdev
);
7448 pci_set_drvdata(pdev
, NULL
);
7450 pci_disable_device(pdev
);
7454 * s2io_starter - Entry point for the driver
7455 * Description: This function is the entry point for the driver. It verifies
7456 * the module loadable parameters and initializes PCI configuration space.
7459 int __init
s2io_starter(void)
7461 return pci_register_driver(&s2io_driver
);
7465 * s2io_closer - Cleanup routine for the driver
7466 * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
7469 static __exit
void s2io_closer(void)
7471 pci_unregister_driver(&s2io_driver
);
7472 DBG_PRINT(INIT_DBG
, "cleanup done\n");
7475 module_init(s2io_starter
);
7476 module_exit(s2io_closer
);
7478 static int check_L2_lro_capable(u8
*buffer
, struct iphdr
**ip
,
7479 struct tcphdr
**tcp
, struct RxD_t
*rxdp
)
7482 u8 l2_type
= (u8
)((rxdp
->Control_1
>> 37) & 0x7), ip_len
;
7484 if (!(rxdp
->Control_1
& RXD_FRAME_PROTO_TCP
)) {
7485 DBG_PRINT(INIT_DBG
,"%s: Non-TCP frames not supported for LRO\n",
7491 * By default the VLAN field in the MAC is stripped by the card, if this
7492 * feature is turned off in rx_pa_cfg register, then the ip_off field
7493 * has to be shifted by a further 2 bytes
7496 case 0: /* DIX type */
7497 case 4: /* DIX type with VLAN */
7498 ip_off
= HEADER_ETHERNET_II_802_3_SIZE
;
7500 /* LLC, SNAP etc are considered non-mergeable */
7505 *ip
= (struct iphdr
*)((u8
*)buffer
+ ip_off
);
7506 ip_len
= (u8
)((*ip
)->ihl
);
7508 *tcp
= (struct tcphdr
*)((unsigned long)*ip
+ ip_len
);
7513 static int check_for_socket_match(struct lro
*lro
, struct iphdr
*ip
,
7516 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7517 if ((lro
->iph
->saddr
!= ip
->saddr
) || (lro
->iph
->daddr
!= ip
->daddr
) ||
7518 (lro
->tcph
->source
!= tcp
->source
) || (lro
->tcph
->dest
!= tcp
->dest
))
7523 static inline int get_l4_pyld_length(struct iphdr
*ip
, struct tcphdr
*tcp
)
7525 return(ntohs(ip
->tot_len
) - (ip
->ihl
<< 2) - (tcp
->doff
<< 2));
7528 static void initiate_new_session(struct lro
*lro
, u8
*l2h
,
7529 struct iphdr
*ip
, struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7531 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7535 lro
->tcp_next_seq
= tcp_pyld_len
+ ntohl(tcp
->seq
);
7536 lro
->tcp_ack
= ntohl(tcp
->ack_seq
);
7538 lro
->total_len
= ntohs(ip
->tot_len
);
7541 * check if we saw TCP timestamp. Other consistency checks have
7542 * already been done.
7544 if (tcp
->doff
== 8) {
7546 ptr
= (u32
*)(tcp
+1);
7548 lro
->cur_tsval
= *(ptr
+1);
7549 lro
->cur_tsecr
= *(ptr
+2);
7554 static void update_L3L4_header(struct s2io_nic
*sp
, struct lro
*lro
)
7556 struct iphdr
*ip
= lro
->iph
;
7557 struct tcphdr
*tcp
= lro
->tcph
;
7559 struct stat_block
*statinfo
= sp
->mac_control
.stats_info
;
7560 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7562 /* Update L3 header */
7563 ip
->tot_len
= htons(lro
->total_len
);
7565 nchk
= ip_fast_csum((u8
*)lro
->iph
, ip
->ihl
);
7568 /* Update L4 header */
7569 tcp
->ack_seq
= lro
->tcp_ack
;
7570 tcp
->window
= lro
->window
;
7572 /* Update tsecr field if this session has timestamps enabled */
7574 u32
*ptr
= (u32
*)(tcp
+ 1);
7575 *(ptr
+2) = lro
->cur_tsecr
;
7578 /* Update counters required for calculation of
7579 * average no. of packets aggregated.
7581 statinfo
->sw_stat
.sum_avg_pkts_aggregated
+= lro
->sg_num
;
7582 statinfo
->sw_stat
.num_aggregations
++;
7585 static void aggregate_new_rx(struct lro
*lro
, struct iphdr
*ip
,
7586 struct tcphdr
*tcp
, u32 l4_pyld
)
7588 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7589 lro
->total_len
+= l4_pyld
;
7590 lro
->frags_len
+= l4_pyld
;
7591 lro
->tcp_next_seq
+= l4_pyld
;
7594 /* Update ack seq no. and window ad(from this pkt) in LRO object */
7595 lro
->tcp_ack
= tcp
->ack_seq
;
7596 lro
->window
= tcp
->window
;
7600 /* Update tsecr and tsval from this packet */
7601 ptr
= (u32
*) (tcp
+ 1);
7602 lro
->cur_tsval
= *(ptr
+ 1);
7603 lro
->cur_tsecr
= *(ptr
+ 2);
7607 static int verify_l3_l4_lro_capable(struct lro
*l_lro
, struct iphdr
*ip
,
7608 struct tcphdr
*tcp
, u32 tcp_pyld_len
)
7612 DBG_PRINT(INFO_DBG
,"%s: Been here...\n", __FUNCTION__
);
7614 if (!tcp_pyld_len
) {
7615 /* Runt frame or a pure ack */
7619 if (ip
->ihl
!= 5) /* IP has options */
7622 /* If we see CE codepoint in IP header, packet is not mergeable */
7623 if (INET_ECN_is_ce(ipv4_get_dsfield(ip
)))
7626 /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
7627 if (tcp
->urg
|| tcp
->psh
|| tcp
->rst
|| tcp
->syn
|| tcp
->fin
||
7628 tcp
->ece
|| tcp
->cwr
|| !tcp
->ack
) {
7630 * Currently recognize only the ack control word and
7631 * any other control field being set would result in
7632 * flushing the LRO session
7638 * Allow only one TCP timestamp option. Don't aggregate if
7639 * any other options are detected.
7641 if (tcp
->doff
!= 5 && tcp
->doff
!= 8)
7644 if (tcp
->doff
== 8) {
7645 ptr
= (u8
*)(tcp
+ 1);
7646 while (*ptr
== TCPOPT_NOP
)
7648 if (*ptr
!= TCPOPT_TIMESTAMP
|| *(ptr
+1) != TCPOLEN_TIMESTAMP
)
7651 /* Ensure timestamp value increases monotonically */
7653 if (l_lro
->cur_tsval
> *((u32
*)(ptr
+2)))
7656 /* timestamp echo reply should be non-zero */
7657 if (*((u32
*)(ptr
+6)) == 0)
7665 s2io_club_tcp_session(u8
*buffer
, u8
**tcp
, u32
*tcp_len
, struct lro
**lro
,
7666 struct RxD_t
*rxdp
, struct s2io_nic
*sp
)
7669 struct tcphdr
*tcph
;
7672 if (!(ret
= check_L2_lro_capable(buffer
, &ip
, (struct tcphdr
**)tcp
,
7674 DBG_PRINT(INFO_DBG
,"IP Saddr: %x Daddr: %x\n",
7675 ip
->saddr
, ip
->daddr
);
7680 tcph
= (struct tcphdr
*)*tcp
;
7681 *tcp_len
= get_l4_pyld_length(ip
, tcph
);
7682 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7683 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7684 if (l_lro
->in_use
) {
7685 if (check_for_socket_match(l_lro
, ip
, tcph
))
7687 /* Sock pair matched */
7690 if ((*lro
)->tcp_next_seq
!= ntohl(tcph
->seq
)) {
7691 DBG_PRINT(INFO_DBG
, "%s:Out of order. expected "
7692 "0x%x, actual 0x%x\n", __FUNCTION__
,
7693 (*lro
)->tcp_next_seq
,
7696 sp
->mac_control
.stats_info
->
7697 sw_stat
.outof_sequence_pkts
++;
7702 if (!verify_l3_l4_lro_capable(l_lro
, ip
, tcph
,*tcp_len
))
7703 ret
= 1; /* Aggregate */
7705 ret
= 2; /* Flush both */
7711 /* Before searching for available LRO objects,
7712 * check if the pkt is L3/L4 aggregatable. If not
7713 * don't create new LRO session. Just send this
7716 if (verify_l3_l4_lro_capable(NULL
, ip
, tcph
, *tcp_len
)) {
7720 for (i
=0; i
<MAX_LRO_SESSIONS
; i
++) {
7721 struct lro
*l_lro
= &sp
->lro0_n
[i
];
7722 if (!(l_lro
->in_use
)) {
7724 ret
= 3; /* Begin anew */
7730 if (ret
== 0) { /* sessions exceeded */
7731 DBG_PRINT(INFO_DBG
,"%s:All LRO sessions already in use\n",
7739 initiate_new_session(*lro
, buffer
, ip
, tcph
, *tcp_len
);
7742 update_L3L4_header(sp
, *lro
);
7745 aggregate_new_rx(*lro
, ip
, tcph
, *tcp_len
);
7746 if ((*lro
)->sg_num
== sp
->lro_max_aggr_per_sess
) {
7747 update_L3L4_header(sp
, *lro
);
7748 ret
= 4; /* Flush the LRO */
7752 DBG_PRINT(ERR_DBG
,"%s:Dont know, can't say!!\n",
7760 static void clear_lro_session(struct lro
*lro
)
7762 static u16 lro_struct_size
= sizeof(struct lro
);
7764 memset(lro
, 0, lro_struct_size
);
7767 static void queue_rx_frame(struct sk_buff
*skb
)
7769 struct net_device
*dev
= skb
->dev
;
7771 skb
->protocol
= eth_type_trans(skb
, dev
);
7773 netif_receive_skb(skb
);
7778 static void lro_append_pkt(struct s2io_nic
*sp
, struct lro
*lro
,
7779 struct sk_buff
*skb
,
7782 struct sk_buff
*first
= lro
->parent
;
7784 first
->len
+= tcp_len
;
7785 first
->data_len
= lro
->frags_len
;
7786 skb_pull(skb
, (skb
->len
- tcp_len
));
7787 if (skb_shinfo(first
)->frag_list
)
7788 lro
->last_frag
->next
= skb
;
7790 skb_shinfo(first
)->frag_list
= skb
;
7791 first
->truesize
+= skb
->truesize
;
7792 lro
->last_frag
= skb
;
7793 sp
->mac_control
.stats_info
->sw_stat
.clubbed_frms_cnt
++;
7798 * s2io_io_error_detected - called when PCI error is detected
7799 * @pdev: Pointer to PCI device
7800 * @state: The current pci connection state
7802 * This function is called after a PCI bus error affecting
7803 * this device has been detected.
7805 static pci_ers_result_t
s2io_io_error_detected(struct pci_dev
*pdev
,
7806 pci_channel_state_t state
)
7808 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7809 struct s2io_nic
*sp
= netdev
->priv
;
7811 netif_device_detach(netdev
);
7813 if (netif_running(netdev
)) {
7814 /* Bring down the card, while avoiding PCI I/O */
7815 do_s2io_card_down(sp
, 0);
7817 pci_disable_device(pdev
);
7819 return PCI_ERS_RESULT_NEED_RESET
;
7823 * s2io_io_slot_reset - called after the pci bus has been reset.
7824 * @pdev: Pointer to PCI device
7826 * Restart the card from scratch, as if from a cold-boot.
7827 * At this point, the card has exprienced a hard reset,
7828 * followed by fixups by BIOS, and has its config space
7829 * set up identically to what it was at cold boot.
7831 static pci_ers_result_t
s2io_io_slot_reset(struct pci_dev
*pdev
)
7833 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7834 struct s2io_nic
*sp
= netdev
->priv
;
7836 if (pci_enable_device(pdev
)) {
7837 printk(KERN_ERR
"s2io: "
7838 "Cannot re-enable PCI device after reset.\n");
7839 return PCI_ERS_RESULT_DISCONNECT
;
7842 pci_set_master(pdev
);
7845 return PCI_ERS_RESULT_RECOVERED
;
7849 * s2io_io_resume - called when traffic can start flowing again.
7850 * @pdev: Pointer to PCI device
7852 * This callback is called when the error recovery driver tells
7853 * us that its OK to resume normal operation.
7855 static void s2io_io_resume(struct pci_dev
*pdev
)
7857 struct net_device
*netdev
= pci_get_drvdata(pdev
);
7858 struct s2io_nic
*sp
= netdev
->priv
;
7860 if (netif_running(netdev
)) {
7861 if (s2io_card_up(sp
)) {
7862 printk(KERN_ERR
"s2io: "
7863 "Can't bring device back up after reset.\n");
7867 if (s2io_set_mac_addr(netdev
, netdev
->dev_addr
) == FAILURE
) {
7869 printk(KERN_ERR
"s2io: "
7870 "Can't resetore mac addr after reset.\n");
7875 netif_device_attach(netdev
);
7876 netif_wake_queue(netdev
);