ath9k: Parse DTIM period from mac80211
[wandboard.git] / drivers / net / tulip / tulip_core.c
blob2c39f25912167fd144f4dae7f9681648e924c446
1 /* tulip_core.c: A DEC 21x4x-family ethernet driver for Linux.
3 Copyright 2000,2001 The Linux Kernel Team
4 Written/copyright 1994-2001 by Donald Becker.
6 This software may be used and distributed according to the terms
7 of the GNU General Public License, incorporated herein by reference.
9 Please refer to Documentation/DocBook/tulip-user.{pdf,ps,html}
10 for more information on this driver.
12 Please submit bugs to http://bugzilla.kernel.org/ .
16 #define DRV_NAME "tulip"
17 #ifdef CONFIG_TULIP_NAPI
18 #define DRV_VERSION "1.1.15-NAPI" /* Keep at least for test */
19 #else
20 #define DRV_VERSION "1.1.15"
21 #endif
22 #define DRV_RELDATE "Feb 27, 2007"
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/slab.h>
28 #include "tulip.h"
29 #include <linux/init.h>
30 #include <linux/etherdevice.h>
31 #include <linux/delay.h>
32 #include <linux/mii.h>
33 #include <linux/crc32.h>
34 #include <asm/unaligned.h>
35 #include <asm/uaccess.h>
37 #ifdef CONFIG_SPARC
38 #include <asm/prom.h>
39 #endif
41 static char version[] __devinitdata =
42 "Linux Tulip driver version " DRV_VERSION " (" DRV_RELDATE ")\n";
44 /* A few user-configurable values. */
46 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
47 static unsigned int max_interrupt_work = 25;
49 #define MAX_UNITS 8
50 /* Used to pass the full-duplex flag, etc. */
51 static int full_duplex[MAX_UNITS];
52 static int options[MAX_UNITS];
53 static int mtu[MAX_UNITS]; /* Jumbo MTU for interfaces. */
55 /* The possible media types that can be set in options[] are: */
56 const char * const medianame[32] = {
57 "10baseT", "10base2", "AUI", "100baseTx",
58 "10baseT-FDX", "100baseTx-FDX", "100baseT4", "100baseFx",
59 "100baseFx-FDX", "MII 10baseT", "MII 10baseT-FDX", "MII",
60 "10baseT(forced)", "MII 100baseTx", "MII 100baseTx-FDX", "MII 100baseT4",
61 "MII 100baseFx-HDX", "MII 100baseFx-FDX", "Home-PNA 1Mbps", "Invalid-19",
62 "","","","", "","","","", "","","","Transceiver reset",
65 /* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
66 #if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
67 defined(CONFIG_SPARC) || defined(__ia64__) || \
68 defined(__sh__) || defined(__mips__)
69 static int rx_copybreak = 1518;
70 #else
71 static int rx_copybreak = 100;
72 #endif
75 Set the bus performance register.
76 Typical: Set 16 longword cache alignment, no burst limit.
77 Cache alignment bits 15:14 Burst length 13:8
78 0000 No alignment 0x00000000 unlimited 0800 8 longwords
79 4000 8 longwords 0100 1 longword 1000 16 longwords
80 8000 16 longwords 0200 2 longwords 2000 32 longwords
81 C000 32 longwords 0400 4 longwords
82 Warning: many older 486 systems are broken and require setting 0x00A04800
83 8 longword cache alignment, 8 longword burst.
84 ToDo: Non-Intel setting could be better.
87 #if defined(__alpha__) || defined(__ia64__)
88 static int csr0 = 0x01A00000 | 0xE000;
89 #elif defined(__i386__) || defined(__powerpc__) || defined(__x86_64__)
90 static int csr0 = 0x01A00000 | 0x8000;
91 #elif defined(CONFIG_SPARC) || defined(__hppa__)
92 /* The UltraSparc PCI controllers will disconnect at every 64-byte
93 * crossing anyways so it makes no sense to tell Tulip to burst
94 * any more than that.
96 static int csr0 = 0x01A00000 | 0x9000;
97 #elif defined(__arm__) || defined(__sh__)
98 static int csr0 = 0x01A00000 | 0x4800;
99 #elif defined(__mips__)
100 static int csr0 = 0x00200000 | 0x4000;
101 #else
102 #warning Processor architecture undefined!
103 static int csr0 = 0x00A00000 | 0x4800;
104 #endif
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT (4*HZ)
111 MODULE_AUTHOR("The Linux Kernel Team");
112 MODULE_DESCRIPTION("Digital 21*4* Tulip ethernet driver");
113 MODULE_LICENSE("GPL");
114 MODULE_VERSION(DRV_VERSION);
115 module_param(tulip_debug, int, 0);
116 module_param(max_interrupt_work, int, 0);
117 module_param(rx_copybreak, int, 0);
118 module_param(csr0, int, 0);
119 module_param_array(options, int, NULL, 0);
120 module_param_array(full_duplex, int, NULL, 0);
122 #define PFX DRV_NAME ": "
124 #ifdef TULIP_DEBUG
125 int tulip_debug = TULIP_DEBUG;
126 #else
127 int tulip_debug = 1;
128 #endif
130 static void tulip_timer(unsigned long data)
132 struct net_device *dev = (struct net_device *)data;
133 struct tulip_private *tp = netdev_priv(dev);
135 if (netif_running(dev))
136 schedule_work(&tp->media_work);
140 * This table use during operation for capabilities and media timer.
142 * It is indexed via the values in 'enum chips'
145 struct tulip_chip_table tulip_tbl[] = {
146 { }, /* placeholder for array, slot unused currently */
147 { }, /* placeholder for array, slot unused currently */
149 /* DC21140 */
150 { "Digital DS21140 Tulip", 128, 0x0001ebef,
151 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_PCI_MWI, tulip_timer,
152 tulip_media_task },
154 /* DC21142, DC21143 */
155 { "Digital DS21142/43 Tulip", 128, 0x0801fbff,
156 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI | HAS_NWAY
157 | HAS_INTR_MITIGATION | HAS_PCI_MWI, tulip_timer, t21142_media_task },
159 /* LC82C168 */
160 { "Lite-On 82c168 PNIC", 256, 0x0001fbef,
161 HAS_MII | HAS_PNICNWAY, pnic_timer, },
163 /* MX98713 */
164 { "Macronix 98713 PMAC", 128, 0x0001ebef,
165 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
167 /* MX98715 */
168 { "Macronix 98715 PMAC", 256, 0x0001ebef,
169 HAS_MEDIA_TABLE, mxic_timer, },
171 /* MX98725 */
172 { "Macronix 98725 PMAC", 256, 0x0001ebef,
173 HAS_MEDIA_TABLE, mxic_timer, },
175 /* AX88140 */
176 { "ASIX AX88140", 128, 0x0001fbff,
177 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | MC_HASH_ONLY
178 | IS_ASIX, tulip_timer, tulip_media_task },
180 /* PNIC2 */
181 { "Lite-On PNIC-II", 256, 0x0801fbff,
182 HAS_MII | HAS_NWAY | HAS_8023X | HAS_PCI_MWI, pnic2_timer, },
184 /* COMET */
185 { "ADMtek Comet", 256, 0x0001abef,
186 HAS_MII | MC_HASH_ONLY | COMET_MAC_ADDR, comet_timer, },
188 /* COMPEX9881 */
189 { "Compex 9881 PMAC", 128, 0x0001ebef,
190 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM, mxic_timer, },
192 /* I21145 */
193 { "Intel DS21145 Tulip", 128, 0x0801fbff,
194 HAS_MII | HAS_MEDIA_TABLE | ALWAYS_CHECK_MII | HAS_ACPI
195 | HAS_NWAY | HAS_PCI_MWI, tulip_timer, tulip_media_task },
197 /* DM910X */
198 #ifdef CONFIG_TULIP_DM910X
199 { "Davicom DM9102/DM9102A", 128, 0x0001ebef,
200 HAS_MII | HAS_MEDIA_TABLE | CSR12_IN_SROM | HAS_ACPI,
201 tulip_timer, tulip_media_task },
202 #else
203 { NULL },
204 #endif
206 /* RS7112 */
207 { "Conexant LANfinity", 256, 0x0001ebef,
208 HAS_MII | HAS_ACPI, tulip_timer, tulip_media_task },
213 static DEFINE_PCI_DEVICE_TABLE(tulip_pci_tbl) = {
214 { 0x1011, 0x0009, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21140 },
215 { 0x1011, 0x0019, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DC21143 },
216 { 0x11AD, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, LC82C168 },
217 { 0x10d9, 0x0512, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98713 },
218 { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
219 /* { 0x10d9, 0x0531, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98725 },*/
220 { 0x125B, 0x1400, PCI_ANY_ID, PCI_ANY_ID, 0, 0, AX88140 },
221 { 0x11AD, 0xc115, PCI_ANY_ID, PCI_ANY_ID, 0, 0, PNIC2 },
222 { 0x1317, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
223 { 0x1317, 0x0985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
224 { 0x1317, 0x1985, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
225 { 0x1317, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
226 { 0x13D1, 0xAB02, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
227 { 0x13D1, 0xAB03, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
228 { 0x13D1, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
229 { 0x104A, 0x0981, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
230 { 0x104A, 0x2774, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
231 { 0x1259, 0xa120, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
232 { 0x11F6, 0x9881, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMPEX9881 },
233 { 0x8086, 0x0039, PCI_ANY_ID, PCI_ANY_ID, 0, 0, I21145 },
234 #ifdef CONFIG_TULIP_DM910X
235 { 0x1282, 0x9100, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
236 { 0x1282, 0x9102, PCI_ANY_ID, PCI_ANY_ID, 0, 0, DM910X },
237 #endif
238 { 0x1113, 0x1216, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
239 { 0x1113, 0x1217, PCI_ANY_ID, PCI_ANY_ID, 0, 0, MX98715 },
240 { 0x1113, 0x9511, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
241 { 0x1186, 0x1541, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
242 { 0x1186, 0x1561, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
243 { 0x1186, 0x1591, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
244 { 0x14f1, 0x1803, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CONEXANT },
245 { 0x1626, 0x8410, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
246 { 0x1737, 0xAB09, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
247 { 0x1737, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
248 { 0x17B3, 0xAB08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
249 { 0x10b7, 0x9300, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* 3Com 3CSOHO100B-TX */
250 { 0x14ea, 0xab08, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Planex FNW-3602-TX */
251 { 0x1414, 0x0001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET }, /* Microsoft MN-120 */
252 { 0x1414, 0x0002, PCI_ANY_ID, PCI_ANY_ID, 0, 0, COMET },
253 { } /* terminate list */
255 MODULE_DEVICE_TABLE(pci, tulip_pci_tbl);
258 /* A full-duplex map for media types. */
259 const char tulip_media_cap[32] =
260 {0,0,0,16, 3,19,16,24, 27,4,7,5, 0,20,23,20, 28,31,0,0, };
262 static void tulip_tx_timeout(struct net_device *dev);
263 static void tulip_init_ring(struct net_device *dev);
264 static void tulip_free_ring(struct net_device *dev);
265 static netdev_tx_t tulip_start_xmit(struct sk_buff *skb,
266 struct net_device *dev);
267 static int tulip_open(struct net_device *dev);
268 static int tulip_close(struct net_device *dev);
269 static void tulip_up(struct net_device *dev);
270 static void tulip_down(struct net_device *dev);
271 static struct net_device_stats *tulip_get_stats(struct net_device *dev);
272 static int private_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
273 static void set_rx_mode(struct net_device *dev);
274 static void tulip_set_wolopts(struct pci_dev *pdev, u32 wolopts);
275 #ifdef CONFIG_NET_POLL_CONTROLLER
276 static void poll_tulip(struct net_device *dev);
277 #endif
279 static void tulip_set_power_state (struct tulip_private *tp,
280 int sleep, int snooze)
282 if (tp->flags & HAS_ACPI) {
283 u32 tmp, newtmp;
284 pci_read_config_dword (tp->pdev, CFDD, &tmp);
285 newtmp = tmp & ~(CFDD_Sleep | CFDD_Snooze);
286 if (sleep)
287 newtmp |= CFDD_Sleep;
288 else if (snooze)
289 newtmp |= CFDD_Snooze;
290 if (tmp != newtmp)
291 pci_write_config_dword (tp->pdev, CFDD, newtmp);
297 static void tulip_up(struct net_device *dev)
299 struct tulip_private *tp = netdev_priv(dev);
300 void __iomem *ioaddr = tp->base_addr;
301 int next_tick = 3*HZ;
302 u32 reg;
303 int i;
305 #ifdef CONFIG_TULIP_NAPI
306 napi_enable(&tp->napi);
307 #endif
309 /* Wake the chip from sleep/snooze mode. */
310 tulip_set_power_state (tp, 0, 0);
312 /* Disable all WOL events */
313 pci_enable_wake(tp->pdev, PCI_D3hot, 0);
314 pci_enable_wake(tp->pdev, PCI_D3cold, 0);
315 tulip_set_wolopts(tp->pdev, 0);
317 /* On some chip revs we must set the MII/SYM port before the reset!? */
318 if (tp->mii_cnt || (tp->mtable && tp->mtable->has_mii))
319 iowrite32(0x00040000, ioaddr + CSR6);
321 /* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
322 iowrite32(0x00000001, ioaddr + CSR0);
323 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
324 udelay(100);
326 /* Deassert reset.
327 Wait the specified 50 PCI cycles after a reset by initializing
328 Tx and Rx queues and the address filter list. */
329 iowrite32(tp->csr0, ioaddr + CSR0);
330 pci_read_config_dword(tp->pdev, PCI_COMMAND, &reg); /* flush write */
331 udelay(100);
333 if (tulip_debug > 1)
334 printk(KERN_DEBUG "%s: tulip_up(), irq==%d\n",
335 dev->name, dev->irq);
337 iowrite32(tp->rx_ring_dma, ioaddr + CSR3);
338 iowrite32(tp->tx_ring_dma, ioaddr + CSR4);
339 tp->cur_rx = tp->cur_tx = 0;
340 tp->dirty_rx = tp->dirty_tx = 0;
342 if (tp->flags & MC_HASH_ONLY) {
343 u32 addr_low = get_unaligned_le32(dev->dev_addr);
344 u32 addr_high = get_unaligned_le16(dev->dev_addr + 4);
345 if (tp->chip_id == AX88140) {
346 iowrite32(0, ioaddr + CSR13);
347 iowrite32(addr_low, ioaddr + CSR14);
348 iowrite32(1, ioaddr + CSR13);
349 iowrite32(addr_high, ioaddr + CSR14);
350 } else if (tp->flags & COMET_MAC_ADDR) {
351 iowrite32(addr_low, ioaddr + 0xA4);
352 iowrite32(addr_high, ioaddr + 0xA8);
353 iowrite32(0, ioaddr + CSR27);
354 iowrite32(0, ioaddr + CSR28);
356 } else {
357 /* This is set_rx_mode(), but without starting the transmitter. */
358 u16 *eaddrs = (u16 *)dev->dev_addr;
359 u16 *setup_frm = &tp->setup_frame[15*6];
360 dma_addr_t mapping;
362 /* 21140 bug: you must add the broadcast address. */
363 memset(tp->setup_frame, 0xff, sizeof(tp->setup_frame));
364 /* Fill the final entry of the table with our physical address. */
365 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
366 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
367 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
369 mapping = pci_map_single(tp->pdev, tp->setup_frame,
370 sizeof(tp->setup_frame),
371 PCI_DMA_TODEVICE);
372 tp->tx_buffers[tp->cur_tx].skb = NULL;
373 tp->tx_buffers[tp->cur_tx].mapping = mapping;
375 /* Put the setup frame on the Tx list. */
376 tp->tx_ring[tp->cur_tx].length = cpu_to_le32(0x08000000 | 192);
377 tp->tx_ring[tp->cur_tx].buffer1 = cpu_to_le32(mapping);
378 tp->tx_ring[tp->cur_tx].status = cpu_to_le32(DescOwned);
380 tp->cur_tx++;
383 tp->saved_if_port = dev->if_port;
384 if (dev->if_port == 0)
385 dev->if_port = tp->default_port;
387 /* Allow selecting a default media. */
388 i = 0;
389 if (tp->mtable == NULL)
390 goto media_picked;
391 if (dev->if_port) {
392 int looking_for = tulip_media_cap[dev->if_port] & MediaIsMII ? 11 :
393 (dev->if_port == 12 ? 0 : dev->if_port);
394 for (i = 0; i < tp->mtable->leafcount; i++)
395 if (tp->mtable->mleaf[i].media == looking_for) {
396 dev_info(&dev->dev,
397 "Using user-specified media %s\n",
398 medianame[dev->if_port]);
399 goto media_picked;
402 if ((tp->mtable->defaultmedia & 0x0800) == 0) {
403 int looking_for = tp->mtable->defaultmedia & MEDIA_MASK;
404 for (i = 0; i < tp->mtable->leafcount; i++)
405 if (tp->mtable->mleaf[i].media == looking_for) {
406 dev_info(&dev->dev,
407 "Using EEPROM-set media %s\n",
408 medianame[looking_for]);
409 goto media_picked;
412 /* Start sensing first non-full-duplex media. */
413 for (i = tp->mtable->leafcount - 1;
414 (tulip_media_cap[tp->mtable->mleaf[i].media] & MediaAlwaysFD) && i > 0; i--)
416 media_picked:
418 tp->csr6 = 0;
419 tp->cur_index = i;
420 tp->nwayset = 0;
422 if (dev->if_port) {
423 if (tp->chip_id == DC21143 &&
424 (tulip_media_cap[dev->if_port] & MediaIsMII)) {
425 /* We must reset the media CSRs when we force-select MII mode. */
426 iowrite32(0x0000, ioaddr + CSR13);
427 iowrite32(0x0000, ioaddr + CSR14);
428 iowrite32(0x0008, ioaddr + CSR15);
430 tulip_select_media(dev, 1);
431 } else if (tp->chip_id == DC21142) {
432 if (tp->mii_cnt) {
433 tulip_select_media(dev, 1);
434 if (tulip_debug > 1)
435 dev_info(&dev->dev,
436 "Using MII transceiver %d, status %04x\n",
437 tp->phys[0],
438 tulip_mdio_read(dev, tp->phys[0], 1));
439 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
440 tp->csr6 = csr6_mask_hdcap;
441 dev->if_port = 11;
442 iowrite32(0x0000, ioaddr + CSR13);
443 iowrite32(0x0000, ioaddr + CSR14);
444 } else
445 t21142_start_nway(dev);
446 } else if (tp->chip_id == PNIC2) {
447 /* for initial startup advertise 10/100 Full and Half */
448 tp->sym_advertise = 0x01E0;
449 /* enable autonegotiate end interrupt */
450 iowrite32(ioread32(ioaddr+CSR5)| 0x00008010, ioaddr + CSR5);
451 iowrite32(ioread32(ioaddr+CSR7)| 0x00008010, ioaddr + CSR7);
452 pnic2_start_nway(dev);
453 } else if (tp->chip_id == LC82C168 && ! tp->medialock) {
454 if (tp->mii_cnt) {
455 dev->if_port = 11;
456 tp->csr6 = 0x814C0000 | (tp->full_duplex ? 0x0200 : 0);
457 iowrite32(0x0001, ioaddr + CSR15);
458 } else if (ioread32(ioaddr + CSR5) & TPLnkPass)
459 pnic_do_nway(dev);
460 else {
461 /* Start with 10mbps to do autonegotiation. */
462 iowrite32(0x32, ioaddr + CSR12);
463 tp->csr6 = 0x00420000;
464 iowrite32(0x0001B078, ioaddr + 0xB8);
465 iowrite32(0x0201B078, ioaddr + 0xB8);
466 next_tick = 1*HZ;
468 } else if ((tp->chip_id == MX98713 || tp->chip_id == COMPEX9881) &&
469 ! tp->medialock) {
470 dev->if_port = 0;
471 tp->csr6 = 0x01880000 | (tp->full_duplex ? 0x0200 : 0);
472 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
473 } else if (tp->chip_id == MX98715 || tp->chip_id == MX98725) {
474 /* Provided by BOLO, Macronix - 12/10/1998. */
475 dev->if_port = 0;
476 tp->csr6 = 0x01a80200;
477 iowrite32(0x0f370000 | ioread16(ioaddr + 0x80), ioaddr + 0x80);
478 iowrite32(0x11000 | ioread16(ioaddr + 0xa0), ioaddr + 0xa0);
479 } else if (tp->chip_id == COMET || tp->chip_id == CONEXANT) {
480 /* Enable automatic Tx underrun recovery. */
481 iowrite32(ioread32(ioaddr + 0x88) | 1, ioaddr + 0x88);
482 dev->if_port = tp->mii_cnt ? 11 : 0;
483 tp->csr6 = 0x00040000;
484 } else if (tp->chip_id == AX88140) {
485 tp->csr6 = tp->mii_cnt ? 0x00040100 : 0x00000100;
486 } else
487 tulip_select_media(dev, 1);
489 /* Start the chip's Tx to process setup frame. */
490 tulip_stop_rxtx(tp);
491 barrier();
492 udelay(5);
493 iowrite32(tp->csr6 | TxOn, ioaddr + CSR6);
495 /* Enable interrupts by setting the interrupt mask. */
496 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR5);
497 iowrite32(tulip_tbl[tp->chip_id].valid_intrs, ioaddr + CSR7);
498 tulip_start_rxtx(tp);
499 iowrite32(0, ioaddr + CSR2); /* Rx poll demand */
501 if (tulip_debug > 2) {
502 printk(KERN_DEBUG "%s: Done tulip_up(), CSR0 %08x, CSR5 %08x CSR6 %08x\n",
503 dev->name, ioread32(ioaddr + CSR0),
504 ioread32(ioaddr + CSR5),
505 ioread32(ioaddr + CSR6));
508 /* Set the timer to switch to check for link beat and perhaps switch
509 to an alternate media type. */
510 tp->timer.expires = RUN_AT(next_tick);
511 add_timer(&tp->timer);
512 #ifdef CONFIG_TULIP_NAPI
513 init_timer(&tp->oom_timer);
514 tp->oom_timer.data = (unsigned long)dev;
515 tp->oom_timer.function = oom_timer;
516 #endif
519 static int
520 tulip_open(struct net_device *dev)
522 int retval;
524 tulip_init_ring (dev);
526 retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev);
527 if (retval)
528 goto free_ring;
530 tulip_up (dev);
532 netif_start_queue (dev);
534 return 0;
536 free_ring:
537 tulip_free_ring (dev);
538 return retval;
542 static void tulip_tx_timeout(struct net_device *dev)
544 struct tulip_private *tp = netdev_priv(dev);
545 void __iomem *ioaddr = tp->base_addr;
546 unsigned long flags;
548 spin_lock_irqsave (&tp->lock, flags);
550 if (tulip_media_cap[dev->if_port] & MediaIsMII) {
551 /* Do nothing -- the media monitor should handle this. */
552 if (tulip_debug > 1)
553 dev_warn(&dev->dev,
554 "Transmit timeout using MII device\n");
555 } else if (tp->chip_id == DC21140 || tp->chip_id == DC21142 ||
556 tp->chip_id == MX98713 || tp->chip_id == COMPEX9881 ||
557 tp->chip_id == DM910X) {
558 dev_warn(&dev->dev,
559 "21140 transmit timed out, status %08x, SIA %08x %08x %08x %08x, resetting...\n",
560 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12),
561 ioread32(ioaddr + CSR13), ioread32(ioaddr + CSR14),
562 ioread32(ioaddr + CSR15));
563 tp->timeout_recovery = 1;
564 schedule_work(&tp->media_work);
565 goto out_unlock;
566 } else if (tp->chip_id == PNIC2) {
567 dev_warn(&dev->dev,
568 "PNIC2 transmit timed out, status %08x, CSR6/7 %08x / %08x CSR12 %08x, resetting...\n",
569 (int)ioread32(ioaddr + CSR5),
570 (int)ioread32(ioaddr + CSR6),
571 (int)ioread32(ioaddr + CSR7),
572 (int)ioread32(ioaddr + CSR12));
573 } else {
574 dev_warn(&dev->dev,
575 "Transmit timed out, status %08x, CSR12 %08x, resetting...\n",
576 ioread32(ioaddr + CSR5), ioread32(ioaddr + CSR12));
577 dev->if_port = 0;
580 #if defined(way_too_many_messages)
581 if (tulip_debug > 3) {
582 int i;
583 for (i = 0; i < RX_RING_SIZE; i++) {
584 u8 *buf = (u8 *)(tp->rx_ring[i].buffer1);
585 int j;
586 printk(KERN_DEBUG
587 "%2d: %08x %08x %08x %08x %02x %02x %02x\n",
589 (unsigned int)tp->rx_ring[i].status,
590 (unsigned int)tp->rx_ring[i].length,
591 (unsigned int)tp->rx_ring[i].buffer1,
592 (unsigned int)tp->rx_ring[i].buffer2,
593 buf[0], buf[1], buf[2]);
594 for (j = 0; buf[j] != 0xee && j < 1600; j++)
595 if (j < 100)
596 pr_cont(" %02x", buf[j]);
597 pr_cont(" j=%d\n", j);
599 printk(KERN_DEBUG " Rx ring %p: ", tp->rx_ring);
600 for (i = 0; i < RX_RING_SIZE; i++)
601 pr_cont(" %08x", (unsigned int)tp->rx_ring[i].status);
602 printk(KERN_DEBUG " Tx ring %p: ", tp->tx_ring);
603 for (i = 0; i < TX_RING_SIZE; i++)
604 pr_cont(" %08x", (unsigned int)tp->tx_ring[i].status);
605 pr_cont("\n");
607 #endif
609 tulip_tx_timeout_complete(tp, ioaddr);
611 out_unlock:
612 spin_unlock_irqrestore (&tp->lock, flags);
613 dev->trans_start = jiffies; /* prevent tx timeout */
614 netif_wake_queue (dev);
618 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
619 static void tulip_init_ring(struct net_device *dev)
621 struct tulip_private *tp = netdev_priv(dev);
622 int i;
624 tp->susp_rx = 0;
625 tp->ttimer = 0;
626 tp->nir = 0;
628 for (i = 0; i < RX_RING_SIZE; i++) {
629 tp->rx_ring[i].status = 0x00000000;
630 tp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ);
631 tp->rx_ring[i].buffer2 = cpu_to_le32(tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * (i + 1));
632 tp->rx_buffers[i].skb = NULL;
633 tp->rx_buffers[i].mapping = 0;
635 /* Mark the last entry as wrapping the ring. */
636 tp->rx_ring[i-1].length = cpu_to_le32(PKT_BUF_SZ | DESC_RING_WRAP);
637 tp->rx_ring[i-1].buffer2 = cpu_to_le32(tp->rx_ring_dma);
639 for (i = 0; i < RX_RING_SIZE; i++) {
640 dma_addr_t mapping;
642 /* Note the receive buffer must be longword aligned.
643 dev_alloc_skb() provides 16 byte alignment. But do *not*
644 use skb_reserve() to align the IP header! */
645 struct sk_buff *skb = dev_alloc_skb(PKT_BUF_SZ);
646 tp->rx_buffers[i].skb = skb;
647 if (skb == NULL)
648 break;
649 mapping = pci_map_single(tp->pdev, skb->data,
650 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
651 tp->rx_buffers[i].mapping = mapping;
652 skb->dev = dev; /* Mark as being used by this device. */
653 tp->rx_ring[i].status = cpu_to_le32(DescOwned); /* Owned by Tulip chip */
654 tp->rx_ring[i].buffer1 = cpu_to_le32(mapping);
656 tp->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
658 /* The Tx buffer descriptor is filled in as needed, but we
659 do need to clear the ownership bit. */
660 for (i = 0; i < TX_RING_SIZE; i++) {
661 tp->tx_buffers[i].skb = NULL;
662 tp->tx_buffers[i].mapping = 0;
663 tp->tx_ring[i].status = 0x00000000;
664 tp->tx_ring[i].buffer2 = cpu_to_le32(tp->tx_ring_dma + sizeof(struct tulip_tx_desc) * (i + 1));
666 tp->tx_ring[i-1].buffer2 = cpu_to_le32(tp->tx_ring_dma);
669 static netdev_tx_t
670 tulip_start_xmit(struct sk_buff *skb, struct net_device *dev)
672 struct tulip_private *tp = netdev_priv(dev);
673 int entry;
674 u32 flag;
675 dma_addr_t mapping;
676 unsigned long flags;
678 spin_lock_irqsave(&tp->lock, flags);
680 /* Calculate the next Tx descriptor entry. */
681 entry = tp->cur_tx % TX_RING_SIZE;
683 tp->tx_buffers[entry].skb = skb;
684 mapping = pci_map_single(tp->pdev, skb->data,
685 skb->len, PCI_DMA_TODEVICE);
686 tp->tx_buffers[entry].mapping = mapping;
687 tp->tx_ring[entry].buffer1 = cpu_to_le32(mapping);
689 if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE/2) {/* Typical path */
690 flag = 0x60000000; /* No interrupt */
691 } else if (tp->cur_tx - tp->dirty_tx == TX_RING_SIZE/2) {
692 flag = 0xe0000000; /* Tx-done intr. */
693 } else if (tp->cur_tx - tp->dirty_tx < TX_RING_SIZE - 2) {
694 flag = 0x60000000; /* No Tx-done intr. */
695 } else { /* Leave room for set_rx_mode() to fill entries. */
696 flag = 0xe0000000; /* Tx-done intr. */
697 netif_stop_queue(dev);
699 if (entry == TX_RING_SIZE-1)
700 flag = 0xe0000000 | DESC_RING_WRAP;
702 tp->tx_ring[entry].length = cpu_to_le32(skb->len | flag);
703 /* if we were using Transmit Automatic Polling, we would need a
704 * wmb() here. */
705 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
706 wmb();
708 tp->cur_tx++;
710 /* Trigger an immediate transmit demand. */
711 iowrite32(0, tp->base_addr + CSR1);
713 spin_unlock_irqrestore(&tp->lock, flags);
715 return NETDEV_TX_OK;
718 static void tulip_clean_tx_ring(struct tulip_private *tp)
720 unsigned int dirty_tx;
722 for (dirty_tx = tp->dirty_tx ; tp->cur_tx - dirty_tx > 0;
723 dirty_tx++) {
724 int entry = dirty_tx % TX_RING_SIZE;
725 int status = le32_to_cpu(tp->tx_ring[entry].status);
727 if (status < 0) {
728 tp->dev->stats.tx_errors++; /* It wasn't Txed */
729 tp->tx_ring[entry].status = 0;
732 /* Check for Tx filter setup frames. */
733 if (tp->tx_buffers[entry].skb == NULL) {
734 /* test because dummy frames not mapped */
735 if (tp->tx_buffers[entry].mapping)
736 pci_unmap_single(tp->pdev,
737 tp->tx_buffers[entry].mapping,
738 sizeof(tp->setup_frame),
739 PCI_DMA_TODEVICE);
740 continue;
743 pci_unmap_single(tp->pdev, tp->tx_buffers[entry].mapping,
744 tp->tx_buffers[entry].skb->len,
745 PCI_DMA_TODEVICE);
747 /* Free the original skb. */
748 dev_kfree_skb_irq(tp->tx_buffers[entry].skb);
749 tp->tx_buffers[entry].skb = NULL;
750 tp->tx_buffers[entry].mapping = 0;
754 static void tulip_down (struct net_device *dev)
756 struct tulip_private *tp = netdev_priv(dev);
757 void __iomem *ioaddr = tp->base_addr;
758 unsigned long flags;
760 cancel_work_sync(&tp->media_work);
762 #ifdef CONFIG_TULIP_NAPI
763 napi_disable(&tp->napi);
764 #endif
766 del_timer_sync (&tp->timer);
767 #ifdef CONFIG_TULIP_NAPI
768 del_timer_sync (&tp->oom_timer);
769 #endif
770 spin_lock_irqsave (&tp->lock, flags);
772 /* Disable interrupts by clearing the interrupt mask. */
773 iowrite32 (0x00000000, ioaddr + CSR7);
775 /* Stop the Tx and Rx processes. */
776 tulip_stop_rxtx(tp);
778 /* prepare receive buffers */
779 tulip_refill_rx(dev);
781 /* release any unconsumed transmit buffers */
782 tulip_clean_tx_ring(tp);
784 if (ioread32(ioaddr + CSR6) != 0xffffffff)
785 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
787 spin_unlock_irqrestore (&tp->lock, flags);
789 init_timer(&tp->timer);
790 tp->timer.data = (unsigned long)dev;
791 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
793 dev->if_port = tp->saved_if_port;
795 /* Leave the driver in snooze, not sleep, mode. */
796 tulip_set_power_state (tp, 0, 1);
799 static void tulip_free_ring (struct net_device *dev)
801 struct tulip_private *tp = netdev_priv(dev);
802 int i;
804 /* Free all the skbuffs in the Rx queue. */
805 for (i = 0; i < RX_RING_SIZE; i++) {
806 struct sk_buff *skb = tp->rx_buffers[i].skb;
807 dma_addr_t mapping = tp->rx_buffers[i].mapping;
809 tp->rx_buffers[i].skb = NULL;
810 tp->rx_buffers[i].mapping = 0;
812 tp->rx_ring[i].status = 0; /* Not owned by Tulip chip. */
813 tp->rx_ring[i].length = 0;
814 /* An invalid address. */
815 tp->rx_ring[i].buffer1 = cpu_to_le32(0xBADF00D0);
816 if (skb) {
817 pci_unmap_single(tp->pdev, mapping, PKT_BUF_SZ,
818 PCI_DMA_FROMDEVICE);
819 dev_kfree_skb (skb);
823 for (i = 0; i < TX_RING_SIZE; i++) {
824 struct sk_buff *skb = tp->tx_buffers[i].skb;
826 if (skb != NULL) {
827 pci_unmap_single(tp->pdev, tp->tx_buffers[i].mapping,
828 skb->len, PCI_DMA_TODEVICE);
829 dev_kfree_skb (skb);
831 tp->tx_buffers[i].skb = NULL;
832 tp->tx_buffers[i].mapping = 0;
836 static int tulip_close (struct net_device *dev)
838 struct tulip_private *tp = netdev_priv(dev);
839 void __iomem *ioaddr = tp->base_addr;
841 netif_stop_queue (dev);
843 tulip_down (dev);
845 if (tulip_debug > 1)
846 dev_printk(KERN_DEBUG, &dev->dev,
847 "Shutting down ethercard, status was %02x\n",
848 ioread32 (ioaddr + CSR5));
850 free_irq (dev->irq, dev);
852 tulip_free_ring (dev);
854 return 0;
857 static struct net_device_stats *tulip_get_stats(struct net_device *dev)
859 struct tulip_private *tp = netdev_priv(dev);
860 void __iomem *ioaddr = tp->base_addr;
862 if (netif_running(dev)) {
863 unsigned long flags;
865 spin_lock_irqsave (&tp->lock, flags);
867 dev->stats.rx_missed_errors += ioread32(ioaddr + CSR8) & 0xffff;
869 spin_unlock_irqrestore(&tp->lock, flags);
872 return &dev->stats;
876 static void tulip_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
878 struct tulip_private *np = netdev_priv(dev);
879 strcpy(info->driver, DRV_NAME);
880 strcpy(info->version, DRV_VERSION);
881 strcpy(info->bus_info, pci_name(np->pdev));
885 static int tulip_ethtool_set_wol(struct net_device *dev,
886 struct ethtool_wolinfo *wolinfo)
888 struct tulip_private *tp = netdev_priv(dev);
890 if (wolinfo->wolopts & (~tp->wolinfo.supported))
891 return -EOPNOTSUPP;
893 tp->wolinfo.wolopts = wolinfo->wolopts;
894 device_set_wakeup_enable(&tp->pdev->dev, tp->wolinfo.wolopts);
895 return 0;
898 static void tulip_ethtool_get_wol(struct net_device *dev,
899 struct ethtool_wolinfo *wolinfo)
901 struct tulip_private *tp = netdev_priv(dev);
903 wolinfo->supported = tp->wolinfo.supported;
904 wolinfo->wolopts = tp->wolinfo.wolopts;
905 return;
909 static const struct ethtool_ops ops = {
910 .get_drvinfo = tulip_get_drvinfo,
911 .set_wol = tulip_ethtool_set_wol,
912 .get_wol = tulip_ethtool_get_wol,
915 /* Provide ioctl() calls to examine the MII xcvr state. */
916 static int private_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
918 struct tulip_private *tp = netdev_priv(dev);
919 void __iomem *ioaddr = tp->base_addr;
920 struct mii_ioctl_data *data = if_mii(rq);
921 const unsigned int phy_idx = 0;
922 int phy = tp->phys[phy_idx] & 0x1f;
923 unsigned int regnum = data->reg_num;
925 switch (cmd) {
926 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
927 if (tp->mii_cnt)
928 data->phy_id = phy;
929 else if (tp->flags & HAS_NWAY)
930 data->phy_id = 32;
931 else if (tp->chip_id == COMET)
932 data->phy_id = 1;
933 else
934 return -ENODEV;
936 case SIOCGMIIREG: /* Read MII PHY register. */
937 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
938 int csr12 = ioread32 (ioaddr + CSR12);
939 int csr14 = ioread32 (ioaddr + CSR14);
940 switch (regnum) {
941 case 0:
942 if (((csr14<<5) & 0x1000) ||
943 (dev->if_port == 5 && tp->nwayset))
944 data->val_out = 0x1000;
945 else
946 data->val_out = (tulip_media_cap[dev->if_port]&MediaIs100 ? 0x2000 : 0)
947 | (tulip_media_cap[dev->if_port]&MediaIsFD ? 0x0100 : 0);
948 break;
949 case 1:
950 data->val_out =
951 0x1848 +
952 ((csr12&0x7000) == 0x5000 ? 0x20 : 0) +
953 ((csr12&0x06) == 6 ? 0 : 4);
954 data->val_out |= 0x6048;
955 break;
956 case 4:
957 /* Advertised value, bogus 10baseTx-FD value from CSR6. */
958 data->val_out =
959 ((ioread32(ioaddr + CSR6) >> 3) & 0x0040) +
960 ((csr14 >> 1) & 0x20) + 1;
961 data->val_out |= ((csr14 >> 9) & 0x03C0);
962 break;
963 case 5: data->val_out = tp->lpar; break;
964 default: data->val_out = 0; break;
966 } else {
967 data->val_out = tulip_mdio_read (dev, data->phy_id & 0x1f, regnum);
969 return 0;
971 case SIOCSMIIREG: /* Write MII PHY register. */
972 if (regnum & ~0x1f)
973 return -EINVAL;
974 if (data->phy_id == phy) {
975 u16 value = data->val_in;
976 switch (regnum) {
977 case 0: /* Check for autonegotiation on or reset. */
978 tp->full_duplex_lock = (value & 0x9000) ? 0 : 1;
979 if (tp->full_duplex_lock)
980 tp->full_duplex = (value & 0x0100) ? 1 : 0;
981 break;
982 case 4:
983 tp->advertising[phy_idx] =
984 tp->mii_advertise = data->val_in;
985 break;
988 if (data->phy_id == 32 && (tp->flags & HAS_NWAY)) {
989 u16 value = data->val_in;
990 if (regnum == 0) {
991 if ((value & 0x1200) == 0x1200) {
992 if (tp->chip_id == PNIC2) {
993 pnic2_start_nway (dev);
994 } else {
995 t21142_start_nway (dev);
998 } else if (regnum == 4)
999 tp->sym_advertise = value;
1000 } else {
1001 tulip_mdio_write (dev, data->phy_id & 0x1f, regnum, data->val_in);
1003 return 0;
1004 default:
1005 return -EOPNOTSUPP;
1008 return -EOPNOTSUPP;
1012 /* Set or clear the multicast filter for this adaptor.
1013 Note that we only use exclusion around actually queueing the
1014 new frame, not around filling tp->setup_frame. This is non-deterministic
1015 when re-entered but still correct. */
1017 #undef set_bit_le
1018 #define set_bit_le(i,p) do { ((char *)(p))[(i)/8] |= (1<<((i)%8)); } while(0)
1020 static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
1022 struct tulip_private *tp = netdev_priv(dev);
1023 u16 hash_table[32];
1024 struct netdev_hw_addr *ha;
1025 int i;
1026 u16 *eaddrs;
1028 memset(hash_table, 0, sizeof(hash_table));
1029 set_bit_le(255, hash_table); /* Broadcast entry */
1030 /* This should work on big-endian machines as well. */
1031 netdev_for_each_mc_addr(ha, dev) {
1032 int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;
1034 set_bit_le(index, hash_table);
1036 for (i = 0; i < 32; i++) {
1037 *setup_frm++ = hash_table[i];
1038 *setup_frm++ = hash_table[i];
1040 setup_frm = &tp->setup_frame[13*6];
1042 /* Fill the final entry with our physical address. */
1043 eaddrs = (u16 *)dev->dev_addr;
1044 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1045 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1046 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1049 static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
1051 struct tulip_private *tp = netdev_priv(dev);
1052 struct netdev_hw_addr *ha;
1053 u16 *eaddrs;
1055 /* We have <= 14 addresses so we can use the wonderful
1056 16 address perfect filtering of the Tulip. */
1057 netdev_for_each_mc_addr(ha, dev) {
1058 eaddrs = (u16 *) ha->addr;
1059 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1060 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1061 *setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
1063 /* Fill the unused entries with the broadcast address. */
1064 memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
1065 setup_frm = &tp->setup_frame[15*6];
1067 /* Fill the final entry with our physical address. */
1068 eaddrs = (u16 *)dev->dev_addr;
1069 *setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
1070 *setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
1071 *setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
1075 static void set_rx_mode(struct net_device *dev)
1077 struct tulip_private *tp = netdev_priv(dev);
1078 void __iomem *ioaddr = tp->base_addr;
1079 int csr6;
1081 csr6 = ioread32(ioaddr + CSR6) & ~0x00D5;
1083 tp->csr6 &= ~0x00D5;
1084 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1085 tp->csr6 |= AcceptAllMulticast | AcceptAllPhys;
1086 csr6 |= AcceptAllMulticast | AcceptAllPhys;
1087 } else if ((netdev_mc_count(dev) > 1000) ||
1088 (dev->flags & IFF_ALLMULTI)) {
1089 /* Too many to filter well -- accept all multicasts. */
1090 tp->csr6 |= AcceptAllMulticast;
1091 csr6 |= AcceptAllMulticast;
1092 } else if (tp->flags & MC_HASH_ONLY) {
1093 /* Some work-alikes have only a 64-entry hash filter table. */
1094 /* Should verify correctness on big-endian/__powerpc__ */
1095 struct netdev_hw_addr *ha;
1096 if (netdev_mc_count(dev) > 64) {
1097 /* Arbitrary non-effective limit. */
1098 tp->csr6 |= AcceptAllMulticast;
1099 csr6 |= AcceptAllMulticast;
1100 } else {
1101 u32 mc_filter[2] = {0, 0}; /* Multicast hash filter */
1102 int filterbit;
1103 netdev_for_each_mc_addr(ha, dev) {
1104 if (tp->flags & COMET_MAC_ADDR)
1105 filterbit = ether_crc_le(ETH_ALEN,
1106 ha->addr);
1107 else
1108 filterbit = ether_crc(ETH_ALEN,
1109 ha->addr) >> 26;
1110 filterbit &= 0x3f;
1111 mc_filter[filterbit >> 5] |= 1 << (filterbit & 31);
1112 if (tulip_debug > 2)
1113 dev_info(&dev->dev,
1114 "Added filter for %pM %08x bit %d\n",
1115 ha->addr,
1116 ether_crc(ETH_ALEN, ha->addr),
1117 filterbit);
1119 if (mc_filter[0] == tp->mc_filter[0] &&
1120 mc_filter[1] == tp->mc_filter[1])
1121 ; /* No change. */
1122 else if (tp->flags & IS_ASIX) {
1123 iowrite32(2, ioaddr + CSR13);
1124 iowrite32(mc_filter[0], ioaddr + CSR14);
1125 iowrite32(3, ioaddr + CSR13);
1126 iowrite32(mc_filter[1], ioaddr + CSR14);
1127 } else if (tp->flags & COMET_MAC_ADDR) {
1128 iowrite32(mc_filter[0], ioaddr + CSR27);
1129 iowrite32(mc_filter[1], ioaddr + CSR28);
1131 tp->mc_filter[0] = mc_filter[0];
1132 tp->mc_filter[1] = mc_filter[1];
1134 } else {
1135 unsigned long flags;
1136 u32 tx_flags = 0x08000000 | 192;
1138 /* Note that only the low-address shortword of setup_frame is valid!
1139 The values are doubled for big-endian architectures. */
1140 if (netdev_mc_count(dev) > 14) {
1141 /* Must use a multicast hash table. */
1142 build_setup_frame_hash(tp->setup_frame, dev);
1143 tx_flags = 0x08400000 | 192;
1144 } else {
1145 build_setup_frame_perfect(tp->setup_frame, dev);
1148 spin_lock_irqsave(&tp->lock, flags);
1150 if (tp->cur_tx - tp->dirty_tx > TX_RING_SIZE - 2) {
1151 /* Same setup recently queued, we need not add it. */
1152 } else {
1153 unsigned int entry;
1154 int dummy = -1;
1156 /* Now add this frame to the Tx list. */
1158 entry = tp->cur_tx++ % TX_RING_SIZE;
1160 if (entry != 0) {
1161 /* Avoid a chip errata by prefixing a dummy entry. */
1162 tp->tx_buffers[entry].skb = NULL;
1163 tp->tx_buffers[entry].mapping = 0;
1164 tp->tx_ring[entry].length =
1165 (entry == TX_RING_SIZE-1) ? cpu_to_le32(DESC_RING_WRAP) : 0;
1166 tp->tx_ring[entry].buffer1 = 0;
1167 /* Must set DescOwned later to avoid race with chip */
1168 dummy = entry;
1169 entry = tp->cur_tx++ % TX_RING_SIZE;
1173 tp->tx_buffers[entry].skb = NULL;
1174 tp->tx_buffers[entry].mapping =
1175 pci_map_single(tp->pdev, tp->setup_frame,
1176 sizeof(tp->setup_frame),
1177 PCI_DMA_TODEVICE);
1178 /* Put the setup frame on the Tx list. */
1179 if (entry == TX_RING_SIZE-1)
1180 tx_flags |= DESC_RING_WRAP; /* Wrap ring. */
1181 tp->tx_ring[entry].length = cpu_to_le32(tx_flags);
1182 tp->tx_ring[entry].buffer1 =
1183 cpu_to_le32(tp->tx_buffers[entry].mapping);
1184 tp->tx_ring[entry].status = cpu_to_le32(DescOwned);
1185 if (dummy >= 0)
1186 tp->tx_ring[dummy].status = cpu_to_le32(DescOwned);
1187 if (tp->cur_tx - tp->dirty_tx >= TX_RING_SIZE - 2)
1188 netif_stop_queue(dev);
1190 /* Trigger an immediate transmit demand. */
1191 iowrite32(0, ioaddr + CSR1);
1194 spin_unlock_irqrestore(&tp->lock, flags);
1197 iowrite32(csr6, ioaddr + CSR6);
1200 #ifdef CONFIG_TULIP_MWI
1201 static void __devinit tulip_mwi_config (struct pci_dev *pdev,
1202 struct net_device *dev)
1204 struct tulip_private *tp = netdev_priv(dev);
1205 u8 cache;
1206 u16 pci_command;
1207 u32 csr0;
1209 if (tulip_debug > 3)
1210 printk(KERN_DEBUG "%s: tulip_mwi_config()\n", pci_name(pdev));
1212 tp->csr0 = csr0 = 0;
1214 /* if we have any cache line size at all, we can do MRM and MWI */
1215 csr0 |= MRM | MWI;
1217 /* Enable MWI in the standard PCI command bit.
1218 * Check for the case where MWI is desired but not available
1220 pci_try_set_mwi(pdev);
1222 /* read result from hardware (in case bit refused to enable) */
1223 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
1224 if ((csr0 & MWI) && (!(pci_command & PCI_COMMAND_INVALIDATE)))
1225 csr0 &= ~MWI;
1227 /* if cache line size hardwired to zero, no MWI */
1228 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache);
1229 if ((csr0 & MWI) && (cache == 0)) {
1230 csr0 &= ~MWI;
1231 pci_clear_mwi(pdev);
1234 /* assign per-cacheline-size cache alignment and
1235 * burst length values
1237 switch (cache) {
1238 case 8:
1239 csr0 |= MRL | (1 << CALShift) | (16 << BurstLenShift);
1240 break;
1241 case 16:
1242 csr0 |= MRL | (2 << CALShift) | (16 << BurstLenShift);
1243 break;
1244 case 32:
1245 csr0 |= MRL | (3 << CALShift) | (32 << BurstLenShift);
1246 break;
1247 default:
1248 cache = 0;
1249 break;
1252 /* if we have a good cache line size, we by now have a good
1253 * csr0, so save it and exit
1255 if (cache)
1256 goto out;
1258 /* we don't have a good csr0 or cache line size, disable MWI */
1259 if (csr0 & MWI) {
1260 pci_clear_mwi(pdev);
1261 csr0 &= ~MWI;
1264 /* sane defaults for burst length and cache alignment
1265 * originally from de4x5 driver
1267 csr0 |= (8 << BurstLenShift) | (1 << CALShift);
1269 out:
1270 tp->csr0 = csr0;
1271 if (tulip_debug > 2)
1272 printk(KERN_DEBUG "%s: MWI config cacheline=%d, csr0=%08x\n",
1273 pci_name(pdev), cache, csr0);
1275 #endif
1278 * Chips that have the MRM/reserved bit quirk and the burst quirk. That
1279 * is the DM910X and the on chip ULi devices
1282 static int tulip_uli_dm_quirk(struct pci_dev *pdev)
1284 if (pdev->vendor == 0x1282 && pdev->device == 0x9102)
1285 return 1;
1286 return 0;
1289 static const struct net_device_ops tulip_netdev_ops = {
1290 .ndo_open = tulip_open,
1291 .ndo_start_xmit = tulip_start_xmit,
1292 .ndo_tx_timeout = tulip_tx_timeout,
1293 .ndo_stop = tulip_close,
1294 .ndo_get_stats = tulip_get_stats,
1295 .ndo_do_ioctl = private_ioctl,
1296 .ndo_set_multicast_list = set_rx_mode,
1297 .ndo_change_mtu = eth_change_mtu,
1298 .ndo_set_mac_address = eth_mac_addr,
1299 .ndo_validate_addr = eth_validate_addr,
1300 #ifdef CONFIG_NET_POLL_CONTROLLER
1301 .ndo_poll_controller = poll_tulip,
1302 #endif
1305 static int __devinit tulip_init_one (struct pci_dev *pdev,
1306 const struct pci_device_id *ent)
1308 struct tulip_private *tp;
1309 /* See note below on the multiport cards. */
1310 static unsigned char last_phys_addr[6] = {0x00, 'L', 'i', 'n', 'u', 'x'};
1311 static struct pci_device_id early_486_chipsets[] = {
1312 { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82424) },
1313 { PCI_DEVICE(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_496) },
1314 { },
1316 static int last_irq;
1317 static int multiport_cnt; /* For four-port boards w/one EEPROM */
1318 int i, irq;
1319 unsigned short sum;
1320 unsigned char *ee_data;
1321 struct net_device *dev;
1322 void __iomem *ioaddr;
1323 static int board_idx = -1;
1324 int chip_idx = ent->driver_data;
1325 const char *chip_name = tulip_tbl[chip_idx].chip_name;
1326 unsigned int eeprom_missing = 0;
1327 unsigned int force_csr0 = 0;
1329 #ifndef MODULE
1330 if (tulip_debug > 0)
1331 printk_once(KERN_INFO "%s", version);
1332 #endif
1334 board_idx++;
1337 * Lan media wire a tulip chip to a wan interface. Needs a very
1338 * different driver (lmc driver)
1341 if (pdev->subsystem_vendor == PCI_VENDOR_ID_LMC) {
1342 pr_err(PFX "skipping LMC card\n");
1343 return -ENODEV;
1344 } else if (pdev->subsystem_vendor == PCI_VENDOR_ID_SBE &&
1345 (pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_T3E3 ||
1346 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P0 ||
1347 pdev->subsystem_device == PCI_SUBDEVICE_ID_SBE_2T3E3_P1)) {
1348 pr_err(PFX "skipping SBE T3E3 port\n");
1349 return -ENODEV;
1353 * DM910x chips should be handled by the dmfe driver, except
1354 * on-board chips on SPARC systems. Also, early DM9100s need
1355 * software CRC which only the dmfe driver supports.
1358 #ifdef CONFIG_TULIP_DM910X
1359 if (chip_idx == DM910X) {
1360 struct device_node *dp;
1362 if (pdev->vendor == 0x1282 && pdev->device == 0x9100 &&
1363 pdev->revision < 0x30) {
1364 pr_info(PFX "skipping early DM9100 with Crc bug (use dmfe)\n");
1365 return -ENODEV;
1368 dp = pci_device_to_OF_node(pdev);
1369 if (!(dp && of_get_property(dp, "local-mac-address", NULL))) {
1370 pr_info(PFX "skipping DM910x expansion card (use dmfe)\n");
1371 return -ENODEV;
1374 #endif
1377 * Looks for early PCI chipsets where people report hangs
1378 * without the workarounds being on.
1381 /* 1. Intel Saturn. Switch to 8 long words burst, 8 long word cache
1382 aligned. Aries might need this too. The Saturn errata are not
1383 pretty reading but thankfully it's an old 486 chipset.
1385 2. The dreaded SiS496 486 chipset. Same workaround as Intel
1386 Saturn.
1389 if (pci_dev_present(early_486_chipsets)) {
1390 csr0 = MRL | MRM | (8 << BurstLenShift) | (1 << CALShift);
1391 force_csr0 = 1;
1394 /* bugfix: the ASIX must have a burst limit or horrible things happen. */
1395 if (chip_idx == AX88140) {
1396 if ((csr0 & 0x3f00) == 0)
1397 csr0 |= 0x2000;
1400 /* PNIC doesn't have MWI/MRL/MRM... */
1401 if (chip_idx == LC82C168)
1402 csr0 &= ~0xfff10000; /* zero reserved bits 31:20, 16 */
1404 /* DM9102A has troubles with MRM & clear reserved bits 24:22, 20, 16, 7:1 */
1405 if (tulip_uli_dm_quirk(pdev)) {
1406 csr0 &= ~0x01f100ff;
1407 #if defined(CONFIG_SPARC)
1408 csr0 = (csr0 & ~0xff00) | 0xe000;
1409 #endif
1412 * And back to business
1415 i = pci_enable_device(pdev);
1416 if (i) {
1417 pr_err(PFX "Cannot enable tulip board #%d, aborting\n",
1418 board_idx);
1419 return i;
1422 /* The chip will fail to enter a low-power state later unless
1423 * first explicitly commanded into D0 */
1424 if (pci_set_power_state(pdev, PCI_D0)) {
1425 printk (KERN_NOTICE PFX
1426 "Failed to set power state to D0\n");
1429 irq = pdev->irq;
1431 /* alloc_etherdev ensures aligned and zeroed private structures */
1432 dev = alloc_etherdev (sizeof (*tp));
1433 if (!dev) {
1434 pr_err(PFX "ether device alloc failed, aborting\n");
1435 return -ENOMEM;
1438 SET_NETDEV_DEV(dev, &pdev->dev);
1439 if (pci_resource_len (pdev, 0) < tulip_tbl[chip_idx].io_size) {
1440 pr_err(PFX "%s: I/O region (0x%llx@0x%llx) too small, aborting\n",
1441 pci_name(pdev),
1442 (unsigned long long)pci_resource_len (pdev, 0),
1443 (unsigned long long)pci_resource_start (pdev, 0));
1444 goto err_out_free_netdev;
1447 /* grab all resources from both PIO and MMIO regions, as we
1448 * don't want anyone else messing around with our hardware */
1449 if (pci_request_regions (pdev, DRV_NAME))
1450 goto err_out_free_netdev;
1452 ioaddr = pci_iomap(pdev, TULIP_BAR, tulip_tbl[chip_idx].io_size);
1454 if (!ioaddr)
1455 goto err_out_free_res;
1458 * initialize private data structure 'tp'
1459 * it is zeroed and aligned in alloc_etherdev
1461 tp = netdev_priv(dev);
1462 tp->dev = dev;
1464 tp->rx_ring = pci_alloc_consistent(pdev,
1465 sizeof(struct tulip_rx_desc) * RX_RING_SIZE +
1466 sizeof(struct tulip_tx_desc) * TX_RING_SIZE,
1467 &tp->rx_ring_dma);
1468 if (!tp->rx_ring)
1469 goto err_out_mtable;
1470 tp->tx_ring = (struct tulip_tx_desc *)(tp->rx_ring + RX_RING_SIZE);
1471 tp->tx_ring_dma = tp->rx_ring_dma + sizeof(struct tulip_rx_desc) * RX_RING_SIZE;
1473 tp->chip_id = chip_idx;
1474 tp->flags = tulip_tbl[chip_idx].flags;
1476 tp->wolinfo.supported = 0;
1477 tp->wolinfo.wolopts = 0;
1478 /* COMET: Enable power management only for AN983B */
1479 if (chip_idx == COMET ) {
1480 u32 sig;
1481 pci_read_config_dword (pdev, 0x80, &sig);
1482 if (sig == 0x09811317) {
1483 tp->flags |= COMET_PM;
1484 tp->wolinfo.supported = WAKE_PHY | WAKE_MAGIC;
1485 printk(KERN_INFO "tulip_init_one: Enabled WOL support for AN983B\n");
1488 tp->pdev = pdev;
1489 tp->base_addr = ioaddr;
1490 tp->revision = pdev->revision;
1491 tp->csr0 = csr0;
1492 spin_lock_init(&tp->lock);
1493 spin_lock_init(&tp->mii_lock);
1494 init_timer(&tp->timer);
1495 tp->timer.data = (unsigned long)dev;
1496 tp->timer.function = tulip_tbl[tp->chip_id].media_timer;
1498 INIT_WORK(&tp->media_work, tulip_tbl[tp->chip_id].media_task);
1500 dev->base_addr = (unsigned long)ioaddr;
1502 #ifdef CONFIG_TULIP_MWI
1503 if (!force_csr0 && (tp->flags & HAS_PCI_MWI))
1504 tulip_mwi_config (pdev, dev);
1505 #endif
1507 /* Stop the chip's Tx and Rx processes. */
1508 tulip_stop_rxtx(tp);
1510 pci_set_master(pdev);
1512 #ifdef CONFIG_GSC
1513 if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP) {
1514 switch (pdev->subsystem_device) {
1515 default:
1516 break;
1517 case 0x1061:
1518 case 0x1062:
1519 case 0x1063:
1520 case 0x1098:
1521 case 0x1099:
1522 case 0x10EE:
1523 tp->flags |= HAS_SWAPPED_SEEPROM | NEEDS_FAKE_MEDIA_TABLE;
1524 chip_name = "GSC DS21140 Tulip";
1527 #endif
1529 /* Clear the missed-packet counter. */
1530 ioread32(ioaddr + CSR8);
1532 /* The station address ROM is read byte serially. The register must
1533 be polled, waiting for the value to be read bit serially from the
1534 EEPROM.
1536 ee_data = tp->eeprom;
1537 memset(ee_data, 0, sizeof(tp->eeprom));
1538 sum = 0;
1539 if (chip_idx == LC82C168) {
1540 for (i = 0; i < 3; i++) {
1541 int value, boguscnt = 100000;
1542 iowrite32(0x600 | i, ioaddr + 0x98);
1543 do {
1544 value = ioread32(ioaddr + CSR9);
1545 } while (value < 0 && --boguscnt > 0);
1546 put_unaligned_le16(value, ((__le16 *)dev->dev_addr) + i);
1547 sum += value & 0xffff;
1549 } else if (chip_idx == COMET) {
1550 /* No need to read the EEPROM. */
1551 put_unaligned_le32(ioread32(ioaddr + 0xA4), dev->dev_addr);
1552 put_unaligned_le16(ioread32(ioaddr + 0xA8), dev->dev_addr + 4);
1553 for (i = 0; i < 6; i ++)
1554 sum += dev->dev_addr[i];
1555 } else {
1556 /* A serial EEPROM interface, we read now and sort it out later. */
1557 int sa_offset = 0;
1558 int ee_addr_size = tulip_read_eeprom(dev, 0xff, 8) & 0x40000 ? 8 : 6;
1559 int ee_max_addr = ((1 << ee_addr_size) - 1) * sizeof(u16);
1561 if (ee_max_addr > sizeof(tp->eeprom))
1562 ee_max_addr = sizeof(tp->eeprom);
1564 for (i = 0; i < ee_max_addr ; i += sizeof(u16)) {
1565 u16 data = tulip_read_eeprom(dev, i/2, ee_addr_size);
1566 ee_data[i] = data & 0xff;
1567 ee_data[i + 1] = data >> 8;
1570 /* DEC now has a specification (see Notes) but early board makers
1571 just put the address in the first EEPROM locations. */
1572 /* This does memcmp(ee_data, ee_data+16, 8) */
1573 for (i = 0; i < 8; i ++)
1574 if (ee_data[i] != ee_data[16+i])
1575 sa_offset = 20;
1576 if (chip_idx == CONEXANT) {
1577 /* Check that the tuple type and length is correct. */
1578 if (ee_data[0x198] == 0x04 && ee_data[0x199] == 6)
1579 sa_offset = 0x19A;
1580 } else if (ee_data[0] == 0xff && ee_data[1] == 0xff &&
1581 ee_data[2] == 0) {
1582 sa_offset = 2; /* Grrr, damn Matrox boards. */
1583 multiport_cnt = 4;
1585 #ifdef CONFIG_MIPS_COBALT
1586 if ((pdev->bus->number == 0) &&
1587 ((PCI_SLOT(pdev->devfn) == 7) ||
1588 (PCI_SLOT(pdev->devfn) == 12))) {
1589 /* Cobalt MAC address in first EEPROM locations. */
1590 sa_offset = 0;
1591 /* Ensure our media table fixup get's applied */
1592 memcpy(ee_data + 16, ee_data, 8);
1594 #endif
1595 #ifdef CONFIG_GSC
1596 /* Check to see if we have a broken srom */
1597 if (ee_data[0] == 0x61 && ee_data[1] == 0x10) {
1598 /* pci_vendor_id and subsystem_id are swapped */
1599 ee_data[0] = ee_data[2];
1600 ee_data[1] = ee_data[3];
1601 ee_data[2] = 0x61;
1602 ee_data[3] = 0x10;
1604 /* HSC-PCI boards need to be byte-swaped and shifted
1605 * up 1 word. This shift needs to happen at the end
1606 * of the MAC first because of the 2 byte overlap.
1608 for (i = 4; i >= 0; i -= 2) {
1609 ee_data[17 + i + 3] = ee_data[17 + i];
1610 ee_data[16 + i + 5] = ee_data[16 + i];
1613 #endif
1615 for (i = 0; i < 6; i ++) {
1616 dev->dev_addr[i] = ee_data[i + sa_offset];
1617 sum += ee_data[i + sa_offset];
1620 /* Lite-On boards have the address byte-swapped. */
1621 if ((dev->dev_addr[0] == 0xA0 ||
1622 dev->dev_addr[0] == 0xC0 ||
1623 dev->dev_addr[0] == 0x02) &&
1624 dev->dev_addr[1] == 0x00)
1625 for (i = 0; i < 6; i+=2) {
1626 char tmp = dev->dev_addr[i];
1627 dev->dev_addr[i] = dev->dev_addr[i+1];
1628 dev->dev_addr[i+1] = tmp;
1630 /* On the Zynx 315 Etherarray and other multiport boards only the
1631 first Tulip has an EEPROM.
1632 On Sparc systems the mac address is held in the OBP property
1633 "local-mac-address".
1634 The addresses of the subsequent ports are derived from the first.
1635 Many PCI BIOSes also incorrectly report the IRQ line, so we correct
1636 that here as well. */
1637 if (sum == 0 || sum == 6*0xff) {
1638 #if defined(CONFIG_SPARC)
1639 struct device_node *dp = pci_device_to_OF_node(pdev);
1640 const unsigned char *addr;
1641 int len;
1642 #endif
1643 eeprom_missing = 1;
1644 for (i = 0; i < 5; i++)
1645 dev->dev_addr[i] = last_phys_addr[i];
1646 dev->dev_addr[i] = last_phys_addr[i] + 1;
1647 #if defined(CONFIG_SPARC)
1648 addr = of_get_property(dp, "local-mac-address", &len);
1649 if (addr && len == 6)
1650 memcpy(dev->dev_addr, addr, 6);
1651 #endif
1652 #if defined(__i386__) || defined(__x86_64__) /* Patch up x86 BIOS bug. */
1653 if (last_irq)
1654 irq = last_irq;
1655 #endif
1658 for (i = 0; i < 6; i++)
1659 last_phys_addr[i] = dev->dev_addr[i];
1660 last_irq = irq;
1661 dev->irq = irq;
1663 /* The lower four bits are the media type. */
1664 if (board_idx >= 0 && board_idx < MAX_UNITS) {
1665 if (options[board_idx] & MEDIA_MASK)
1666 tp->default_port = options[board_idx] & MEDIA_MASK;
1667 if ((options[board_idx] & FullDuplex) || full_duplex[board_idx] > 0)
1668 tp->full_duplex = 1;
1669 if (mtu[board_idx] > 0)
1670 dev->mtu = mtu[board_idx];
1672 if (dev->mem_start & MEDIA_MASK)
1673 tp->default_port = dev->mem_start & MEDIA_MASK;
1674 if (tp->default_port) {
1675 pr_info(DRV_NAME "%d: Transceiver selection forced to %s\n",
1676 board_idx, medianame[tp->default_port & MEDIA_MASK]);
1677 tp->medialock = 1;
1678 if (tulip_media_cap[tp->default_port] & MediaAlwaysFD)
1679 tp->full_duplex = 1;
1681 if (tp->full_duplex)
1682 tp->full_duplex_lock = 1;
1684 if (tulip_media_cap[tp->default_port] & MediaIsMII) {
1685 u16 media2advert[] = { 0x20, 0x40, 0x03e0, 0x60, 0x80, 0x100, 0x200 };
1686 tp->mii_advertise = media2advert[tp->default_port - 9];
1687 tp->mii_advertise |= (tp->flags & HAS_8023X); /* Matching bits! */
1690 if (tp->flags & HAS_MEDIA_TABLE) {
1691 sprintf(dev->name, DRV_NAME "%d", board_idx); /* hack */
1692 tulip_parse_eeprom(dev);
1693 strcpy(dev->name, "eth%d"); /* un-hack */
1696 if ((tp->flags & ALWAYS_CHECK_MII) ||
1697 (tp->mtable && tp->mtable->has_mii) ||
1698 ( ! tp->mtable && (tp->flags & HAS_MII))) {
1699 if (tp->mtable && tp->mtable->has_mii) {
1700 for (i = 0; i < tp->mtable->leafcount; i++)
1701 if (tp->mtable->mleaf[i].media == 11) {
1702 tp->cur_index = i;
1703 tp->saved_if_port = dev->if_port;
1704 tulip_select_media(dev, 2);
1705 dev->if_port = tp->saved_if_port;
1706 break;
1710 /* Find the connected MII xcvrs.
1711 Doing this in open() would allow detecting external xcvrs
1712 later, but takes much time. */
1713 tulip_find_mii (dev, board_idx);
1716 /* The Tulip-specific entries in the device structure. */
1717 dev->netdev_ops = &tulip_netdev_ops;
1718 dev->watchdog_timeo = TX_TIMEOUT;
1719 #ifdef CONFIG_TULIP_NAPI
1720 netif_napi_add(dev, &tp->napi, tulip_poll, 16);
1721 #endif
1722 SET_ETHTOOL_OPS(dev, &ops);
1724 if (register_netdev(dev))
1725 goto err_out_free_ring;
1727 pci_set_drvdata(pdev, dev);
1729 dev_info(&dev->dev,
1730 #ifdef CONFIG_TULIP_MMIO
1731 "%s rev %d at MMIO %#llx,%s %pM, IRQ %d\n",
1732 #else
1733 "%s rev %d at Port %#llx,%s %pM, IRQ %d\n",
1734 #endif
1735 chip_name, pdev->revision,
1736 (unsigned long long)pci_resource_start(pdev, TULIP_BAR),
1737 eeprom_missing ? " EEPROM not present," : "",
1738 dev->dev_addr, irq);
1740 if (tp->chip_id == PNIC2)
1741 tp->link_change = pnic2_lnk_change;
1742 else if (tp->flags & HAS_NWAY)
1743 tp->link_change = t21142_lnk_change;
1744 else if (tp->flags & HAS_PNICNWAY)
1745 tp->link_change = pnic_lnk_change;
1747 /* Reset the xcvr interface and turn on heartbeat. */
1748 switch (chip_idx) {
1749 case DC21140:
1750 case DM910X:
1751 default:
1752 if (tp->mtable)
1753 iowrite32(tp->mtable->csr12dir | 0x100, ioaddr + CSR12);
1754 break;
1755 case DC21142:
1756 if (tp->mii_cnt || tulip_media_cap[dev->if_port] & MediaIsMII) {
1757 iowrite32(csr6_mask_defstate, ioaddr + CSR6);
1758 iowrite32(0x0000, ioaddr + CSR13);
1759 iowrite32(0x0000, ioaddr + CSR14);
1760 iowrite32(csr6_mask_hdcap, ioaddr + CSR6);
1761 } else
1762 t21142_start_nway(dev);
1763 break;
1764 case PNIC2:
1765 /* just do a reset for sanity sake */
1766 iowrite32(0x0000, ioaddr + CSR13);
1767 iowrite32(0x0000, ioaddr + CSR14);
1768 break;
1769 case LC82C168:
1770 if ( ! tp->mii_cnt) {
1771 tp->nway = 1;
1772 tp->nwayset = 0;
1773 iowrite32(csr6_ttm | csr6_ca, ioaddr + CSR6);
1774 iowrite32(0x30, ioaddr + CSR12);
1775 iowrite32(0x0001F078, ioaddr + CSR6);
1776 iowrite32(0x0201F078, ioaddr + CSR6); /* Turn on autonegotiation. */
1778 break;
1779 case MX98713:
1780 case COMPEX9881:
1781 iowrite32(0x00000000, ioaddr + CSR6);
1782 iowrite32(0x000711C0, ioaddr + CSR14); /* Turn on NWay. */
1783 iowrite32(0x00000001, ioaddr + CSR13);
1784 break;
1785 case MX98715:
1786 case MX98725:
1787 iowrite32(0x01a80000, ioaddr + CSR6);
1788 iowrite32(0xFFFFFFFF, ioaddr + CSR14);
1789 iowrite32(0x00001000, ioaddr + CSR12);
1790 break;
1791 case COMET:
1792 /* No initialization necessary. */
1793 break;
1796 /* put the chip in snooze mode until opened */
1797 tulip_set_power_state (tp, 0, 1);
1799 return 0;
1801 err_out_free_ring:
1802 pci_free_consistent (pdev,
1803 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1804 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1805 tp->rx_ring, tp->rx_ring_dma);
1807 err_out_mtable:
1808 kfree (tp->mtable);
1809 pci_iounmap(pdev, ioaddr);
1811 err_out_free_res:
1812 pci_release_regions (pdev);
1814 err_out_free_netdev:
1815 free_netdev (dev);
1816 return -ENODEV;
1820 /* set the registers according to the given wolopts */
1821 static void tulip_set_wolopts (struct pci_dev *pdev, u32 wolopts)
1823 struct net_device *dev = pci_get_drvdata(pdev);
1824 struct tulip_private *tp = netdev_priv(dev);
1825 void __iomem *ioaddr = tp->base_addr;
1827 if (tp->flags & COMET_PM) {
1829 unsigned int tmp;
1831 tmp = ioread32(ioaddr + CSR18);
1832 tmp &= ~(comet_csr18_pmes_sticky | comet_csr18_apm_mode | comet_csr18_d3a);
1833 tmp |= comet_csr18_pm_mode;
1834 iowrite32(tmp, ioaddr + CSR18);
1836 /* Set the Wake-up Control/Status Register to the given WOL options*/
1837 tmp = ioread32(ioaddr + CSR13);
1838 tmp &= ~(comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_wfre | comet_csr13_lsce | comet_csr13_mpre);
1839 if (wolopts & WAKE_MAGIC)
1840 tmp |= comet_csr13_mpre;
1841 if (wolopts & WAKE_PHY)
1842 tmp |= comet_csr13_linkoffe | comet_csr13_linkone | comet_csr13_lsce;
1843 /* Clear the event flags */
1844 tmp |= comet_csr13_wfr | comet_csr13_mpr | comet_csr13_lsc;
1845 iowrite32(tmp, ioaddr + CSR13);
1849 #ifdef CONFIG_PM
1852 static int tulip_suspend (struct pci_dev *pdev, pm_message_t state)
1854 pci_power_t pstate;
1855 struct net_device *dev = pci_get_drvdata(pdev);
1856 struct tulip_private *tp = netdev_priv(dev);
1858 if (!dev)
1859 return -EINVAL;
1861 if (!netif_running(dev))
1862 goto save_state;
1864 tulip_down(dev);
1866 netif_device_detach(dev);
1867 free_irq(dev->irq, dev);
1869 save_state:
1870 pci_save_state(pdev);
1871 pci_disable_device(pdev);
1872 pstate = pci_choose_state(pdev, state);
1873 if (state.event == PM_EVENT_SUSPEND && pstate != PCI_D0) {
1874 int rc;
1876 tulip_set_wolopts(pdev, tp->wolinfo.wolopts);
1877 rc = pci_enable_wake(pdev, pstate, tp->wolinfo.wolopts);
1878 if (rc)
1879 printk("tulip: pci_enable_wake failed (%d)\n", rc);
1881 pci_set_power_state(pdev, pstate);
1883 return 0;
1887 static int tulip_resume(struct pci_dev *pdev)
1889 struct net_device *dev = pci_get_drvdata(pdev);
1890 struct tulip_private *tp = netdev_priv(dev);
1891 void __iomem *ioaddr = tp->base_addr;
1892 int retval;
1893 unsigned int tmp;
1895 if (!dev)
1896 return -EINVAL;
1898 pci_set_power_state(pdev, PCI_D0);
1899 pci_restore_state(pdev);
1901 if (!netif_running(dev))
1902 return 0;
1904 if ((retval = pci_enable_device(pdev))) {
1905 pr_err(PFX "pci_enable_device failed in resume\n");
1906 return retval;
1909 if ((retval = request_irq(dev->irq, tulip_interrupt, IRQF_SHARED, dev->name, dev))) {
1910 pr_err(PFX "request_irq failed in resume\n");
1911 return retval;
1914 if (tp->flags & COMET_PM) {
1915 pci_enable_wake(pdev, PCI_D3hot, 0);
1916 pci_enable_wake(pdev, PCI_D3cold, 0);
1918 /* Clear the PMES flag */
1919 tmp = ioread32(ioaddr + CSR20);
1920 tmp |= comet_csr20_pmes;
1921 iowrite32(tmp, ioaddr + CSR20);
1923 /* Disable all wake-up events */
1924 tulip_set_wolopts(pdev, 0);
1926 netif_device_attach(dev);
1928 if (netif_running(dev))
1929 tulip_up(dev);
1931 return 0;
1934 #endif /* CONFIG_PM */
1937 static void __devexit tulip_remove_one (struct pci_dev *pdev)
1939 struct net_device *dev = pci_get_drvdata (pdev);
1940 struct tulip_private *tp;
1942 if (!dev)
1943 return;
1945 tp = netdev_priv(dev);
1946 unregister_netdev(dev);
1947 pci_free_consistent (pdev,
1948 sizeof (struct tulip_rx_desc) * RX_RING_SIZE +
1949 sizeof (struct tulip_tx_desc) * TX_RING_SIZE,
1950 tp->rx_ring, tp->rx_ring_dma);
1951 kfree (tp->mtable);
1952 pci_iounmap(pdev, tp->base_addr);
1953 free_netdev (dev);
1954 pci_release_regions (pdev);
1955 pci_set_drvdata (pdev, NULL);
1957 /* pci_power_off (pdev, -1); */
1960 #ifdef CONFIG_NET_POLL_CONTROLLER
1962 * Polling 'interrupt' - used by things like netconsole to send skbs
1963 * without having to re-enable interrupts. It's not called while
1964 * the interrupt routine is executing.
1967 static void poll_tulip (struct net_device *dev)
1969 /* disable_irq here is not very nice, but with the lockless
1970 interrupt handler we have no other choice. */
1971 disable_irq(dev->irq);
1972 tulip_interrupt (dev->irq, dev);
1973 enable_irq(dev->irq);
1975 #endif
1977 static struct pci_driver tulip_driver = {
1978 .name = DRV_NAME,
1979 .id_table = tulip_pci_tbl,
1980 .probe = tulip_init_one,
1981 .remove = __devexit_p(tulip_remove_one),
1982 #ifdef CONFIG_PM
1983 .suspend = tulip_suspend,
1984 .resume = tulip_resume,
1985 #endif /* CONFIG_PM */
1989 static int __init tulip_init (void)
1991 #ifdef MODULE
1992 pr_info("%s", version);
1993 #endif
1995 /* copy module parms into globals */
1996 tulip_rx_copybreak = rx_copybreak;
1997 tulip_max_interrupt_work = max_interrupt_work;
1999 /* probe for and init boards */
2000 return pci_register_driver(&tulip_driver);
2004 static void __exit tulip_cleanup (void)
2006 pci_unregister_driver (&tulip_driver);
2010 module_init(tulip_init);
2011 module_exit(tulip_cleanup);