1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
32 * If a non-root user executes a setuid-root binary in
33 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
34 * However if fE is also set, then the intent is for only
35 * the file capabilities to be applied, and the setuid-root
36 * bit is left on either to change the uid (plausible) or
37 * to get full privilege on a kernel without file capabilities
38 * support. So in that case we do not raise capabilities.
40 * Warn if that happens, once per boot.
42 static void warn_setuid_and_fcaps_mixed(const char *fname
)
46 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
47 " effective capabilities. Therefore not raising all"
48 " capabilities.\n", fname
);
53 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
55 NETLINK_CB(skb
).eff_cap
= current_cap();
59 int cap_netlink_recv(struct sk_buff
*skb
, int cap
)
61 if (!cap_raised(NETLINK_CB(skb
).eff_cap
, cap
))
65 EXPORT_SYMBOL(cap_netlink_recv
);
68 * cap_capable - Determine whether a task has a particular effective capability
69 * @tsk: The task to query
70 * @cred: The credentials to use
71 * @cap: The capability to check for
72 * @audit: Whether to write an audit message or not
74 * Determine whether the nominated task has the specified capability amongst
75 * its effective set, returning 0 if it does, -ve if it does not.
77 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
78 * and has_capability() functions. That is, it has the reverse semantics:
79 * cap_has_capability() returns 0 when a task has a capability, but the
80 * kernel's capable() and has_capability() returns 1 for this case.
82 int cap_capable(struct task_struct
*tsk
, const struct cred
*cred
, int cap
,
85 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
89 * cap_settime - Determine whether the current process may set the system clock
90 * @ts: The time to set
91 * @tz: The timezone to set
93 * Determine whether the current process may set the system clock and timezone
94 * information, returning 0 if permission granted, -ve if denied.
96 int cap_settime(struct timespec
*ts
, struct timezone
*tz
)
98 if (!capable(CAP_SYS_TIME
))
104 * cap_ptrace_access_check - Determine whether the current process may access
106 * @child: The process to be accessed
107 * @mode: The mode of attachment.
109 * Determine whether a process may access another, returning 0 if permission
110 * granted, -ve if denied.
112 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
117 if (!cap_issubset(__task_cred(child
)->cap_permitted
,
118 current_cred()->cap_permitted
) &&
119 !capable(CAP_SYS_PTRACE
))
126 * cap_ptrace_traceme - Determine whether another process may trace the current
127 * @parent: The task proposed to be the tracer
129 * Determine whether the nominated task is permitted to trace the current
130 * process, returning 0 if permission is granted, -ve if denied.
132 int cap_ptrace_traceme(struct task_struct
*parent
)
137 if (!cap_issubset(current_cred()->cap_permitted
,
138 __task_cred(parent
)->cap_permitted
) &&
139 !has_capability(parent
, CAP_SYS_PTRACE
))
146 * cap_capget - Retrieve a task's capability sets
147 * @target: The task from which to retrieve the capability sets
148 * @effective: The place to record the effective set
149 * @inheritable: The place to record the inheritable set
150 * @permitted: The place to record the permitted set
152 * This function retrieves the capabilities of the nominated task and returns
153 * them to the caller.
155 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
156 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
158 const struct cred
*cred
;
160 /* Derived from kernel/capability.c:sys_capget. */
162 cred
= __task_cred(target
);
163 *effective
= cred
->cap_effective
;
164 *inheritable
= cred
->cap_inheritable
;
165 *permitted
= cred
->cap_permitted
;
171 * Determine whether the inheritable capabilities are limited to the old
172 * permitted set. Returns 1 if they are limited, 0 if they are not.
174 static inline int cap_inh_is_capped(void)
177 /* they are so limited unless the current task has the CAP_SETPCAP
180 if (cap_capable(current
, current_cred(), CAP_SETPCAP
,
181 SECURITY_CAP_AUDIT
) == 0)
187 * cap_capset - Validate and apply proposed changes to current's capabilities
188 * @new: The proposed new credentials; alterations should be made here
189 * @old: The current task's current credentials
190 * @effective: A pointer to the proposed new effective capabilities set
191 * @inheritable: A pointer to the proposed new inheritable capabilities set
192 * @permitted: A pointer to the proposed new permitted capabilities set
194 * This function validates and applies a proposed mass change to the current
195 * process's capability sets. The changes are made to the proposed new
196 * credentials, and assuming no error, will be committed by the caller of LSM.
198 int cap_capset(struct cred
*new,
199 const struct cred
*old
,
200 const kernel_cap_t
*effective
,
201 const kernel_cap_t
*inheritable
,
202 const kernel_cap_t
*permitted
)
204 if (cap_inh_is_capped() &&
205 !cap_issubset(*inheritable
,
206 cap_combine(old
->cap_inheritable
,
207 old
->cap_permitted
)))
208 /* incapable of using this inheritable set */
211 if (!cap_issubset(*inheritable
,
212 cap_combine(old
->cap_inheritable
,
214 /* no new pI capabilities outside bounding set */
217 /* verify restrictions on target's new Permitted set */
218 if (!cap_issubset(*permitted
, old
->cap_permitted
))
221 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
222 if (!cap_issubset(*effective
, *permitted
))
225 new->cap_effective
= *effective
;
226 new->cap_inheritable
= *inheritable
;
227 new->cap_permitted
= *permitted
;
232 * Clear proposed capability sets for execve().
234 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
236 cap_clear(bprm
->cred
->cap_permitted
);
237 bprm
->cap_effective
= false;
241 * cap_inode_need_killpriv - Determine if inode change affects privileges
242 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
244 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
245 * affects the security markings on that inode, and if it is, should
246 * inode_killpriv() be invoked or the change rejected?
248 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
249 * -ve to deny the change.
251 int cap_inode_need_killpriv(struct dentry
*dentry
)
253 struct inode
*inode
= dentry
->d_inode
;
256 if (!inode
->i_op
->getxattr
)
259 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
266 * cap_inode_killpriv - Erase the security markings on an inode
267 * @dentry: The inode/dentry to alter
269 * Erase the privilege-enhancing security markings on an inode.
271 * Returns 0 if successful, -ve on error.
273 int cap_inode_killpriv(struct dentry
*dentry
)
275 struct inode
*inode
= dentry
->d_inode
;
277 if (!inode
->i_op
->removexattr
)
280 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
284 * Calculate the new process capability sets from the capability sets attached
287 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
288 struct linux_binprm
*bprm
,
291 struct cred
*new = bprm
->cred
;
295 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
298 CAP_FOR_EACH_U32(i
) {
299 __u32 permitted
= caps
->permitted
.cap
[i
];
300 __u32 inheritable
= caps
->inheritable
.cap
[i
];
303 * pP' = (X & fP) | (pI & fI)
305 new->cap_permitted
.cap
[i
] =
306 (new->cap_bset
.cap
[i
] & permitted
) |
307 (new->cap_inheritable
.cap
[i
] & inheritable
);
309 if (permitted
& ~new->cap_permitted
.cap
[i
])
310 /* insufficient to execute correctly */
315 * For legacy apps, with no internal support for recognizing they
316 * do not have enough capabilities, we return an error if they are
317 * missing some "forced" (aka file-permitted) capabilities.
319 return *effective
? ret
: 0;
323 * Extract the on-exec-apply capability sets for an executable file.
325 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
327 struct inode
*inode
= dentry
->d_inode
;
331 struct vfs_cap_data caps
;
333 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
335 if (!inode
|| !inode
->i_op
->getxattr
)
338 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
340 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
341 /* no data, that's ok */
346 if (size
< sizeof(magic_etc
))
349 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
351 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
352 case VFS_CAP_REVISION_1
:
353 if (size
!= XATTR_CAPS_SZ_1
)
355 tocopy
= VFS_CAP_U32_1
;
357 case VFS_CAP_REVISION_2
:
358 if (size
!= XATTR_CAPS_SZ_2
)
360 tocopy
= VFS_CAP_U32_2
;
366 CAP_FOR_EACH_U32(i
) {
369 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
370 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
377 * Attempt to get the on-exec apply capability sets for an executable file from
378 * its xattrs and, if present, apply them to the proposed credentials being
379 * constructed by execve().
381 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
)
383 struct dentry
*dentry
;
385 struct cpu_vfs_cap_data vcaps
;
387 bprm_clear_caps(bprm
);
389 if (!file_caps_enabled
)
392 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
395 dentry
= dget(bprm
->file
->f_dentry
);
397 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
400 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
401 __func__
, rc
, bprm
->filename
);
402 else if (rc
== -ENODATA
)
407 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
);
409 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
410 __func__
, rc
, bprm
->filename
);
415 bprm_clear_caps(bprm
);
421 * cap_bprm_set_creds - Set up the proposed credentials for execve().
422 * @bprm: The execution parameters, including the proposed creds
424 * Set up the proposed credentials for a new execution context being
425 * constructed by execve(). The proposed creds in @bprm->cred is altered,
426 * which won't take effect immediately. Returns 0 if successful, -ve on error.
428 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
430 const struct cred
*old
= current_cred();
431 struct cred
*new = bprm
->cred
;
436 ret
= get_file_caps(bprm
, &effective
);
440 if (!issecure(SECURE_NOROOT
)) {
442 * If the legacy file capability is set, then don't set privs
443 * for a setuid root binary run by a non-root user. Do set it
444 * for a root user just to cause least surprise to an admin.
446 if (effective
&& new->uid
!= 0 && new->euid
== 0) {
447 warn_setuid_and_fcaps_mixed(bprm
->filename
);
451 * To support inheritance of root-permissions and suid-root
452 * executables under compatibility mode, we override the
453 * capability sets for the file.
455 * If only the real uid is 0, we do not set the effective bit.
457 if (new->euid
== 0 || new->uid
== 0) {
458 /* pP' = (cap_bset & ~0) | (pI & ~0) */
459 new->cap_permitted
= cap_combine(old
->cap_bset
,
460 old
->cap_inheritable
);
467 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
468 * credentials unless they have the appropriate permit
470 if ((new->euid
!= old
->uid
||
471 new->egid
!= old
->gid
||
472 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
473 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
474 /* downgrade; they get no more than they had, and maybe less */
475 if (!capable(CAP_SETUID
)) {
476 new->euid
= new->uid
;
477 new->egid
= new->gid
;
479 new->cap_permitted
= cap_intersect(new->cap_permitted
,
483 new->suid
= new->fsuid
= new->euid
;
484 new->sgid
= new->fsgid
= new->egid
;
486 /* For init, we want to retain the capabilities set in the initial
487 * task. Thus we skip the usual capability rules
489 if (!is_global_init(current
)) {
491 new->cap_effective
= new->cap_permitted
;
493 cap_clear(new->cap_effective
);
495 bprm
->cap_effective
= effective
;
498 * Audit candidate if current->cap_effective is set
500 * We do not bother to audit if 3 things are true:
501 * 1) cap_effective has all caps
503 * 3) root is supposed to have all caps (SECURE_NOROOT)
504 * Since this is just a normal root execing a process.
506 * Number 1 above might fail if you don't have a full bset, but I think
507 * that is interesting information to audit.
509 if (!cap_isclear(new->cap_effective
)) {
510 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
511 new->euid
!= 0 || new->uid
!= 0 ||
512 issecure(SECURE_NOROOT
)) {
513 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
519 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
524 * cap_bprm_secureexec - Determine whether a secure execution is required
525 * @bprm: The execution parameters
527 * Determine whether a secure execution is required, return 1 if it is, and 0
530 * The credentials have been committed by this point, and so are no longer
531 * available through @bprm->cred.
533 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
535 const struct cred
*cred
= current_cred();
537 if (cred
->uid
!= 0) {
538 if (bprm
->cap_effective
)
540 if (!cap_isclear(cred
->cap_permitted
))
544 return (cred
->euid
!= cred
->uid
||
545 cred
->egid
!= cred
->gid
);
549 * cap_inode_setxattr - Determine whether an xattr may be altered
550 * @dentry: The inode/dentry being altered
551 * @name: The name of the xattr to be changed
552 * @value: The value that the xattr will be changed to
553 * @size: The size of value
554 * @flags: The replacement flag
556 * Determine whether an xattr may be altered or set on an inode, returning 0 if
557 * permission is granted, -ve if denied.
559 * This is used to make sure security xattrs don't get updated or set by those
560 * who aren't privileged to do so.
562 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
563 const void *value
, size_t size
, int flags
)
565 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
566 if (!capable(CAP_SETFCAP
))
571 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
572 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
573 !capable(CAP_SYS_ADMIN
))
579 * cap_inode_removexattr - Determine whether an xattr may be removed
580 * @dentry: The inode/dentry being altered
581 * @name: The name of the xattr to be changed
583 * Determine whether an xattr may be removed from an inode, returning 0 if
584 * permission is granted, -ve if denied.
586 * This is used to make sure security xattrs don't get removed by those who
587 * aren't privileged to remove them.
589 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
591 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
592 if (!capable(CAP_SETFCAP
))
597 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
598 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
599 !capable(CAP_SYS_ADMIN
))
605 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
606 * a process after a call to setuid, setreuid, or setresuid.
608 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
609 * {r,e,s}uid != 0, the permitted and effective capabilities are
612 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
613 * capabilities of the process are cleared.
615 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
616 * capabilities are set to the permitted capabilities.
618 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
623 * cevans - New behaviour, Oct '99
624 * A process may, via prctl(), elect to keep its capabilities when it
625 * calls setuid() and switches away from uid==0. Both permitted and
626 * effective sets will be retained.
627 * Without this change, it was impossible for a daemon to drop only some
628 * of its privilege. The call to setuid(!=0) would drop all privileges!
629 * Keeping uid 0 is not an option because uid 0 owns too many vital
631 * Thanks to Olaf Kirch and Peter Benie for spotting this.
633 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
635 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
636 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
637 !issecure(SECURE_KEEP_CAPS
)) {
638 cap_clear(new->cap_permitted
);
639 cap_clear(new->cap_effective
);
641 if (old
->euid
== 0 && new->euid
!= 0)
642 cap_clear(new->cap_effective
);
643 if (old
->euid
!= 0 && new->euid
== 0)
644 new->cap_effective
= new->cap_permitted
;
648 * cap_task_fix_setuid - Fix up the results of setuid() call
649 * @new: The proposed credentials
650 * @old: The current task's current credentials
651 * @flags: Indications of what has changed
653 * Fix up the results of setuid() call before the credential changes are
654 * actually applied, returning 0 to grant the changes, -ve to deny them.
656 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
662 /* juggle the capabilities to follow [RES]UID changes unless
663 * otherwise suppressed */
664 if (!issecure(SECURE_NO_SETUID_FIXUP
))
665 cap_emulate_setxuid(new, old
);
669 /* juggle the capabilties to follow FSUID changes, unless
670 * otherwise suppressed
672 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
673 * if not, we might be a bit too harsh here.
675 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
676 if (old
->fsuid
== 0 && new->fsuid
!= 0)
678 cap_drop_fs_set(new->cap_effective
);
680 if (old
->fsuid
!= 0 && new->fsuid
== 0)
682 cap_raise_fs_set(new->cap_effective
,
695 * Rationale: code calling task_setscheduler, task_setioprio, and
696 * task_setnice, assumes that
697 * . if capable(cap_sys_nice), then those actions should be allowed
698 * . if not capable(cap_sys_nice), but acting on your own processes,
699 * then those actions should be allowed
700 * This is insufficient now since you can call code without suid, but
701 * yet with increased caps.
702 * So we check for increased caps on the target process.
704 static int cap_safe_nice(struct task_struct
*p
)
709 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
710 current_cred()->cap_permitted
);
713 if (!is_subset
&& !capable(CAP_SYS_NICE
))
719 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
720 * @p: The task to affect
722 * Detemine if the requested scheduler policy change is permitted for the
723 * specified task, returning 0 if permission is granted, -ve if denied.
725 int cap_task_setscheduler(struct task_struct
*p
)
727 return cap_safe_nice(p
);
731 * cap_task_ioprio - Detemine if I/O priority change is permitted
732 * @p: The task to affect
733 * @ioprio: The I/O priority to set
735 * Detemine if the requested I/O priority change is permitted for the specified
736 * task, returning 0 if permission is granted, -ve if denied.
738 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
740 return cap_safe_nice(p
);
744 * cap_task_ioprio - Detemine if task priority change is permitted
745 * @p: The task to affect
746 * @nice: The nice value to set
748 * Detemine if the requested task priority change is permitted for the
749 * specified task, returning 0 if permission is granted, -ve if denied.
751 int cap_task_setnice(struct task_struct
*p
, int nice
)
753 return cap_safe_nice(p
);
757 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
758 * the current task's bounding set. Returns 0 on success, -ve on error.
760 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
762 if (!capable(CAP_SETPCAP
))
767 cap_lower(new->cap_bset
, cap
);
772 * cap_task_prctl - Implement process control functions for this security module
773 * @option: The process control function requested
774 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
776 * Allow process control functions (sys_prctl()) to alter capabilities; may
777 * also deny access to other functions not otherwise implemented here.
779 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
780 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
781 * modules will consider performing the function.
783 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
784 unsigned long arg4
, unsigned long arg5
)
789 new = prepare_creds();
794 case PR_CAPBSET_READ
:
796 if (!cap_valid(arg2
))
798 error
= !!cap_raised(new->cap_bset
, arg2
);
801 case PR_CAPBSET_DROP
:
802 error
= cap_prctl_drop(new, arg2
);
808 * The next four prctl's remain to assist with transitioning a
809 * system from legacy UID=0 based privilege (when filesystem
810 * capabilities are not in use) to a system using filesystem
811 * capabilities only - as the POSIX.1e draft intended.
815 * PR_SET_SECUREBITS =
816 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
817 * | issecure_mask(SECURE_NOROOT)
818 * | issecure_mask(SECURE_NOROOT_LOCKED)
819 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
820 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
822 * will ensure that the current process and all of its
823 * children will be locked into a pure
824 * capability-based-privilege environment.
826 case PR_SET_SECUREBITS
:
828 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
829 & (new->securebits
^ arg2
)) /*[1]*/
830 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
831 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
832 || (cap_capable(current
, current_cred(), CAP_SETPCAP
,
833 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
835 * [1] no changing of bits that are locked
836 * [2] no unlocking of locks
837 * [3] no setting of unsupported bits
838 * [4] doing anything requires privilege (go read about
839 * the "sendmail capabilities bug")
842 /* cannot change a locked bit */
844 new->securebits
= arg2
;
847 case PR_GET_SECUREBITS
:
848 error
= new->securebits
;
851 case PR_GET_KEEPCAPS
:
852 if (issecure(SECURE_KEEP_CAPS
))
856 case PR_SET_KEEPCAPS
:
858 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
861 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
864 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
866 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
870 /* No functionality available - continue with default */
875 /* Functionality provided */
877 return commit_creds(new);
886 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
887 * @mm: The VM space in which the new mapping is to be made
888 * @pages: The size of the mapping
890 * Determine whether the allocation of a new virtual mapping by the current
891 * task is permitted, returning 0 if permission is granted, -ve if not.
893 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
895 int cap_sys_admin
= 0;
897 if (cap_capable(current
, current_cred(), CAP_SYS_ADMIN
,
898 SECURITY_CAP_NOAUDIT
) == 0)
900 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
904 * cap_file_mmap - check if able to map given addr
909 * @addr: address attempting to be mapped
912 * If the process is attempting to map memory below dac_mmap_min_addr they need
913 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
914 * capability security module. Returns 0 if this mapping should be allowed
917 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
918 unsigned long prot
, unsigned long flags
,
919 unsigned long addr
, unsigned long addr_only
)
923 if (addr
< dac_mmap_min_addr
) {
924 ret
= cap_capable(current
, current_cred(), CAP_SYS_RAWIO
,
926 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
928 current
->flags
|= PF_SUPERPRIV
;