Update bug status.
[valgrind.git] / memcheck / mc_leakcheck.c
blobc78960c0cbeb2661adffc84e25efeb4f5a6f4207
2 /*--------------------------------------------------------------------*/
3 /*--- The leak checker. mc_leakcheck.c ---*/
4 /*--------------------------------------------------------------------*/
6 /*
7 This file is part of MemCheck, a heavyweight Valgrind tool for
8 detecting memory errors.
10 Copyright (C) 2000-2017 Julian Seward
11 jseward@acm.org
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, see <http://www.gnu.org/licenses/>.
26 The GNU General Public License is contained in the file COPYING.
29 #include "pub_tool_basics.h"
30 #include "pub_tool_vki.h"
31 #include "pub_tool_aspacehl.h"
32 #include "pub_tool_aspacemgr.h"
33 #include "pub_tool_execontext.h"
34 #include "pub_tool_hashtable.h"
35 #include "pub_tool_libcbase.h"
36 #include "pub_tool_libcassert.h"
37 #include "pub_tool_libcprint.h"
38 #include "pub_tool_libcsignal.h"
39 #include "pub_tool_machine.h"
40 #include "pub_tool_mallocfree.h"
41 #include "pub_tool_options.h"
42 #include "pub_tool_oset.h"
43 #include "pub_tool_poolalloc.h"
44 #include "pub_tool_signals.h" // Needed for mc_include.h
45 #include "pub_tool_libcsetjmp.h" // setjmp facilities
46 #include "pub_tool_tooliface.h" // Needed for mc_include.h
47 #include "pub_tool_xarray.h"
48 #include "pub_tool_xtree.h"
50 #include "mc_include.h"
52 /*------------------------------------------------------------*/
53 /*--- An overview of leak checking. ---*/
54 /*------------------------------------------------------------*/
56 // Leak-checking is a directed-graph traversal problem. The graph has
57 // two kinds of nodes:
58 // - root-set nodes:
59 // - GP registers of all threads;
60 // - valid, aligned, pointer-sized data words in valid client memory,
61 // including stacks, but excluding words within client heap-allocated
62 // blocks (they are excluded so that later on we can differentiate
63 // between heap blocks that are indirectly leaked vs. directly leaked).
64 // - heap-allocated blocks. A block is a mempool chunk or a malloc chunk
65 // that doesn't contain a mempool chunk. Nb: the terms "blocks" and
66 // "chunks" are used interchangeably below.
68 // There are two kinds of edges:
69 // - start-pointers, i.e. pointers to the start of a block;
70 // - interior-pointers, i.e. pointers to the interior of a block.
72 // We use "pointers" rather than "edges" below.
74 // Root set nodes only point to blocks. Blocks only point to blocks;
75 // a block can point to itself.
77 // The aim is to traverse the graph and determine the status of each block.
79 // There are 9 distinct cases. See memcheck/docs/mc-manual.xml for details.
80 // Presenting all nine categories to the user is probably too much.
81 // Currently we do this:
82 // - definitely lost: case 3
83 // - indirectly lost: case 4, 9
84 // - possibly lost: cases 5..8
85 // - still reachable: cases 1, 2
86 //
87 // It's far from clear that this is the best possible categorisation; it's
88 // accreted over time without any central guiding principle.
90 /*------------------------------------------------------------*/
91 /*--- XXX: Thoughts for improvement. ---*/
92 /*------------------------------------------------------------*/
94 // From the user's point of view:
95 // - If they aren't using interior-pointers, they just have to fix the
96 // directly lost blocks, and the indirectly lost ones will be fixed as
97 // part of that. Any possibly lost blocks will just be due to random
98 // pointer garbage and can be ignored.
99 //
100 // - If they are using interior-pointers, the fact that they currently are not
101 // being told which ones might be directly lost vs. indirectly lost makes
102 // it hard to know where to begin.
104 // All this makes me wonder if new option is warranted:
105 // --follow-interior-pointers. By default it would be off, the leak checker
106 // wouldn't follow interior-pointers and there would only be 3 categories:
107 // R, DL, IL.
109 // If turned on, then it would show 7 categories (R, DL, IL, DR/DL, IR/IL,
110 // IR/IL/DL, IL/DL). That output is harder to understand but it's your own
111 // damn fault for using interior-pointers...
113 // ----
115 // Also, why are two blank lines printed between each loss record?
116 // [bug 197930]
118 // ----
120 // Also, --show-reachable is a bad name because it also turns on the showing
121 // of indirectly leaked blocks(!) It would be better named --show-all or
122 // --show-all-heap-blocks, because that's the end result.
123 // We now have the option --show-leak-kinds=... which allows to specify =all.
125 // ----
127 // Also, the VALGRIND_LEAK_CHECK and VALGRIND_QUICK_LEAK_CHECK aren't great
128 // names. VALGRIND_FULL_LEAK_CHECK and VALGRIND_SUMMARY_LEAK_CHECK would be
129 // better.
131 // ----
133 // Also, VALGRIND_COUNT_LEAKS and VALGRIND_COUNT_LEAK_BLOCKS aren't great as
134 // they combine direct leaks and indirect leaks into one. New, more precise
135 // ones (they'll need new names) would be good. If more categories are
136 // used, as per the --follow-interior-pointers option, they should be
137 // updated accordingly. And they should use a struct to return the values.
139 // ----
141 // Also, for this case:
143 // (4) p4 BBB ---> AAA
145 // BBB is definitely directly lost. AAA is definitely indirectly lost.
146 // Here's the relevant loss records printed for a full check (each block is
147 // 16 bytes):
149 // ==20397== 16 bytes in 1 blocks are indirectly lost in loss record 9 of 15
150 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
151 // ==20397== by 0x400521: mk (leak-cases.c:49)
152 // ==20397== by 0x400578: main (leak-cases.c:72)
154 // ==20397== 32 (16 direct, 16 indirect) bytes in 1 blocks are definitely
155 // lost in loss record 14 of 15
156 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
157 // ==20397== by 0x400521: mk (leak-cases.c:49)
158 // ==20397== by 0x400580: main (leak-cases.c:72)
160 // The first one is fine -- it describes AAA.
162 // The second one is for BBB. It's correct in that 16 bytes in 1 block are
163 // directly lost. It's also correct that 16 are indirectly lost as a result,
164 // but it means that AAA is being counted twice in the loss records. (It's
165 // not, thankfully, counted twice in the summary counts). Argh.
167 // This would be less confusing for the second one:
169 // ==20397== 16 bytes in 1 blocks are definitely lost in loss record 14
170 // of 15 (and 16 bytes in 1 block are indirectly lost as a result; they
171 // are mentioned elsewhere (if --show-reachable=yes or indirect is given
172 // in --show-leak-kinds=... !))
173 // ==20397== at 0x4C2694E: malloc (vg_replace_malloc.c:177)
174 // ==20397== by 0x400521: mk (leak-cases.c:49)
175 // ==20397== by 0x400580: main (leak-cases.c:72)
177 // But ideally we'd present the loss record for the directly lost block and
178 // then the resultant indirectly lost blocks and make it clear the
179 // dependence. Double argh.
181 /*------------------------------------------------------------*/
182 /*--- The actual algorithm. ---*/
183 /*------------------------------------------------------------*/
185 // - Find all the blocks (a.k.a. chunks) to check. Mempool chunks require
186 // some special treatment because they can be within malloc'd blocks.
187 // - Scan every word in the root set (GP registers and valid
188 // non-heap memory words).
189 // - First, we skip if it doesn't point to valid memory.
190 // - Then, we see if it points to the start or interior of a block. If
191 // so, we push the block onto the mark stack and mark it as having been
192 // reached.
193 // - Then, we process the mark stack, repeating the scanning for each block;
194 // this can push more blocks onto the mark stack. We repeat until the
195 // mark stack is empty. Each block is marked as definitely or possibly
196 // reachable, depending on whether interior-pointers were required to
197 // reach it.
198 // - At this point we know for every block if it's reachable or not.
199 // - We then push each unreached block onto the mark stack, using the block
200 // number as the "clique" number.
201 // - We process the mark stack again, this time grouping blocks into cliques
202 // in order to facilitate the directly/indirectly lost categorisation.
203 // - We group blocks by their ExeContexts and categorisation, and print them
204 // if --leak-check=full. We also print summary numbers.
206 // A note on "cliques":
207 // - A directly lost block is one with no pointers to it. An indirectly
208 // lost block is one that is pointed to by a directly or indirectly lost
209 // block.
210 // - Each directly lost block has zero or more indirectly lost blocks
211 // hanging off it. All these blocks together form a "clique". The
212 // directly lost block is called the "clique leader". The clique number
213 // is the number (in lc_chunks[]) of the clique leader.
214 // - Actually, a directly lost block may be pointed to if it's part of a
215 // cycle. In that case, there may be more than one choice for the clique
216 // leader, and the choice is arbitrary. Eg. if you have A-->B and B-->A
217 // either A or B could be the clique leader.
218 // - Cliques cannot overlap, and will be truncated to avoid this. Eg. if we
219 // have A-->C and B-->C, the two cliques will be {A,C} and {B}, or {A} and
220 // {B,C} (again the choice is arbitrary). This is because we don't want
221 // to count a block as indirectly lost more than once.
223 // A note on 'is_prior_definite':
224 // - This is a boolean used in various places that indicates if the chain
225 // up to the prior node (prior to the one being considered) is definite.
226 // - In the clique == -1 case:
227 // - if True it means that the prior node is a root-set node, or that the
228 // prior node is a block which is reachable from the root-set via
229 // start-pointers.
230 // - if False it means that the prior node is a block that is only
231 // reachable from the root-set via a path including at least one
232 // interior-pointer.
233 // - In the clique != -1 case, currently it's always True because we treat
234 // start-pointers and interior-pointers the same for direct/indirect leak
235 // checking. If we added a PossibleIndirectLeak state then this would
236 // change.
239 // Define to debug the memory-leak-detector.
240 #define VG_DEBUG_FIND_CHUNK 0
241 #define VG_DEBUG_LEAKCHECK 0
242 #define VG_DEBUG_CLIQUE 0
245 /*------------------------------------------------------------*/
246 /*--- Getting the initial chunks, and searching them. ---*/
247 /*------------------------------------------------------------*/
249 // Compare the MC_Chunks by 'data' (i.e. the address of the block).
250 static Int compare_MC_Chunks(const void* n1, const void* n2)
252 const MC_Chunk* mc1 = *(const MC_Chunk *const *)n1;
253 const MC_Chunk* mc2 = *(const MC_Chunk *const *)n2;
254 if (mc1->data < mc2->data) return -1;
255 if (mc1->data > mc2->data) return 1;
256 return 0;
259 #if VG_DEBUG_FIND_CHUNK
260 // Used to sanity-check the fast binary-search mechanism.
261 static
262 Int find_chunk_for_OLD ( Addr ptr,
263 MC_Chunk** chunks,
264 Int n_chunks )
267 Int i;
268 Addr a_lo, a_hi;
269 PROF_EVENT(MCPE_FIND_CHUNK_FOR_OLD);
270 for (i = 0; i < n_chunks; i++) {
271 PROF_EVENT(MCPE_FIND_CHUNK_FOR_OLD_LOOP);
272 a_lo = chunks[i]->data;
273 a_hi = ((Addr)chunks[i]->data) + chunks[i]->szB;
274 if (a_lo == a_hi)
275 a_hi++; // Special case for szB 0. See find_chunk_for.
276 if (a_lo <= ptr && ptr < a_hi)
277 return i;
279 return -1;
281 #endif
283 // Find the i such that ptr points at or inside the block described by
284 // chunks[i]. Return -1 if none found. This assumes that chunks[]
285 // has been sorted on the 'data' field.
286 static
287 Int find_chunk_for ( Addr ptr,
288 MC_Chunk** chunks,
289 Int n_chunks )
291 Addr a_mid_lo, a_mid_hi;
292 Int lo, mid, hi, retVal;
293 // VG_(printf)("find chunk for %p = ", ptr);
294 retVal = -1;
295 lo = 0;
296 hi = n_chunks-1;
297 while (True) {
298 // Invariant: current unsearched space is from lo to hi, inclusive.
299 if (lo > hi) break; // not found
301 mid = (lo + hi) / 2;
302 a_mid_lo = chunks[mid]->data;
303 a_mid_hi = chunks[mid]->data + chunks[mid]->szB;
304 // Extent of block 'mid' is [a_mid_lo .. a_mid_hi).
305 // Special-case zero-sized blocks - treat them as if they had
306 // size 1. Not doing so causes them to not cover any address
307 // range at all and so will never be identified as the target of
308 // any pointer, which causes them to be incorrectly reported as
309 // definitely leaked.
310 if (chunks[mid]->szB == 0)
311 a_mid_hi++;
313 if (ptr < a_mid_lo) {
314 hi = mid-1;
315 continue;
317 if (ptr >= a_mid_hi) {
318 lo = mid+1;
319 continue;
321 tl_assert(ptr >= a_mid_lo && ptr < a_mid_hi);
322 retVal = mid;
323 break;
326 # if VG_DEBUG_FIND_CHUNK
327 tl_assert(retVal == find_chunk_for_OLD ( ptr, chunks, n_chunks ));
328 # endif
329 // VG_(printf)("%d\n", retVal);
330 return retVal;
334 static MC_Chunk**
335 find_active_chunks(Int* pn_chunks)
337 // Our goal is to construct a set of chunks that includes every
338 // mempool chunk, and every malloc region that *doesn't* contain a
339 // mempool chunk.
340 MC_Mempool *mp;
341 MC_Chunk **mallocs, **chunks, *mc;
342 UInt n_mallocs, n_chunks, m, s;
343 Bool *malloc_chunk_holds_a_pool_chunk;
345 // First we collect all the malloc chunks into an array and sort it.
346 // We do this because we want to query the chunks by interior
347 // pointers, requiring binary search.
348 mallocs = (MC_Chunk**) VG_(HT_to_array)( MC_(malloc_list), &n_mallocs );
349 if (n_mallocs == 0) {
350 tl_assert(mallocs == NULL);
351 *pn_chunks = 0;
352 return NULL;
354 VG_(ssort)(mallocs, n_mallocs, sizeof(VgHashNode*), compare_MC_Chunks);
356 // Then we build an array containing a Bool for each malloc chunk,
357 // indicating whether it contains any mempools.
358 malloc_chunk_holds_a_pool_chunk = VG_(calloc)( "mc.fas.1",
359 n_mallocs, sizeof(Bool) );
360 n_chunks = n_mallocs;
362 // Then we loop over the mempool tables. For each chunk in each
363 // pool, we set the entry in the Bool array corresponding to the
364 // malloc chunk containing the mempool chunk.
365 VG_(HT_ResetIter)(MC_(mempool_list));
366 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
367 VG_(HT_ResetIter)(mp->chunks);
368 while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
370 // We'll need to record this chunk.
371 n_chunks++;
373 // Possibly invalidate the malloc holding the beginning of this chunk.
374 m = find_chunk_for(mc->data, mallocs, n_mallocs);
375 if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
376 tl_assert(n_chunks > 0);
377 n_chunks--;
378 malloc_chunk_holds_a_pool_chunk[m] = True;
381 // Possibly invalidate the malloc holding the end of this chunk.
382 if (mc->szB > 1) {
383 m = find_chunk_for(mc->data + (mc->szB - 1), mallocs, n_mallocs);
384 if (m != -1 && malloc_chunk_holds_a_pool_chunk[m] == False) {
385 tl_assert(n_chunks > 0);
386 n_chunks--;
387 malloc_chunk_holds_a_pool_chunk[m] = True;
392 tl_assert(n_chunks > 0);
394 // Create final chunk array.
395 chunks = VG_(malloc)("mc.fas.2", sizeof(VgHashNode*) * (n_chunks));
396 s = 0;
398 // Copy the mempool chunks and the non-marked malloc chunks into a
399 // combined array of chunks.
400 VG_(HT_ResetIter)(MC_(mempool_list));
401 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
402 VG_(HT_ResetIter)(mp->chunks);
403 while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
404 tl_assert(s < n_chunks);
405 chunks[s++] = mc;
408 for (m = 0; m < n_mallocs; ++m) {
409 if (!malloc_chunk_holds_a_pool_chunk[m]) {
410 tl_assert(s < n_chunks);
411 chunks[s++] = mallocs[m];
414 tl_assert(s == n_chunks);
416 // Free temporaries.
417 VG_(free)(mallocs);
418 VG_(free)(malloc_chunk_holds_a_pool_chunk);
420 *pn_chunks = n_chunks;
422 return chunks;
425 /*------------------------------------------------------------*/
426 /*--- The leak detector proper. ---*/
427 /*------------------------------------------------------------*/
429 // Holds extra info about each block during leak checking.
430 typedef
431 struct {
432 UInt state:2; // Reachedness.
433 UInt pending:1; // Scan pending.
434 UInt heuristic: (sizeof(UInt)*8)-3;
435 // Heuristic with which this block was considered reachable.
436 // LchNone if state != Reachable or no heuristic needed to
437 // consider it reachable.
439 union {
440 SizeT indirect_szB;
441 // If Unreached, how many bytes are unreachable from here.
442 SizeT clique;
443 // if IndirectLeak, clique leader to which it belongs.
444 } IorC;
446 LC_Extra;
448 // An array holding pointers to every chunk we're checking. Sorted by address.
449 // lc_chunks is initialised during leak search. It is kept after leak search
450 // to support printing the list of blocks belonging to a loss record.
451 // lc_chunk array can only be used validly till the next "free" operation
452 // (as a free operation potentially destroys one or more chunks).
453 // To detect lc_chunk is valid, we store the nr of frees operations done
454 // when lc_chunk was build : lc_chunks (and lc_extras) stays valid as
455 // long as no free operations has been done since lc_chunks building.
456 static MC_Chunk** lc_chunks;
457 // How many chunks we're dealing with.
458 static Int lc_n_chunks;
459 static SizeT lc_chunks_n_frees_marker;
460 // This has the same number of entries as lc_chunks, and each entry
461 // in lc_chunks corresponds with the entry here (ie. lc_chunks[i] and
462 // lc_extras[i] describe the same block).
463 static LC_Extra* lc_extras;
465 // chunks will be converted and merged in loss record, maintained in lr_table
466 // lr_table elements are kept from one leak_search to another to implement
467 // the "print new/changed leaks" client request
468 static OSet* lr_table;
469 // Array of sorted loss record (produced during last leak search).
470 static LossRecord** lr_array;
472 // Value of the heuristics parameter used in the current (or last) leak check.
473 static UInt detect_memory_leaks_last_heuristics;
475 // DeltaMode used the last time we called detect_memory_leaks.
476 // The recorded leak errors are output using a logic based on this delta_mode.
477 // The below avoids replicating the delta_mode in each LossRecord.
478 LeakCheckDeltaMode MC_(detect_memory_leaks_last_delta_mode);
480 // Each leak search run increments the below generation counter.
481 // A used suppression during a leak search will contain this
482 // generation number.
483 UInt MC_(leak_search_gen);
485 // Records chunks that are currently being processed. Each element in the
486 // stack is an index into lc_chunks and lc_extras. Its size is
487 // 'lc_n_chunks' because in the worst case that's how many chunks could be
488 // pushed onto it (actually I think the maximum is lc_n_chunks-1 but let's
489 // be conservative).
490 static Int* lc_markstack;
491 // The index of the top element of the stack; -1 if the stack is empty, 0 if
492 // the stack has one element, 1 if it has two, etc.
493 static Int lc_markstack_top;
495 // Keeps track of how many bytes of memory we've scanned, for printing.
496 // (Nb: We don't keep track of how many register bytes we've scanned.)
497 static SizeT lc_scanned_szB;
498 // Keeps track of how many bytes we have not scanned due to read errors that
499 // caused a signal such as SIGSEGV.
500 static SizeT lc_sig_skipped_szB;
503 SizeT MC_(bytes_leaked) = 0;
504 SizeT MC_(bytes_indirect) = 0;
505 SizeT MC_(bytes_dubious) = 0;
506 SizeT MC_(bytes_reachable) = 0;
507 SizeT MC_(bytes_suppressed) = 0;
509 SizeT MC_(blocks_leaked) = 0;
510 SizeT MC_(blocks_indirect) = 0;
511 SizeT MC_(blocks_dubious) = 0;
512 SizeT MC_(blocks_reachable) = 0;
513 SizeT MC_(blocks_suppressed) = 0;
515 // Subset of MC_(bytes_reachable) and MC_(blocks_reachable) which
516 // are considered reachable due to the corresponding heuristic.
517 static SizeT MC_(bytes_heuristically_reachable)[N_LEAK_CHECK_HEURISTICS]
518 = {0,0,0,0};
519 static SizeT MC_(blocks_heuristically_reachable)[N_LEAK_CHECK_HEURISTICS]
520 = {0,0,0,0};
522 // Determines if a pointer is to a chunk. Returns the chunk number et al
523 // via call-by-reference.
524 static Bool
525 lc_is_a_chunk_ptr(Addr ptr, Int* pch_no, MC_Chunk** pch, LC_Extra** pex)
527 Int ch_no;
528 MC_Chunk* ch;
529 LC_Extra* ex;
531 // Quick filter. Note: implemented with am, not with get_vabits2
532 // as ptr might be random data pointing anywhere. On 64 bit
533 // platforms, getting va bits for random data can be quite costly
534 // due to the secondary map.
535 if (!VG_(am_is_valid_for_client)(ptr, 1, VKI_PROT_READ)) {
536 return False;
537 } else {
538 ch_no = find_chunk_for(ptr, lc_chunks, lc_n_chunks);
539 tl_assert(ch_no >= -1 && ch_no < lc_n_chunks);
541 if (ch_no == -1) {
542 return False;
543 } else {
544 // Ok, we've found a pointer to a chunk. Get the MC_Chunk and its
545 // LC_Extra.
546 ch = lc_chunks[ch_no];
547 ex = &(lc_extras[ch_no]);
549 tl_assert(ptr >= ch->data);
550 tl_assert(ptr < ch->data + ch->szB + (ch->szB==0 ? 1 : 0));
552 if (VG_DEBUG_LEAKCHECK)
553 VG_(printf)("ptr=%#lx -> block %d\n", ptr, ch_no);
555 *pch_no = ch_no;
556 *pch = ch;
557 *pex = ex;
559 return True;
564 // Push a chunk (well, just its index) onto the mark stack.
565 static void lc_push(Int ch_no, MC_Chunk* ch)
567 if (!lc_extras[ch_no].pending) {
568 if (0) {
569 VG_(printf)("pushing %#lx-%#lx\n", ch->data, ch->data + ch->szB);
571 lc_markstack_top++;
572 tl_assert(lc_markstack_top < lc_n_chunks);
573 lc_markstack[lc_markstack_top] = ch_no;
574 tl_assert(!lc_extras[ch_no].pending);
575 lc_extras[ch_no].pending = True;
579 // Return the index of the chunk on the top of the mark stack, or -1 if
580 // there isn't one.
581 static Bool lc_pop(Int* ret)
583 if (-1 == lc_markstack_top) {
584 return False;
585 } else {
586 tl_assert(0 <= lc_markstack_top && lc_markstack_top < lc_n_chunks);
587 *ret = lc_markstack[lc_markstack_top];
588 lc_markstack_top--;
589 tl_assert(lc_extras[*ret].pending);
590 lc_extras[*ret].pending = False;
591 return True;
595 static const HChar* pp_heuristic(LeakCheckHeuristic h)
597 switch(h) {
598 case LchNone: return "none";
599 case LchStdString: return "stdstring";
600 case LchLength64: return "length64";
601 case LchNewArray: return "newarray";
602 case LchMultipleInheritance: return "multipleinheritance";
603 default: return "???invalid heuristic???";
607 // True if ptr looks like the address of a vtable, i.e. if ptr
608 // points to an array of pointers to functions.
609 // It is assumed the only caller of this function is heuristic_reachedness
610 // which must check that ptr is aligned and above page 0.
611 // Checking that ptr is above page 0 is an optimisation : it is assumed
612 // that no vtable is located in the page 0. So, all small integer values
613 // encountered during the scan will not incur the cost of calling this
614 // function.
615 static Bool aligned_ptr_above_page0_is_vtable_addr(Addr ptr)
617 // ??? If performance problem:
618 // ??? maybe implement a cache (array indexed by ptr % primenr)
619 // ??? of "I am a vtable ptr" ???
621 // ??? Maybe the debug info could (efficiently?) be used to detect vtables ?
623 // We consider ptr as a vtable ptr if it points to a table
624 // where we find only NULL pointers or pointers pointing at an
625 // executable region. We must find at least 2 non NULL pointers
626 // before considering ptr as a vtable pointer.
627 // We scan a maximum of VTABLE_MAX_CHECK words for these 2 non NULL
628 // pointers.
629 #define VTABLE_MAX_CHECK 20
631 NSegment const *seg;
632 UInt nr_fn_ptrs = 0;
633 Addr scan;
634 Addr scan_max;
636 // First verify ptr points inside a client mapped file section.
637 // ??? is a vtable always in a file mapped readable section ?
638 seg = VG_(am_find_nsegment) (ptr);
639 if (seg == NULL
640 || seg->kind != SkFileC
641 || !seg->hasR)
642 return False;
644 // Check potential function pointers, up to a maximum of VTABLE_MAX_CHECK.
645 scan_max = ptr + VTABLE_MAX_CHECK*sizeof(Addr);
646 // If ptr is near the end of seg, avoid scan_max exceeding the end of seg:
647 if (scan_max > seg->end - sizeof(Addr))
648 scan_max = seg->end - sizeof(Addr);
649 for (scan = ptr; scan <= scan_max; scan+=sizeof(Addr)) {
650 Addr pot_fn = *((Addr *)scan);
651 if (pot_fn == 0)
652 continue; // NULL fn pointer. Seems it can happen in vtable.
653 seg = VG_(am_find_nsegment) (pot_fn);
654 #if defined(VGA_ppc64be)
655 // ppc64BE uses a thunk table (function descriptors), so we have one
656 // more level of indirection to follow.
657 if (seg == NULL
658 || seg->kind != SkFileC
659 || !seg->hasR
660 || !seg->hasW)
661 return False; // ptr to nowhere, or not a ptr to thunks.
662 pot_fn = *((Addr *)pot_fn);
663 if (pot_fn == 0)
664 continue; // NULL fn pointer. Seems it can happen in vtable.
665 seg = VG_(am_find_nsegment) (pot_fn);
666 #endif
667 if (seg == NULL
668 || seg->kind != SkFileC
669 || !seg->hasT)
670 return False; // ptr to nowhere, or not a fn ptr.
671 nr_fn_ptrs++;
672 if (nr_fn_ptrs == 2)
673 return True;
676 return False;
679 // true if a is properly aligned and points to 64bits of valid memory
680 static Bool is_valid_aligned_ULong ( Addr a )
682 if (sizeof(Word) == 8)
683 return MC_(is_valid_aligned_word)(a);
685 return MC_(is_valid_aligned_word)(a)
686 && MC_(is_valid_aligned_word)(a + 4);
689 /* The below leak_search_fault_catcher is used to catch memory access
690 errors happening during leak_search. During the scan, we check
691 with aspacemgr and/or VA bits that each page or dereferenced location is
692 readable and belongs to the client. However, we still protect
693 against SIGSEGV and SIGBUS e.g. in case aspacemgr is desynchronised
694 with the real page mappings. Such a desynchronisation could happen
695 due to an aspacemgr bug. Note that if the application is using
696 mprotect(NONE), then a page can be unreadable but have addressable
697 and defined VA bits (see mc_main.c function mc_new_mem_mprotect).
698 Currently, 2 functions are dereferencing client memory during leak search:
699 heuristic_reachedness and lc_scan_memory.
700 Each such function has its own fault catcher, that will call
701 leak_search_fault_catcher with the proper 'who' and jmpbuf parameters. */
702 static volatile Addr bad_scanned_addr;
703 static
704 void leak_search_fault_catcher ( Int sigNo, Addr addr,
705 const HChar *who, VG_MINIMAL_JMP_BUF(jmpbuf) )
707 vki_sigset_t sigmask;
709 if (0)
710 VG_(printf)("OUCH! sig=%d addr=%#lx who=%s\n", sigNo, addr, who);
712 /* Signal handler runs with the signal masked.
713 Unmask the handled signal before longjmp-ing or return-ing.
714 Note that during leak search, we expect only SIGSEGV or SIGBUS
715 and we do not expect another occurrence until we longjmp-ed!return-ed
716 to resume the leak search. So, it is safe to unmask the signal
717 here. */
718 /* First get current mask (by passing NULL as first arg) */
719 VG_(sigprocmask)(VKI_SIG_SETMASK, NULL, &sigmask);
720 /* Then set a new sigmask, with this signal removed from the mask. */
721 VG_(sigdelset)(&sigmask, sigNo);
722 VG_(sigprocmask)(VKI_SIG_SETMASK, &sigmask, NULL);
724 if (sigNo == VKI_SIGSEGV || sigNo == VKI_SIGBUS) {
725 bad_scanned_addr = addr;
726 VG_MINIMAL_LONGJMP(jmpbuf);
727 } else {
728 /* ??? During leak search, we are not supposed to receive any
729 other sync signal that these 2.
730 In theory, we should not call VG_(umsg) in a signal handler,
731 but better (try to) report this unexpected behaviour. */
732 VG_(umsg)("leak_search_fault_catcher:"
733 " unexpected signal %d, catcher %s ???\n",
734 sigNo, who);
738 // jmpbuf and fault_catcher used during heuristic_reachedness
739 static VG_MINIMAL_JMP_BUF(heuristic_reachedness_jmpbuf);
740 static
741 void heuristic_reachedness_fault_catcher ( Int sigNo, Addr addr )
743 leak_search_fault_catcher (sigNo, addr,
744 "heuristic_reachedness_fault_catcher",
745 heuristic_reachedness_jmpbuf);
748 // If ch is heuristically reachable via an heuristic member of heur_set,
749 // returns this heuristic.
750 // If ch cannot be considered reachable using one of these heuristics,
751 // return LchNone.
752 // This should only be called when ptr is an interior ptr to ch.
753 // The StdString/NewArray/MultipleInheritance heuristics are directly
754 // inspired from DrMemory:
755 // see http://www.burningcutlery.com/derek/docs/drmem-CGO11.pdf [section VI,C]
756 // and bug 280271.
757 static LeakCheckHeuristic heuristic_reachedness (Addr ptr,
758 MC_Chunk *ch, LC_Extra *ex,
759 UInt heur_set)
762 fault_catcher_t prev_catcher;
764 prev_catcher = VG_(set_fault_catcher)(heuristic_reachedness_fault_catcher);
766 // See leak_search_fault_catcher
767 if (VG_MINIMAL_SETJMP(heuristic_reachedness_jmpbuf) != 0) {
768 VG_(set_fault_catcher) (prev_catcher);
769 return LchNone;
772 if (HiS(LchStdString, heur_set)) {
773 // Detects inner pointers to Std::String for layout being
774 // length capacity refcount char_array[] \0
775 // where ptr points to the beginning of the char_array.
776 // Note: we check definedness for length and capacity but
777 // not for refcount, as refcount size might be smaller than
778 // a SizeT, giving a uninitialised hole in the first 3 SizeT.
779 if ( ptr == ch->data + 3 * sizeof(SizeT)
780 && MC_(is_valid_aligned_word)(ch->data + sizeof(SizeT))) {
781 const SizeT capacity = *((SizeT*)(ch->data + sizeof(SizeT)));
782 if (3 * sizeof(SizeT) + capacity + 1 == ch->szB
783 && MC_(is_valid_aligned_word)(ch->data)) {
784 const SizeT length = *((SizeT*)ch->data);
785 if (length <= capacity) {
786 // ??? could check there is no null byte from ptr to ptr+length-1
787 // ??? and that there is a null byte at ptr+length.
788 // ???
789 // ??? could check that ch->allockind is MC_AllocNew ???
790 // ??? probably not a good idea, as I guess stdstring
791 // ??? allocator can be done via custom allocator
792 // ??? or even a call to malloc ????
793 VG_(set_fault_catcher) (prev_catcher);
794 return LchStdString;
800 if (HiS(LchLength64, heur_set)) {
801 // Detects inner pointers that point at 64bit offset (8 bytes) into a
802 // block following the length of the remaining as 64bit number
803 // (=total block size - 8).
804 // This is used e.g. by sqlite for tracking the total size of allocated
805 // memory.
806 // Note that on 64bit platforms, a block matching LchLength64 will
807 // also be matched by LchNewArray.
808 if ( ptr == ch->data + sizeof(ULong)
809 && is_valid_aligned_ULong(ch->data)) {
810 const ULong size = *((ULong*)ch->data);
811 if (size > 0 && (ch->szB - sizeof(ULong)) == size) {
812 VG_(set_fault_catcher) (prev_catcher);
813 return LchLength64;
818 if (HiS(LchNewArray, heur_set)) {
819 // Detects inner pointers at second word of new[] array, following
820 // a plausible nr of elements.
821 // Such inner pointers are used for arrays of elements
822 // having a destructor, as the delete[] of the array must know
823 // how many elements to destroy.
825 // We have a strange/wrong case for 'ptr = new MyClass[0];' :
826 // For such a case, the returned ptr points just outside the
827 // allocated chunk. This chunk is then seen as a definite
828 // leak by Valgrind, as it is not considered an interior pointer.
829 // It is the c++ equivalent of bug 99923 (malloc(0) wrongly considered
830 // as definitely leaked). See the trick in find_chunk_for handling
831 // 0-sized block. This trick does not work for 'new MyClass[0]'
832 // because a chunk "word-sized" is allocated to store the (0) nr
833 // of elements.
834 if ( ptr == ch->data + sizeof(SizeT)
835 && MC_(is_valid_aligned_word)(ch->data)) {
836 const SizeT nr_elts = *((SizeT*)ch->data);
837 if (nr_elts > 0 && (ch->szB - sizeof(SizeT)) % nr_elts == 0) {
838 // ??? could check that ch->allockind is MC_AllocNewVec ???
839 VG_(set_fault_catcher) (prev_catcher);
840 return LchNewArray;
845 if (HiS(LchMultipleInheritance, heur_set)) {
846 // Detect inner pointer used for multiple inheritance.
847 // Assumption is that the vtable pointers are before the object.
848 if (VG_IS_WORD_ALIGNED(ptr)
849 && MC_(is_valid_aligned_word)(ptr)) {
850 Addr first_addr;
851 Addr inner_addr;
853 // Avoid the call to is_vtable_addr when the addr is not
854 // aligned or points in the page0, as it is unlikely
855 // a vtable is located in this page. This last optimisation
856 // avoids to call aligned_ptr_above_page0_is_vtable_addr
857 // for all small integers.
858 // Note: we could possibly also avoid calling this function
859 // for small negative integers, as no vtable should be located
860 // in the last page.
861 inner_addr = *((Addr*)ptr);
862 if (VG_IS_WORD_ALIGNED(inner_addr)
863 && inner_addr >= (Addr)VKI_PAGE_SIZE
864 && MC_(is_valid_aligned_word)(ch->data)) {
865 first_addr = *((Addr*)ch->data);
866 if (VG_IS_WORD_ALIGNED(first_addr)
867 && first_addr >= (Addr)VKI_PAGE_SIZE
868 && aligned_ptr_above_page0_is_vtable_addr(inner_addr)
869 && aligned_ptr_above_page0_is_vtable_addr(first_addr)) {
870 // ??? could check that ch->allockind is MC_AllocNew ???
871 VG_(set_fault_catcher) (prev_catcher);
872 return LchMultipleInheritance;
878 VG_(set_fault_catcher) (prev_catcher);
879 return LchNone;
883 // If 'ptr' is pointing to a heap-allocated block which hasn't been seen
884 // before, push it onto the mark stack.
885 static void
886 lc_push_without_clique_if_a_chunk_ptr(Addr ptr, Bool is_prior_definite)
888 Int ch_no;
889 MC_Chunk* ch;
890 LC_Extra* ex;
891 Reachedness ch_via_ptr; // Is ch reachable via ptr, and how ?
893 if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
894 return;
896 if (ex->state == Reachable) {
897 if (ex->heuristic && ptr == ch->data)
898 // If block was considered reachable via an heuristic, and it is now
899 // directly reachable via ptr, clear the heuristic field.
900 ex->heuristic = LchNone;
901 return;
904 // Possibly upgrade the state, ie. one of:
905 // - Unreached --> Possible
906 // - Unreached --> Reachable
907 // - Possible --> Reachable
909 if (ptr == ch->data)
910 ch_via_ptr = Reachable;
911 else if (detect_memory_leaks_last_heuristics) {
912 ex->heuristic
913 = heuristic_reachedness (ptr, ch, ex,
914 detect_memory_leaks_last_heuristics);
915 if (ex->heuristic)
916 ch_via_ptr = Reachable;
917 else
918 ch_via_ptr = Possible;
919 } else
920 ch_via_ptr = Possible;
922 if (ch_via_ptr == Reachable && is_prior_definite) {
923 // 'ptr' points to the start of the block or is to be considered as
924 // pointing to the start of the block, and the prior node is
925 // definite, which means that this block is definitely reachable.
926 ex->state = Reachable;
928 // State has changed to Reachable so (re)scan the block to make
929 // sure any blocks it points to are correctly marked.
930 lc_push(ch_no, ch);
932 } else if (ex->state == Unreached) {
933 // Either 'ptr' is a interior-pointer, or the prior node isn't definite,
934 // which means that we can only mark this block as possibly reachable.
935 ex->state = Possible;
937 // State has changed to Possible so (re)scan the block to make
938 // sure any blocks it points to are correctly marked.
939 lc_push(ch_no, ch);
943 static void
944 lc_push_if_a_chunk_ptr_register(ThreadId tid, const HChar* regname, Addr ptr)
946 lc_push_without_clique_if_a_chunk_ptr(ptr, /*is_prior_definite*/True);
949 // If ptr is pointing to a heap-allocated block which hasn't been seen
950 // before, push it onto the mark stack. Clique is the index of the
951 // clique leader.
952 static void
953 lc_push_with_clique_if_a_chunk_ptr(Addr ptr, Int clique, Int cur_clique)
955 Int ch_no;
956 MC_Chunk* ch;
957 LC_Extra* ex;
959 tl_assert(0 <= clique && clique < lc_n_chunks);
961 if ( ! lc_is_a_chunk_ptr(ptr, &ch_no, &ch, &ex) )
962 return;
964 // If it's not Unreached, it's already been handled so ignore it.
965 // If ch_no==clique, it's the clique leader, which means this is a cyclic
966 // structure; again ignore it because it's already been handled.
967 if (ex->state == Unreached && ch_no != clique) {
968 // Note that, unlike reachable blocks, we currently don't distinguish
969 // between start-pointers and interior-pointers here. We probably
970 // should, though.
971 lc_push(ch_no, ch);
973 // Add the block to the clique, and add its size to the
974 // clique-leader's indirect size. Also, if the new block was
975 // itself a clique leader, it isn't any more, so add its
976 // indirect_szB to the new clique leader.
977 if (VG_DEBUG_CLIQUE) {
978 if (ex->IorC.indirect_szB > 0)
979 VG_(printf)(" clique %d joining clique %d adding %lu+%lu\n",
980 ch_no, clique, (SizeT)ch->szB, ex->IorC.indirect_szB);
981 else
982 VG_(printf)(" block %d joining clique %d adding %lu\n",
983 ch_no, clique, (SizeT)ch->szB);
986 lc_extras[clique].IorC.indirect_szB += ch->szB;
987 lc_extras[clique].IorC.indirect_szB += ex->IorC.indirect_szB;
988 ex->state = IndirectLeak;
989 ex->IorC.clique = (SizeT) cur_clique;
993 static void
994 lc_push_if_a_chunk_ptr(Addr ptr,
995 Int clique, Int cur_clique, Bool is_prior_definite)
997 if (-1 == clique)
998 lc_push_without_clique_if_a_chunk_ptr(ptr, is_prior_definite);
999 else
1000 lc_push_with_clique_if_a_chunk_ptr(ptr, clique, cur_clique);
1004 static VG_MINIMAL_JMP_BUF(lc_scan_memory_jmpbuf);
1005 static
1006 void lc_scan_memory_fault_catcher ( Int sigNo, Addr addr )
1008 leak_search_fault_catcher (sigNo, addr,
1009 "lc_scan_memory_fault_catcher",
1010 lc_scan_memory_jmpbuf);
1013 // lc_scan_memory has 2 modes:
1015 // 1. Leak check mode (searched == 0).
1016 // -----------------------------------
1017 // Scan a block of memory between [start, start+len). This range may
1018 // be bogus, inaccessible, or otherwise strange; we deal with it. For each
1019 // valid aligned word we assume it's a pointer to a chunk a push the chunk
1020 // onto the mark stack if so.
1021 // clique is the "highest level clique" in which indirectly leaked blocks have
1022 // to be collected. cur_clique is the current "lower" level clique through which
1023 // the memory to be scanned has been found.
1024 // Example: in the below tree if A is leaked, the top level clique will
1025 // be A, while lower level cliques will be B and C.
1030 / \ / \
1031 D E F G
1033 // Proper handling of top and lowest level clique allows block_list of a loss
1034 // record to describe the hierarchy of indirectly leaked blocks.
1036 // 2. Search ptr mode (searched != 0).
1037 // -----------------------------------
1038 // In this mode, searches for pointers to a specific address range
1039 // In such a case, lc_scan_memory just scans [start..start+len[ for pointers
1040 // to searched and outputs the places where searched is found.
1041 // It does not recursively scans the found memory.
1042 static void
1043 lc_scan_memory(Addr start, SizeT len, Bool is_prior_definite,
1044 Int clique, Int cur_clique,
1045 Addr searched, SizeT szB)
1047 /* memory scan is based on the assumption that valid pointers are aligned
1048 on a multiple of sizeof(Addr). So, we can (and must) skip the begin and
1049 end portions of the block if they are not aligned on sizeof(Addr):
1050 These cannot be a valid pointer, and calls to MC_(is_valid_aligned_word)
1051 will assert for a non aligned address. */
1052 #if defined(VGA_s390x)
1053 // Define ptr as volatile, as on this platform, the value of ptr
1054 // is read in code executed via a longjmp.
1055 volatile
1056 #endif
1057 Addr ptr = VG_ROUNDUP(start, sizeof(Addr));
1058 const Addr end = VG_ROUNDDN(start+len, sizeof(Addr));
1059 fault_catcher_t prev_catcher;
1061 if (VG_DEBUG_LEAKCHECK)
1062 VG_(printf)("scan %#lx-%#lx (%lu)\n", start, end, len);
1064 prev_catcher = VG_(set_fault_catcher)(lc_scan_memory_fault_catcher);
1066 /* Optimisation: the loop below will check for each begin
1067 of SM chunk if the chunk is fully unaddressable. The idea is to
1068 skip efficiently such fully unaddressable SM chunks.
1069 So, we preferably start the loop on a chunk boundary.
1070 If the chunk is not fully unaddressable, we might be in
1071 an unaddressable page. Again, the idea is to skip efficiently
1072 such unaddressable page : this is the "else" part.
1073 We use an "else" so that two consecutive fully unaddressable
1074 SM chunks will be skipped efficiently: first one is skipped
1075 by this piece of code. The next SM chunk will be skipped inside
1076 the loop. */
1077 if ( ! MC_(is_within_valid_secondary)(ptr) ) {
1078 // Skip an invalid SM chunk till the beginning of the next SM Chunk.
1079 ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
1080 } else if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) {
1081 // else we are in a (at least partially) valid SM chunk.
1082 // We might be in the middle of an unreadable page.
1083 // Do a cheap check to see if it's valid;
1084 // if not, skip onto the next page.
1085 ptr = VG_PGROUNDUP(ptr+1); // First page is bad - skip it.
1087 /* The above optimisation and below loop is based on some relationships
1088 between VKI_PAGE_SIZE, SM_SIZE and sizeof(Addr) which are asserted in
1089 MC_(detect_memory_leaks). */
1091 // See leak_search_fault_catcher
1092 if (VG_MINIMAL_SETJMP(lc_scan_memory_jmpbuf) != 0) {
1093 // Catch read error ...
1094 # if defined(VGA_s390x)
1095 // For a SIGSEGV, s390 delivers the page address of the bad address.
1096 // For a SIGBUS, old s390 kernels deliver a NULL address.
1097 // bad_scanned_addr can thus not be used.
1098 // So, on this platform, we always skip a full page from ptr.
1099 // The below implies to mark ptr as volatile, as we read the value
1100 // after a longjmp to here.
1101 lc_sig_skipped_szB += VKI_PAGE_SIZE;
1102 ptr = ptr + VKI_PAGE_SIZE; // Unaddressable, - skip it.
1103 # else
1104 // On other platforms, just skip one Addr.
1105 lc_sig_skipped_szB += sizeof(Addr);
1106 tl_assert(bad_scanned_addr >= VG_ROUNDUP(start, sizeof(Addr)));
1107 tl_assert(bad_scanned_addr < VG_ROUNDDN(start+len, sizeof(Addr)));
1108 ptr = bad_scanned_addr + sizeof(Addr); // Unaddressable, - skip it.
1109 #endif
1111 while (ptr < end) {
1112 Addr addr;
1114 // Skip invalid chunks.
1115 if (UNLIKELY((ptr % SM_SIZE) == 0)) {
1116 if (! MC_(is_within_valid_secondary)(ptr) ) {
1117 ptr = VG_ROUNDUP(ptr+1, SM_SIZE);
1118 continue;
1122 // Look to see if this page seems reasonable.
1123 if (UNLIKELY((ptr % VKI_PAGE_SIZE) == 0)) {
1124 if (!VG_(am_is_valid_for_client)(ptr, sizeof(Addr), VKI_PROT_READ)) {
1125 ptr += VKI_PAGE_SIZE; // Bad page - skip it.
1126 continue;
1130 if ( MC_(is_valid_aligned_word)(ptr) ) {
1131 lc_scanned_szB += sizeof(Addr);
1132 // If the below read fails, we will longjmp to the loop begin.
1133 addr = *(Addr *)ptr;
1134 // If we get here, the scanned word is in valid memory. Now
1135 // let's see if its contents point to a chunk.
1136 if (UNLIKELY(searched)) {
1137 if (addr >= searched && addr < searched + szB) {
1138 const DiEpoch cur_ep = VG_(current_DiEpoch)();
1139 // The found addr is 'live', so use cur_ep to describe it.
1140 if (addr == searched) {
1141 VG_(umsg)("*%#lx points at %#lx\n", ptr, searched);
1142 MC_(pp_describe_addr) (cur_ep, ptr);
1143 } else {
1144 Int ch_no;
1145 MC_Chunk *ch;
1146 LC_Extra *ex;
1147 VG_(umsg)("*%#lx interior points at %lu bytes inside %#lx\n",
1148 ptr, (long unsigned) addr - searched, searched);
1149 MC_(pp_describe_addr) (cur_ep, ptr);
1150 if (lc_is_a_chunk_ptr(addr, &ch_no, &ch, &ex) ) {
1151 Int h;
1152 for (h = LchStdString; h < N_LEAK_CHECK_HEURISTICS; h++) {
1153 if (heuristic_reachedness(addr, ch, ex, H2S(h)) == h) {
1154 VG_(umsg)("block at %#lx considered reachable "
1155 "by ptr %#lx using %s heuristic\n",
1156 ch->data, addr, pp_heuristic(h));
1159 // Verify the loop above has properly scanned all
1160 // heuristics. If the below fails, it probably means the
1161 // LeakCheckHeuristic enum is not in sync anymore with the
1162 // above loop and/or with N_LEAK_CHECK_HEURISTICS.
1163 tl_assert (h == N_LEAK_CHECK_HEURISTICS);
1167 } else {
1168 lc_push_if_a_chunk_ptr(addr, clique, cur_clique, is_prior_definite);
1170 } else if (0 && VG_DEBUG_LEAKCHECK) {
1171 VG_(printf)("%#lx not valid\n", ptr);
1173 ptr += sizeof(Addr);
1176 VG_(set_fault_catcher)(prev_catcher);
1180 // Process the mark stack until empty.
1181 static void lc_process_markstack(Int clique)
1183 Int top = -1; // shut gcc up
1184 Bool is_prior_definite;
1186 while (lc_pop(&top)) {
1187 tl_assert(top >= 0 && top < lc_n_chunks);
1189 // See comment about 'is_prior_definite' at the top to understand this.
1190 is_prior_definite = ( Possible != lc_extras[top].state );
1192 lc_scan_memory(lc_chunks[top]->data, lc_chunks[top]->szB,
1193 is_prior_definite, clique, (clique == -1 ? -1 : top),
1194 /*searched*/ 0, 0);
1198 static Word cmp_LossRecordKey_LossRecord(const void* key, const void* elem)
1200 const LossRecordKey* a = key;
1201 const LossRecordKey* b = &(((const LossRecord*)elem)->key);
1203 // Compare on states first because that's fast.
1204 if (a->state < b->state) return -1;
1205 if (a->state > b->state) return 1;
1206 // Ok, the states are equal. Now compare the locations, which is slower.
1207 if (VG_(eq_ExeContext)(
1208 MC_(clo_leak_resolution), a->allocated_at, b->allocated_at))
1209 return 0;
1210 // Different locations. Ordering is arbitrary, just use the ec pointer.
1211 if (a->allocated_at < b->allocated_at) return -1;
1212 if (a->allocated_at > b->allocated_at) return 1;
1213 VG_(tool_panic)("bad LossRecord comparison");
1216 static Int cmp_LossRecords(const void* va, const void* vb)
1218 const LossRecord* lr_a = *(const LossRecord *const *)va;
1219 const LossRecord* lr_b = *(const LossRecord *const *)vb;
1220 SizeT total_szB_a = lr_a->szB + lr_a->indirect_szB;
1221 SizeT total_szB_b = lr_b->szB + lr_b->indirect_szB;
1223 // First compare by sizes.
1224 if (total_szB_a < total_szB_b) return -1;
1225 if (total_szB_a > total_szB_b) return 1;
1226 // If size are equal, compare by states.
1227 if (lr_a->key.state < lr_b->key.state) return -1;
1228 if (lr_a->key.state > lr_b->key.state) return 1;
1229 // If they're still equal here, it doesn't matter that much, but we keep
1230 // comparing other things so that regtests are as deterministic as
1231 // possible. So: compare num_blocks.
1232 if (lr_a->num_blocks < lr_b->num_blocks) return -1;
1233 if (lr_a->num_blocks > lr_b->num_blocks) return 1;
1234 // Finally, compare ExeContext addresses... older ones are likely to have
1235 // lower addresses.
1236 if (lr_a->key.allocated_at < lr_b->key.allocated_at) return -1;
1237 if (lr_a->key.allocated_at > lr_b->key.allocated_at) return 1;
1238 return 0;
1241 // allocates or reallocates lr_array, and set its elements to the loss records
1242 // contains in lr_table.
1243 static UInt get_lr_array_from_lr_table(void) {
1244 UInt i, n_lossrecords;
1245 LossRecord* lr;
1247 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1249 // (re-)create the array of pointers to the loss records.
1250 // lr_array is kept to allow producing the block list from gdbserver.
1251 if (lr_array != NULL)
1252 VG_(free)(lr_array);
1253 lr_array = VG_(malloc)("mc.pr.2", n_lossrecords * sizeof(LossRecord*));
1254 i = 0;
1255 VG_(OSetGen_ResetIter)(lr_table);
1256 while ( (lr = VG_(OSetGen_Next)(lr_table)) ) {
1257 lr_array[i++] = lr;
1259 tl_assert(i == n_lossrecords);
1260 return n_lossrecords;
1264 static void get_printing_rules(LeakCheckParams* lcp,
1265 LossRecord* lr,
1266 Bool* count_as_error,
1267 Bool* print_record)
1269 // Rules for printing:
1270 // - We don't show suppressed loss records ever (and that's controlled
1271 // within the error manager).
1272 // - We show non-suppressed loss records that are specified in
1273 // --show-leak-kinds=... if --leak-check=yes.
1275 Bool delta_considered;
1277 switch (lcp->deltamode) {
1278 case LCD_Any:
1279 delta_considered = lr->num_blocks > 0;
1280 break;
1281 case LCD_Increased:
1282 delta_considered
1283 = lr->szB > lr->old_szB
1284 || lr->indirect_szB > lr->old_indirect_szB
1285 || lr->num_blocks > lr->old_num_blocks;
1286 break;
1287 case LCD_Changed:
1288 delta_considered = lr->szB != lr->old_szB
1289 || lr->indirect_szB != lr->old_indirect_szB
1290 || lr->num_blocks != lr->old_num_blocks;
1291 break;
1292 default:
1293 tl_assert(0);
1296 *print_record = lcp->mode == LC_Full && delta_considered
1297 && RiS(lr->key.state,lcp->show_leak_kinds);
1298 // We don't count a leaks as errors with lcp->mode==LC_Summary.
1299 // Otherwise you can get high error counts with few or no error
1300 // messages, which can be confusing. Otherwise, we count as errors
1301 // the leak kinds requested by --errors-for-leak-kinds=...
1302 *count_as_error = lcp->mode == LC_Full && delta_considered
1303 && RiS(lr->key.state,lcp->errors_for_leak_kinds);
1307 // Types and functions for xtree leak report.
1310 static XTree* leak_xt;
1312 /* Sizes and delta sizes for a loss record output in an xtree.
1313 As the output format can only show positive values, we need values for
1314 the increase and decrease cases. */
1315 typedef
1316 struct _XT_BIBK {
1317 ULong szB; // Current values
1318 ULong indirect_szB;
1319 ULong num_blocks;
1320 } XT_BIBK; // Bytes, Indirect bytes, BlocKs
1322 typedef
1323 enum {
1324 XT_Value =0,
1325 XT_Increase =1,
1326 XT_Decrease =2
1328 XT_VID; // Value or Increase or Decrease
1330 typedef
1331 struct _XT_lr {
1332 XT_BIBK vid[3]; // indexed by XT_VID
1333 } XT_lr;
1335 typedef
1336 struct _XT_Leak {
1337 XT_lr xt_lr[4]; // indexed by Reachedness
1338 } XT_Leak;
1340 static void MC_(XT_Leak_init)(void* xtl)
1342 VG_(memset) (xtl, 0, sizeof(XT_Leak));
1344 static void MC_(XT_Leak_add) (void* to, const void* xtleak)
1346 XT_Leak* xto = to;
1347 const XT_Leak* xtl = xtleak;
1349 for (int r = Reachable; r <= Unreached; r++)
1350 for (int d = 0; d < 3; d++) {
1351 xto->xt_lr[r].vid[d].szB += xtl->xt_lr[r].vid[d].szB;
1352 xto->xt_lr[r].vid[d].indirect_szB += xtl->xt_lr[r].vid[d].indirect_szB;
1353 xto->xt_lr[r].vid[d].num_blocks += xtl->xt_lr[r].vid[d].num_blocks;
1356 static void XT_insert_lr (LossRecord* lr)
1358 XT_Leak xtl;
1359 Reachedness i = lr->key.state;
1361 MC_(XT_Leak_init)(&xtl);
1363 xtl.xt_lr[i].vid[XT_Value].szB = lr->szB;
1364 xtl.xt_lr[i].vid[XT_Value].indirect_szB = lr->indirect_szB;
1365 xtl.xt_lr[i].vid[XT_Value].num_blocks = lr->num_blocks;
1367 if (lr->szB > lr->old_szB)
1368 xtl.xt_lr[i].vid[XT_Increase].szB = lr->szB - lr->old_szB;
1369 else
1370 xtl.xt_lr[i].vid[XT_Decrease].szB = lr->old_szB - lr->szB;
1371 if (lr->indirect_szB > lr->old_indirect_szB)
1372 xtl.xt_lr[i].vid[XT_Increase].indirect_szB
1373 = lr->indirect_szB - lr->old_indirect_szB;
1374 else
1375 xtl.xt_lr[i].vid[XT_Decrease].indirect_szB
1376 = lr->old_indirect_szB - lr->indirect_szB;
1377 if (lr->num_blocks > lr->old_num_blocks)
1378 xtl.xt_lr[i].vid[XT_Increase].num_blocks
1379 = lr->num_blocks - lr->old_num_blocks;
1380 else
1381 xtl.xt_lr[i].vid[XT_Decrease].num_blocks
1382 = lr->old_num_blocks - lr->num_blocks;
1384 VG_(XT_add_to_ec)(leak_xt, lr->key.allocated_at, &xtl);
1387 static void MC_(XT_Leak_sub) (void* from, const void* xtleak)
1389 tl_assert(0); // Should not be called.
1391 static const HChar* MC_(XT_Leak_img) (const void* xtleak)
1393 static XT_Leak zero;
1394 static HChar buf[600];
1395 UInt off = 0;
1397 const XT_Leak* xtl = xtleak;
1399 if (VG_(memcmp)(xtl, &zero, sizeof(XT_Leak)) != 0) {
1400 for (UInt d = XT_Value; d <= XT_Decrease; d++) {
1401 // print szB. We add indirect_szB to have the Unreachable showing
1402 // the total bytes loss, including indirect loss. This is similar
1403 // to the textual and xml reports.
1404 for (UInt r = Reachable; r <= Unreached; r++)
1405 off += VG_(sprintf) (buf + off, " %llu",
1406 xtl->xt_lr[r].vid[d].szB
1407 + xtl->xt_lr[r].vid[d].indirect_szB);
1408 // print indirect_szB, only for reachedness having such values)
1409 for (UInt r = Reachable; r <= Unreached; r++)
1410 if (r == Unreached)
1411 off += VG_(sprintf) (buf + off, " %llu",
1412 xtl->xt_lr[r].vid[d].indirect_szB);
1413 // print num_blocks
1414 for (UInt r = Reachable; r <= Unreached; r++)
1415 off += VG_(sprintf) (buf + off, " %llu",
1416 xtl->xt_lr[r].vid[d].num_blocks);
1418 return buf + 1; // + 1 to skip the useless first space
1419 } else {
1420 return NULL;
1424 /* The short event name is made of 2 or 3 or 4 letters:
1425 an optional delta indication: i = increase d = decrease
1426 a loss kind: R = Reachable P = Possibly I = Indirectly D = Definitely
1427 an optional i to indicate this loss record has indirectly lost bytes
1428 B = Bytes or Bk = Blocks.
1429 Note that indirectly lost bytes/blocks can thus be counted in 2
1430 loss records: the loss records for their "own" allocation stack trace,
1431 and the loss record of the 'main' Definitely or Possibly loss record
1432 in the indirectly lost count for these loss records. */
1433 static const HChar* XT_Leak_events =
1434 ////// XT_Value szB
1435 "RB : Reachable Bytes" ","
1436 "PB : Possibly lost Bytes" ","
1437 "IB : Indirectly lost Bytes" ","
1438 "DB : Definitely lost Bytes (direct plus indirect)" ","
1440 ////// XT_Value indirect_szB
1441 // no RIB
1442 // no PIB
1443 // no IIB
1444 "DIB : Definitely Indirectly lost Bytes (subset of DB)" ","
1446 ////// XT_Value num_blocks
1447 "RBk : reachable Blocks" ","
1448 "PBk : Possibly lost Blocks" ","
1449 "IBk : Indirectly lost Blocks" ","
1450 "DBk : Definitely lost Blocks" ","
1452 ////// XT_Increase szB
1453 "iRB : increase Reachable Bytes" ","
1454 "iPB : increase Possibly lost Bytes" ","
1455 "iIB : increase Indirectly lost Bytes" ","
1456 "iDB : increase Definitely lost Bytes" ","
1458 ////// XT_Increase indirect_szB
1459 // no iRIB
1460 // no iPIB
1461 // no iIIB
1462 "iDIB : increase Definitely Indirectly lost Bytes" ","
1464 ////// XT_Increase num_blocks
1465 "iRBk : increase reachable Blocks" ","
1466 "iPBk : increase Possibly lost Blocks" ","
1467 "iIBk : increase Indirectly lost Blocks" ","
1468 "iDBk : increase Definitely lost Blocks" ","
1471 ////// XT_Decrease szB
1472 "dRB : decrease Reachable Bytes" ","
1473 "dPB : decrease Possibly lost Bytes" ","
1474 "dIB : decrease Indirectly lost Bytes" ","
1475 "dDB : decrease Definitely lost Bytes" ","
1477 ////// XT_Decrease indirect_szB
1478 // no dRIB
1479 // no dPIB
1480 // no dIIB
1481 "dDIB : decrease Definitely Indirectly lost Bytes" ","
1483 ////// XT_Decrease num_blocks
1484 "dRBk : decrease reachable Blocks" ","
1485 "dPBk : decrease Possibly lost Blocks" ","
1486 "dIBk : decrease Indirectly lost Blocks" ","
1487 "dDBk : decrease Definitely lost Blocks";
1489 static void print_results(ThreadId tid, LeakCheckParams* lcp)
1491 Int i, n_lossrecords, start_lr_output_scan;
1492 LossRecord* lr;
1493 Bool is_suppressed;
1494 /* old_* variables are used to report delta in summary. */
1495 SizeT old_bytes_leaked = MC_(bytes_leaked);
1496 SizeT old_bytes_indirect = MC_(bytes_indirect);
1497 SizeT old_bytes_dubious = MC_(bytes_dubious);
1498 SizeT old_bytes_reachable = MC_(bytes_reachable);
1499 SizeT old_bytes_suppressed = MC_(bytes_suppressed);
1500 SizeT old_blocks_leaked = MC_(blocks_leaked);
1501 SizeT old_blocks_indirect = MC_(blocks_indirect);
1502 SizeT old_blocks_dubious = MC_(blocks_dubious);
1503 SizeT old_blocks_reachable = MC_(blocks_reachable);
1504 SizeT old_blocks_suppressed = MC_(blocks_suppressed);
1506 SizeT old_bytes_heuristically_reachable[N_LEAK_CHECK_HEURISTICS];
1507 SizeT old_blocks_heuristically_reachable[N_LEAK_CHECK_HEURISTICS];
1509 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++) {
1510 old_bytes_heuristically_reachable[i]
1511 = MC_(bytes_heuristically_reachable)[i];
1512 MC_(bytes_heuristically_reachable)[i] = 0;
1513 old_blocks_heuristically_reachable[i]
1514 = MC_(blocks_heuristically_reachable)[i];
1515 MC_(blocks_heuristically_reachable)[i] = 0;
1518 if (lr_table == NULL)
1519 // Create the lr_table, which holds the loss records.
1520 // If the lr_table already exists, it means it contains
1521 // loss_records from the previous leak search. The old_*
1522 // values in these records are used to implement the
1523 // leak check delta mode
1524 lr_table =
1525 VG_(OSetGen_Create)(offsetof(LossRecord, key),
1526 cmp_LossRecordKey_LossRecord,
1527 VG_(malloc), "mc.pr.1",
1528 VG_(free));
1530 // If we have loss records from a previous search, reset values to have
1531 // proper printing of the deltas between previous search and this search.
1532 n_lossrecords = get_lr_array_from_lr_table();
1533 for (i = 0; i < n_lossrecords; i++) {
1534 if (lr_array[i]->num_blocks == 0) {
1535 // remove from lr_table the old loss_records with 0 bytes found
1536 VG_(OSetGen_Remove) (lr_table, &lr_array[i]->key);
1537 VG_(OSetGen_FreeNode)(lr_table, lr_array[i]);
1538 } else {
1539 // move the leak sizes to old_* and zero the current sizes
1540 // for next leak search
1541 lr_array[i]->old_szB = lr_array[i]->szB;
1542 lr_array[i]->old_indirect_szB = lr_array[i]->indirect_szB;
1543 lr_array[i]->old_num_blocks = lr_array[i]->num_blocks;
1544 lr_array[i]->szB = 0;
1545 lr_array[i]->indirect_szB = 0;
1546 lr_array[i]->num_blocks = 0;
1549 // lr_array now contains "invalid" loss records => free it.
1550 // lr_array will be re-created below with the kept and new loss records.
1551 VG_(free) (lr_array);
1552 lr_array = NULL;
1554 // Convert the chunks into loss records, merging them where appropriate.
1555 for (i = 0; i < lc_n_chunks; i++) {
1556 MC_Chunk* ch = lc_chunks[i];
1557 LC_Extra* ex = &(lc_extras)[i];
1558 LossRecord* old_lr;
1559 LossRecordKey lrkey;
1560 lrkey.state = ex->state;
1561 lrkey.allocated_at = MC_(allocated_at)(ch);
1563 if (ex->heuristic) {
1564 MC_(bytes_heuristically_reachable)[ex->heuristic] += ch->szB;
1565 MC_(blocks_heuristically_reachable)[ex->heuristic]++;
1566 if (VG_DEBUG_LEAKCHECK)
1567 VG_(printf)("heuristic %s %#lx len %lu\n",
1568 pp_heuristic(ex->heuristic),
1569 ch->data, (SizeT)ch->szB);
1572 old_lr = VG_(OSetGen_Lookup)(lr_table, &lrkey);
1573 if (old_lr) {
1574 // We found an existing loss record matching this chunk. Update the
1575 // loss record's details in-situ. This is safe because we don't
1576 // change the elements used as the OSet key.
1577 old_lr->szB += ch->szB;
1578 if (ex->state == Unreached)
1579 old_lr->indirect_szB += ex->IorC.indirect_szB;
1580 old_lr->num_blocks++;
1581 } else {
1582 // No existing loss record matches this chunk. Create a new loss
1583 // record, initialise it from the chunk, and insert it into lr_table.
1584 lr = VG_(OSetGen_AllocNode)(lr_table, sizeof(LossRecord));
1585 lr->key = lrkey;
1586 lr->szB = ch->szB;
1587 if (ex->state == Unreached)
1588 lr->indirect_szB = ex->IorC.indirect_szB;
1589 else
1590 lr->indirect_szB = 0;
1591 lr->num_blocks = 1;
1592 lr->old_szB = 0;
1593 lr->old_indirect_szB = 0;
1594 lr->old_num_blocks = 0;
1595 VG_(OSetGen_Insert)(lr_table, lr);
1599 // (re-)create the array of pointers to the (new) loss records.
1600 n_lossrecords = get_lr_array_from_lr_table ();
1601 tl_assert(VG_(OSetGen_Size)(lr_table) == n_lossrecords);
1603 // Sort the array by loss record sizes.
1604 VG_(ssort)(lr_array, n_lossrecords, sizeof(LossRecord*),
1605 cmp_LossRecords);
1607 // Zero totals.
1608 MC_(blocks_leaked) = MC_(bytes_leaked) = 0;
1609 MC_(blocks_indirect) = MC_(bytes_indirect) = 0;
1610 MC_(blocks_dubious) = MC_(bytes_dubious) = 0;
1611 MC_(blocks_reachable) = MC_(bytes_reachable) = 0;
1612 MC_(blocks_suppressed) = MC_(bytes_suppressed) = 0;
1614 // If there is a maximum nr of loss records we can output, then first
1615 // compute from where the output scan has to start.
1616 // By default, start from the first loss record. Compute a higher
1617 // value if there is a maximum to respect. We need to print the last
1618 // records, as the one with the biggest sizes are more interesting.
1619 start_lr_output_scan = 0;
1620 if (lcp->mode == LC_Full && lcp->max_loss_records_output < n_lossrecords) {
1621 Int nr_printable_records = 0;
1622 for (i = n_lossrecords - 1; i >= 0 && start_lr_output_scan == 0; i--) {
1623 Bool count_as_error, print_record;
1624 lr = lr_array[i];
1625 get_printing_rules (lcp, lr, &count_as_error, &print_record);
1626 // Do not use get_printing_rules results for is_suppressed, as we
1627 // only want to check if the record would be suppressed.
1628 is_suppressed =
1629 MC_(record_leak_error) ( tid, i+1, n_lossrecords, lr,
1630 False /* print_record */,
1631 False /* count_as_error */);
1632 if (print_record && !is_suppressed) {
1633 nr_printable_records++;
1634 if (nr_printable_records == lcp->max_loss_records_output)
1635 start_lr_output_scan = i;
1640 if (lcp->xt_filename != NULL)
1641 leak_xt = VG_(XT_create) (VG_(malloc),
1642 "mc_leakcheck.leak_xt",
1643 VG_(free),
1644 sizeof(XT_Leak),
1645 MC_(XT_Leak_init),
1646 MC_(XT_Leak_add),
1647 MC_(XT_Leak_sub),
1648 VG_(XT_filter_maybe_below_main));
1650 // Print the loss records (in size order) and collect summary stats.
1651 for (i = start_lr_output_scan; i < n_lossrecords; i++) {
1652 Bool count_as_error, print_record;
1653 lr = lr_array[i];
1654 get_printing_rules(lcp, lr, &count_as_error, &print_record);
1655 is_suppressed =
1656 MC_(record_leak_error)
1657 ( tid, i+1, n_lossrecords, lr,
1658 lcp->xt_filename == NULL ? print_record : False,
1659 count_as_error );
1660 if (lcp->xt_filename != NULL && !is_suppressed && print_record)
1661 XT_insert_lr (lr);
1663 if (is_suppressed) {
1664 MC_(blocks_suppressed) += lr->num_blocks;
1665 MC_(bytes_suppressed) += lr->szB;
1667 } else if (Unreached == lr->key.state) {
1668 MC_(blocks_leaked) += lr->num_blocks;
1669 MC_(bytes_leaked) += lr->szB;
1671 } else if (IndirectLeak == lr->key.state) {
1672 MC_(blocks_indirect) += lr->num_blocks;
1673 MC_(bytes_indirect) += lr->szB;
1675 } else if (Possible == lr->key.state) {
1676 MC_(blocks_dubious) += lr->num_blocks;
1677 MC_(bytes_dubious) += lr->szB;
1679 } else if (Reachable == lr->key.state) {
1680 MC_(blocks_reachable) += lr->num_blocks;
1681 MC_(bytes_reachable) += lr->szB;
1683 } else {
1684 VG_(tool_panic)("unknown loss mode");
1688 if (lcp->xt_filename != NULL) {
1689 VG_(XT_callgrind_print)(leak_xt,
1690 lcp->xt_filename,
1691 XT_Leak_events,
1692 MC_(XT_Leak_img));
1693 if (VG_(clo_verbosity) >= 1 || lcp->requested_by_monitor_command)
1694 VG_(umsg)("xtree leak report: %s\n", lcp->xt_filename);
1695 VG_(XT_delete)(leak_xt);
1698 if (VG_(clo_verbosity) > 0 && !VG_(clo_xml)) {
1699 HChar d_bytes[31];
1700 HChar d_blocks[31];
1701 # define DBY(new,old) \
1702 MC_(snprintf_delta) (d_bytes, sizeof(d_bytes), (new), (old), \
1703 lcp->deltamode)
1704 # define DBL(new,old) \
1705 MC_(snprintf_delta) (d_blocks, sizeof(d_blocks), (new), (old), \
1706 lcp->deltamode)
1708 VG_(umsg)("LEAK SUMMARY:\n");
1709 VG_(umsg)(" definitely lost: %'lu%s bytes in %'lu%s blocks\n",
1710 MC_(bytes_leaked),
1711 DBY (MC_(bytes_leaked), old_bytes_leaked),
1712 MC_(blocks_leaked),
1713 DBL (MC_(blocks_leaked), old_blocks_leaked));
1714 VG_(umsg)(" indirectly lost: %'lu%s bytes in %'lu%s blocks\n",
1715 MC_(bytes_indirect),
1716 DBY (MC_(bytes_indirect), old_bytes_indirect),
1717 MC_(blocks_indirect),
1718 DBL (MC_(blocks_indirect), old_blocks_indirect));
1719 VG_(umsg)(" possibly lost: %'lu%s bytes in %'lu%s blocks\n",
1720 MC_(bytes_dubious),
1721 DBY (MC_(bytes_dubious), old_bytes_dubious),
1722 MC_(blocks_dubious),
1723 DBL (MC_(blocks_dubious), old_blocks_dubious));
1724 VG_(umsg)(" still reachable: %'lu%s bytes in %'lu%s blocks\n",
1725 MC_(bytes_reachable),
1726 DBY (MC_(bytes_reachable), old_bytes_reachable),
1727 MC_(blocks_reachable),
1728 DBL (MC_(blocks_reachable), old_blocks_reachable));
1729 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++)
1730 if (old_blocks_heuristically_reachable[i] > 0
1731 || MC_(blocks_heuristically_reachable)[i] > 0) {
1732 VG_(umsg)(" of which "
1733 "reachable via heuristic:\n");
1734 break;
1736 for (i = 0; i < N_LEAK_CHECK_HEURISTICS; i++)
1737 if (old_blocks_heuristically_reachable[i] > 0
1738 || MC_(blocks_heuristically_reachable)[i] > 0)
1739 VG_(umsg)(" %-19s: "
1740 "%'lu%s bytes in %'lu%s blocks\n",
1741 pp_heuristic(i),
1742 MC_(bytes_heuristically_reachable)[i],
1743 DBY (MC_(bytes_heuristically_reachable)[i],
1744 old_bytes_heuristically_reachable[i]),
1745 MC_(blocks_heuristically_reachable)[i],
1746 DBL (MC_(blocks_heuristically_reachable)[i],
1747 old_blocks_heuristically_reachable[i]));
1748 VG_(umsg)(" suppressed: %'lu%s bytes in %'lu%s blocks\n",
1749 MC_(bytes_suppressed),
1750 DBY (MC_(bytes_suppressed), old_bytes_suppressed),
1751 MC_(blocks_suppressed),
1752 DBL (MC_(blocks_suppressed), old_blocks_suppressed));
1753 if (lcp->mode != LC_Full &&
1754 (MC_(blocks_leaked) + MC_(blocks_indirect) +
1755 MC_(blocks_dubious) + MC_(blocks_reachable)) > 0) {
1756 if (lcp->requested_by_monitor_command)
1757 VG_(umsg)("To see details of leaked memory, "
1758 "give 'full' arg to leak_check\n");
1759 else
1760 VG_(umsg)("Rerun with --leak-check=full to see details "
1761 "of leaked memory\n");
1763 if (lcp->mode == LC_Full &&
1764 MC_(blocks_reachable) > 0 && !RiS(Reachable,lcp->show_leak_kinds)) {
1765 VG_(umsg)("Reachable blocks (those to which a pointer "
1766 "was found) are not shown.\n");
1767 if (lcp->requested_by_monitor_command)
1768 VG_(umsg)("To see them, add 'reachable any' args to leak_check\n");
1769 else
1770 VG_(umsg)("To see them, rerun with: --leak-check=full "
1771 "--show-leak-kinds=all\n");
1773 VG_(umsg)("\n");
1774 #undef DBL
1775 #undef DBY
1779 // print recursively all indirectly leaked blocks collected in clique.
1780 // Printing stops when *remaining reaches 0.
1781 static void print_clique (Int clique, UInt level, UInt *remaining)
1783 Int ind;
1784 UInt i, n_lossrecords;
1786 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1788 for (ind = 0; ind < lc_n_chunks && *remaining > 0; ind++) {
1789 LC_Extra* ind_ex = &(lc_extras)[ind];
1790 if (ind_ex->state == IndirectLeak
1791 && ind_ex->IorC.clique == (SizeT) clique) {
1792 MC_Chunk* ind_ch = lc_chunks[ind];
1793 LossRecord* ind_lr;
1794 LossRecordKey ind_lrkey;
1795 UInt lr_i;
1796 ind_lrkey.state = ind_ex->state;
1797 ind_lrkey.allocated_at = MC_(allocated_at)(ind_ch);
1798 ind_lr = VG_(OSetGen_Lookup)(lr_table, &ind_lrkey);
1799 for (lr_i = 0; lr_i < n_lossrecords; lr_i++)
1800 if (ind_lr == lr_array[lr_i])
1801 break;
1802 for (i = 0; i < level; i++)
1803 VG_(umsg)(" ");
1804 VG_(umsg)("%p[%lu] indirect loss record %u\n",
1805 (void *)ind_ch->data, (SizeT)ind_ch->szB,
1806 lr_i+1); // lr_i+1 for user numbering.
1807 (*remaining)--;
1808 if (lr_i >= n_lossrecords)
1809 VG_(umsg)
1810 ("error: no indirect loss record found for %p[%lu]?????\n",
1811 (void *)ind_ch->data, (SizeT)ind_ch->szB);
1812 print_clique(ind, level+1, remaining);
1817 Bool MC_(print_block_list) ( UInt loss_record_nr_from,
1818 UInt loss_record_nr_to,
1819 UInt max_blocks,
1820 UInt heuristics)
1822 UInt loss_record_nr;
1823 UInt i, n_lossrecords;
1824 LossRecord* lr;
1825 Bool lr_printed;
1826 UInt remaining = max_blocks;
1828 if (lr_table == NULL || lc_chunks == NULL || lc_extras == NULL) {
1829 VG_(umsg)("Can't print block list : no valid leak search result\n");
1830 return False;
1833 if (lc_chunks_n_frees_marker != MC_(get_cmalloc_n_frees)()) {
1834 VG_(umsg)("Can't print obsolete block list : redo a leak search first\n");
1835 return False;
1838 n_lossrecords = VG_(OSetGen_Size)(lr_table);
1839 if (loss_record_nr_from >= n_lossrecords)
1840 return False; // Invalid starting loss record nr.
1842 if (loss_record_nr_to >= n_lossrecords)
1843 loss_record_nr_to = n_lossrecords - 1;
1845 tl_assert (lr_array);
1847 for (loss_record_nr = loss_record_nr_from;
1848 loss_record_nr <= loss_record_nr_to && remaining > 0;
1849 loss_record_nr++) {
1850 lr = lr_array[loss_record_nr];
1851 lr_printed = False;
1853 /* If user asks to print a specific loss record, we print
1854 the block details, even if no block will be shown for this lr.
1855 If user asks to print a range of lr, we only print lr details
1856 when at least one block is shown. */
1857 if (loss_record_nr_from == loss_record_nr_to) {
1858 /* (+1 on loss_record_nr as user numbering for loss records
1859 starts at 1). */
1860 MC_(pp_LossRecord)(loss_record_nr+1, n_lossrecords, lr);
1861 lr_printed = True;
1864 // Match the chunks with loss records.
1865 for (i = 0; i < lc_n_chunks && remaining > 0; i++) {
1866 MC_Chunk* ch = lc_chunks[i];
1867 LC_Extra* ex = &(lc_extras)[i];
1868 LossRecord* old_lr;
1869 LossRecordKey lrkey;
1870 lrkey.state = ex->state;
1871 lrkey.allocated_at = MC_(allocated_at)(ch);
1873 old_lr = VG_(OSetGen_Lookup)(lr_table, &lrkey);
1874 if (old_lr) {
1875 // We found an existing loss record matching this chunk.
1876 // If this is the loss record we are looking for, output the
1877 // pointer.
1878 if (old_lr == lr_array[loss_record_nr]
1879 && (heuristics == 0 || HiS(ex->heuristic, heuristics))) {
1880 if (!lr_printed) {
1881 MC_(pp_LossRecord)(loss_record_nr+1, n_lossrecords, lr);
1882 lr_printed = True;
1885 if (ex->heuristic)
1886 VG_(umsg)("%p[%lu] (found via heuristic %s)\n",
1887 (void *)ch->data, (SizeT)ch->szB,
1888 pp_heuristic (ex->heuristic));
1889 else
1890 VG_(umsg)("%p[%lu]\n",
1891 (void *)ch->data, (SizeT)ch->szB);
1892 remaining--;
1893 if (ex->state != Reachable) {
1894 // We can print the clique in all states, except Reachable.
1895 // In Unreached state, lc_chunk[i] is the clique leader.
1896 // In IndirectLeak, lc_chunk[i] might have been a clique
1897 // leader which was later collected in another clique.
1898 // For Possible, lc_chunk[i] might be the top of a clique
1899 // or an intermediate clique.
1900 print_clique(i, 1, &remaining);
1903 } else {
1904 // No existing loss record matches this chunk ???
1905 VG_(umsg)("error: no loss record found for %p[%lu]?????\n",
1906 (void *)ch->data, (SizeT)ch->szB);
1910 return True;
1913 // If searched = 0, scan memory root set, pushing onto the mark stack the blocks
1914 // encountered.
1915 // Otherwise (searched != 0), scan the memory root set searching for ptr
1916 // pointing inside [searched, searched+szB[.
1917 static void scan_memory_root_set(Addr searched, SizeT szB)
1919 Int i;
1920 Int n_seg_starts;
1921 Addr* seg_starts = VG_(get_segment_starts)( SkFileC | SkAnonC | SkShmC,
1922 &n_seg_starts );
1924 tl_assert(seg_starts && n_seg_starts > 0);
1926 lc_scanned_szB = 0;
1927 lc_sig_skipped_szB = 0;
1929 // VG_(am_show_nsegments)( 0, "leakcheck");
1930 for (i = 0; i < n_seg_starts; i++) {
1931 SizeT seg_size;
1932 NSegment const* seg = VG_(am_find_nsegment)( seg_starts[i] );
1933 tl_assert(seg);
1934 tl_assert(seg->kind == SkFileC || seg->kind == SkAnonC ||
1935 seg->kind == SkShmC);
1937 if (!(seg->hasR && seg->hasW)) continue;
1938 if (seg->isCH) continue;
1940 // Don't poke around in device segments as this may cause
1941 // hangs. Include /dev/zero just in case someone allocated
1942 // memory by explicitly mapping /dev/zero.
1943 if (seg->kind == SkFileC
1944 && (VKI_S_ISCHR(seg->mode) || VKI_S_ISBLK(seg->mode))) {
1945 const HChar* dev_name = VG_(am_get_filename)( seg );
1946 if (dev_name && 0 == VG_(strcmp)(dev_name, "/dev/zero")) {
1947 // Don't skip /dev/zero.
1948 } else {
1949 // Skip this device mapping.
1950 continue;
1954 if (0)
1955 VG_(printf)("ACCEPT %2d %#lx %#lx\n", i, seg->start, seg->end);
1957 // Scan the segment. We use -1 for the clique number, because this
1958 // is a root-set.
1959 seg_size = seg->end - seg->start + 1;
1960 if (VG_(clo_verbosity) > 2) {
1961 VG_(message)(Vg_DebugMsg,
1962 " Scanning root segment: %#lx..%#lx (%lu)\n",
1963 seg->start, seg->end, seg_size);
1965 lc_scan_memory(seg->start, seg_size, /*is_prior_definite*/True,
1966 /*clique*/-1, /*cur_clique*/-1,
1967 searched, szB);
1969 VG_(free)(seg_starts);
1972 static MC_Mempool *find_mp_of_chunk (MC_Chunk* mc_search)
1974 MC_Mempool* mp;
1976 tl_assert( MC_(mempool_list) );
1978 VG_(HT_ResetIter)( MC_(mempool_list) );
1979 while ( (mp = VG_(HT_Next)(MC_(mempool_list))) ) {
1980 MC_Chunk* mc;
1981 VG_(HT_ResetIter)(mp->chunks);
1982 while ( (mc = VG_(HT_Next)(mp->chunks)) ) {
1983 if (mc == mc_search)
1984 return mp;
1988 return NULL;
1991 /*------------------------------------------------------------*/
1992 /*--- Top-level entry point. ---*/
1993 /*------------------------------------------------------------*/
1995 void MC_(detect_memory_leaks) ( ThreadId tid, LeakCheckParams* lcp)
1997 Int i, j;
1999 tl_assert(lcp->mode != LC_Off);
2001 // Verify some assertions which are used in lc_scan_memory.
2002 tl_assert((VKI_PAGE_SIZE % sizeof(Addr)) == 0);
2003 tl_assert((SM_SIZE % sizeof(Addr)) == 0);
2004 // Above two assertions are critical, while below assertion
2005 // ensures that the optimisation in the loop is done in the
2006 // correct order : the loop checks for (big) SM chunk skipping
2007 // before checking for (smaller) page skipping.
2008 tl_assert((SM_SIZE % VKI_PAGE_SIZE) == 0);
2010 MC_(leak_search_gen)++;
2011 MC_(detect_memory_leaks_last_delta_mode) = lcp->deltamode;
2012 detect_memory_leaks_last_heuristics = lcp->heuristics;
2014 // Get the chunks, stop if there were none.
2015 if (lc_chunks) {
2016 VG_(free)(lc_chunks);
2017 lc_chunks = NULL;
2019 lc_chunks = find_active_chunks(&lc_n_chunks);
2020 lc_chunks_n_frees_marker = MC_(get_cmalloc_n_frees)();
2021 if (lc_n_chunks == 0) {
2022 tl_assert(lc_chunks == NULL);
2023 if (lr_table != NULL) {
2024 // forget the previous recorded LossRecords as next leak search
2025 // can in any case just create new leaks.
2026 // Maybe it would be better to rather call print_result ?
2027 // (at least when leak decreases are requested)
2028 // This will then output all LossRecords with a size decreasing to 0
2029 VG_(OSetGen_Destroy) (lr_table);
2030 lr_table = NULL;
2032 if (VG_(clo_verbosity) >= 1 && !VG_(clo_xml)) {
2033 VG_(umsg)("All heap blocks were freed -- no leaks are possible\n");
2034 VG_(umsg)("\n");
2036 return;
2039 // Sort the array so blocks are in ascending order in memory.
2040 VG_(ssort)(lc_chunks, lc_n_chunks, sizeof(VgHashNode*), compare_MC_Chunks);
2042 // Sanity check -- make sure they're in order.
2043 for (i = 0; i < lc_n_chunks-1; i++) {
2044 tl_assert( lc_chunks[i]->data <= lc_chunks[i+1]->data);
2047 // Sanity check -- make sure they don't overlap. One exception is that
2048 // we allow a MALLOCLIKE block to sit entirely within a malloc() block.
2049 // This is for bug 100628. If this occurs, we ignore the malloc() block
2050 // for leak-checking purposes. This is a hack and probably should be done
2051 // better, but at least it's consistent with mempools (which are treated
2052 // like this in find_active_chunks). Mempools have a separate VgHashTable
2053 // for mempool chunks, but if custom-allocated blocks are put in a separate
2054 // table from normal heap blocks it makes free-mismatch checking more
2055 // difficult.
2056 // Another exception: Metapool memory blocks overlap by definition. The meta-
2057 // block is allocated (by a custom allocator), and chunks of that block are
2058 // allocated again for use by the application: Not an error.
2060 // If this check fails, it probably means that the application
2061 // has done something stupid with VALGRIND_MALLOCLIKE_BLOCK client
2062 // requests, eg. has made overlapping requests (which are
2063 // nonsensical), or used VALGRIND_MALLOCLIKE_BLOCK for stack locations;
2064 // again nonsensical.
2066 for (i = 0; i < lc_n_chunks-1; i++) {
2067 MC_Chunk* ch1 = lc_chunks[i];
2068 MC_Chunk* ch2 = lc_chunks[i+1];
2070 Addr start1 = ch1->data;
2071 Addr start2 = ch2->data;
2072 Addr end1 = ch1->data + ch1->szB - 1;
2073 Addr end2 = ch2->data + ch2->szB - 1;
2074 Bool isCustom1 = ch1->allockind == MC_AllocCustom;
2075 Bool isCustom2 = ch2->allockind == MC_AllocCustom;
2077 if (end1 < start2) {
2078 // Normal case - no overlap.
2080 // We used to allow exact duplicates, I'm not sure why. --njn
2081 //} else if (start1 == start2 && end1 == end2) {
2082 // Degenerate case: exact duplicates.
2084 } else if (start1 >= start2 && end1 <= end2 && isCustom1 && !isCustom2) {
2085 // Block i is MALLOCLIKE and entirely within block i+1.
2086 // Remove block i+1.
2087 for (j = i+1; j < lc_n_chunks-1; j++) {
2088 lc_chunks[j] = lc_chunks[j+1];
2090 lc_n_chunks--;
2092 } else if (start2 >= start1 && end2 <= end1 && isCustom2 && !isCustom1) {
2093 // Block i+1 is MALLOCLIKE and entirely within block i.
2094 // Remove block i.
2095 for (j = i; j < lc_n_chunks-1; j++) {
2096 lc_chunks[j] = lc_chunks[j+1];
2098 lc_n_chunks--;
2100 } else {
2101 // Overlap is allowed ONLY when one of the two candicates is a block
2102 // from a memory pool that has the metapool attribute set.
2103 // All other mixtures trigger the error + assert.
2104 MC_Mempool* mp;
2105 Bool ch1_is_meta = False, ch2_is_meta = False;
2106 Bool Inappropriate = False;
2108 if (MC_(is_mempool_block)(ch1)) {
2109 mp = find_mp_of_chunk(ch1);
2110 if (mp && mp->metapool) {
2111 ch1_is_meta = True;
2115 if (MC_(is_mempool_block)(ch2)) {
2116 mp = find_mp_of_chunk(ch2);
2117 if (mp && mp->metapool) {
2118 ch2_is_meta = True;
2122 // If one of the blocks is a meta block, the other must be entirely
2123 // within that meta block, or something is really wrong with the custom
2124 // allocator.
2125 if (ch1_is_meta != ch2_is_meta) {
2126 if ( (ch1_is_meta && (start2 < start1 || end2 > end1)) ||
2127 (ch2_is_meta && (start1 < start2 || end1 > end2)) ) {
2128 Inappropriate = True;
2132 if (ch1_is_meta == ch2_is_meta || Inappropriate) {
2133 VG_(umsg)("Block 0x%lx..0x%lx overlaps with block 0x%lx..0x%lx\n",
2134 start1, end1, start2, end2);
2135 VG_(umsg)("Blocks allocation contexts:\n"),
2136 VG_(pp_ExeContext)( MC_(allocated_at)(ch1));
2137 VG_(umsg)("\n"),
2138 VG_(pp_ExeContext)( MC_(allocated_at)(ch2));
2139 VG_(umsg)("This is usually caused by using ");
2140 VG_(umsg)("VALGRIND_MALLOCLIKE_BLOCK in an inappropriate way.\n");
2141 tl_assert (0);
2146 // Initialise lc_extras.
2147 if (lc_extras) {
2148 VG_(free)(lc_extras);
2149 lc_extras = NULL;
2151 lc_extras = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(LC_Extra) );
2152 for (i = 0; i < lc_n_chunks; i++) {
2153 lc_extras[i].state = Unreached;
2154 lc_extras[i].pending = False;
2155 lc_extras[i].heuristic = LchNone;
2156 lc_extras[i].IorC.indirect_szB = 0;
2159 // Initialise lc_markstack.
2160 lc_markstack = VG_(malloc)( "mc.dml.2", lc_n_chunks * sizeof(Int) );
2161 for (i = 0; i < lc_n_chunks; i++) {
2162 lc_markstack[i] = -1;
2164 lc_markstack_top = -1;
2166 // Verbosity.
2167 if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
2168 VG_(umsg)( "Searching for pointers to %'d not-freed blocks\n",
2169 lc_n_chunks );
2172 // Scan the memory root-set, pushing onto the mark stack any blocks
2173 // pointed to.
2174 scan_memory_root_set(/*searched*/0, 0);
2176 // Scan GP registers for chunk pointers.
2177 VG_(apply_to_GP_regs)(lc_push_if_a_chunk_ptr_register);
2179 // Process the pushed blocks. After this, every block that is reachable
2180 // from the root-set has been traced.
2181 lc_process_markstack(/*clique*/-1);
2183 if (VG_(clo_verbosity) > 1 && !VG_(clo_xml)) {
2184 VG_(umsg)("Checked %'lu bytes\n", lc_scanned_szB);
2185 if (lc_sig_skipped_szB > 0)
2186 VG_(umsg)("Skipped %'lu bytes due to read errors\n",
2187 lc_sig_skipped_szB);
2188 VG_(umsg)( "\n" );
2191 // Trace all the leaked blocks to determine which are directly leaked and
2192 // which are indirectly leaked. For each Unreached block, push it onto
2193 // the mark stack, and find all the as-yet-Unreached blocks reachable
2194 // from it. These form a clique and are marked IndirectLeak, and their
2195 // size is added to the clique leader's indirect size. If one of the
2196 // found blocks was itself a clique leader (from a previous clique), then
2197 // the cliques are merged.
2198 for (i = 0; i < lc_n_chunks; i++) {
2199 MC_Chunk* ch = lc_chunks[i];
2200 LC_Extra* ex = &(lc_extras[i]);
2202 if (VG_DEBUG_CLIQUE)
2203 VG_(printf)("cliques: %d at %#lx -> Loss state %d\n",
2204 i, ch->data, ex->state);
2206 tl_assert(lc_markstack_top == -1);
2208 if (ex->state == Unreached) {
2209 if (VG_DEBUG_CLIQUE)
2210 VG_(printf)("%d: gathering clique %#lx\n", i, ch->data);
2212 // Push this Unreached block onto the stack and process it.
2213 lc_push(i, ch);
2214 lc_process_markstack(/*clique*/i);
2216 tl_assert(lc_markstack_top == -1);
2217 tl_assert(ex->state == Unreached);
2221 print_results( tid, lcp);
2223 VG_(free) ( lc_markstack );
2224 lc_markstack = NULL;
2225 // lc_chunks, lc_extras, lr_array and lr_table are kept (needed if user
2226 // calls MC_(print_block_list)). lr_table also used for delta leak reporting
2227 // between this leak search and the next leak search.
2230 static Addr searched_wpa;
2231 static SizeT searched_szB;
2232 static void
2233 search_address_in_GP_reg(ThreadId tid, const HChar* regname, Addr addr_in_reg)
2235 if (addr_in_reg >= searched_wpa
2236 && addr_in_reg < searched_wpa + searched_szB) {
2237 if (addr_in_reg == searched_wpa)
2238 VG_(umsg)
2239 ("tid %u register %s pointing at %#lx\n",
2240 tid, regname, searched_wpa);
2241 else
2242 VG_(umsg)
2243 ("tid %u register %s interior pointing %lu bytes inside %#lx\n",
2244 tid, regname, (long unsigned) addr_in_reg - searched_wpa,
2245 searched_wpa);
2249 void MC_(who_points_at) ( Addr address, SizeT szB)
2251 MC_Chunk** chunks;
2252 Int n_chunks;
2253 Int i;
2255 if (szB == 1)
2256 VG_(umsg) ("Searching for pointers to %#lx\n", address);
2257 else
2258 VG_(umsg) ("Searching for pointers pointing in %lu bytes from %#lx\n",
2259 szB, address);
2261 chunks = find_active_chunks(&n_chunks);
2263 // Scan memory root-set, searching for ptr pointing in address[szB]
2264 scan_memory_root_set(address, szB);
2266 // Scan active malloc-ed chunks
2267 for (i = 0; i < n_chunks; i++) {
2268 lc_scan_memory(chunks[i]->data, chunks[i]->szB,
2269 /*is_prior_definite*/True,
2270 /*clique*/-1, /*cur_clique*/-1,
2271 address, szB);
2273 VG_(free) ( chunks );
2275 // Scan GP registers for pointers to address range.
2276 searched_wpa = address;
2277 searched_szB = szB;
2278 VG_(apply_to_GP_regs)(search_address_in_GP_reg);
2282 /*--------------------------------------------------------------------*/
2283 /*--- end ---*/
2284 /*--------------------------------------------------------------------*/