Handle gcc __builtin_strcmp using 128/256 bit vectors with sse4.1, avx/avx2
[valgrind.git] / coregrind / m_gdbserver / valgrind-low-nanomips.c
blobdea345c29ed6cf71e76d6932b32fbffe489b1b1c
1 /* Low level interface to valgrind, for the remote server for GDB integrated
2 in valgrind.
3 Copyright (C) 2012
4 Free Software Foundation, Inc.
6 This file is part of VALGRIND.
7 It has been inspired from a file from gdbserver in gdb 6.6.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
24 #include "server.h"
25 #include "target.h"
26 #include "regdef.h"
27 #include "regcache.h"
29 #include "pub_core_machine.h"
30 #include "pub_core_debuginfo.h"
31 #include "pub_core_threadstate.h"
32 #include "pub_core_transtab.h"
33 #include "pub_core_gdbserver.h"
35 #include "valgrind_low.h"
37 #include "libvex_guest_mips32.h"
39 static struct reg regs[] = {
40 { "r0", 0, 32 },
41 { "r1", 32, 32 },
42 { "r2", 64, 32 },
43 { "r3", 96, 32 },
44 { "r4", 128, 32 },
45 { "r5", 160, 32 },
46 { "r6", 192, 32 },
47 { "r7", 224, 32 },
48 { "r8", 256, 32 },
49 { "r9", 288, 32 },
50 { "r10", 320, 32 },
51 { "r11", 352, 32 },
52 { "r12", 384, 32 },
53 { "r13", 416, 32 },
54 { "r14", 448, 32 },
55 { "r15", 480, 32 },
56 { "r16", 512, 32 },
57 { "r17", 544, 32 },
58 { "r18", 576, 32 },
59 { "r19", 608, 32 },
60 { "r20", 640, 32 },
61 { "r21", 672, 32 },
62 { "r22", 704, 32 },
63 { "r23", 736, 32 },
64 { "r24", 768, 32 },
65 { "r25", 800, 32 },
66 { "r26", 832, 32 },
67 { "r27", 864, 32 },
68 { "r28", 896, 32 },
69 { "r29", 928, 32 },
70 { "r30", 960, 32 },
71 { "r31", 992, 32 },
72 { "status", 1024, 32 },
73 { "badvaddr", 1120, 32 },
74 { "cause", 1152, 32 },
75 { "pc", 1184, 32 },
78 #define num_regs (sizeof (regs) / sizeof (regs[0]))
80 static const char *expedite_regs[] = { "r29", "pc", 0 };
82 static
83 CORE_ADDR get_pc (void)
85 unsigned long pc;
87 collect_register_by_name ("pc", &pc);
89 dlog(1, "stop pc is %p\n", (void *) pc);
90 return pc;
93 static
94 void set_pc (CORE_ADDR newpc)
96 supply_register_by_name ("pc", &newpc);
99 /* These are the fields of 32 bit mips instructions. */
100 #define itype_op(x) (x >> 26)
101 #define itype_rs(x) ((x >> 21) & 0x1f)
102 #define itype_rt(x) ((x >> 16) & 0x1f)
103 #define rtype_funct(x) (x & 0x3f)
105 static inline UInt getUInt(UChar * p) __attribute__((unused));
106 /* Do a endian load of a 32-bit word, regardless of the
107 endianness of the underlying host. */
108 static inline UInt getUInt(UChar * p)
110 UInt w = 0;
111 #if defined (_MIPSEL)
112 w = (w << 8) | p[3];
113 w = (w << 8) | p[2];
114 w = (w << 8) | p[1];
115 w = (w << 8) | p[0];
116 #elif defined (_MIPSEB)
117 w = (w << 8) | p[0];
118 w = (w << 8) | p[1];
119 w = (w << 8) | p[2];
120 w = (w << 8) | p[3];
121 #endif
122 return w;
125 /* store registers in the guest state (gdbserver_to_valgrind)
126 or fetch register from the guest state (valgrind_to_gdbserver). */
127 static
128 void transfer_register (ThreadId tid, int abs_regno, void * buf,
129 transfer_direction dir, int size, Bool *mod)
131 ThreadState* tst = VG_(get_ThreadState)(tid);
132 int set = abs_regno / num_regs;
133 int regno = abs_regno % num_regs;
134 *mod = False;
136 VexGuestMIPS32State* mips1 = (VexGuestMIPS32State*) get_arch (set, tst);
138 switch (regno) {
139 case 0: VG_(transfer) (&mips1->guest_r0, buf, dir, size, mod); break;
140 case 1: VG_(transfer) (&mips1->guest_r1, buf, dir, size, mod); break;
141 case 2: VG_(transfer) (&mips1->guest_r2, buf, dir, size, mod); break;
142 case 3: VG_(transfer) (&mips1->guest_r3, buf, dir, size, mod); break;
143 case 4: VG_(transfer) (&mips1->guest_r4, buf, dir, size, mod); break;
144 case 5: VG_(transfer) (&mips1->guest_r5, buf, dir, size, mod); break;
145 case 6: VG_(transfer) (&mips1->guest_r6, buf, dir, size, mod); break;
146 case 7: VG_(transfer) (&mips1->guest_r7, buf, dir, size, mod); break;
147 case 8: VG_(transfer) (&mips1->guest_r8, buf, dir, size, mod); break;
148 case 9: VG_(transfer) (&mips1->guest_r9, buf, dir, size, mod); break;
149 case 10: VG_(transfer) (&mips1->guest_r10, buf, dir, size, mod); break;
150 case 11: VG_(transfer) (&mips1->guest_r11, buf, dir, size, mod); break;
151 case 12: VG_(transfer) (&mips1->guest_r12, buf, dir, size, mod); break;
152 case 13: VG_(transfer) (&mips1->guest_r13, buf, dir, size, mod); break;
153 case 14: VG_(transfer) (&mips1->guest_r14, buf, dir, size, mod); break;
154 case 15: VG_(transfer) (&mips1->guest_r15, buf, dir, size, mod); break;
155 case 16: VG_(transfer) (&mips1->guest_r16, buf, dir, size, mod); break;
156 case 17: VG_(transfer) (&mips1->guest_r17, buf, dir, size, mod); break;
157 case 18: VG_(transfer) (&mips1->guest_r18, buf, dir, size, mod); break;
158 case 19: VG_(transfer) (&mips1->guest_r19, buf, dir, size, mod); break;
159 case 20: VG_(transfer) (&mips1->guest_r20, buf, dir, size, mod); break;
160 case 21: VG_(transfer) (&mips1->guest_r21, buf, dir, size, mod); break;
161 case 22: VG_(transfer) (&mips1->guest_r22, buf, dir, size, mod); break;
162 case 23: VG_(transfer) (&mips1->guest_r23, buf, dir, size, mod); break;
163 case 24: VG_(transfer) (&mips1->guest_r24, buf, dir, size, mod); break;
164 case 25: VG_(transfer) (&mips1->guest_r25, buf, dir, size, mod); break;
165 case 26: VG_(transfer) (&mips1->guest_r26, buf, dir, size, mod); break;
166 case 27: VG_(transfer) (&mips1->guest_r27, buf, dir, size, mod); break;
167 case 28: VG_(transfer) (&mips1->guest_r28, buf, dir, size, mod); break;
168 case 29: VG_(transfer) (&mips1->guest_r29, buf, dir, size, mod); break;
169 case 30: VG_(transfer) (&mips1->guest_r30, buf, dir, size, mod); break;
170 case 31: VG_(transfer) (&mips1->guest_r31, buf, dir, size, mod); break;
171 case 32: *mod = False; break; // GDBTD???? VEX { "status", 1024, 32 },
172 case 33: VG_(transfer) (&mips1->guest_LO, buf, dir, size, mod); break;
173 case 34: VG_(transfer) (&mips1->guest_HI, buf, dir, size, mod); break;
174 case 35: *mod = False; break; // GDBTD???? VEX { "badvaddr", 1120, 32 },
175 case 36: *mod = False; break; // GDBTD???? VEX { "cause", 1152, 32 },
176 case 37: VG_(transfer) (&mips1->guest_PC, buf, dir, size, mod); break;
177 case 72: *mod = False; break; // GDBTD???? VEX{ "restart", 2304, 32 },
178 default: VG_(printf)("regno: %d\n", regno); vg_assert(0);
182 static
183 const char* target_xml (Bool shadow_mode)
185 if (shadow_mode) {
186 return "mips-linux-valgrind.xml";
187 } else {
188 return "mips-linux.xml";
192 static CORE_ADDR** target_get_dtv (ThreadState *tst)
194 VexGuestMIPS32State* mips32 = (VexGuestMIPS32State*)&tst->arch.vex;
195 // Top of nanoMIPS tcbhead structure is located 0x7000 bytes before the value
196 // of ULR. Dtv is the first of two pointers in tcbhead structure.
197 return (CORE_ADDR**)((CORE_ADDR)mips32->guest_ULR
198 - 0x7000 - 2 * sizeof(CORE_ADDR));
201 static struct valgrind_target_ops low_target = {
202 num_regs,
203 29, //sp = r29, which is register offset 29 in regs
204 regs,
205 transfer_register,
206 get_pc,
207 set_pc,
208 "mips",
209 target_xml,
210 target_get_dtv
213 void nanomips_init_architecture (struct valgrind_target_ops *target)
215 *target = low_target;
216 set_register_cache (regs, num_regs);
217 gdbserver_expedite_regs = expedite_regs;