Merge branch 'vim' into feat/code-check
[vim_extended.git] / src / hashtab.c
blobe0d3e1a081be91095c758be21ac02d33cb834743
1 /* vi:set ts=8 sts=4 sw=4:
3 * VIM - Vi IMproved by Bram Moolenaar
5 * Do ":help uganda" in Vim to read copying and usage conditions.
6 * Do ":help credits" in Vim to see a list of people who contributed.
7 * See README.txt for an overview of the Vim source code.
8 */
11 * hashtab.c: Handling of a hashtable with Vim-specific properties.
13 * Each item in a hashtable has a NUL terminated string key. A key can appear
14 * only once in the table.
16 * A hash number is computed from the key for quick lookup. When the hashes
17 * of two different keys point to the same entry an algorithm is used to
18 * iterate over other entries in the table until the right one is found.
19 * To make the iteration work removed keys are different from entries where a
20 * key was never present.
22 * The mechanism has been partly based on how Python Dictionaries are
23 * implemented. The algorithm is from Knuth Vol. 3, Sec. 6.4.
25 * The hashtable grows to accommodate more entries when needed. At least 1/3
26 * of the entries is empty to keep the lookup efficient (at the cost of extra
27 * memory).
30 #include "vim.h"
32 #if defined(FEAT_EVAL) || defined(FEAT_SYN_HL) || defined(PROTO)
34 #if 0
35 # define HT_DEBUG /* extra checks for table consistency and statistics */
37 static long hash_count_lookup = 0; /* count number of hashtab lookups */
38 static long hash_count_perturb = 0; /* count number of "misses" */
39 #endif
41 /* Magic value for algorithm that walks through the array. */
42 #define PERTURB_SHIFT 5
44 static int hash_may_resize __ARGS((hashtab_T *ht, int minitems));
46 #if 0 /* currently not used */
48 * Create an empty hash table.
49 * Returns NULL when out of memory.
51 hashtab_T *
52 hash_create()
54 hashtab_T *ht;
56 ht = (hashtab_T *)alloc(sizeof(hashtab_T));
57 if (ht != NULL)
58 hash_init(ht);
59 return ht;
61 #endif
64 * Initialize an empty hash table.
66 void
67 hash_init(ht)
68 hashtab_T *ht;
70 /* This zeroes all "ht_" entries and all the "hi_key" in "ht_smallarray". */
71 vim_memset(ht, 0, sizeof(hashtab_T));
72 ht->ht_array = ht->ht_smallarray;
73 ht->ht_mask = HT_INIT_SIZE - 1;
77 * Free the array of a hash table. Does not free the items it contains!
78 * If "ht" is not freed then you should call hash_init() next!
80 void
81 hash_clear(ht)
82 hashtab_T *ht;
84 if (ht->ht_array != ht->ht_smallarray)
85 vim_free(ht->ht_array);
89 * Free the array of a hash table and all the keys it contains. The keys must
90 * have been allocated. "off" is the offset from the start of the allocate
91 * memory to the location of the key (it's always positive).
93 void
94 hash_clear_all(ht, off)
95 hashtab_T *ht;
96 int off;
98 long todo;
99 hashitem_T *hi;
101 todo = (long)ht->ht_used;
102 for (hi = ht->ht_array; todo > 0; ++hi)
104 if (!HASHITEM_EMPTY(hi))
106 vim_free(hi->hi_key - off);
107 --todo;
110 hash_clear(ht);
114 * Find "key" in hashtable "ht". "key" must not be NULL.
115 * Always returns a pointer to a hashitem. If the item was not found then
116 * HASHITEM_EMPTY() is TRUE. The pointer is then the place where the key
117 * would be added.
118 * WARNING: The returned pointer becomes invalid when the hashtable is changed
119 * (adding, setting or removing an item)!
121 hashitem_T *
122 hash_find(ht, key)
123 hashtab_T *ht;
124 char_u *key;
126 return hash_lookup(ht, key, hash_hash(key));
130 * Like hash_find(), but caller computes "hash".
132 hashitem_T *
133 hash_lookup(ht, key, hash)
134 hashtab_T *ht;
135 char_u *key;
136 hash_T hash;
138 hash_T perturb;
139 hashitem_T *freeitem;
140 hashitem_T *hi;
141 int idx;
143 #ifdef HT_DEBUG
144 ++hash_count_lookup;
145 #endif
148 * Quickly handle the most common situations:
149 * - return if there is no item at all
150 * - skip over a removed item
151 * - return if the item matches
153 idx = (int)(hash & ht->ht_mask);
154 hi = &ht->ht_array[idx];
156 if (hi->hi_key == NULL)
157 return hi;
158 if (hi->hi_key == HI_KEY_REMOVED)
159 freeitem = hi;
160 else if (hi->hi_hash == hash && STRCMP(hi->hi_key, key) == 0)
161 return hi;
162 else
163 freeitem = NULL;
166 * Need to search through the table to find the key. The algorithm
167 * to step through the table starts with large steps, gradually becoming
168 * smaller down to (1/4 table size + 1). This means it goes through all
169 * table entries in the end.
170 * When we run into a NULL key it's clear that the key isn't there.
171 * Return the first available slot found (can be a slot of a removed
172 * item).
174 for (perturb = hash; ; perturb >>= PERTURB_SHIFT)
176 #ifdef HT_DEBUG
177 ++hash_count_perturb; /* count a "miss" for hashtab lookup */
178 #endif
179 idx = (int)((idx << 2) + idx + perturb + 1);
180 hi = &ht->ht_array[idx & ht->ht_mask];
181 if (hi->hi_key == NULL)
182 return freeitem == NULL ? hi : freeitem;
183 if (hi->hi_hash == hash
184 && hi->hi_key != HI_KEY_REMOVED
185 && STRCMP(hi->hi_key, key) == 0)
186 return hi;
187 if (hi->hi_key == HI_KEY_REMOVED && freeitem == NULL)
188 freeitem = hi;
193 * Print the efficiency of hashtable lookups.
194 * Useful when trying different hash algorithms.
195 * Called when exiting.
197 void
198 hash_debug_results()
200 #ifdef HT_DEBUG
201 fprintf(stderr, "\r\n\r\n\r\n\r\n");
202 fprintf(stderr, "Number of hashtable lookups: %ld\r\n", hash_count_lookup);
203 fprintf(stderr, "Number of perturb loops: %ld\r\n", hash_count_perturb);
204 fprintf(stderr, "Percentage of perturb loops: %ld%%\r\n",
205 hash_count_perturb * 100 / hash_count_lookup);
206 #endif
210 * Add item with key "key" to hashtable "ht".
211 * Returns FAIL when out of memory or the key is already present.
214 hash_add(ht, key)
215 hashtab_T *ht;
216 char_u *key;
218 hash_T hash = hash_hash(key);
219 hashitem_T *hi;
221 hi = hash_lookup(ht, key, hash);
222 if (!HASHITEM_EMPTY(hi))
224 EMSG2(_(e_intern2), "hash_add()");
225 return FAIL;
227 return hash_add_item(ht, hi, key, hash);
231 * Add item "hi" with "key" to hashtable "ht". "key" must not be NULL and
232 * "hi" must have been obtained with hash_lookup() and point to an empty item.
233 * "hi" is invalid after this!
234 * Returns OK or FAIL (out of memory).
237 hash_add_item(ht, hi, key, hash)
238 hashtab_T *ht;
239 hashitem_T *hi;
240 char_u *key;
241 hash_T hash;
243 /* If resizing failed before and it fails again we can't add an item. */
244 if (ht->ht_error && hash_may_resize(ht, 0) == FAIL)
245 return FAIL;
247 ++ht->ht_used;
248 if (hi->hi_key == NULL)
249 ++ht->ht_filled;
250 hi->hi_key = key;
251 hi->hi_hash = hash;
253 /* When the space gets low may resize the array. */
254 return hash_may_resize(ht, 0);
257 #if 0 /* not used */
259 * Overwrite hashtable item "hi" with "key". "hi" must point to the item that
260 * is to be overwritten. Thus the number of items in the hashtable doesn't
261 * change.
262 * Although the key must be identical, the pointer may be different, thus it's
263 * set anyway (the key is part of an item with that key).
264 * The caller must take care of freeing the old item.
265 * "hi" is invalid after this!
267 void
268 hash_set(hi, key)
269 hashitem_T *hi;
270 char_u *key;
272 hi->hi_key = key;
274 #endif
277 * Remove item "hi" from hashtable "ht". "hi" must have been obtained with
278 * hash_lookup().
279 * The caller must take care of freeing the item itself.
281 void
282 hash_remove(ht, hi)
283 hashtab_T *ht;
284 hashitem_T *hi;
286 --ht->ht_used;
287 hi->hi_key = HI_KEY_REMOVED;
288 hash_may_resize(ht, 0);
292 * Lock a hashtable: prevent that ht_array changes.
293 * Don't use this when items are to be added!
294 * Must call hash_unlock() later.
296 void
297 hash_lock(ht)
298 hashtab_T *ht;
300 ++ht->ht_locked;
303 #if 0 /* currently not used */
305 * Lock a hashtable at the specified number of entries.
306 * Caller must make sure no more than "size" entries will be added.
307 * Must call hash_unlock() later.
309 void
310 hash_lock_size(ht, size)
311 hashtab_T *ht;
312 int size;
314 (void)hash_may_resize(ht, size);
315 ++ht->ht_locked;
317 #endif
320 * Unlock a hashtable: allow ht_array changes again.
321 * Table will be resized (shrink) when necessary.
322 * This must balance a call to hash_lock().
324 void
325 hash_unlock(ht)
326 hashtab_T *ht;
328 --ht->ht_locked;
329 (void)hash_may_resize(ht, 0);
333 * Shrink a hashtable when there is too much empty space.
334 * Grow a hashtable when there is not enough empty space.
335 * Returns OK or FAIL (out of memory).
337 static int
338 hash_may_resize(ht, minitems)
339 hashtab_T *ht;
340 int minitems; /* minimal number of items */
342 hashitem_T temparray[HT_INIT_SIZE];
343 hashitem_T *oldarray, *newarray;
344 hashitem_T *olditem, *newitem;
345 int newi;
346 int todo;
347 long_u oldsize, newsize;
348 long_u minsize;
349 long_u newmask;
350 hash_T perturb;
352 /* Don't resize a locked table. */
353 if (ht->ht_locked > 0)
354 return OK;
356 #ifdef HT_DEBUG
357 if (ht->ht_used > ht->ht_filled)
358 EMSG("hash_may_resize(): more used than filled");
359 if (ht->ht_filled >= ht->ht_mask + 1)
360 EMSG("hash_may_resize(): table completely filled");
361 #endif
363 if (minitems == 0)
365 /* Return quickly for small tables with at least two NULL items. NULL
366 * items are required for the lookup to decide a key isn't there. */
367 if (ht->ht_filled < HT_INIT_SIZE - 1
368 && ht->ht_array == ht->ht_smallarray)
369 return OK;
372 * Grow or refill the array when it's more than 2/3 full (including
373 * removed items, so that they get cleaned up).
374 * Shrink the array when it's less than 1/5 full. When growing it is
375 * at least 1/4 full (avoids repeated grow-shrink operations)
377 oldsize = ht->ht_mask + 1;
378 if (ht->ht_filled * 3 < oldsize * 2 && ht->ht_used > oldsize / 5)
379 return OK;
381 if (ht->ht_used > 1000)
382 minsize = ht->ht_used * 2; /* it's big, don't make too much room */
383 else
384 minsize = ht->ht_used * 4; /* make plenty of room */
386 else
388 /* Use specified size. */
389 if ((long_u)minitems < ht->ht_used) /* just in case... */
390 minitems = (int)ht->ht_used;
391 minsize = minitems * 3 / 2; /* array is up to 2/3 full */
394 newsize = HT_INIT_SIZE;
395 while (newsize < minsize)
397 newsize <<= 1; /* make sure it's always a power of 2 */
398 if (newsize == 0)
399 return FAIL; /* overflow */
402 if (newsize == HT_INIT_SIZE)
404 /* Use the small array inside the hashdict structure. */
405 newarray = ht->ht_smallarray;
406 if (ht->ht_array == newarray)
408 /* Moving from ht_smallarray to ht_smallarray! Happens when there
409 * are many removed items. Copy the items to be able to clean up
410 * removed items. */
411 mch_memmove(temparray, newarray, sizeof(temparray));
412 oldarray = temparray;
414 else
415 oldarray = ht->ht_array;
417 else
419 /* Allocate an array. */
420 newarray = (hashitem_T *)alloc((unsigned)
421 (sizeof(hashitem_T) * newsize));
422 if (newarray == NULL)
424 /* Out of memory. When there are NULL items still return OK.
425 * Otherwise set ht_error, because lookup may result in a hang if
426 * we add another item. */
427 if (ht->ht_filled < ht->ht_mask)
428 return OK;
429 ht->ht_error = TRUE;
430 return FAIL;
432 oldarray = ht->ht_array;
434 vim_memset(newarray, 0, (size_t)(sizeof(hashitem_T) * newsize));
437 * Move all the items from the old array to the new one, placing them in
438 * the right spot. The new array won't have any removed items, thus this
439 * is also a cleanup action.
441 newmask = newsize - 1;
442 todo = (int)ht->ht_used;
443 for (olditem = oldarray; todo > 0; ++olditem)
444 if (!HASHITEM_EMPTY(olditem))
447 * The algorithm to find the spot to add the item is identical to
448 * the algorithm to find an item in hash_lookup(). But we only
449 * need to search for a NULL key, thus it's simpler.
451 newi = (int)(olditem->hi_hash & newmask);
452 newitem = &newarray[newi];
454 if (newitem->hi_key != NULL)
455 for (perturb = olditem->hi_hash; ; perturb >>= PERTURB_SHIFT)
457 newi = (int)((newi << 2) + newi + perturb + 1);
458 newitem = &newarray[newi & newmask];
459 if (newitem->hi_key == NULL)
460 break;
462 *newitem = *olditem;
463 --todo;
466 if (ht->ht_array != ht->ht_smallarray)
467 vim_free(ht->ht_array);
468 ht->ht_array = newarray;
469 ht->ht_mask = newmask;
470 ht->ht_filled = ht->ht_used;
471 ht->ht_error = FALSE;
473 return OK;
477 * Get the hash number for a key.
478 * If you think you know a better hash function: Compile with HT_DEBUG set and
479 * run a script that uses hashtables a lot. Vim will then print statistics
480 * when exiting. Try that with the current hash algorithm and yours. The
481 * lower the percentage the better.
483 hash_T
484 hash_hash(key)
485 char_u *key;
487 hash_T hash;
488 char_u *p;
490 if ((hash = *key) == 0)
491 return (hash_T)0; /* Empty keys are not allowed, but we don't
492 want to crash if we get one. */
493 p = key + 1;
495 #if 0
496 /* ElfHash algorithm, which is supposed to have an even distribution.
497 * Suggested by Charles Campbell. */
498 hash_T g;
500 while (*p != NUL)
502 hash = (hash << 4) + *p++; /* clear low 4 bits of hash, add char */
503 g = hash & 0xf0000000L; /* g has high 4 bits of hash only */
504 if (g != 0)
505 hash ^= g >> 24; /* xor g's high 4 bits into hash */
507 #else
509 /* A simplistic algorithm that appears to do very well.
510 * Suggested by George Reilly. */
511 while (*p != NUL)
512 hash = hash * 101 + *p++;
513 #endif
515 return hash;
518 #endif