-> 3.17.0 final.
[valgrind.git] / massif / ms_main.c
blob1ebbe4f29f3b5e8e107a03c379d9e33189fe8fa9
1 //--------------------------------------------------------------------//
2 //--- Massif: a heap profiling tool. ms_main.c ---//
3 //--------------------------------------------------------------------//
5 /*
6 This file is part of Massif, a Valgrind tool for profiling memory
7 usage of programs.
9 Copyright (C) 2003-2017 Nicholas Nethercote
10 njn@valgrind.org
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, see <http://www.gnu.org/licenses/>.
25 The GNU General Public License is contained in the file COPYING.
28 //---------------------------------------------------------------------------
29 // XXX:
30 //---------------------------------------------------------------------------
31 // Todo -- nice, but less critical:
32 // - do a graph-drawing test
33 // - make file format more generic. Obstacles:
34 // - unit prefixes are not generic
35 // - preset column widths for stats are not generic
36 // - preset column headers are not generic
37 // - "Massif arguments:" line is not generic
38 // - do snapshots on some specific client requests
39 // - "show me the extra allocations since the last snapshot"
40 // - "start/stop logging" (eg. quickly skip boring bits)
41 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
42 // Give each graph a title. (try to do it generically!)
43 // - make --show-below-main=no work
44 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
45 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
46 // m_commandline.c:add_args_from_string() needs to respect single quotes.
47 // - With --stack=yes, want to add a stack trace for detailed snapshots so
48 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
49 // possibly useful even with --stack=no? (Andi Yin)
51 // Performance:
52 // - To run the benchmarks:
54 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
55 // time valgrind --tool=massif --depth=100 konqueror
57 // The other benchmarks don't do much allocation, and so give similar speeds
58 // to Nulgrind.
60 // Timing results on 'nevermore' (njn's machine) as of r7013:
62 // heap 0.53s ma:12.4s (23.5x, -----)
63 // tinycc 0.46s ma: 4.9s (10.7x, -----)
64 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
65 // konqueror 29.6s real 0:21.0s user
67 // [Introduction of --time-unit=i as the default slowed things down by
68 // roughly 0--20%.]
70 // Todo -- low priority:
71 // - In each XPt, record both bytes and the number of allocations, and
72 // possibly the global number of allocations.
73 // - (Andy Lin) Give a stack trace on detailed snapshots?
74 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
75 // than a certain size! Because: "linux's malloc allows to set a
76 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
77 // be handled directly by the kernel, and are guaranteed to be returned to
78 // the system when freed. So we needed to profile only blocks below this
79 // limit."
81 // File format working notes:
83 #if 0
84 desc: --heap-admin=foo
85 cmd: date
86 time_unit: ms
87 #-----------
88 snapshot=0
89 #-----------
90 time=0
91 mem_heap_B=0
92 mem_heap_admin_B=0
93 mem_stacks_B=0
94 heap_tree=empty
95 #-----------
96 snapshot=1
97 #-----------
98 time=353
99 mem_heap_B=5
100 mem_heap_admin_B=0
101 mem_stacks_B=0
102 heap_tree=detailed
103 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
104 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
105 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
106 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
107 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
108 n1: 5 0x8049821: (within /bin/date)
109 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
112 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
113 t_events: B
114 n 0 0 0 0 0
115 n 0 0 0 0 0
116 t1: 5 <string...>
117 t1: 6 <string...>
119 Ideas:
120 - each snapshot specifies an x-axis value and one or more y-axis values.
121 - can display the y-axis values separately if you like
122 - can completely separate connection between snapshots and trees.
124 Challenges:
125 - how to specify and scale/abbreviate units on axes?
126 - how to combine multiple values into the y-axis?
128 --------------------------------------------------------------------------------Command: date
129 Massif arguments: --heap-admin=foo
130 ms_print arguments: massif.out
131 --------------------------------------------------------------------------------
133 6.472^ :#
134 | :# :: . .
136 | ::@ :@ :@ :@:::# :: : ::::
137 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713
139 Number of snapshots: 50
140 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
141 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
142 -------------------------------------------------------------------------------- 0 0 0 0 0 0
143 1 345 5 5 0 0
144 2 353 5 5 0 0
145 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
146 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
147 #endif
149 //---------------------------------------------------------------------------
151 #include "pub_tool_basics.h"
152 #include "pub_tool_vki.h"
153 #include "pub_tool_aspacemgr.h"
154 #include "pub_tool_debuginfo.h"
155 #include "pub_tool_hashtable.h"
156 #include "pub_tool_libcbase.h"
157 #include "pub_tool_libcassert.h"
158 #include "pub_tool_libcfile.h"
159 #include "pub_tool_libcprint.h"
160 #include "pub_tool_libcproc.h"
161 #include "pub_tool_machine.h"
162 #include "pub_tool_mallocfree.h"
163 #include "pub_tool_options.h"
164 #include "pub_tool_poolalloc.h"
165 #include "pub_tool_replacemalloc.h"
166 #include "pub_tool_stacktrace.h"
167 #include "pub_tool_threadstate.h"
168 #include "pub_tool_tooliface.h"
169 #include "pub_tool_xarray.h"
170 #include "pub_tool_xtree.h"
171 #include "pub_tool_xtmemory.h"
172 #include "pub_tool_clientstate.h"
173 #include "pub_tool_gdbserver.h"
175 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
177 //------------------------------------------------------------*/
178 //--- Overview of operation ---*/
179 //------------------------------------------------------------*/
181 // The size of the stacks and heap is tracked. The heap is tracked in a lot
182 // of detail, enough to tell how many bytes each line of code is responsible
183 // for, more or less. The main data structure is an xtree maintaining the
184 // call tree beneath all the allocation functions like malloc().
185 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
186 // the page level, and each page is treated much like a heap block. We use
187 // "heap" throughout below to cover this case because the concepts are all the
188 // same.)
190 // "Snapshots" are recordings of the memory usage. There are two basic
191 // kinds:
192 // - Normal: these record the current time, total memory size, total heap
193 // size, heap admin size and stack size.
194 // - Detailed: these record those things in a normal snapshot, plus a very
195 // detailed XTree (see below) indicating how the heap is structured.
197 // Snapshots are taken every so often. There are two storage classes of
198 // snapshots:
199 // - Temporary: Massif does a temporary snapshot every so often. The idea
200 // is to always have a certain number of temporary snapshots around. So
201 // we take them frequently to begin with, but decreasingly often as the
202 // program continues to run. Also, we remove some old ones after a while.
203 // Overall it's a kind of exponential decay thing. Most of these are
204 // normal snapshots, a small fraction are detailed snapshots.
205 // - Permanent: Massif takes a permanent (detailed) snapshot in some
206 // circumstances. They are:
207 // - Peak snapshot: When the memory usage peak is reached, it takes a
208 // snapshot. It keeps this, unless the peak is subsequently exceeded,
209 // in which case it will overwrite the peak snapshot.
210 // - User-requested snapshots: These are done in response to client
211 // requests. They are always kept.
213 // Used for printing things when clo_verbosity > 1.
214 #define VERB(verb, format, args...) \
215 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \
216 VG_(dmsg)("Massif: " format, ##args); \
219 //------------------------------------------------------------//
220 //--- Statistics ---//
221 //------------------------------------------------------------//
223 // Konqueror startup, to give an idea of the numbers involved with a biggish
224 // program, with default depth:
226 // depth=3 depth=40
227 // - 310,000 allocations
228 // - 300,000 frees
229 // - 15,000 XPts 800,000 XPts
230 // - 1,800 top-XPts
232 static UInt n_heap_allocs = 0;
233 static UInt n_heap_reallocs = 0;
234 static UInt n_heap_frees = 0;
235 static UInt n_ignored_heap_allocs = 0;
236 static UInt n_ignored_heap_frees = 0;
237 static UInt n_ignored_heap_reallocs = 0;
238 static UInt n_stack_allocs = 0;
239 static UInt n_stack_frees = 0;
241 static UInt n_skipped_snapshots = 0;
242 static UInt n_real_snapshots = 0;
243 static UInt n_detailed_snapshots = 0;
244 static UInt n_peak_snapshots = 0;
245 static UInt n_cullings = 0;
247 //------------------------------------------------------------//
248 //--- Globals ---//
249 //------------------------------------------------------------//
251 // Number of guest instructions executed so far. Only used with
252 // --time-unit=i.
253 static Long guest_instrs_executed = 0;
255 static SizeT heap_szB = 0; // Live heap size
256 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
257 static SizeT stacks_szB = 0; // Live stacks size
259 // This is the total size from the current peak snapshot, or 0 if no peak
260 // snapshot has been taken yet.
261 static SizeT peak_snapshot_total_szB = 0;
263 // Incremented every time memory is allocated/deallocated, by the
264 // allocated/deallocated amount; includes heap, heap-admin and stack
265 // memory. An alternative to milliseconds as a unit of program "time".
266 static ULong total_allocs_deallocs_szB = 0;
268 // When running with --heap=yes --pages-as-heap=no, we don't start taking
269 // snapshots until the first basic block is executed, rather than doing it in
270 // ms_post_clo_init (which is the obvious spot), for two reasons.
271 // - It lets us ignore stack events prior to that, because they're not
272 // really proper ones and just would screw things up.
273 // - Because there's still some core initialisation to do, and so there
274 // would be an artificial time gap between the first and second snapshots.
276 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
277 // earlier due to new_mem_startup so this isn't relevant.
279 static Bool have_started_executing_code = False;
281 //------------------------------------------------------------//
282 //--- Alloc fns ---//
283 //------------------------------------------------------------//
285 static XArray* alloc_fns;
286 static XArray* ignore_fns;
288 static void init_alloc_fns(void)
290 // Create the list, and add the default elements.
291 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
292 VG_(free), sizeof(HChar*));
293 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
295 // Ordered roughly according to (presumed) frequency.
296 // Nb: The C++ "operator new*" ones are overloadable. We include them
297 // always anyway, because even if they're overloaded, it would be a
298 // prodigiously stupid overloading that caused them to not allocate
299 // memory.
301 // XXX: because we don't look at the first stack entry (unless it's a
302 // custom allocation) there's not much point to having all these alloc
303 // functions here -- they should never appear anywhere (I think?) other
304 // than the top stack entry. The only exceptions are those that in
305 // vg_replace_malloc.c are partly or fully implemented in terms of another
306 // alloc function: realloc (which uses malloc); valloc,
307 // malloc_zone_valloc, posix_memalign and memalign_common (which use
308 // memalign).
310 DO("malloc" );
311 DO("__builtin_new" );
312 DO("operator new(unsigned)" );
313 DO("operator new(unsigned long)" );
314 DO("__builtin_vec_new" );
315 DO("operator new[](unsigned)" );
316 DO("operator new[](unsigned long)" );
317 DO("calloc" );
318 DO("realloc" );
319 DO("memalign" );
320 DO("posix_memalign" );
321 DO("valloc" );
322 DO("operator new(unsigned, std::nothrow_t const&)" );
323 DO("operator new[](unsigned, std::nothrow_t const&)" );
324 DO("operator new(unsigned long, std::nothrow_t const&)" );
325 DO("operator new[](unsigned long, std::nothrow_t const&)");
326 #if defined(VGO_darwin)
327 DO("malloc_zone_malloc" );
328 DO("malloc_zone_calloc" );
329 DO("malloc_zone_realloc" );
330 DO("malloc_zone_memalign" );
331 DO("malloc_zone_valloc" );
332 #endif
335 static void init_ignore_fns(void)
337 // Create the (empty) list.
338 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
339 VG_(free), sizeof(HChar*));
342 //------------------------------------------------------------//
343 //--- Command line args ---//
344 //------------------------------------------------------------//
346 #define MAX_DEPTH 200
348 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
350 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
352 switch (time_unit) {
353 case TimeI: return "i";
354 case TimeMS: return "ms";
355 case TimeB: return "B";
356 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
360 static Bool clo_heap = True;
361 // clo_heap_admin is deliberately a word-sized type. At one point it was
362 // a UInt, but this caused problems on 64-bit machines when it was
363 // multiplied by a small negative number and then promoted to a
364 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
365 static SSizeT clo_heap_admin = 8;
366 static Bool clo_pages_as_heap = False;
367 static Bool clo_stacks = False;
368 static Int clo_depth = 30;
369 static double clo_threshold = 1.0; // percentage
370 static double clo_peak_inaccuracy = 1.0; // percentage
371 static Int clo_time_unit = TimeI;
372 static Int clo_detailed_freq = 10;
373 static Int clo_max_snapshots = 100;
374 static const HChar* clo_massif_out_file = "massif.out.%p";
376 static XArray* args_for_massif;
378 static Bool ms_process_cmd_line_option(const HChar* arg)
380 const HChar* tmp_str;
382 // Remember the arg for later use.
383 VG_(addToXA)(args_for_massif, &arg);
385 if VG_BOOL_CLO(arg, "--heap", clo_heap) {}
386 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {}
388 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {}
390 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {}
392 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {}
394 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) {
395 VG_(addToXA)(alloc_fns, &tmp_str);
397 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) {
398 VG_(addToXA)(ignore_fns, &tmp_str);
401 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {
402 if (clo_threshold < 0 || clo_threshold > 100) {
403 VG_(fmsg_bad_option)(arg,
404 "--threshold must be between 0.0 and 100.0\n");
408 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
410 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {}
411 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {}
412 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {}
414 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {}
416 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {}
418 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
420 else
421 return VG_(replacement_malloc_process_cmd_line_option)(arg);
423 return True;
426 static void ms_print_usage(void)
428 VG_(printf)(
429 " --heap=no|yes profile heap blocks [yes]\n"
430 " --heap-admin=<size> average admin bytes per heap block;\n"
431 " ignored if --heap=no [8]\n"
432 " --stacks=no|yes profile stack(s) [no]\n"
433 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
434 " --depth=<number> depth of contexts [30]\n"
435 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
436 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
437 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
438 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
439 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
440 " or heap bytes alloc'd/dealloc'd [i]\n"
441 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
442 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
443 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
447 static void ms_print_debug_usage(void)
449 VG_(printf)(
450 " (none)\n"
455 //------------------------------------------------------------//
456 //--- XTrees ---//
457 //------------------------------------------------------------//
459 // The details of the heap are represented by a single XTree.
460 // This XTree maintains the nr of allocated bytes for each
461 // stacktrace/execontext.
463 // The root of the Xtree will be output as a top node 'alloc functions',
464 // which represents all allocation functions, eg:
465 // - malloc/calloc/realloc/memalign/new/new[];
466 // - user-specified allocation functions (using --alloc-fn);
467 // - custom allocation (MALLOCLIKE) points
468 static XTree* heap_xt;
469 /* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */
470 static void init_szB(void* value)
472 *((SizeT*)value) = 0;
474 static void add_szB(void* to, const void* value)
476 *((SizeT*)to) += *((const SizeT*)value);
478 static void sub_szB(void* from, const void* value)
480 *((SizeT*)from) -= *((const SizeT*)value);
482 static ULong alloc_szB(const void* value)
484 return (ULong)*((const SizeT*)value);
488 //------------------------------------------------------------//
489 //--- XTree Operations ---//
490 //------------------------------------------------------------//
492 // This is the limit on the number of filtered alloc-fns that can be in a
493 // single stacktrace.
494 #define MAX_OVERESTIMATE 50
495 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
497 // filtering out uninteresting entries:
498 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
499 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
500 // becomes: a / b / main
501 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
502 // as an alloc-fn. This is ok.
503 static
504 void filter_IPs (Addr* ips, Int n_ips,
505 UInt* top, UInt* n_ips_sel)
507 Int i;
508 Bool top_has_fnname = False;
509 const HChar *fnname;
511 *top = 0;
512 *n_ips_sel = n_ips;
514 // Advance *top as long as we find alloc functions
515 // PW Nov 2016 xtree work:
516 // old massif code was doing something really strange(?buggy):
517 // 'sliding' a bunch of functions without names by removing an
518 // alloc function 'inside' a stacktrace e.g.
519 // 0x1 0x2 0x3 alloc func1 main
520 // became 0x1 0x2 0x3 func1 main
521 const DiEpoch ep = VG_(current_DiEpoch)();
522 for (i = *top; i < n_ips; i++) {
523 top_has_fnname = VG_(get_fnname)(ep, ips[*top], &fnname);
524 if (top_has_fnname && VG_(strIsMemberXA)(alloc_fns, fnname)) {
525 VERB(4, "filtering alloc fn %s\n", fnname);
526 (*top)++;
527 (*n_ips_sel)--;
528 } else {
529 break;
533 // filter the whole stacktrace if this allocation has to be ignored.
534 if (*n_ips_sel > 0 && VG_(sizeXA)(ignore_fns) > 0) {
535 if (!top_has_fnname) {
536 // top has no fnname => search for the first entry that has a fnname
537 for (i = *top; i < n_ips && !top_has_fnname; i++) {
538 top_has_fnname = VG_(get_fnname)(ep, ips[i], &fnname);
541 if (top_has_fnname && VG_(strIsMemberXA)(ignore_fns, fnname)) {
542 VERB(4, "ignored allocation from fn %s\n", fnname);
543 *top = n_ips;
544 *n_ips_sel = 0;
548 if (!VG_(clo_show_below_main) && *n_ips_sel > 0 ) {
549 // Technically, it would be better to use the 'real' epoch that
550 // was used to capture ips/n_ips. However, this searches
551 // for a main or below_main function. It is technically possible
552 // but unlikely that main or below main fn is in a dlclose-d library,
553 // so current epoch is reasonable enough, even if not perfect.
554 // FIXME PW EPOCH: would be better to also use the real ips epoch here,
555 // once m_xtree.c massif output format properly supports epoch.
556 const DiEpoch cur_ep = VG_(current_DiEpoch)();
557 Int mbm = VG_(XT_offset_main_or_below_main)(cur_ep, ips, n_ips);
559 if (mbm < *top) {
560 // Special case: the first main (or below main) function is an
561 // alloc function.
562 *n_ips_sel = 1;
563 VERB(4, "main/below main: keeping 1 fn\n");
564 } else {
565 *n_ips_sel -= n_ips - mbm - 1;
566 VERB(4, "main/below main: filtering %d\n", n_ips - mbm - 1);
570 // filter the frames if we have more than clo_depth
571 if (*n_ips_sel > clo_depth) {
572 VERB(4, "filtering IPs above clo_depth\n");
573 *n_ips_sel = clo_depth;
577 // Capture a stacktrace, and make an ec of it, without the first entry
578 // if exclude_first_entry is True.
579 static ExeContext* make_ec(ThreadId tid, Bool exclude_first_entry)
581 static Addr ips[MAX_IPS];
583 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
584 Int n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + MAX_OVERESTIMATE,
585 NULL/*array to dump SP values in*/,
586 NULL/*array to dump FP values in*/,
587 0/*first_ip_delta*/ );
588 if (exclude_first_entry) {
589 if (n_ips > 1) {
590 const HChar *fnname;
591 VERB(4, "removing top fn %s from stacktrace\n",
592 VG_(get_fnname)(VG_(current_DiEpoch)(), ips[0], &fnname)
593 ? fnname : "???");
594 return VG_(make_ExeContext_from_StackTrace)(ips+1, n_ips-1);
595 } else {
596 VERB(4, "null execontext as removing top fn with n_ips %d\n", n_ips);
597 return VG_(null_ExeContext) ();
599 } else
600 return VG_(make_ExeContext_from_StackTrace)(ips, n_ips);
603 // Create (or update) in heap_xt an xec corresponding to the stacktrace of tid.
604 // req_szB is added to the xec (unless ec is fully filtered).
605 // Returns the correspding XTree xec.
606 // exclude_first_entry is an optimisation: if True, automatically removes
607 // the top level IP from the stacktrace. Should be set to True if it is known
608 // that this is an alloc fn. The top function presumably will be something like
609 // malloc or __builtin_new that we're sure to filter out).
610 static Xecu add_heap_xt( ThreadId tid, SizeT req_szB, Bool exclude_first_entry)
612 ExeContext *ec = make_ec(tid, exclude_first_entry);
614 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full))
615 VG_(XTMemory_Full_alloc)(req_szB, ec);
616 return VG_(XT_add_to_ec) (heap_xt, ec, &req_szB);
619 // Substract req_szB from the heap_xt where.
620 static void sub_heap_xt(Xecu where, SizeT req_szB, Bool exclude_first_entry)
622 tl_assert(clo_heap);
624 if (0 == req_szB)
625 return;
627 VG_(XT_sub_from_xecu) (heap_xt, where, &req_szB);
628 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) {
629 ExeContext *ec_free = make_ec(VG_(get_running_tid)(),
630 exclude_first_entry);
631 VG_(XTMemory_Full_free)(req_szB,
632 VG_(XT_get_ec_from_xecu)(heap_xt, where),
633 ec_free);
638 //------------------------------------------------------------//
639 //--- Snapshots ---//
640 //------------------------------------------------------------//
642 // Snapshots are done in a way so that we always have a reasonable number of
643 // them. We start by taking them quickly. Once we hit our limit, we cull
644 // some (eg. half), and start taking them more slowly. Once we hit the
645 // limit again, we again cull and then take them even more slowly, and so
646 // on.
648 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
650 typedef
651 enum {
652 Normal = 77,
653 Peak,
654 Unused
656 SnapshotKind;
658 typedef
659 struct {
660 SnapshotKind kind;
661 Time time;
662 SizeT heap_szB;
663 SizeT heap_extra_szB;// Heap slop + admin bytes.
664 SizeT stacks_szB;
665 XTree* xt; // Snapshot of heap_xt, if a detailed snapshot,
666 } // otherwise NULL.
667 Snapshot;
669 static UInt next_snapshot_i = 0; // Index of where next snapshot will go.
670 static Snapshot* snapshots; // Array of snapshots.
672 static Bool is_snapshot_in_use(Snapshot* snapshot)
674 if (Unused == snapshot->kind) {
675 // If snapshot is unused, check all the fields are unset.
676 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME);
677 tl_assert(snapshot->heap_extra_szB == 0);
678 tl_assert(snapshot->heap_szB == 0);
679 tl_assert(snapshot->stacks_szB == 0);
680 tl_assert(snapshot->xt == NULL);
681 return False;
682 } else {
683 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME);
684 return True;
688 static Bool is_detailed_snapshot(Snapshot* snapshot)
690 return (snapshot->xt ? True : False);
693 static Bool is_uncullable_snapshot(Snapshot* snapshot)
695 return &snapshots[0] == snapshot // First snapshot
696 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot
697 || snapshot->kind == Peak; // Peak snapshot
700 static void sanity_check_snapshot(Snapshot* snapshot)
702 // Not much we can sanity check.
703 tl_assert(snapshot->xt == NULL || snapshot->kind != Unused);
706 // All the used entries should look used, all the unused ones should be clear.
707 static void sanity_check_snapshots_array(void)
709 Int i;
710 for (i = 0; i < next_snapshot_i; i++) {
711 tl_assert( is_snapshot_in_use( & snapshots[i] ));
713 for ( ; i < clo_max_snapshots; i++) {
714 tl_assert(!is_snapshot_in_use( & snapshots[i] ));
718 // This zeroes all the fields in the snapshot, but does not free the xt
719 // XTree if present. It also does a sanity check unless asked not to; we
720 // can't sanity check at startup when clearing the initial snapshots because
721 // they're full of junk.
722 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
724 if (do_sanity_check) sanity_check_snapshot(snapshot);
725 snapshot->kind = Unused;
726 snapshot->time = UNUSED_SNAPSHOT_TIME;
727 snapshot->heap_extra_szB = 0;
728 snapshot->heap_szB = 0;
729 snapshot->stacks_szB = 0;
730 snapshot->xt = NULL;
733 // This zeroes all the fields in the snapshot, and frees the heap XTree xt if
734 // present.
735 static void delete_snapshot(Snapshot* snapshot)
737 // Nb: if there's an XTree, we free it after calling clear_snapshot,
738 // because clear_snapshot does a sanity check which includes checking the
739 // XTree.
740 XTree* tmp_xt = snapshot->xt;
741 clear_snapshot(snapshot, /*do_sanity_check*/True);
742 if (tmp_xt) {
743 VG_(XT_delete)(tmp_xt);
747 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
749 Snapshot* snapshot = &snapshots[i];
750 const HChar* suffix;
751 switch (snapshot->kind) {
752 case Peak: suffix = "p"; break;
753 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
754 case Unused: suffix = "u"; break;
755 default:
756 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
758 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
759 prefix, suffix, i,
760 snapshot->time,
761 snapshot->heap_szB,
762 snapshot->heap_extra_szB,
763 snapshot->stacks_szB
767 // Cull half the snapshots; we choose those that represent the smallest
768 // time-spans, because that gives us the most even distribution of snapshots
769 // over time. (It's possible to lose interesting spikes, however.)
771 // Algorithm for N snapshots: We find the snapshot representing the smallest
772 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
773 // We have to do this one snapshot at a time, rather than finding the (N/2)
774 // smallest snapshots in one hit, because when a snapshot is removed, its
775 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
776 // small, and it's not done very often.
778 // Once we're done, we return the new smallest interval between snapshots.
779 // That becomes our minimum time interval.
780 static UInt cull_snapshots(void)
782 Int i, jp, j, jn, min_timespan_i;
783 Int n_deleted = 0;
784 Time min_timespan;
786 n_cullings++;
788 // Sets j to the index of the first not-yet-removed snapshot at or after i
789 #define FIND_SNAPSHOT(i, j) \
790 for (j = i; \
791 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
792 j++) { }
794 VERB(2, "Culling...\n");
796 // First we remove enough snapshots by clearing them in-place. Once
797 // that's done, we can slide the remaining ones down.
798 for (i = 0; i < clo_max_snapshots/2; i++) {
799 // Find the snapshot representing the smallest timespan. The timespan
800 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
801 // snapshot A and B. We don't consider the first and last snapshots for
802 // removal.
803 Snapshot* min_snapshot;
804 Int min_j;
806 // Initial triple: (prev, curr, next) == (jp, j, jn)
807 // Initial min_timespan is the first one.
808 jp = 0;
809 FIND_SNAPSHOT(1, j);
810 FIND_SNAPSHOT(j+1, jn);
811 min_timespan = 0x7fffffffffffffffLL;
812 min_j = -1;
813 while (jn < clo_max_snapshots) {
814 Time timespan = snapshots[jn].time - snapshots[jp].time;
815 tl_assert(timespan >= 0);
816 // Nb: We never cull the peak snapshot.
817 if (Peak != snapshots[j].kind && timespan < min_timespan) {
818 min_timespan = timespan;
819 min_j = j;
821 // Move on to next triple
822 jp = j;
823 j = jn;
824 FIND_SNAPSHOT(jn+1, jn);
826 // We've found the least important snapshot, now delete it. First
827 // print it if necessary.
828 tl_assert(-1 != min_j); // Check we found a minimum.
829 min_snapshot = & snapshots[ min_j ];
830 if (VG_(clo_verbosity) > 1) {
831 HChar buf[64]; // large enough
832 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
833 VERB_snapshot(2, buf, min_j);
835 delete_snapshot(min_snapshot);
836 n_deleted++;
839 // Slide down the remaining snapshots over the removed ones. First set i
840 // to point to the first empty slot, and j to the first full slot after
841 // i. Then slide everything down.
842 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { }
843 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
844 for ( ; j < clo_max_snapshots; j++) {
845 if (is_snapshot_in_use( &snapshots[j] )) {
846 snapshots[i++] = snapshots[j];
847 clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
850 next_snapshot_i = i;
852 // Check snapshots array looks ok after changes.
853 sanity_check_snapshots_array();
855 // Find the minimum timespan remaining; that will be our new minimum
856 // time interval. Note that above we were finding timespans by measuring
857 // two intervals around a snapshot that was under consideration for
858 // deletion. Here we only measure single intervals because all the
859 // deletions have occurred.
861 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
862 // peak snapshot) are uncullable. If two uncullable snapshots end up
863 // next to each other, they'll never be culled (assuming the peak doesn't
864 // change), and the time gap between them will not change. However, the
865 // time between the remaining cullable snapshots will grow ever larger.
866 // This means that the min_timespan found will always be that between the
867 // two uncullable snapshots, and it will be much smaller than it should
868 // be. To avoid this problem, when computing the minimum timespan, we
869 // ignore any timespans between two uncullable snapshots.
870 tl_assert(next_snapshot_i > 1);
871 min_timespan = 0x7fffffffffffffffLL;
872 min_timespan_i = -1;
873 for (i = 1; i < next_snapshot_i; i++) {
874 if (is_uncullable_snapshot(&snapshots[i]) &&
875 is_uncullable_snapshot(&snapshots[i-1]))
877 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
878 } else {
879 Time timespan = snapshots[i].time - snapshots[i-1].time;
880 tl_assert(timespan >= 0);
881 if (timespan < min_timespan) {
882 min_timespan = timespan;
883 min_timespan_i = i;
887 tl_assert(-1 != min_timespan_i); // Check we found a minimum.
889 // Print remaining snapshots, if necessary.
890 if (VG_(clo_verbosity) > 1) {
891 VERB(2, "Finished culling (%3d of %3d deleted)\n",
892 n_deleted, clo_max_snapshots);
893 for (i = 0; i < next_snapshot_i; i++) {
894 VERB_snapshot(2, " post-cull", i);
896 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
897 min_timespan, min_timespan_i-1, min_timespan_i);
900 return min_timespan;
903 static Time get_time(void)
905 // Get current time, in whatever time unit we're using.
906 if (clo_time_unit == TimeI) {
907 return guest_instrs_executed;
908 } else if (clo_time_unit == TimeMS) {
909 // Some stuff happens between the millisecond timer being initialised
910 // to zero and us taking our first snapshot. We determine that time
911 // gap so we can subtract it from all subsequent times so that our
912 // first snapshot is considered to be at t = 0ms. Unfortunately, a
913 // bunch of symbols get read after the first snapshot is taken but
914 // before the second one (which is triggered by the first allocation),
915 // so when the time-unit is 'ms' we always have a big gap between the
916 // first two snapshots. But at least users won't have to wonder why
917 // the first snapshot isn't at t=0.
918 static Bool is_first_get_time = True;
919 static Time start_time_ms;
920 if (is_first_get_time) {
921 start_time_ms = VG_(read_millisecond_timer)();
922 is_first_get_time = False;
923 return 0;
924 } else {
925 return VG_(read_millisecond_timer)() - start_time_ms;
927 } else if (clo_time_unit == TimeB) {
928 return total_allocs_deallocs_szB;
929 } else {
930 tl_assert2(0, "bad --time-unit value");
934 // Take a snapshot, and only that -- decisions on whether to take a
935 // snapshot, or what kind of snapshot, are made elsewhere.
936 // Nb: we call the arg "my_time" because "time" shadows a global declaration
937 // in /usr/include/time.h on Darwin.
938 static void
939 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
940 Bool is_detailed)
942 tl_assert(!is_snapshot_in_use(snapshot));
943 if (!clo_pages_as_heap) {
944 tl_assert(have_started_executing_code);
947 // Heap and heap admin.
948 if (clo_heap) {
949 snapshot->heap_szB = heap_szB;
950 if (is_detailed) {
951 snapshot->xt = VG_(XT_snapshot)(heap_xt);
953 snapshot->heap_extra_szB = heap_extra_szB;
956 // Stack(s).
957 if (clo_stacks) {
958 snapshot->stacks_szB = stacks_szB;
961 // Rest of snapshot.
962 snapshot->kind = kind;
963 snapshot->time = my_time;
964 sanity_check_snapshot(snapshot);
966 // Update stats.
967 if (Peak == kind) n_peak_snapshots++;
968 if (is_detailed) n_detailed_snapshots++;
969 n_real_snapshots++;
973 // Take a snapshot, if it's time, or if we've hit a peak.
974 static void
975 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
977 // 'min_time_interval' is the minimum time interval between snapshots.
978 // If we try to take a snapshot and less than this much time has passed,
979 // we don't take it. It gets larger as the program runs longer. It's
980 // initialised to zero so that we begin by taking snapshots as quickly as
981 // possible.
982 static Time min_time_interval = 0;
983 // Zero allows startup snapshot.
984 static Time earliest_possible_time_of_next_snapshot = 0;
985 static Int n_snapshots_since_last_detailed = 0;
986 static Int n_skipped_snapshots_since_last_snapshot = 0;
988 Snapshot* snapshot;
989 Bool is_detailed;
990 // Nb: we call this variable "my_time" because "time" shadows a global
991 // declaration in /usr/include/time.h on Darwin.
992 Time my_time = get_time();
994 switch (kind) {
995 case Normal:
996 // Only do a snapshot if it's time.
997 if (my_time < earliest_possible_time_of_next_snapshot) {
998 n_skipped_snapshots++;
999 n_skipped_snapshots_since_last_snapshot++;
1000 return;
1002 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1003 break;
1005 case Peak: {
1006 // Because we're about to do a deallocation, we're coming down from a
1007 // local peak. If it is (a) actually a global peak, and (b) a certain
1008 // amount bigger than the previous peak, then we take a peak snapshot.
1009 // By not taking a snapshot for every peak, we save a lot of effort --
1010 // because many peaks remain peak only for a short time.
1011 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1012 SizeT excess_szB_for_new_peak =
1013 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1014 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1015 return;
1017 is_detailed = True;
1018 break;
1021 default:
1022 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1025 // Take the snapshot.
1026 snapshot = & snapshots[next_snapshot_i];
1027 take_snapshot(snapshot, kind, my_time, is_detailed);
1029 // Record if it was detailed.
1030 if (is_detailed) {
1031 n_snapshots_since_last_detailed = 0;
1032 } else {
1033 n_snapshots_since_last_detailed++;
1036 // Update peak data, if it's a Peak snapshot.
1037 if (Peak == kind) {
1038 Int i, number_of_peaks_snapshots_found = 0;
1040 // Sanity check the size, then update our recorded peak.
1041 SizeT snapshot_total_szB =
1042 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1043 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1044 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1045 peak_snapshot_total_szB = snapshot_total_szB;
1047 // Find the old peak snapshot, if it exists, and mark it as normal.
1048 for (i = 0; i < next_snapshot_i; i++) {
1049 if (Peak == snapshots[i].kind) {
1050 snapshots[i].kind = Normal;
1051 number_of_peaks_snapshots_found++;
1054 tl_assert(number_of_peaks_snapshots_found <= 1);
1057 // Finish up verbosity and stats stuff.
1058 if (n_skipped_snapshots_since_last_snapshot > 0) {
1059 VERB(2, " (skipped %d snapshot%s)\n",
1060 n_skipped_snapshots_since_last_snapshot,
1061 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1063 VERB_snapshot(2, what, next_snapshot_i);
1064 n_skipped_snapshots_since_last_snapshot = 0;
1066 // Cull the entries, if our snapshot table is full.
1067 next_snapshot_i++;
1068 if (clo_max_snapshots == next_snapshot_i) {
1069 min_time_interval = cull_snapshots();
1072 // Work out the earliest time when the next snapshot can happen.
1073 earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1077 //------------------------------------------------------------//
1078 //--- Sanity checking ---//
1079 //------------------------------------------------------------//
1081 static Bool ms_cheap_sanity_check ( void )
1083 return True; // Nothing useful we can cheaply check.
1086 static Bool ms_expensive_sanity_check ( void )
1088 tl_assert(heap_xt);
1089 sanity_check_snapshots_array();
1090 return True;
1094 //------------------------------------------------------------//
1095 //--- Heap management ---//
1096 //------------------------------------------------------------//
1098 // Metadata for heap blocks. Each one contains an Xecu,
1099 // which identifies the XTree ec at which it was allocated. From
1100 // HP_Chunks, XTree ec 'space' field is incremented (at allocation) and
1101 // decremented (at deallocation).
1103 // Nb: first two fields must match core's VgHashNode.
1104 typedef
1105 struct _HP_Chunk {
1106 struct _HP_Chunk* next;
1107 Addr data; // Ptr to actual block
1108 SizeT req_szB; // Size requested
1109 SizeT slop_szB; // Extra bytes given above those requested
1110 Xecu where; // Where allocated; XTree xecu from heap_xt
1112 HP_Chunk;
1114 /* Pool allocator for HP_Chunk. */
1115 static PoolAlloc *HP_chunk_poolalloc = NULL;
1117 static VgHashTable *malloc_list = NULL; // HP_Chunks
1119 static void update_alloc_stats(SSizeT szB_delta)
1121 // Update total_allocs_deallocs_szB.
1122 if (szB_delta < 0) szB_delta = -szB_delta;
1123 total_allocs_deallocs_szB += szB_delta;
1126 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1128 if (heap_szB_delta < 0)
1129 tl_assert(heap_szB >= -heap_szB_delta);
1130 if (heap_extra_szB_delta < 0)
1131 tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1133 heap_extra_szB += heap_extra_szB_delta;
1134 heap_szB += heap_szB_delta;
1136 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1139 static
1140 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1141 Bool exclude_first_entry, Bool maybe_snapshot )
1143 // Make new HP_Chunk node, add to malloc_list
1144 HP_Chunk* hc = VG_(allocEltPA)(HP_chunk_poolalloc);
1145 hc->req_szB = req_szB;
1146 hc->slop_szB = slop_szB;
1147 hc->data = (Addr)p;
1148 hc->where = 0;
1149 VG_(HT_add_node)(malloc_list, hc);
1151 if (clo_heap) {
1152 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1154 hc->where = add_heap_xt( tid, req_szB, exclude_first_entry);
1156 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1157 // Update statistics.
1158 n_heap_allocs++;
1160 // Update heap stats.
1161 update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1163 // Maybe take a snapshot.
1164 if (maybe_snapshot) {
1165 maybe_take_snapshot(Normal, " alloc");
1168 } else {
1169 // Ignored allocation.
1170 n_ignored_heap_allocs++;
1172 VERB(3, "(ignored)\n");
1175 VERB(3, ">>>\n");
1178 return p;
1181 static __inline__
1182 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1183 Bool is_zeroed )
1185 SizeT actual_szB, slop_szB;
1186 void* p;
1188 if ((SSizeT)req_szB < 0) return NULL;
1190 // Allocate and zero if necessary.
1191 p = VG_(cli_malloc)( req_alignB, req_szB );
1192 if (!p) {
1193 return NULL;
1195 if (is_zeroed) VG_(memset)(p, 0, req_szB);
1196 actual_szB = VG_(cli_malloc_usable_size)(p);
1197 tl_assert(actual_szB >= req_szB);
1198 slop_szB = actual_szB - req_szB;
1200 // Record block.
1201 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1202 /*maybe_snapshot*/True);
1204 return p;
1207 static __inline__
1208 void unrecord_block ( void* p, Bool maybe_snapshot, Bool exclude_first_entry )
1210 // Remove HP_Chunk from malloc_list
1211 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1212 if (NULL == hc) {
1213 return; // must have been a bogus free()
1216 if (clo_heap) {
1217 VERB(3, "<<< unrecord_block\n");
1219 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1220 // Update statistics.
1221 n_heap_frees++;
1223 // Maybe take a peak snapshot, since it's a deallocation.
1224 if (maybe_snapshot) {
1225 maybe_take_snapshot(Peak, "de-PEAK");
1228 // Update heap stats.
1229 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1231 // Update XTree.
1232 sub_heap_xt(hc->where, hc->req_szB, exclude_first_entry);
1234 // Maybe take a snapshot.
1235 if (maybe_snapshot) {
1236 maybe_take_snapshot(Normal, "dealloc");
1239 } else {
1240 n_ignored_heap_frees++;
1242 VERB(3, "(ignored)\n");
1245 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1248 // Actually free the chunk, and the heap block (if necessary)
1249 VG_(freeEltPA) (HP_chunk_poolalloc, hc); hc = NULL;
1252 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1253 // ignored, but the realloc is not requested to be ignored, and we are
1254 // shrinking the block, then we have to ignore the realloc -- otherwise we
1255 // could end up with negative heap sizes. This isn't a danger if we are
1256 // growing such a block, but for consistency (it also simplifies things) we
1257 // ignore such reallocs as well.
1258 // PW Nov 2016 xtree work: why can't we just consider that a realloc of an
1259 // ignored alloc is just a new alloc (i.e. do not remove the old sz from the
1260 // stats). Then everything would be fine, and a non ignored realloc would be
1261 // counted properly.
1262 static __inline__
1263 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1265 HP_Chunk* hc;
1266 void* p_new;
1267 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1268 Xecu old_where;
1269 Bool is_ignored = False;
1271 // Remove the old block
1272 hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1273 if (hc == NULL) {
1274 return NULL; // must have been a bogus realloc()
1277 old_req_szB = hc->req_szB;
1278 old_slop_szB = hc->slop_szB;
1280 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes.
1281 if (clo_heap) {
1282 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1284 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1285 // Update statistics.
1286 n_heap_reallocs++;
1288 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1289 if (new_req_szB < old_req_szB) {
1290 maybe_take_snapshot(Peak, "re-PEAK");
1292 } else {
1293 // The original malloc was ignored, so we have to ignore the
1294 // realloc as well.
1295 is_ignored = True;
1299 // Actually do the allocation, if necessary.
1300 if (new_req_szB <= old_req_szB + old_slop_szB) {
1301 // New size is smaller or same; block not moved.
1302 p_new = p_old;
1303 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1305 } else {
1306 // New size is bigger; make new block, copy shared contents, free old.
1307 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1308 if (!p_new) {
1309 // Nb: if realloc fails, NULL is returned but the old block is not
1310 // touched. What an awful function.
1311 return NULL;
1313 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1314 VG_(cli_free)(p_old);
1315 new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1316 tl_assert(new_actual_szB >= new_req_szB);
1317 new_slop_szB = new_actual_szB - new_req_szB;
1320 if (p_new) {
1321 // Update HP_Chunk.
1322 hc->data = (Addr)p_new;
1323 hc->req_szB = new_req_szB;
1324 hc->slop_szB = new_slop_szB;
1325 old_where = hc->where;
1326 hc->where = 0;
1328 // Update XTree.
1329 if (clo_heap) {
1330 hc->where = add_heap_xt( tid, new_req_szB,
1331 /*exclude_first_entry*/True);
1332 if (!is_ignored && VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1333 sub_heap_xt(old_where, old_req_szB, /*exclude_first_entry*/True);
1334 } else {
1335 // The realloc itself is ignored.
1336 is_ignored = True;
1338 /* XTREE??? hack to have something compatible with pre
1339 m_xtree massif: if the previous alloc/realloc was
1340 ignored, and this one is not ignored, then keep the
1341 previous where, to continue marking this memory as
1342 ignored. */
1343 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0
1344 && VG_(XT_n_ips_sel)(heap_xt, old_where) == 0)
1345 hc->where = old_where;
1347 // Update statistics.
1348 n_ignored_heap_reallocs++;
1353 // Now insert the new hc (with a possibly new 'data' field) into
1354 // malloc_list. If this realloc() did not increase the memory size, we
1355 // will have removed and then re-added hc unnecessarily. But that's ok
1356 // because shrinking a block with realloc() is (presumably) much rarer
1357 // than growing it, and this way simplifies the growing case.
1358 VG_(HT_add_node)(malloc_list, hc);
1360 if (clo_heap) {
1361 if (!is_ignored) {
1362 // Update heap stats.
1363 update_heap_stats(new_req_szB - old_req_szB,
1364 new_slop_szB - old_slop_szB);
1366 // Maybe take a snapshot.
1367 maybe_take_snapshot(Normal, "realloc");
1368 } else {
1370 VERB(3, "(ignored)\n");
1373 VERB(3, ">>> (%ld, %ld)\n",
1374 (SSizeT)(new_req_szB - old_req_szB),
1375 (SSizeT)(new_slop_szB - old_slop_szB));
1378 return p_new;
1382 //------------------------------------------------------------//
1383 //--- malloc() et al replacement wrappers ---//
1384 //------------------------------------------------------------//
1386 static void* ms_malloc ( ThreadId tid, SizeT szB )
1388 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1391 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1393 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1396 static void* ms___builtin_new_aligned ( ThreadId tid, SizeT szB, SizeT alignB )
1398 return alloc_and_record_block( tid, szB, alignB, /*is_zeroed*/False );
1401 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1403 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1406 static void* ms___builtin_vec_new_aligned ( ThreadId tid, SizeT szB, SizeT alignB )
1408 return alloc_and_record_block( tid, szB, alignB, /*is_zeroed*/False );
1411 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1413 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1416 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1418 return alloc_and_record_block( tid, szB, alignB, False );
1421 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1423 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1424 VG_(cli_free)(p);
1427 static void ms___builtin_delete ( ThreadId tid, void* p )
1429 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1430 VG_(cli_free)(p);
1433 static void ms___builtin_delete_aligned ( ThreadId tid, void* p, SizeT align )
1435 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1436 VG_(cli_free)(p);
1439 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1441 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1442 VG_(cli_free)(p);
1445 static void ms___builtin_vec_delete_aligned ( ThreadId tid, void* p, SizeT align )
1447 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1448 VG_(cli_free)(p);
1451 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1453 return realloc_block(tid, p_old, new_szB);
1456 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1458 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1460 return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1463 //------------------------------------------------------------//
1464 //--- Page handling ---//
1465 //------------------------------------------------------------//
1467 static
1468 void ms_record_page_mem ( Addr a, SizeT len )
1470 ThreadId tid = VG_(get_running_tid)();
1471 Addr end;
1472 tl_assert(VG_IS_PAGE_ALIGNED(len));
1473 tl_assert(len >= VKI_PAGE_SIZE);
1474 // Record the first N-1 pages as blocks, but don't do any snapshots.
1475 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1476 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1477 /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1479 // Record the last page as a block, and maybe do a snapshot afterwards.
1480 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1481 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1484 static
1485 void ms_unrecord_page_mem( Addr a, SizeT len )
1487 Addr end;
1488 tl_assert(VG_IS_PAGE_ALIGNED(len));
1489 tl_assert(len >= VKI_PAGE_SIZE);
1490 // Unrecord the first page. This might be the peak, so do a snapshot.
1491 unrecord_block((void*)a, /*maybe_snapshot*/True,
1492 /*exclude_first_entry*/False);
1493 a += VKI_PAGE_SIZE;
1494 // Then unrecord the remaining pages, but without snapshots.
1495 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1496 unrecord_block((void*)a, /*maybe_snapshot*/False,
1497 /*exclude_first_entry*/False);
1501 //------------------------------------------------------------//
1503 static
1504 void ms_new_mem_mmap ( Addr a, SizeT len,
1505 Bool rr, Bool ww, Bool xx, ULong di_handle )
1507 tl_assert(VG_IS_PAGE_ALIGNED(len));
1508 ms_record_page_mem(a, len);
1511 static
1512 void ms_new_mem_startup( Addr a, SizeT len,
1513 Bool rr, Bool ww, Bool xx, ULong di_handle )
1515 // startup maps are always be page-sized, except the trampoline page is
1516 // marked by the core as only being the size of the trampoline itself,
1517 // which is something like 57 bytes. Round it up to page size.
1518 len = VG_PGROUNDUP(len);
1519 ms_record_page_mem(a, len);
1522 static
1523 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1525 // brk limit is not necessarily aligned on a page boundary.
1526 // If new memory being brk-ed implies to allocate a new page,
1527 // then call ms_record_page_mem with page aligned parameters
1528 // otherwise just ignore.
1529 Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1530 Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1531 if (old_bottom_page != new_top_page)
1532 ms_record_page_mem(VG_PGROUNDDN(a),
1533 (new_top_page - old_bottom_page));
1536 static
1537 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1539 tl_assert(VG_IS_PAGE_ALIGNED(len));
1540 ms_unrecord_page_mem(from, len);
1541 ms_record_page_mem(to, len);
1544 static
1545 void ms_die_mem_munmap( Addr a, SizeT len )
1547 tl_assert(VG_IS_PAGE_ALIGNED(len));
1548 ms_unrecord_page_mem(a, len);
1551 static
1552 void ms_die_mem_brk( Addr a, SizeT len )
1554 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1555 // See ms_new_mem_brk for more details.
1556 Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1557 Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1558 if (old_top_page != new_bottom_page)
1559 ms_unrecord_page_mem(VG_PGROUNDDN(a),
1560 (old_top_page - new_bottom_page));
1564 //------------------------------------------------------------//
1565 //--- Stacks ---//
1566 //------------------------------------------------------------//
1568 // We really want the inlining to occur...
1569 #define INLINE inline __attribute__((always_inline))
1571 static void update_stack_stats(SSizeT stack_szB_delta)
1573 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1574 stacks_szB += stack_szB_delta;
1576 update_alloc_stats(stack_szB_delta);
1579 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1581 if (have_started_executing_code) {
1582 VERB(3, "<<< new_mem_stack (%lu)\n", len);
1583 n_stack_allocs++;
1584 update_stack_stats(len);
1585 maybe_take_snapshot(Normal, what);
1586 VERB(3, ">>>\n");
1590 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1592 if (have_started_executing_code) {
1593 VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1594 n_stack_frees++;
1595 maybe_take_snapshot(Peak, "stkPEAK");
1596 update_stack_stats(-len);
1597 maybe_take_snapshot(Normal, what);
1598 VERB(3, ">>>\n");
1602 static void new_mem_stack(Addr a, SizeT len)
1604 new_mem_stack_2(len, "stk-new");
1607 static void die_mem_stack(Addr a, SizeT len)
1609 die_mem_stack_2(len, "stk-die");
1612 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1614 new_mem_stack_2(len, "sig-new");
1617 static void die_mem_stack_signal(Addr a, SizeT len)
1619 die_mem_stack_2(len, "sig-die");
1623 //------------------------------------------------------------//
1624 //--- Client Requests ---//
1625 //------------------------------------------------------------//
1627 static void print_monitor_help ( void )
1629 VG_(gdb_printf) (
1630 "\n"
1631 "massif monitor commands:\n"
1632 " snapshot [<filename>]\n"
1633 " detailed_snapshot [<filename>]\n"
1634 " takes a snapshot (or a detailed snapshot)\n"
1635 " and saves it in <filename>\n"
1636 " default <filename> is massif.vgdb.out\n"
1637 " all_snapshots [<filename>]\n"
1638 " saves all snapshot(s) taken so far in <filename>\n"
1639 " default <filename> is massif.vgdb.out\n"
1640 " xtmemory [<filename>]\n"
1641 " dump xtree memory profile in <filename> (default xtmemory.kcg.%%p.%%n)\n"
1642 "\n");
1646 /* Forward declaration.
1647 return True if request recognised, False otherwise */
1648 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
1649 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1651 switch (argv[0]) {
1652 case VG_USERREQ__MALLOCLIKE_BLOCK: {
1653 void* p = (void*)argv[1];
1654 SizeT szB = argv[2];
1655 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1656 /*maybe_snapshot*/True );
1657 *ret = 0;
1658 return True;
1660 case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1661 void* p = (void*)argv[1];
1662 SizeT newSizeB = argv[3];
1664 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1665 record_block(tid, p, newSizeB, /*slop_szB*/0,
1666 /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1667 return True;
1669 case VG_USERREQ__FREELIKE_BLOCK: {
1670 void* p = (void*)argv[1];
1671 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1672 *ret = 0;
1673 return True;
1675 case VG_USERREQ__GDB_MONITOR_COMMAND: {
1676 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1677 if (handled)
1678 *ret = 1;
1679 else
1680 *ret = 0;
1681 return handled;
1684 default:
1685 *ret = 0;
1686 return False;
1690 //------------------------------------------------------------//
1691 //--- Instrumentation ---//
1692 //------------------------------------------------------------//
1694 static void add_counter_update(IRSB* sbOut, Int n)
1696 #if defined(VG_BIGENDIAN)
1697 # define END Iend_BE
1698 #elif defined(VG_LITTLEENDIAN)
1699 # define END Iend_LE
1700 #else
1701 # error "Unknown endianness"
1702 #endif
1703 // Add code to increment 'guest_instrs_executed' by 'n', like this:
1704 // WrTmp(t1, Load64(&guest_instrs_executed))
1705 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
1706 // Store(&guest_instrs_executed, t2)
1707 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
1708 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
1709 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
1711 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
1712 IRStmt* st2 =
1713 IRStmt_WrTmp(t2,
1714 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
1715 IRExpr_Const(IRConst_U64(n))));
1716 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
1718 addStmtToIRSB( sbOut, st1 );
1719 addStmtToIRSB( sbOut, st2 );
1720 addStmtToIRSB( sbOut, st3 );
1723 static IRSB* ms_instrument2( IRSB* sbIn )
1725 Int i, n = 0;
1726 IRSB* sbOut;
1728 // We increment the instruction count in two places:
1729 // - just before any Ist_Exit statements;
1730 // - just before the IRSB's end.
1731 // In the former case, we zero 'n' and then continue instrumenting.
1733 sbOut = deepCopyIRSBExceptStmts(sbIn);
1735 for (i = 0; i < sbIn->stmts_used; i++) {
1736 IRStmt* st = sbIn->stmts[i];
1738 if (!st || st->tag == Ist_NoOp) continue;
1740 if (st->tag == Ist_IMark) {
1741 n++;
1742 } else if (st->tag == Ist_Exit) {
1743 if (n > 0) {
1744 // Add an increment before the Exit statement, then reset 'n'.
1745 add_counter_update(sbOut, n);
1746 n = 0;
1749 addStmtToIRSB( sbOut, st );
1752 if (n > 0) {
1753 // Add an increment before the SB end.
1754 add_counter_update(sbOut, n);
1756 return sbOut;
1759 static
1760 IRSB* ms_instrument ( VgCallbackClosure* closure,
1761 IRSB* sbIn,
1762 const VexGuestLayout* layout,
1763 const VexGuestExtents* vge,
1764 const VexArchInfo* archinfo_host,
1765 IRType gWordTy, IRType hWordTy )
1767 if (! have_started_executing_code) {
1768 // Do an initial sample to guarantee that we have at least one.
1769 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
1770 // 'maybe_take_snapshot's internal static variables are initialised.
1771 have_started_executing_code = True;
1772 maybe_take_snapshot(Normal, "startup");
1775 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); }
1776 else if (clo_time_unit == TimeMS) { return sbIn; }
1777 else if (clo_time_unit == TimeB) { return sbIn; }
1778 else { tl_assert2(0, "bad --time-unit value"); }
1782 //------------------------------------------------------------//
1783 //--- Writing snapshots ---//
1784 //------------------------------------------------------------//
1786 static void pp_snapshot(MsFile *fp, Snapshot* snapshot, Int snapshot_n)
1788 const Massif_Header header = (Massif_Header) {
1789 .snapshot_n = snapshot_n,
1790 .time = snapshot->time,
1791 .sz_B = snapshot->heap_szB,
1792 .extra_B = snapshot->heap_extra_szB,
1793 .stacks_B = snapshot->stacks_szB,
1794 .detailed = is_detailed_snapshot(snapshot),
1795 .peak = Peak == snapshot->kind,
1796 .top_node_desc = clo_pages_as_heap ?
1797 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
1798 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.",
1799 .sig_threshold = clo_threshold
1802 sanity_check_snapshot(snapshot);
1804 VG_(XT_massif_print)(fp, snapshot->xt, &header, alloc_szB);
1807 static void write_snapshots_to_file(const HChar* massif_out_file,
1808 Snapshot snapshots_array[],
1809 Int nr_elements)
1811 Int i;
1812 MsFile *fp;
1814 fp = VG_(XT_massif_open)(massif_out_file,
1815 NULL,
1816 args_for_massif,
1817 TimeUnit_to_string(clo_time_unit));
1818 if (fp == NULL)
1819 return; // Error reported by VG_(XT_massif_open)
1821 for (i = 0; i < nr_elements; i++) {
1822 Snapshot* snapshot = & snapshots_array[i];
1823 pp_snapshot(fp, snapshot, i); // Detailed snapshot!
1825 VG_(XT_massif_close) (fp);
1828 static void write_snapshots_array_to_file(void)
1830 // Setup output filename. Nb: it's important to do this now, ie. as late
1831 // as possible. If we do it at start-up and the program forks and the
1832 // output file format string contains a %p (pid) specifier, both the
1833 // parent and child will incorrectly write to the same file; this
1834 // happened in 3.3.0.
1835 HChar* massif_out_file =
1836 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
1837 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
1838 VG_(free)(massif_out_file);
1841 static void handle_snapshot_monitor_command (const HChar *filename,
1842 Bool detailed)
1844 Snapshot snapshot;
1846 if (!clo_pages_as_heap && !have_started_executing_code) {
1847 // See comments of variable have_started_executing_code.
1848 VG_(gdb_printf)
1849 ("error: cannot take snapshot before execution has started\n");
1850 return;
1853 clear_snapshot(&snapshot, /* do_sanity_check */ False);
1854 take_snapshot(&snapshot, Normal, get_time(), detailed);
1855 write_snapshots_to_file ((filename == NULL) ?
1856 "massif.vgdb.out" : filename,
1857 &snapshot,
1859 delete_snapshot(&snapshot);
1862 static void handle_all_snapshots_monitor_command (const HChar *filename)
1864 if (!clo_pages_as_heap && !have_started_executing_code) {
1865 // See comments of variable have_started_executing_code.
1866 VG_(gdb_printf)
1867 ("error: cannot take snapshot before execution has started\n");
1868 return;
1871 write_snapshots_to_file ((filename == NULL) ?
1872 "massif.vgdb.out" : filename,
1873 snapshots, next_snapshot_i);
1876 static void xtmemory_report_next_block(XT_Allocs* xta, ExeContext** ec_alloc)
1878 const HP_Chunk* hc = VG_(HT_Next)(malloc_list);
1879 if (hc) {
1880 xta->nbytes = hc->req_szB;
1881 xta->nblocks = 1;
1882 *ec_alloc = VG_(XT_get_ec_from_xecu)(heap_xt, hc->where);
1883 } else
1884 xta->nblocks = 0;
1886 static void ms_xtmemory_report ( const HChar* filename, Bool fini )
1888 // Make xtmemory_report_next_block ready to be called.
1889 VG_(HT_ResetIter)(malloc_list);
1890 VG_(XTMemory_report)(filename, fini, xtmemory_report_next_block,
1891 VG_(XT_filter_maybe_below_main));
1892 /* As massif already filters one top function, use as filter
1893 VG_(XT_filter_maybe_below_main). */
1896 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
1898 HChar* wcmd;
1899 HChar s[VG_(strlen)(req) + 1]; /* copy for strtok_r */
1900 HChar *ssaveptr;
1902 VG_(strcpy) (s, req);
1904 wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
1905 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots"
1906 " xtmemory",
1907 wcmd, kwd_report_duplicated_matches)) {
1908 case -2: /* multiple matches */
1909 return True;
1910 case -1: /* not found */
1911 return False;
1912 case 0: /* help */
1913 print_monitor_help();
1914 return True;
1915 case 1: { /* snapshot */
1916 HChar* filename;
1917 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1918 handle_snapshot_monitor_command (filename, False /* detailed */);
1919 return True;
1921 case 2: { /* detailed_snapshot */
1922 HChar* filename;
1923 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1924 handle_snapshot_monitor_command (filename, True /* detailed */);
1925 return True;
1927 case 3: { /* all_snapshots */
1928 HChar* filename;
1929 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1930 handle_all_snapshots_monitor_command (filename);
1931 return True;
1933 case 4: { /* xtmemory */
1934 HChar* filename;
1935 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1936 ms_xtmemory_report (filename, False);
1937 return True;
1939 default:
1940 tl_assert(0);
1941 return False;
1945 static void ms_print_stats (void)
1947 #define STATS(format, args...) \
1948 VG_(dmsg)("Massif: " format, ##args)
1950 STATS("heap allocs: %u\n", n_heap_allocs);
1951 STATS("heap reallocs: %u\n", n_heap_reallocs);
1952 STATS("heap frees: %u\n", n_heap_frees);
1953 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs);
1954 STATS("ignored heap frees: %u\n", n_ignored_heap_frees);
1955 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
1956 STATS("stack allocs: %u\n", n_stack_allocs);
1957 STATS("skipped snapshots: %u\n", n_skipped_snapshots);
1958 STATS("real snapshots: %u\n", n_real_snapshots);
1959 STATS("detailed snapshots: %u\n", n_detailed_snapshots);
1960 STATS("peak snapshots: %u\n", n_peak_snapshots);
1961 STATS("cullings: %u\n", n_cullings);
1962 #undef STATS
1966 //------------------------------------------------------------//
1967 //--- Finalisation ---//
1968 //------------------------------------------------------------//
1970 static void ms_fini(Int exit_status)
1972 ms_xtmemory_report(VG_(clo_xtree_memory_file), True);
1974 // Output.
1975 write_snapshots_array_to_file();
1977 if (VG_(clo_stats))
1978 ms_print_stats();
1982 //------------------------------------------------------------//
1983 //--- Initialisation ---//
1984 //------------------------------------------------------------//
1986 static void ms_post_clo_init(void)
1988 Int i;
1989 HChar* LD_PRELOAD_val;
1991 /* We will record execontext up to clo_depth + overestimate and
1992 we will store this as ec => we need to increase the backtrace size
1993 if smaller than what we will store. */
1994 if (VG_(clo_backtrace_size) < clo_depth + MAX_OVERESTIMATE)
1995 VG_(clo_backtrace_size) = clo_depth + MAX_OVERESTIMATE;
1997 // Check options.
1998 if (clo_pages_as_heap) {
1999 if (clo_stacks) {
2000 VG_(fmsg_bad_option)("--pages-as-heap=yes",
2001 "Cannot be used together with --stacks=yes");
2004 if (!clo_heap) {
2005 clo_pages_as_heap = False;
2008 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
2009 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2010 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup
2011 // well before tool initialisation, so this seems the best way to do it.
2012 if (clo_pages_as_heap) {
2013 HChar* s1;
2014 HChar* s2;
2016 clo_heap_admin = 0; // No heap admin on pages.
2018 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
2019 tl_assert(LD_PRELOAD_val);
2021 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2023 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2024 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2025 tl_assert(s1);
2027 // Now find the vgpreload_massif-$PLATFORM entry.
2028 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2029 tl_assert(s1);
2030 s2 = s1;
2032 // Position s1 on the previous ':', which must be there because
2033 // of the preceding vgpreload_core-$PLATFORM entry.
2034 for (; *s1 != ':'; s1--)
2037 // Position s2 on the next ':' or \0
2038 for (; *s2 != ':' && *s2 != '\0'; s2++)
2041 // Move all characters from s2 to s1
2042 while ((*s1++ = *s2++))
2045 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2048 // Print alloc-fns and ignore-fns, if necessary.
2049 if (VG_(clo_verbosity) > 1) {
2050 VERB(1, "alloc-fns:\n");
2051 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2052 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2053 VERB(1, " %s\n", *fn_ptr);
2056 VERB(1, "ignore-fns:\n");
2057 if (0 == VG_(sizeXA)(ignore_fns)) {
2058 VERB(1, " <empty>\n");
2060 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2061 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2062 VERB(1, " %d: %s\n", i, *fn_ptr);
2066 // Events to track.
2067 if (clo_stacks) {
2068 VG_(track_new_mem_stack) ( new_mem_stack );
2069 VG_(track_die_mem_stack) ( die_mem_stack );
2070 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2071 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2074 if (clo_pages_as_heap) {
2075 VG_(track_new_mem_startup) ( ms_new_mem_startup );
2076 VG_(track_new_mem_brk) ( ms_new_mem_brk );
2077 VG_(track_new_mem_mmap) ( ms_new_mem_mmap );
2079 VG_(track_copy_mem_remap) ( ms_copy_mem_remap );
2081 VG_(track_die_mem_brk) ( ms_die_mem_brk );
2082 VG_(track_die_mem_munmap) ( ms_die_mem_munmap );
2085 // Initialise snapshot array, and sanity-check it.
2086 snapshots = VG_(malloc)("ms.main.mpoci.1",
2087 sizeof(Snapshot) * clo_max_snapshots);
2088 // We don't want to do snapshot sanity checks here, because they're
2089 // currently uninitialised.
2090 for (i = 0; i < clo_max_snapshots; i++) {
2091 clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2093 sanity_check_snapshots_array();
2095 if (VG_(clo_xtree_memory) == Vg_XTMemory_Full)
2096 // Activate full xtree memory profiling.
2097 // As massif already filters one top function, use as filter
2098 // VG_(XT_filter_maybe_below_main).
2099 VG_(XTMemory_Full_init)(VG_(XT_filter_maybe_below_main));
2103 static void ms_pre_clo_init(void)
2105 VG_(details_name) ("Massif");
2106 VG_(details_version) (NULL);
2107 VG_(details_description) ("a heap profiler");
2108 VG_(details_copyright_author)(
2109 "Copyright (C) 2003-2017, and GNU GPL'd, by Nicholas Nethercote");
2110 VG_(details_bug_reports_to) (VG_BUGS_TO);
2112 VG_(details_avg_translation_sizeB) ( 330 );
2114 VG_(clo_vex_control).iropt_register_updates_default
2115 = VG_(clo_px_file_backed)
2116 = VexRegUpdSpAtMemAccess; // overridable by the user.
2118 // Basic functions.
2119 VG_(basic_tool_funcs) (ms_post_clo_init,
2120 ms_instrument,
2121 ms_fini);
2123 // Needs.
2124 VG_(needs_libc_freeres)();
2125 VG_(needs_cxx_freeres)();
2126 VG_(needs_command_line_options)(ms_process_cmd_line_option,
2127 ms_print_usage,
2128 ms_print_debug_usage);
2129 VG_(needs_client_requests) (ms_handle_client_request);
2130 VG_(needs_sanity_checks) (ms_cheap_sanity_check,
2131 ms_expensive_sanity_check);
2132 VG_(needs_print_stats) (ms_print_stats);
2133 VG_(needs_malloc_replacement) (ms_malloc,
2134 ms___builtin_new,
2135 ms___builtin_new_aligned,
2136 ms___builtin_vec_new,
2137 ms___builtin_vec_new_aligned,
2138 ms_memalign,
2139 ms_calloc,
2140 ms_free,
2141 ms___builtin_delete,
2142 ms___builtin_delete_aligned,
2143 ms___builtin_vec_delete,
2144 ms___builtin_vec_delete_aligned,
2145 ms_realloc,
2146 ms_malloc_usable_size,
2147 0 );
2149 // HP_Chunks.
2150 HP_chunk_poolalloc = VG_(newPA)
2151 (sizeof(HP_Chunk),
2152 1000,
2153 VG_(malloc),
2154 "massif MC_Chunk pool",
2155 VG_(free));
2156 malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2158 // Heap XTree
2159 heap_xt = VG_(XT_create)(VG_(malloc),
2160 "ms.xtrees",
2161 VG_(free),
2162 sizeof(SizeT),
2163 init_szB, add_szB, sub_szB,
2164 filter_IPs);
2166 // Initialise alloc_fns and ignore_fns.
2167 init_alloc_fns();
2168 init_ignore_fns();
2170 // Initialise args_for_massif.
2171 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2172 VG_(free), sizeof(HChar*));
2175 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2177 //--------------------------------------------------------------------//
2178 //--- end ---//
2179 //--------------------------------------------------------------------//