Remove support for reparenting
[vlc/asuraparaju-public.git] / src / misc / mtime.c
blobb85c7ef0e3cedca38b14d43142615b18a97f1fa4
1 /*****************************************************************************
2 * mtime.c: high resolution time management functions
3 * Functions are prototyped in vlc_mtime.h.
4 *****************************************************************************
5 * Copyright (C) 1998-2007 the VideoLAN team
6 * Copyright © 2006-2007 Rémi Denis-Courmont
7 * $Id$
9 * Authors: Vincent Seguin <seguin@via.ecp.fr>
10 * Rémi Denis-Courmont <rem$videolan,org>
11 * Gisle Vanem
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301, USA.
26 *****************************************************************************/
28 /*****************************************************************************
29 * Preamble
30 *****************************************************************************/
32 #ifdef HAVE_CONFIG_H
33 # include "config.h"
34 #endif
36 #include <vlc_common.h>
38 #include <time.h> /* clock_gettime(), clock_nanosleep() */
39 #include <assert.h>
40 #include <errno.h>
42 #ifdef HAVE_UNISTD_H
43 # include <unistd.h> /* select() */
44 #endif
46 #ifdef HAVE_KERNEL_OS_H
47 # include <kernel/OS.h>
48 #endif
50 #if defined( WIN32 ) || defined( UNDER_CE )
51 # include <windows.h>
52 # include <mmsystem.h>
53 #endif
55 #if defined(HAVE_SYS_TIME_H)
56 # include <sys/time.h>
57 #endif
59 #if defined(__APPLE__) && !defined(__powerpc__) && !defined(__ppc__) && !defined(__ppc64__)
60 #define USE_APPLE_MACH 1
61 # include <mach/mach.h>
62 # include <mach/mach_time.h>
63 #endif
65 #if !defined(HAVE_STRUCT_TIMESPEC)
66 struct timespec
68 time_t tv_sec;
69 int32_t tv_nsec;
71 #endif
73 #if defined(HAVE_NANOSLEEP) && !defined(HAVE_DECL_NANOSLEEP)
74 int nanosleep(struct timespec *, struct timespec *);
75 #endif
77 #if !defined (_POSIX_CLOCK_SELECTION)
78 # define _POSIX_CLOCK_SELECTION (-1)
79 #endif
81 # if (_POSIX_CLOCK_SELECTION < 0)
83 * We cannot use the monotonic clock if clock selection is not available,
84 * as it would screw vlc_cond_timedwait() completely. Instead, we have to
85 * stick to the realtime clock. Nevermind it screws everything up when ntpdate
86 * warps the wall clock.
88 # undef CLOCK_MONOTONIC
89 # define CLOCK_MONOTONIC CLOCK_REALTIME
90 #elif !defined (HAVE_CLOCK_NANOSLEEP)
91 /* Clock selection without clock in the first place, I don't think so. */
92 # error We have quite a situation here! Fix me if it ever happens.
93 #endif
95 /**
96 * Return a date in a readable format
98 * This function converts a mtime date into a string.
99 * psz_buffer should be a buffer long enough to store the formatted
100 * date.
101 * \param date to be converted
102 * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters
103 * \return psz_buffer is returned so this can be used as printf parameter.
105 char *mstrtime( char *psz_buffer, mtime_t date )
107 static const mtime_t ll1000 = 1000, ll60 = 60, ll24 = 24;
109 snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%02d:%02d:%02d-%03d.%03d",
110 (int) (date / (ll1000 * ll1000 * ll60 * ll60) % ll24),
111 (int) (date / (ll1000 * ll1000 * ll60) % ll60),
112 (int) (date / (ll1000 * ll1000) % ll60),
113 (int) (date / ll1000 % ll1000),
114 (int) (date % ll1000) );
115 return( psz_buffer );
119 * Convert seconds to a time in the format h:mm:ss.
121 * This function is provided for any interface function which need to print a
122 * time string in the format h:mm:ss
123 * date.
124 * \param secs the date to be converted
125 * \param psz_buffer should be a buffer at least MSTRTIME_MAX_SIZE characters
126 * \return psz_buffer is returned so this can be used as printf parameter.
128 char *secstotimestr( char *psz_buffer, int32_t i_seconds )
130 if( unlikely(i_seconds < 0) )
132 secstotimestr( psz_buffer + 1, -i_seconds );
133 *psz_buffer = '-';
134 return psz_buffer;
137 div_t d;
139 d = div( i_seconds, 60 );
140 i_seconds = d.rem;
141 d = div( d.quot, 60 );
143 if( d.quot )
144 snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%u:%02u:%02u",
145 d.quot, d.rem, i_seconds );
146 else
147 snprintf( psz_buffer, MSTRTIME_MAX_SIZE, "%02u:%02u",
148 d.rem, i_seconds );
149 return psz_buffer;
152 #if defined (HAVE_CLOCK_NANOSLEEP)
153 static unsigned prec = 0;
155 static void mprec_once( void )
157 struct timespec ts;
158 if( clock_getres( CLOCK_MONOTONIC, &ts ))
159 clock_getres( CLOCK_REALTIME, &ts );
161 prec = ts.tv_nsec / 1000;
163 #endif
166 * Return a value that is no bigger than the clock precision
167 * (possibly zero).
169 static inline unsigned mprec( void )
171 #if defined (HAVE_CLOCK_NANOSLEEP)
172 static pthread_once_t once = PTHREAD_ONCE_INIT;
173 pthread_once( &once, mprec_once );
174 return prec;
175 #else
176 return 0;
177 #endif
180 #ifdef USE_APPLE_MACH
181 static mach_timebase_info_data_t mtime_timebase_info;
182 static pthread_once_t mtime_timebase_info_once = PTHREAD_ONCE_INIT;
183 static void mtime_init_timebase(void)
185 mach_timebase_info(&mtime_timebase_info);
187 #endif
190 * Return high precision date
192 * Use a 1 MHz clock when possible, or 1 kHz
194 * Beware ! It doesn't reflect the actual date (since epoch), but can be the machine's uptime or anything (when monotonic clock is used)
196 mtime_t mdate( void )
198 mtime_t res;
200 #if defined (HAVE_CLOCK_NANOSLEEP)
201 struct timespec ts;
203 /* Try to use POSIX monotonic clock if available */
204 if( clock_gettime( CLOCK_MONOTONIC, &ts ) == EINVAL )
205 /* Run-time fallback to real-time clock (always available) */
206 (void)clock_gettime( CLOCK_REALTIME, &ts );
208 res = ((mtime_t)ts.tv_sec * (mtime_t)1000000)
209 + (mtime_t)(ts.tv_nsec / 1000);
211 #elif defined( HAVE_KERNEL_OS_H )
212 res = real_time_clock_usecs();
214 #elif defined( USE_APPLE_MACH )
215 pthread_once(&mtime_timebase_info_once, mtime_init_timebase);
216 uint64_t date = mach_absolute_time();
218 /* Convert to nanoseconds */
219 date *= mtime_timebase_info.numer;
220 date /= mtime_timebase_info.denom;
222 /* Convert to microseconds */
223 res = date / 1000;
224 #elif defined( WIN32 ) || defined( UNDER_CE )
225 /* We don't need the real date, just the value of a high precision timer */
226 static mtime_t freq = INT64_C(-1);
228 if( freq == INT64_C(-1) )
230 /* Extract from the Tcl source code:
231 * (http://www.cs.man.ac.uk/fellowsd-bin/TIP/7.html)
233 * Some hardware abstraction layers use the CPU clock
234 * in place of the real-time clock as a performance counter
235 * reference. This results in:
236 * - inconsistent results among the processors on
237 * multi-processor systems.
238 * - unpredictable changes in performance counter frequency
239 * on "gearshift" processors such as Transmeta and
240 * SpeedStep.
241 * There seems to be no way to test whether the performance
242 * counter is reliable, but a useful heuristic is that
243 * if its frequency is 1.193182 MHz or 3.579545 MHz, it's
244 * derived from a colorburst crystal and is therefore
245 * the RTC rather than the TSC. If it's anything else, we
246 * presume that the performance counter is unreliable.
248 LARGE_INTEGER buf;
250 freq = ( QueryPerformanceFrequency( &buf ) &&
251 (buf.QuadPart == INT64_C(1193182) || buf.QuadPart == INT64_C(3579545) ) )
252 ? buf.QuadPart : 0;
254 #if defined( WIN32 )
255 /* on windows 2000, XP and Vista detect if there are two
256 cores there - that makes QueryPerformanceFrequency in
257 any case not trustable?
258 (may also be true, for single cores with adaptive
259 CPU frequency and active power management?)
261 HINSTANCE h_Kernel32 = LoadLibrary(_T("kernel32.dll"));
262 if(h_Kernel32)
264 void WINAPI (*pf_GetSystemInfo)(LPSYSTEM_INFO);
265 pf_GetSystemInfo = (void WINAPI (*)(LPSYSTEM_INFO))
266 GetProcAddress(h_Kernel32, _T("GetSystemInfo"));
267 if(pf_GetSystemInfo)
269 SYSTEM_INFO system_info;
270 pf_GetSystemInfo(&system_info);
271 if(system_info.dwNumberOfProcessors > 1)
272 freq = 0;
274 FreeLibrary(h_Kernel32);
276 #endif
279 if( freq != 0 )
281 LARGE_INTEGER counter;
282 QueryPerformanceCounter (&counter);
284 /* Convert to from (1/freq) to microsecond resolution */
285 /* We need to split the division to avoid 63-bits overflow */
286 lldiv_t d = lldiv (counter.QuadPart, freq);
288 res = (d.quot * 1000000) + ((d.rem * 1000000) / freq);
290 else
292 /* Fallback on timeGetTime() which has a millisecond resolution
293 * (actually, best case is about 5 ms resolution)
294 * timeGetTime() only returns a DWORD thus will wrap after
295 * about 49.7 days so we try to detect the wrapping. */
297 static CRITICAL_SECTION date_lock;
298 static mtime_t i_previous_time = INT64_C(-1);
299 static int i_wrap_counts = -1;
301 if( i_wrap_counts == -1 )
303 /* Initialization */
304 #if defined( WIN32 )
305 i_previous_time = INT64_C(1000) * timeGetTime();
306 #else
307 i_previous_time = INT64_C(1000) * GetTickCount();
308 #endif
309 InitializeCriticalSection( &date_lock );
310 i_wrap_counts = 0;
313 EnterCriticalSection( &date_lock );
314 #if defined( WIN32 )
315 res = INT64_C(1000) *
316 (i_wrap_counts * INT64_C(0x100000000) + timeGetTime());
317 #else
318 res = INT64_C(1000) *
319 (i_wrap_counts * INT64_C(0x100000000) + GetTickCount());
320 #endif
321 if( i_previous_time > res )
323 /* Counter wrapped */
324 i_wrap_counts++;
325 res += INT64_C(0x100000000) * 1000;
327 i_previous_time = res;
328 LeaveCriticalSection( &date_lock );
330 #elif defined(USE_APPLE_MACH)
331 /* The version that should be used, if it was cancelable */
332 pthread_once(&mtime_timebase_info_once, mtime_init_timebase);
333 uint64_t mach_time = date * 1000 * mtime_timebase_info.denom / mtime_timebase_info.numer;
334 mach_wait_until(mach_time);
336 #else
337 struct timeval tv_date;
339 /* gettimeofday() cannot fail given &tv_date is a valid address */
340 (void)gettimeofday( &tv_date, NULL );
341 res = (mtime_t) tv_date.tv_sec * 1000000 + (mtime_t) tv_date.tv_usec;
342 #endif
344 return res;
347 #undef mwait
349 * Wait for a date
351 * This function uses select() and an system date function to wake up at a
352 * precise date. It should be used for process synchronization. If current date
353 * is posterior to wished date, the function returns immediately.
354 * \param date The date to wake up at
356 void mwait( mtime_t date )
358 /* If the deadline is already elapsed, or within the clock precision,
359 * do not even bother the system timer. */
360 date -= mprec();
362 #if defined (HAVE_CLOCK_NANOSLEEP)
363 lldiv_t d = lldiv( date, 1000000 );
364 struct timespec ts = { d.quot, d.rem * 1000 };
366 int val;
367 while( ( val = clock_nanosleep( CLOCK_MONOTONIC, TIMER_ABSTIME, &ts,
368 NULL ) ) == EINTR );
369 if( val == EINVAL )
371 ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000;
372 while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, NULL ) == EINTR );
375 #elif defined (WIN32)
376 mtime_t i_total;
378 while( (i_total = (date - mdate())) > 0 )
380 const mtime_t i_sleep = i_total / 1000;
381 DWORD i_delay = (i_sleep > 0x7fffffff) ? 0x7fffffff : i_sleep;
382 vlc_testcancel();
383 SleepEx( i_delay, TRUE );
385 vlc_testcancel();
387 #else
388 mtime_t delay = date - mdate();
389 if( delay > 0 )
390 msleep( delay );
392 #endif
396 #include "libvlc.h" /* vlc_backtrace() */
397 #undef msleep
400 * Portable usleep(). Cancellation point.
402 * \param delay the amount of time to sleep
404 void msleep( mtime_t delay )
406 #if defined( HAVE_CLOCK_NANOSLEEP )
407 lldiv_t d = lldiv( delay, 1000000 );
408 struct timespec ts = { d.quot, d.rem * 1000 };
410 int val;
411 while( ( val = clock_nanosleep( CLOCK_MONOTONIC, 0, &ts, &ts ) ) == EINTR );
412 if( val == EINVAL )
414 ts.tv_sec = d.quot; ts.tv_nsec = d.rem * 1000;
415 while( clock_nanosleep( CLOCK_REALTIME, 0, &ts, &ts ) == EINTR );
418 #elif defined( HAVE_KERNEL_OS_H )
419 snooze( delay );
421 #elif defined( WIN32 ) || defined( UNDER_CE )
422 mwait (mdate () + delay);
424 #elif defined( HAVE_NANOSLEEP )
425 struct timespec ts_delay;
427 ts_delay.tv_sec = delay / 1000000;
428 ts_delay.tv_nsec = (delay % 1000000) * 1000;
430 while( nanosleep( &ts_delay, &ts_delay ) && ( errno == EINTR ) );
432 #elif defined (USE_APPLE_MACH)
433 /* The version that should be used, if it was cancelable */
434 pthread_once(&mtime_timebase_info_once, mtime_init_timebase);
435 uint64_t mach_time = delay * 1000 * mtime_timebase_info.denom / mtime_timebase_info.numer;
436 mach_wait_until(mach_time + mach_absolute_time());
438 #else
439 struct timeval tv_delay;
441 tv_delay.tv_sec = delay / 1000000;
442 tv_delay.tv_usec = delay % 1000000;
444 /* If a signal is caught, you are screwed. Update your OS to nanosleep()
445 * or clock_nanosleep() if this is an issue. */
446 select( 0, NULL, NULL, NULL, &tv_delay );
447 #endif
451 * Date management (internal and external)
455 * Initialize a date_t.
457 * \param date to initialize
458 * \param divider (sample rate) numerator
459 * \param divider (sample rate) denominator
462 void date_Init( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d )
464 p_date->date = 0;
465 p_date->i_divider_num = i_divider_n;
466 p_date->i_divider_den = i_divider_d;
467 p_date->i_remainder = 0;
471 * Change a date_t.
473 * \param date to change
474 * \param divider (sample rate) numerator
475 * \param divider (sample rate) denominator
478 void date_Change( date_t *p_date, uint32_t i_divider_n, uint32_t i_divider_d )
480 /* change time scale of remainder */
481 p_date->i_remainder = p_date->i_remainder * i_divider_n / p_date->i_divider_num;
482 p_date->i_divider_num = i_divider_n;
483 p_date->i_divider_den = i_divider_d;
487 * Set the date value of a date_t.
489 * \param date to set
490 * \param date value
492 void date_Set( date_t *p_date, mtime_t i_new_date )
494 p_date->date = i_new_date;
495 p_date->i_remainder = 0;
499 * Get the date of a date_t
501 * \param date to get
502 * \return date value
504 mtime_t date_Get( const date_t *p_date )
506 return p_date->date;
510 * Move forwards or backwards the date of a date_t.
512 * \param date to move
513 * \param difference value
515 void date_Move( date_t *p_date, mtime_t i_difference )
517 p_date->date += i_difference;
521 * Increment the date and return the result, taking into account
522 * rounding errors.
524 * \param date to increment
525 * \param incrementation in number of samples
526 * \return date value
528 mtime_t date_Increment( date_t *p_date, uint32_t i_nb_samples )
530 mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000 * p_date->i_divider_den;
531 p_date->date += i_dividend / p_date->i_divider_num;
532 p_date->i_remainder += (int)(i_dividend % p_date->i_divider_num);
534 if( p_date->i_remainder >= p_date->i_divider_num )
536 /* This is Bresenham algorithm. */
537 assert( p_date->i_remainder < 2*p_date->i_divider_num);
538 p_date->date += 1;
539 p_date->i_remainder -= p_date->i_divider_num;
542 return p_date->date;
546 * Decrement the date and return the result, taking into account
547 * rounding errors.
549 * \param date to decrement
550 * \param decrementation in number of samples
551 * \return date value
553 mtime_t date_Decrement( date_t *p_date, uint32_t i_nb_samples )
555 mtime_t i_dividend = (mtime_t)i_nb_samples * 1000000 * p_date->i_divider_den;
556 p_date->date -= i_dividend / p_date->i_divider_num;
557 unsigned i_rem_adjust = i_dividend % p_date->i_divider_num;
559 if( p_date->i_remainder < i_rem_adjust )
561 /* This is Bresenham algorithm. */
562 assert( p_date->i_remainder > -p_date->i_divider_num);
563 p_date->date -= 1;
564 p_date->i_remainder += p_date->i_divider_num;
567 p_date->i_remainder -= i_rem_adjust;
569 return p_date->date;
572 #ifndef HAVE_GETTIMEOFDAY
574 #ifdef WIN32
577 * Number of micro-seconds between the beginning of the Windows epoch
578 * (Jan. 1, 1601) and the Unix epoch (Jan. 1, 1970).
580 * This assumes all Win32 compilers have 64-bit support.
582 #if defined(_MSC_VER) || defined(_MSC_EXTENSIONS) || defined(__WATCOMC__)
583 # define DELTA_EPOCH_IN_USEC 11644473600000000Ui64
584 #else
585 # define DELTA_EPOCH_IN_USEC 11644473600000000ULL
586 #endif
588 static uint64_t filetime_to_unix_epoch (const FILETIME *ft)
590 uint64_t res = (uint64_t) ft->dwHighDateTime << 32;
592 res |= ft->dwLowDateTime;
593 res /= 10; /* from 100 nano-sec periods to usec */
594 res -= DELTA_EPOCH_IN_USEC; /* from Win epoch to Unix epoch */
595 return (res);
598 static int gettimeofday (struct timeval *tv, void *tz )
600 FILETIME ft;
601 uint64_t tim;
603 if (!tv) {
604 return VLC_EGENERIC;
606 GetSystemTimeAsFileTime (&ft);
607 tim = filetime_to_unix_epoch (&ft);
608 tv->tv_sec = (long) (tim / 1000000L);
609 tv->tv_usec = (long) (tim % 1000000L);
610 return (0);
613 #endif
615 #endif
618 * @return NTP 64-bits timestamp in host byte order.
620 uint64_t NTPtime64 (void)
622 struct timespec ts;
623 #if defined (CLOCK_REALTIME)
624 clock_gettime (CLOCK_REALTIME, &ts);
625 #else
627 struct timeval tv;
628 gettimeofday (&tv, NULL);
629 ts.tv_sec = tv.tv_sec;
630 ts.tv_nsec = tv.tv_usec * 1000;
632 #endif
634 /* Convert nanoseconds to 32-bits fraction (232 picosecond units) */
635 uint64_t t = (uint64_t)(ts.tv_nsec) << 32;
636 t /= 1000000000;
639 /* There is 70 years (incl. 17 leap ones) offset to the Unix Epoch.
640 * No leap seconds during that period since they were not invented yet.
642 assert (t < 0x100000000);
643 t |= ((70LL * 365 + 17) * 24 * 60 * 60 + ts.tv_sec) << 32;
644 return t;