2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/sched.h>
21 #include <linux/writeback.h>
22 #include <linux/pagemap.h>
23 #include <linux/blkdev.h>
26 #include "transaction.h"
30 #define BTRFS_ROOT_TRANS_TAG 0
32 static noinline
void put_transaction(struct btrfs_transaction
*transaction
)
34 WARN_ON(transaction
->use_count
== 0);
35 transaction
->use_count
--;
36 if (transaction
->use_count
== 0) {
37 list_del_init(&transaction
->list
);
38 memset(transaction
, 0, sizeof(*transaction
));
39 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
43 static noinline
void switch_commit_root(struct btrfs_root
*root
)
45 free_extent_buffer(root
->commit_root
);
46 root
->commit_root
= btrfs_root_node(root
);
50 * either allocate a new transaction or hop into the existing one
52 static noinline
int join_transaction(struct btrfs_root
*root
)
54 struct btrfs_transaction
*cur_trans
;
55 cur_trans
= root
->fs_info
->running_transaction
;
57 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
,
60 root
->fs_info
->generation
++;
61 cur_trans
->num_writers
= 1;
62 cur_trans
->num_joined
= 0;
63 cur_trans
->transid
= root
->fs_info
->generation
;
64 init_waitqueue_head(&cur_trans
->writer_wait
);
65 init_waitqueue_head(&cur_trans
->commit_wait
);
66 cur_trans
->in_commit
= 0;
67 cur_trans
->blocked
= 0;
68 cur_trans
->use_count
= 1;
69 cur_trans
->commit_done
= 0;
70 cur_trans
->start_time
= get_seconds();
72 cur_trans
->delayed_refs
.root
.rb_node
= NULL
;
73 cur_trans
->delayed_refs
.num_entries
= 0;
74 cur_trans
->delayed_refs
.num_heads_ready
= 0;
75 cur_trans
->delayed_refs
.num_heads
= 0;
76 cur_trans
->delayed_refs
.flushing
= 0;
77 cur_trans
->delayed_refs
.run_delayed_start
= 0;
78 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
80 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
81 list_add_tail(&cur_trans
->list
, &root
->fs_info
->trans_list
);
82 extent_io_tree_init(&cur_trans
->dirty_pages
,
83 root
->fs_info
->btree_inode
->i_mapping
,
85 spin_lock(&root
->fs_info
->new_trans_lock
);
86 root
->fs_info
->running_transaction
= cur_trans
;
87 spin_unlock(&root
->fs_info
->new_trans_lock
);
89 cur_trans
->num_writers
++;
90 cur_trans
->num_joined
++;
97 * this does all the record keeping required to make sure that a reference
98 * counted root is properly recorded in a given transaction. This is required
99 * to make sure the old root from before we joined the transaction is deleted
100 * when the transaction commits
102 static noinline
int record_root_in_trans(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
)
105 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
106 WARN_ON(root
== root
->fs_info
->extent_root
);
107 WARN_ON(root
->root_item
.refs
== 0);
108 WARN_ON(root
->commit_root
!= root
->node
);
110 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
111 (unsigned long)root
->root_key
.objectid
,
112 BTRFS_ROOT_TRANS_TAG
);
113 root
->last_trans
= trans
->transid
;
114 btrfs_init_reloc_root(trans
, root
);
119 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
120 struct btrfs_root
*root
)
125 mutex_lock(&root
->fs_info
->trans_mutex
);
126 if (root
->last_trans
== trans
->transid
) {
127 mutex_unlock(&root
->fs_info
->trans_mutex
);
131 record_root_in_trans(trans
, root
);
132 mutex_unlock(&root
->fs_info
->trans_mutex
);
136 /* wait for commit against the current transaction to become unblocked
137 * when this is done, it is safe to start a new transaction, but the current
138 * transaction might not be fully on disk.
140 static void wait_current_trans(struct btrfs_root
*root
)
142 struct btrfs_transaction
*cur_trans
;
144 cur_trans
= root
->fs_info
->running_transaction
;
145 if (cur_trans
&& cur_trans
->blocked
) {
147 cur_trans
->use_count
++;
149 prepare_to_wait(&root
->fs_info
->transaction_wait
, &wait
,
150 TASK_UNINTERRUPTIBLE
);
151 if (cur_trans
->blocked
) {
152 mutex_unlock(&root
->fs_info
->trans_mutex
);
154 mutex_lock(&root
->fs_info
->trans_mutex
);
155 finish_wait(&root
->fs_info
->transaction_wait
,
158 finish_wait(&root
->fs_info
->transaction_wait
,
163 put_transaction(cur_trans
);
167 static struct btrfs_trans_handle
*start_transaction(struct btrfs_root
*root
,
168 int num_blocks
, int wait
)
170 struct btrfs_trans_handle
*h
=
171 kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
174 mutex_lock(&root
->fs_info
->trans_mutex
);
175 if (!root
->fs_info
->log_root_recovering
&&
176 ((wait
== 1 && !root
->fs_info
->open_ioctl_trans
) || wait
== 2))
177 wait_current_trans(root
);
178 ret
= join_transaction(root
);
181 h
->transid
= root
->fs_info
->running_transaction
->transid
;
182 h
->transaction
= root
->fs_info
->running_transaction
;
183 h
->blocks_reserved
= num_blocks
;
186 h
->alloc_exclude_nr
= 0;
187 h
->alloc_exclude_start
= 0;
188 h
->delayed_ref_updates
= 0;
190 root
->fs_info
->running_transaction
->use_count
++;
191 record_root_in_trans(h
, root
);
192 mutex_unlock(&root
->fs_info
->trans_mutex
);
196 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
199 return start_transaction(root
, num_blocks
, 1);
201 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
,
204 return start_transaction(root
, num_blocks
, 0);
207 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*r
,
210 return start_transaction(r
, num_blocks
, 2);
213 /* wait for a transaction commit to be fully complete */
214 static noinline
int wait_for_commit(struct btrfs_root
*root
,
215 struct btrfs_transaction
*commit
)
218 mutex_lock(&root
->fs_info
->trans_mutex
);
219 while (!commit
->commit_done
) {
220 prepare_to_wait(&commit
->commit_wait
, &wait
,
221 TASK_UNINTERRUPTIBLE
);
222 if (commit
->commit_done
)
224 mutex_unlock(&root
->fs_info
->trans_mutex
);
226 mutex_lock(&root
->fs_info
->trans_mutex
);
228 mutex_unlock(&root
->fs_info
->trans_mutex
);
229 finish_wait(&commit
->commit_wait
, &wait
);
235 * rate limit against the drop_snapshot code. This helps to slow down new
236 * operations if the drop_snapshot code isn't able to keep up.
238 static void throttle_on_drops(struct btrfs_root
*root
)
240 struct btrfs_fs_info
*info
= root
->fs_info
;
241 int harder_count
= 0;
244 if (atomic_read(&info
->throttles
)) {
247 thr
= atomic_read(&info
->throttle_gen
);
250 prepare_to_wait(&info
->transaction_throttle
,
251 &wait
, TASK_UNINTERRUPTIBLE
);
252 if (!atomic_read(&info
->throttles
)) {
253 finish_wait(&info
->transaction_throttle
, &wait
);
257 finish_wait(&info
->transaction_throttle
, &wait
);
258 } while (thr
== atomic_read(&info
->throttle_gen
));
261 if (root
->fs_info
->total_ref_cache_size
> 1 * 1024 * 1024 &&
265 if (root
->fs_info
->total_ref_cache_size
> 5 * 1024 * 1024 &&
269 if (root
->fs_info
->total_ref_cache_size
> 10 * 1024 * 1024 &&
276 void btrfs_throttle(struct btrfs_root
*root
)
278 mutex_lock(&root
->fs_info
->trans_mutex
);
279 if (!root
->fs_info
->open_ioctl_trans
)
280 wait_current_trans(root
);
281 mutex_unlock(&root
->fs_info
->trans_mutex
);
284 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
285 struct btrfs_root
*root
, int throttle
)
287 struct btrfs_transaction
*cur_trans
;
288 struct btrfs_fs_info
*info
= root
->fs_info
;
292 unsigned long cur
= trans
->delayed_ref_updates
;
293 trans
->delayed_ref_updates
= 0;
295 trans
->transaction
->delayed_refs
.num_heads_ready
> 64) {
296 trans
->delayed_ref_updates
= 0;
299 * do a full flush if the transaction is trying
302 if (trans
->transaction
->delayed_refs
.flushing
)
304 btrfs_run_delayed_refs(trans
, root
, cur
);
311 mutex_lock(&info
->trans_mutex
);
312 cur_trans
= info
->running_transaction
;
313 WARN_ON(cur_trans
!= trans
->transaction
);
314 WARN_ON(cur_trans
->num_writers
< 1);
315 cur_trans
->num_writers
--;
317 if (waitqueue_active(&cur_trans
->writer_wait
))
318 wake_up(&cur_trans
->writer_wait
);
319 put_transaction(cur_trans
);
320 mutex_unlock(&info
->trans_mutex
);
321 memset(trans
, 0, sizeof(*trans
));
322 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
327 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
328 struct btrfs_root
*root
)
330 return __btrfs_end_transaction(trans
, root
, 0);
333 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
334 struct btrfs_root
*root
)
336 return __btrfs_end_transaction(trans
, root
, 1);
340 * when btree blocks are allocated, they have some corresponding bits set for
341 * them in one of two extent_io trees. This is used to make sure all of
342 * those extents are on disk for transaction or log commit
344 int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
345 struct extent_io_tree
*dirty_pages
)
351 struct inode
*btree_inode
= root
->fs_info
->btree_inode
;
357 ret
= find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
361 while (start
<= end
) {
364 index
= start
>> PAGE_CACHE_SHIFT
;
365 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
366 page
= find_get_page(btree_inode
->i_mapping
, index
);
370 btree_lock_page_hook(page
);
371 if (!page
->mapping
) {
373 page_cache_release(page
);
377 if (PageWriteback(page
)) {
379 wait_on_page_writeback(page
);
382 page_cache_release(page
);
386 err
= write_one_page(page
, 0);
389 page_cache_release(page
);
393 ret
= find_first_extent_bit(dirty_pages
, 0, &start
, &end
,
398 clear_extent_dirty(dirty_pages
, start
, end
, GFP_NOFS
);
399 while (start
<= end
) {
400 index
= start
>> PAGE_CACHE_SHIFT
;
401 start
= (u64
)(index
+ 1) << PAGE_CACHE_SHIFT
;
402 page
= find_get_page(btree_inode
->i_mapping
, index
);
405 if (PageDirty(page
)) {
406 btree_lock_page_hook(page
);
407 wait_on_page_writeback(page
);
408 err
= write_one_page(page
, 0);
412 wait_on_page_writeback(page
);
413 page_cache_release(page
);
422 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
423 struct btrfs_root
*root
)
425 if (!trans
|| !trans
->transaction
) {
426 struct inode
*btree_inode
;
427 btree_inode
= root
->fs_info
->btree_inode
;
428 return filemap_write_and_wait(btree_inode
->i_mapping
);
430 return btrfs_write_and_wait_marked_extents(root
,
431 &trans
->transaction
->dirty_pages
);
435 * this is used to update the root pointer in the tree of tree roots.
437 * But, in the case of the extent allocation tree, updating the root
438 * pointer may allocate blocks which may change the root of the extent
441 * So, this loops and repeats and makes sure the cowonly root didn't
442 * change while the root pointer was being updated in the metadata.
444 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
445 struct btrfs_root
*root
)
449 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
451 btrfs_write_dirty_block_groups(trans
, root
);
454 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
455 if (old_root_bytenr
== root
->node
->start
)
458 btrfs_set_root_node(&root
->root_item
, root
->node
);
459 ret
= btrfs_update_root(trans
, tree_root
,
464 ret
= btrfs_write_dirty_block_groups(trans
, root
);
468 if (root
!= root
->fs_info
->extent_root
)
469 switch_commit_root(root
);
475 * update all the cowonly tree roots on disk
477 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
478 struct btrfs_root
*root
)
480 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
481 struct list_head
*next
;
482 struct extent_buffer
*eb
;
485 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
488 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
489 btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
, 0, &eb
);
490 btrfs_tree_unlock(eb
);
491 free_extent_buffer(eb
);
493 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
496 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
497 next
= fs_info
->dirty_cowonly_roots
.next
;
499 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
501 update_cowonly_root(trans
, root
);
504 down_write(&fs_info
->extent_commit_sem
);
505 switch_commit_root(fs_info
->extent_root
);
506 up_write(&fs_info
->extent_commit_sem
);
512 * dead roots are old snapshots that need to be deleted. This allocates
513 * a dirty root struct and adds it into the list of dead roots that need to
516 int btrfs_add_dead_root(struct btrfs_root
*root
)
518 mutex_lock(&root
->fs_info
->trans_mutex
);
519 list_add(&root
->root_list
, &root
->fs_info
->dead_roots
);
520 mutex_unlock(&root
->fs_info
->trans_mutex
);
525 * update all the cowonly tree roots on disk
527 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
528 struct btrfs_root
*root
)
530 struct btrfs_root
*gang
[8];
531 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
537 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
540 BTRFS_ROOT_TRANS_TAG
);
543 for (i
= 0; i
< ret
; i
++) {
545 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
546 (unsigned long)root
->root_key
.objectid
,
547 BTRFS_ROOT_TRANS_TAG
);
549 btrfs_free_log(trans
, root
);
550 btrfs_update_reloc_root(trans
, root
);
552 if (root
->commit_root
!= root
->node
) {
553 switch_commit_root(root
);
554 btrfs_set_root_node(&root
->root_item
,
558 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
569 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
570 * otherwise every leaf in the btree is read and defragged.
572 int btrfs_defrag_root(struct btrfs_root
*root
, int cacheonly
)
574 struct btrfs_fs_info
*info
= root
->fs_info
;
576 struct btrfs_trans_handle
*trans
;
580 if (root
->defrag_running
)
582 trans
= btrfs_start_transaction(root
, 1);
584 root
->defrag_running
= 1;
585 ret
= btrfs_defrag_leaves(trans
, root
, cacheonly
);
586 nr
= trans
->blocks_used
;
587 btrfs_end_transaction(trans
, root
);
588 btrfs_btree_balance_dirty(info
->tree_root
, nr
);
591 trans
= btrfs_start_transaction(root
, 1);
592 if (root
->fs_info
->closing
|| ret
!= -EAGAIN
)
595 root
->defrag_running
= 0;
597 btrfs_end_transaction(trans
, root
);
603 * when dropping snapshots, we generate a ton of delayed refs, and it makes
604 * sense not to join the transaction while it is trying to flush the current
605 * queue of delayed refs out.
607 * This is used by the drop snapshot code only
609 static noinline
int wait_transaction_pre_flush(struct btrfs_fs_info
*info
)
613 mutex_lock(&info
->trans_mutex
);
614 while (info
->running_transaction
&&
615 info
->running_transaction
->delayed_refs
.flushing
) {
616 prepare_to_wait(&info
->transaction_wait
, &wait
,
617 TASK_UNINTERRUPTIBLE
);
618 mutex_unlock(&info
->trans_mutex
);
622 mutex_lock(&info
->trans_mutex
);
623 finish_wait(&info
->transaction_wait
, &wait
);
625 mutex_unlock(&info
->trans_mutex
);
630 * Given a list of roots that need to be deleted, call btrfs_drop_snapshot on
633 int btrfs_drop_dead_root(struct btrfs_root
*root
)
635 struct btrfs_trans_handle
*trans
;
636 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
642 * we don't want to jump in and create a bunch of
643 * delayed refs if the transaction is starting to close
645 wait_transaction_pre_flush(tree_root
->fs_info
);
646 trans
= btrfs_start_transaction(tree_root
, 1);
649 * we've joined a transaction, make sure it isn't
652 if (trans
->transaction
->delayed_refs
.flushing
) {
653 btrfs_end_transaction(trans
, tree_root
);
657 ret
= btrfs_drop_snapshot(trans
, root
);
661 ret
= btrfs_update_root(trans
, tree_root
,
667 nr
= trans
->blocks_used
;
668 ret
= btrfs_end_transaction(trans
, tree_root
);
671 btrfs_btree_balance_dirty(tree_root
, nr
);
676 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
679 nr
= trans
->blocks_used
;
680 ret
= btrfs_end_transaction(trans
, tree_root
);
683 free_extent_buffer(root
->node
);
684 free_extent_buffer(root
->commit_root
);
687 btrfs_btree_balance_dirty(tree_root
, nr
);
693 * new snapshots need to be created at a very specific time in the
694 * transaction commit. This does the actual creation
696 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
697 struct btrfs_fs_info
*fs_info
,
698 struct btrfs_pending_snapshot
*pending
)
700 struct btrfs_key key
;
701 struct btrfs_root_item
*new_root_item
;
702 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
703 struct btrfs_root
*root
= pending
->root
;
704 struct extent_buffer
*tmp
;
705 struct extent_buffer
*old
;
709 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
710 if (!new_root_item
) {
714 ret
= btrfs_find_free_objectid(trans
, tree_root
, 0, &objectid
);
718 record_root_in_trans(trans
, root
);
719 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
720 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
722 key
.objectid
= objectid
;
724 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
726 old
= btrfs_lock_root_node(root
);
727 btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
728 btrfs_set_lock_blocking(old
);
730 btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
731 btrfs_tree_unlock(old
);
732 free_extent_buffer(old
);
734 btrfs_set_root_node(new_root_item
, tmp
);
735 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
737 btrfs_tree_unlock(tmp
);
738 free_extent_buffer(tmp
);
742 key
.offset
= (u64
)-1;
743 memcpy(&pending
->root_key
, &key
, sizeof(key
));
745 kfree(new_root_item
);
749 static noinline
int finish_pending_snapshot(struct btrfs_fs_info
*fs_info
,
750 struct btrfs_pending_snapshot
*pending
)
755 struct btrfs_trans_handle
*trans
;
756 struct inode
*parent_inode
;
758 struct btrfs_root
*parent_root
;
760 parent_inode
= pending
->dentry
->d_parent
->d_inode
;
761 parent_root
= BTRFS_I(parent_inode
)->root
;
762 trans
= btrfs_join_transaction(parent_root
, 1);
765 * insert the directory item
767 namelen
= strlen(pending
->name
);
768 ret
= btrfs_set_inode_index(parent_inode
, &index
);
769 ret
= btrfs_insert_dir_item(trans
, parent_root
,
770 pending
->name
, namelen
,
772 &pending
->root_key
, BTRFS_FT_DIR
, index
);
777 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+ namelen
* 2);
778 ret
= btrfs_update_inode(trans
, parent_root
, parent_inode
);
781 /* add the backref first */
782 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
783 pending
->root_key
.objectid
,
784 BTRFS_ROOT_BACKREF_KEY
,
785 parent_root
->root_key
.objectid
,
786 parent_inode
->i_ino
, index
, pending
->name
,
791 /* now add the forward ref */
792 ret
= btrfs_add_root_ref(trans
, parent_root
->fs_info
->tree_root
,
793 parent_root
->root_key
.objectid
,
795 pending
->root_key
.objectid
,
796 parent_inode
->i_ino
, index
, pending
->name
,
799 inode
= btrfs_lookup_dentry(parent_inode
, pending
->dentry
);
800 d_instantiate(pending
->dentry
, inode
);
802 btrfs_end_transaction(trans
, fs_info
->fs_root
);
807 * create all the snapshots we've scheduled for creation
809 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
810 struct btrfs_fs_info
*fs_info
)
812 struct btrfs_pending_snapshot
*pending
;
813 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
816 list_for_each_entry(pending
, head
, list
) {
817 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
823 static noinline
int finish_pending_snapshots(struct btrfs_trans_handle
*trans
,
824 struct btrfs_fs_info
*fs_info
)
826 struct btrfs_pending_snapshot
*pending
;
827 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
830 while (!list_empty(head
)) {
831 pending
= list_entry(head
->next
,
832 struct btrfs_pending_snapshot
, list
);
833 ret
= finish_pending_snapshot(fs_info
, pending
);
835 list_del(&pending
->list
);
836 kfree(pending
->name
);
842 static void update_super_roots(struct btrfs_root
*root
)
844 struct btrfs_root_item
*root_item
;
845 struct btrfs_super_block
*super
;
847 super
= &root
->fs_info
->super_copy
;
849 root_item
= &root
->fs_info
->chunk_root
->root_item
;
850 super
->chunk_root
= root_item
->bytenr
;
851 super
->chunk_root_generation
= root_item
->generation
;
852 super
->chunk_root_level
= root_item
->level
;
854 root_item
= &root
->fs_info
->tree_root
->root_item
;
855 super
->root
= root_item
->bytenr
;
856 super
->generation
= root_item
->generation
;
857 super
->root_level
= root_item
->level
;
860 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
863 spin_lock(&info
->new_trans_lock
);
864 if (info
->running_transaction
)
865 ret
= info
->running_transaction
->in_commit
;
866 spin_unlock(&info
->new_trans_lock
);
870 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
871 struct btrfs_root
*root
)
873 unsigned long joined
= 0;
874 unsigned long timeout
= 1;
875 struct btrfs_transaction
*cur_trans
;
876 struct btrfs_transaction
*prev_trans
= NULL
;
877 struct extent_io_tree
*pinned_copy
;
881 unsigned long now
= get_seconds();
882 int flush_on_commit
= btrfs_test_opt(root
, FLUSHONCOMMIT
);
884 btrfs_run_ordered_operations(root
, 0);
886 /* make a pass through all the delayed refs we have so far
887 * any runnings procs may add more while we are here
889 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
892 cur_trans
= trans
->transaction
;
894 * set the flushing flag so procs in this transaction have to
895 * start sending their work down.
897 cur_trans
->delayed_refs
.flushing
= 1;
899 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
902 mutex_lock(&root
->fs_info
->trans_mutex
);
903 if (cur_trans
->in_commit
) {
904 cur_trans
->use_count
++;
905 mutex_unlock(&root
->fs_info
->trans_mutex
);
906 btrfs_end_transaction(trans
, root
);
908 ret
= wait_for_commit(root
, cur_trans
);
911 mutex_lock(&root
->fs_info
->trans_mutex
);
912 put_transaction(cur_trans
);
913 mutex_unlock(&root
->fs_info
->trans_mutex
);
918 pinned_copy
= kmalloc(sizeof(*pinned_copy
), GFP_NOFS
);
922 extent_io_tree_init(pinned_copy
,
923 root
->fs_info
->btree_inode
->i_mapping
, GFP_NOFS
);
925 trans
->transaction
->in_commit
= 1;
926 trans
->transaction
->blocked
= 1;
927 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
928 prev_trans
= list_entry(cur_trans
->list
.prev
,
929 struct btrfs_transaction
, list
);
930 if (!prev_trans
->commit_done
) {
931 prev_trans
->use_count
++;
932 mutex_unlock(&root
->fs_info
->trans_mutex
);
934 wait_for_commit(root
, prev_trans
);
936 mutex_lock(&root
->fs_info
->trans_mutex
);
937 put_transaction(prev_trans
);
941 if (now
< cur_trans
->start_time
|| now
- cur_trans
->start_time
< 1)
945 int snap_pending
= 0;
946 joined
= cur_trans
->num_joined
;
947 if (!list_empty(&trans
->transaction
->pending_snapshots
))
950 WARN_ON(cur_trans
!= trans
->transaction
);
951 prepare_to_wait(&cur_trans
->writer_wait
, &wait
,
952 TASK_UNINTERRUPTIBLE
);
954 if (cur_trans
->num_writers
> 1)
955 timeout
= MAX_SCHEDULE_TIMEOUT
;
956 else if (should_grow
)
959 mutex_unlock(&root
->fs_info
->trans_mutex
);
961 if (flush_on_commit
) {
962 btrfs_start_delalloc_inodes(root
);
963 ret
= btrfs_wait_ordered_extents(root
, 0);
965 } else if (snap_pending
) {
966 ret
= btrfs_wait_ordered_extents(root
, 1);
971 * rename don't use btrfs_join_transaction, so, once we
972 * set the transaction to blocked above, we aren't going
973 * to get any new ordered operations. We can safely run
974 * it here and no for sure that nothing new will be added
977 btrfs_run_ordered_operations(root
, 1);
980 if (cur_trans
->num_writers
> 1 || should_grow
)
981 schedule_timeout(timeout
);
983 mutex_lock(&root
->fs_info
->trans_mutex
);
984 finish_wait(&cur_trans
->writer_wait
, &wait
);
985 } while (cur_trans
->num_writers
> 1 ||
986 (should_grow
&& cur_trans
->num_joined
!= joined
));
988 ret
= create_pending_snapshots(trans
, root
->fs_info
);
991 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
994 WARN_ON(cur_trans
!= trans
->transaction
);
996 /* btrfs_commit_tree_roots is responsible for getting the
997 * various roots consistent with each other. Every pointer
998 * in the tree of tree roots has to point to the most up to date
999 * root for every subvolume and other tree. So, we have to keep
1000 * the tree logging code from jumping in and changing any
1003 * At this point in the commit, there can't be any tree-log
1004 * writers, but a little lower down we drop the trans mutex
1005 * and let new people in. By holding the tree_log_mutex
1006 * from now until after the super is written, we avoid races
1007 * with the tree-log code.
1009 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1011 ret
= commit_fs_roots(trans
, root
);
1014 /* commit_fs_roots gets rid of all the tree log roots, it is now
1015 * safe to free the root of tree log roots
1017 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1019 ret
= commit_cowonly_roots(trans
, root
);
1022 cur_trans
= root
->fs_info
->running_transaction
;
1023 spin_lock(&root
->fs_info
->new_trans_lock
);
1024 root
->fs_info
->running_transaction
= NULL
;
1025 spin_unlock(&root
->fs_info
->new_trans_lock
);
1027 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1028 root
->fs_info
->tree_root
->node
);
1029 switch_commit_root(root
->fs_info
->tree_root
);
1031 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1032 root
->fs_info
->chunk_root
->node
);
1033 switch_commit_root(root
->fs_info
->chunk_root
);
1035 update_super_roots(root
);
1037 if (!root
->fs_info
->log_root_recovering
) {
1038 btrfs_set_super_log_root(&root
->fs_info
->super_copy
, 0);
1039 btrfs_set_super_log_root_level(&root
->fs_info
->super_copy
, 0);
1042 memcpy(&root
->fs_info
->super_for_commit
, &root
->fs_info
->super_copy
,
1043 sizeof(root
->fs_info
->super_copy
));
1045 btrfs_copy_pinned(root
, pinned_copy
);
1047 trans
->transaction
->blocked
= 0;
1049 wake_up(&root
->fs_info
->transaction_wait
);
1051 mutex_unlock(&root
->fs_info
->trans_mutex
);
1052 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1054 write_ctree_super(trans
, root
, 0);
1057 * the super is written, we can safely allow the tree-loggers
1058 * to go about their business
1060 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1062 btrfs_finish_extent_commit(trans
, root
, pinned_copy
);
1065 /* do the directory inserts of any pending snapshot creations */
1066 finish_pending_snapshots(trans
, root
->fs_info
);
1068 mutex_lock(&root
->fs_info
->trans_mutex
);
1070 cur_trans
->commit_done
= 1;
1072 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1074 wake_up(&cur_trans
->commit_wait
);
1076 put_transaction(cur_trans
);
1077 put_transaction(cur_trans
);
1079 mutex_unlock(&root
->fs_info
->trans_mutex
);
1081 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1086 * interface function to delete all the snapshots we have scheduled for deletion
1088 int btrfs_clean_old_snapshots(struct btrfs_root
*root
)
1091 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1093 mutex_lock(&fs_info
->trans_mutex
);
1094 list_splice_init(&fs_info
->dead_roots
, &list
);
1095 mutex_unlock(&fs_info
->trans_mutex
);
1097 while (!list_empty(&list
)) {
1098 root
= list_entry(list
.next
, struct btrfs_root
, root_list
);
1099 list_del_init(&root
->root_list
);
1100 btrfs_drop_snapshot(root
, 0);