amd64: add a spec rule for SHRL/SARL then CondS. gcc-8 has been seen to generate...
[valgrind.git] / massif / ms_main.c
blob37488212401fd89518eaf4e83fbb91431d65d27f
1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool. ms_main.c ---*/
3 //--------------------------------------------------------------------*/
5 /*
6 This file is part of Massif, a Valgrind tool for profiling memory
7 usage of programs.
9 Copyright (C) 2003-2017 Nicholas Nethercote
10 njn@valgrind.org
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25 02111-1307, USA.
27 The GNU General Public License is contained in the file COPYING.
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic. Obstacles:
36 // - unit prefixes are not generic
37 // - preset column widths for stats are not generic
38 // - preset column headers are not generic
39 // - "Massif arguments:" line is not generic
40 // - do snapshots on some specific client requests
41 // - "show me the extra allocations since the last snapshot"
42 // - "start/stop logging" (eg. quickly skip boring bits)
43 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
44 // Give each graph a title. (try to do it generically!)
45 // - make --show-below-main=no work
46 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
47 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
48 // m_commandline.c:add_args_from_string() needs to respect single quotes.
49 // - With --stack=yes, want to add a stack trace for detailed snapshots so
50 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
51 // possibly useful even with --stack=no? (Andi Yin)
53 // Performance:
54 // - To run the benchmarks:
56 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
57 // time valgrind --tool=massif --depth=100 konqueror
59 // The other benchmarks don't do much allocation, and so give similar speeds
60 // to Nulgrind.
62 // Timing results on 'nevermore' (njn's machine) as of r7013:
64 // heap 0.53s ma:12.4s (23.5x, -----)
65 // tinycc 0.46s ma: 4.9s (10.7x, -----)
66 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
67 // konqueror 29.6s real 0:21.0s user
69 // [Introduction of --time-unit=i as the default slowed things down by
70 // roughly 0--20%.]
72 // Todo -- low priority:
73 // - In each XPt, record both bytes and the number of allocations, and
74 // possibly the global number of allocations.
75 // - (Andy Lin) Give a stack trace on detailed snapshots?
76 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
77 // than a certain size! Because: "linux's malloc allows to set a
78 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
79 // be handled directly by the kernel, and are guaranteed to be returned to
80 // the system when freed. So we needed to profile only blocks below this
81 // limit."
83 // File format working notes:
85 #if 0
86 desc: --heap-admin=foo
87 cmd: date
88 time_unit: ms
89 #-----------
90 snapshot=0
91 #-----------
92 time=0
93 mem_heap_B=0
94 mem_heap_admin_B=0
95 mem_stacks_B=0
96 heap_tree=empty
97 #-----------
98 snapshot=1
99 #-----------
100 time=353
101 mem_heap_B=5
102 mem_heap_admin_B=0
103 mem_stacks_B=0
104 heap_tree=detailed
105 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
106 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
107 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
108 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
109 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
110 n1: 5 0x8049821: (within /bin/date)
111 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
114 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
115 t_events: B
116 n 0 0 0 0 0
117 n 0 0 0 0 0
118 t1: 5 <string...>
119 t1: 6 <string...>
121 Ideas:
122 - each snapshot specifies an x-axis value and one or more y-axis values.
123 - can display the y-axis values separately if you like
124 - can completely separate connection between snapshots and trees.
126 Challenges:
127 - how to specify and scale/abbreviate units on axes?
128 - how to combine multiple values into the y-axis?
130 --------------------------------------------------------------------------------Command: date
131 Massif arguments: --heap-admin=foo
132 ms_print arguments: massif.out
133 --------------------------------------------------------------------------------
135 6.472^ :#
136 | :# :: . .
138 | ::@ :@ :@ :@:::# :: : ::::
139 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713
141 Number of snapshots: 50
142 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
143 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
144 -------------------------------------------------------------------------------- 0 0 0 0 0 0
145 1 345 5 5 0 0
146 2 353 5 5 0 0
147 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
148 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
149 #endif
151 //---------------------------------------------------------------------------
153 #include "pub_tool_basics.h"
154 #include "pub_tool_vki.h"
155 #include "pub_tool_aspacemgr.h"
156 #include "pub_tool_debuginfo.h"
157 #include "pub_tool_hashtable.h"
158 #include "pub_tool_libcbase.h"
159 #include "pub_tool_libcassert.h"
160 #include "pub_tool_libcfile.h"
161 #include "pub_tool_libcprint.h"
162 #include "pub_tool_libcproc.h"
163 #include "pub_tool_machine.h"
164 #include "pub_tool_mallocfree.h"
165 #include "pub_tool_options.h"
166 #include "pub_tool_poolalloc.h"
167 #include "pub_tool_replacemalloc.h"
168 #include "pub_tool_stacktrace.h"
169 #include "pub_tool_threadstate.h"
170 #include "pub_tool_tooliface.h"
171 #include "pub_tool_xarray.h"
172 #include "pub_tool_xtree.h"
173 #include "pub_tool_xtmemory.h"
174 #include "pub_tool_clientstate.h"
175 #include "pub_tool_gdbserver.h"
177 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
179 //------------------------------------------------------------*/
180 //--- Overview of operation ---*/
181 //------------------------------------------------------------*/
183 // The size of the stacks and heap is tracked. The heap is tracked in a lot
184 // of detail, enough to tell how many bytes each line of code is responsible
185 // for, more or less. The main data structure is an xtree maintaining the
186 // call tree beneath all the allocation functions like malloc().
187 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
188 // the page level, and each page is treated much like a heap block. We use
189 // "heap" throughout below to cover this case because the concepts are all the
190 // same.)
192 // "Snapshots" are recordings of the memory usage. There are two basic
193 // kinds:
194 // - Normal: these record the current time, total memory size, total heap
195 // size, heap admin size and stack size.
196 // - Detailed: these record those things in a normal snapshot, plus a very
197 // detailed XTree (see below) indicating how the heap is structured.
199 // Snapshots are taken every so often. There are two storage classes of
200 // snapshots:
201 // - Temporary: Massif does a temporary snapshot every so often. The idea
202 // is to always have a certain number of temporary snapshots around. So
203 // we take them frequently to begin with, but decreasingly often as the
204 // program continues to run. Also, we remove some old ones after a while.
205 // Overall it's a kind of exponential decay thing. Most of these are
206 // normal snapshots, a small fraction are detailed snapshots.
207 // - Permanent: Massif takes a permanent (detailed) snapshot in some
208 // circumstances. They are:
209 // - Peak snapshot: When the memory usage peak is reached, it takes a
210 // snapshot. It keeps this, unless the peak is subsequently exceeded,
211 // in which case it will overwrite the peak snapshot.
212 // - User-requested snapshots: These are done in response to client
213 // requests. They are always kept.
215 // Used for printing things when clo_verbosity > 1.
216 #define VERB(verb, format, args...) \
217 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \
218 VG_(dmsg)("Massif: " format, ##args); \
221 //------------------------------------------------------------//
222 //--- Statistics ---//
223 //------------------------------------------------------------//
225 // Konqueror startup, to give an idea of the numbers involved with a biggish
226 // program, with default depth:
228 // depth=3 depth=40
229 // - 310,000 allocations
230 // - 300,000 frees
231 // - 15,000 XPts 800,000 XPts
232 // - 1,800 top-XPts
234 static UInt n_heap_allocs = 0;
235 static UInt n_heap_reallocs = 0;
236 static UInt n_heap_frees = 0;
237 static UInt n_ignored_heap_allocs = 0;
238 static UInt n_ignored_heap_frees = 0;
239 static UInt n_ignored_heap_reallocs = 0;
240 static UInt n_stack_allocs = 0;
241 static UInt n_stack_frees = 0;
243 static UInt n_skipped_snapshots = 0;
244 static UInt n_real_snapshots = 0;
245 static UInt n_detailed_snapshots = 0;
246 static UInt n_peak_snapshots = 0;
247 static UInt n_cullings = 0;
249 //------------------------------------------------------------//
250 //--- Globals ---//
251 //------------------------------------------------------------//
253 // Number of guest instructions executed so far. Only used with
254 // --time-unit=i.
255 static Long guest_instrs_executed = 0;
257 static SizeT heap_szB = 0; // Live heap size
258 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
259 static SizeT stacks_szB = 0; // Live stacks size
261 // This is the total size from the current peak snapshot, or 0 if no peak
262 // snapshot has been taken yet.
263 static SizeT peak_snapshot_total_szB = 0;
265 // Incremented every time memory is allocated/deallocated, by the
266 // allocated/deallocated amount; includes heap, heap-admin and stack
267 // memory. An alternative to milliseconds as a unit of program "time".
268 static ULong total_allocs_deallocs_szB = 0;
270 // When running with --heap=yes --pages-as-heap=no, we don't start taking
271 // snapshots until the first basic block is executed, rather than doing it in
272 // ms_post_clo_init (which is the obvious spot), for two reasons.
273 // - It lets us ignore stack events prior to that, because they're not
274 // really proper ones and just would screw things up.
275 // - Because there's still some core initialisation to do, and so there
276 // would be an artificial time gap between the first and second snapshots.
278 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
279 // earlier due to new_mem_startup so this isn't relevant.
281 static Bool have_started_executing_code = False;
283 //------------------------------------------------------------//
284 //--- Alloc fns ---//
285 //------------------------------------------------------------//
287 static XArray* alloc_fns;
288 static XArray* ignore_fns;
290 static void init_alloc_fns(void)
292 // Create the list, and add the default elements.
293 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
294 VG_(free), sizeof(HChar*));
295 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
297 // Ordered roughly according to (presumed) frequency.
298 // Nb: The C++ "operator new*" ones are overloadable. We include them
299 // always anyway, because even if they're overloaded, it would be a
300 // prodigiously stupid overloading that caused them to not allocate
301 // memory.
303 // XXX: because we don't look at the first stack entry (unless it's a
304 // custom allocation) there's not much point to having all these alloc
305 // functions here -- they should never appear anywhere (I think?) other
306 // than the top stack entry. The only exceptions are those that in
307 // vg_replace_malloc.c are partly or fully implemented in terms of another
308 // alloc function: realloc (which uses malloc); valloc,
309 // malloc_zone_valloc, posix_memalign and memalign_common (which use
310 // memalign).
312 DO("malloc" );
313 DO("__builtin_new" );
314 DO("operator new(unsigned)" );
315 DO("operator new(unsigned long)" );
316 DO("__builtin_vec_new" );
317 DO("operator new[](unsigned)" );
318 DO("operator new[](unsigned long)" );
319 DO("calloc" );
320 DO("realloc" );
321 DO("memalign" );
322 DO("posix_memalign" );
323 DO("valloc" );
324 DO("operator new(unsigned, std::nothrow_t const&)" );
325 DO("operator new[](unsigned, std::nothrow_t const&)" );
326 DO("operator new(unsigned long, std::nothrow_t const&)" );
327 DO("operator new[](unsigned long, std::nothrow_t const&)");
328 #if defined(VGO_darwin)
329 DO("malloc_zone_malloc" );
330 DO("malloc_zone_calloc" );
331 DO("malloc_zone_realloc" );
332 DO("malloc_zone_memalign" );
333 DO("malloc_zone_valloc" );
334 #endif
337 static void init_ignore_fns(void)
339 // Create the (empty) list.
340 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
341 VG_(free), sizeof(HChar*));
344 //------------------------------------------------------------//
345 //--- Command line args ---//
346 //------------------------------------------------------------//
348 #define MAX_DEPTH 200
350 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
352 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
354 switch (time_unit) {
355 case TimeI: return "i";
356 case TimeMS: return "ms";
357 case TimeB: return "B";
358 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
362 static Bool clo_heap = True;
363 // clo_heap_admin is deliberately a word-sized type. At one point it was
364 // a UInt, but this caused problems on 64-bit machines when it was
365 // multiplied by a small negative number and then promoted to a
366 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
367 static SSizeT clo_heap_admin = 8;
368 static Bool clo_pages_as_heap = False;
369 static Bool clo_stacks = False;
370 static Int clo_depth = 30;
371 static double clo_threshold = 1.0; // percentage
372 static double clo_peak_inaccuracy = 1.0; // percentage
373 static Int clo_time_unit = TimeI;
374 static Int clo_detailed_freq = 10;
375 static Int clo_max_snapshots = 100;
376 static const HChar* clo_massif_out_file = "massif.out.%p";
378 static XArray* args_for_massif;
380 static Bool ms_process_cmd_line_option(const HChar* arg)
382 const HChar* tmp_str;
384 // Remember the arg for later use.
385 VG_(addToXA)(args_for_massif, &arg);
387 if VG_BOOL_CLO(arg, "--heap", clo_heap) {}
388 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {}
390 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {}
392 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {}
394 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {}
396 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) {
397 VG_(addToXA)(alloc_fns, &tmp_str);
399 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) {
400 VG_(addToXA)(ignore_fns, &tmp_str);
403 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {
404 if (clo_threshold < 0 || clo_threshold > 100) {
405 VG_(fmsg_bad_option)(arg,
406 "--threshold must be between 0.0 and 100.0\n");
410 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
412 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {}
413 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {}
414 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {}
416 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {}
418 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {}
420 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
422 else
423 return VG_(replacement_malloc_process_cmd_line_option)(arg);
425 return True;
428 static void ms_print_usage(void)
430 VG_(printf)(
431 " --heap=no|yes profile heap blocks [yes]\n"
432 " --heap-admin=<size> average admin bytes per heap block;\n"
433 " ignored if --heap=no [8]\n"
434 " --stacks=no|yes profile stack(s) [no]\n"
435 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
436 " --depth=<number> depth of contexts [30]\n"
437 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
438 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
439 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
440 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
441 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
442 " or heap bytes alloc'd/dealloc'd [i]\n"
443 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
444 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
445 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
449 static void ms_print_debug_usage(void)
451 VG_(printf)(
452 " (none)\n"
457 //------------------------------------------------------------//
458 //--- XTrees ---//
459 //------------------------------------------------------------//
461 // The details of the heap are represented by a single XTree.
462 // This XTree maintains the nr of allocated bytes for each
463 // stacktrace/execontext.
465 // The root of the Xtree will be output as a top node 'alloc functions',
466 // which represents all allocation functions, eg:
467 // - malloc/calloc/realloc/memalign/new/new[];
468 // - user-specified allocation functions (using --alloc-fn);
469 // - custom allocation (MALLOCLIKE) points
470 static XTree* heap_xt;
471 /* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */
472 static void init_szB(void* value)
474 *((SizeT*)value) = 0;
476 static void add_szB(void* to, const void* value)
478 *((SizeT*)to) += *((const SizeT*)value);
480 static void sub_szB(void* from, const void* value)
482 *((SizeT*)from) -= *((const SizeT*)value);
484 static ULong alloc_szB(const void* value)
486 return (ULong)*((const SizeT*)value);
490 //------------------------------------------------------------//
491 //--- XTree Operations ---//
492 //------------------------------------------------------------//
494 // This is the limit on the number of filtered alloc-fns that can be in a
495 // single stacktrace.
496 #define MAX_OVERESTIMATE 50
497 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
499 // filtering out uninteresting entries:
500 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
501 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
502 // becomes: a / b / main
503 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
504 // as an alloc-fn. This is ok.
505 static
506 void filter_IPs (Addr* ips, Int n_ips,
507 UInt* top, UInt* n_ips_sel)
509 Int i;
510 Bool top_has_fnname = False;
511 const HChar *fnname;
513 *top = 0;
514 *n_ips_sel = n_ips;
516 // Advance *top as long as we find alloc functions
517 // PW Nov 2016 xtree work:
518 // old massif code was doing something really strange(?buggy):
519 // 'sliding' a bunch of functions without names by removing an
520 // alloc function 'inside' a stacktrace e.g.
521 // 0x1 0x2 0x3 alloc func1 main
522 // became 0x1 0x2 0x3 func1 main
523 for (i = *top; i < n_ips; i++) {
524 top_has_fnname = VG_(get_fnname)(ips[*top], &fnname);
525 if (top_has_fnname && VG_(strIsMemberXA)(alloc_fns, fnname)) {
526 VERB(4, "filtering alloc fn %s\n", fnname);
527 (*top)++;
528 (*n_ips_sel)--;
529 } else {
530 break;
534 // filter the whole stacktrace if this allocation has to be ignored.
535 if (*n_ips_sel > 0 && VG_(sizeXA)(ignore_fns) > 0) {
536 if (!top_has_fnname) {
537 // top has no fnname => search for the first entry that has a fnname
538 for (i = *top; i < n_ips && !top_has_fnname; i++) {
539 top_has_fnname = VG_(get_fnname)(ips[i], &fnname);
542 if (top_has_fnname && VG_(strIsMemberXA)(ignore_fns, fnname)) {
543 VERB(4, "ignored allocation from fn %s\n", fnname);
544 *top = n_ips;
545 *n_ips_sel = 0;
549 if (!VG_(clo_show_below_main) && *n_ips_sel > 0 ) {
550 Int mbm = VG_(XT_offset_main_or_below_main)(ips, n_ips);
552 if (mbm < *top) {
553 // Special case: the first main (or below main) function is an
554 // alloc function.
555 *n_ips_sel = 1;
556 VERB(4, "main/below main: keeping 1 fn\n");
557 } else {
558 *n_ips_sel -= n_ips - mbm - 1;
559 VERB(4, "main/below main: filtering %d\n", n_ips - mbm - 1);
563 // filter the frames if we have more than clo_depth
564 if (*n_ips_sel > clo_depth) {
565 VERB(4, "filtering IPs above clo_depth\n");
566 *n_ips_sel = clo_depth;
570 // Capture a stacktrace, and make an ec of it, without the first entry
571 // if exclude_first_entry is True.
572 static ExeContext* make_ec(ThreadId tid, Bool exclude_first_entry)
574 static Addr ips[MAX_IPS];
576 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
577 Int n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + MAX_OVERESTIMATE,
578 NULL/*array to dump SP values in*/,
579 NULL/*array to dump FP values in*/,
580 0/*first_ip_delta*/ );
581 if (exclude_first_entry && n_ips > 0) {
582 const HChar *fnname;
583 VERB(4, "removing top fn %s from stacktrace\n",
584 VG_(get_fnname)(ips[0], &fnname) ? fnname : "???");
585 return VG_(make_ExeContext_from_StackTrace)(ips+1, n_ips-1);
586 } else
587 return VG_(make_ExeContext_from_StackTrace)(ips, n_ips);
590 // Create (or update) in heap_xt an xec corresponding to the stacktrace of tid.
591 // req_szB is added to the xec (unless ec is fully filtered).
592 // Returns the correspding XTree xec.
593 // exclude_first_entry is an optimisation: if True, automatically removes
594 // the top level IP from the stacktrace. Should be set to True if it is known
595 // that this is an alloc fn. The top function presumably will be something like
596 // malloc or __builtin_new that we're sure to filter out).
597 static Xecu add_heap_xt( ThreadId tid, SizeT req_szB, Bool exclude_first_entry)
599 ExeContext *ec = make_ec(tid, exclude_first_entry);
601 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full))
602 VG_(XTMemory_Full_alloc)(req_szB, ec);
603 return VG_(XT_add_to_ec) (heap_xt, ec, &req_szB);
606 // Substract req_szB from the heap_xt where.
607 static void sub_heap_xt(Xecu where, SizeT req_szB, Bool exclude_first_entry)
609 tl_assert(clo_heap);
611 if (0 == req_szB)
612 return;
614 VG_(XT_sub_from_xecu) (heap_xt, where, &req_szB);
615 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) {
616 ExeContext *ec_free = make_ec(VG_(get_running_tid)(),
617 exclude_first_entry);
618 VG_(XTMemory_Full_free)(req_szB,
619 VG_(XT_get_ec_from_xecu)(heap_xt, where),
620 ec_free);
625 //------------------------------------------------------------//
626 //--- Snapshots ---//
627 //------------------------------------------------------------//
629 // Snapshots are done in a way so that we always have a reasonable number of
630 // them. We start by taking them quickly. Once we hit our limit, we cull
631 // some (eg. half), and start taking them more slowly. Once we hit the
632 // limit again, we again cull and then take them even more slowly, and so
633 // on.
635 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
637 typedef
638 enum {
639 Normal = 77,
640 Peak,
641 Unused
643 SnapshotKind;
645 typedef
646 struct {
647 SnapshotKind kind;
648 Time time;
649 SizeT heap_szB;
650 SizeT heap_extra_szB;// Heap slop + admin bytes.
651 SizeT stacks_szB;
652 XTree* xt; // Snapshot of heap_xt, if a detailed snapshot,
653 } // otherwise NULL.
654 Snapshot;
656 static UInt next_snapshot_i = 0; // Index of where next snapshot will go.
657 static Snapshot* snapshots; // Array of snapshots.
659 static Bool is_snapshot_in_use(Snapshot* snapshot)
661 if (Unused == snapshot->kind) {
662 // If snapshot is unused, check all the fields are unset.
663 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME);
664 tl_assert(snapshot->heap_extra_szB == 0);
665 tl_assert(snapshot->heap_szB == 0);
666 tl_assert(snapshot->stacks_szB == 0);
667 tl_assert(snapshot->xt == NULL);
668 return False;
669 } else {
670 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME);
671 return True;
675 static Bool is_detailed_snapshot(Snapshot* snapshot)
677 return (snapshot->xt ? True : False);
680 static Bool is_uncullable_snapshot(Snapshot* snapshot)
682 return &snapshots[0] == snapshot // First snapshot
683 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot
684 || snapshot->kind == Peak; // Peak snapshot
687 static void sanity_check_snapshot(Snapshot* snapshot)
689 // Not much we can sanity check.
690 tl_assert(snapshot->xt == NULL || snapshot->kind != Unused);
693 // All the used entries should look used, all the unused ones should be clear.
694 static void sanity_check_snapshots_array(void)
696 Int i;
697 for (i = 0; i < next_snapshot_i; i++) {
698 tl_assert( is_snapshot_in_use( & snapshots[i] ));
700 for ( ; i < clo_max_snapshots; i++) {
701 tl_assert(!is_snapshot_in_use( & snapshots[i] ));
705 // This zeroes all the fields in the snapshot, but does not free the xt
706 // XTree if present. It also does a sanity check unless asked not to; we
707 // can't sanity check at startup when clearing the initial snapshots because
708 // they're full of junk.
709 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
711 if (do_sanity_check) sanity_check_snapshot(snapshot);
712 snapshot->kind = Unused;
713 snapshot->time = UNUSED_SNAPSHOT_TIME;
714 snapshot->heap_extra_szB = 0;
715 snapshot->heap_szB = 0;
716 snapshot->stacks_szB = 0;
717 snapshot->xt = NULL;
720 // This zeroes all the fields in the snapshot, and frees the heap XTree xt if
721 // present.
722 static void delete_snapshot(Snapshot* snapshot)
724 // Nb: if there's an XTree, we free it after calling clear_snapshot,
725 // because clear_snapshot does a sanity check which includes checking the
726 // XTree.
727 XTree* tmp_xt = snapshot->xt;
728 clear_snapshot(snapshot, /*do_sanity_check*/True);
729 if (tmp_xt) {
730 VG_(XT_delete)(tmp_xt);
734 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
736 Snapshot* snapshot = &snapshots[i];
737 const HChar* suffix;
738 switch (snapshot->kind) {
739 case Peak: suffix = "p"; break;
740 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
741 case Unused: suffix = "u"; break;
742 default:
743 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
745 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
746 prefix, suffix, i,
747 snapshot->time,
748 snapshot->heap_szB,
749 snapshot->heap_extra_szB,
750 snapshot->stacks_szB
754 // Cull half the snapshots; we choose those that represent the smallest
755 // time-spans, because that gives us the most even distribution of snapshots
756 // over time. (It's possible to lose interesting spikes, however.)
758 // Algorithm for N snapshots: We find the snapshot representing the smallest
759 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
760 // We have to do this one snapshot at a time, rather than finding the (N/2)
761 // smallest snapshots in one hit, because when a snapshot is removed, its
762 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
763 // small, and it's not done very often.
765 // Once we're done, we return the new smallest interval between snapshots.
766 // That becomes our minimum time interval.
767 static UInt cull_snapshots(void)
769 Int i, jp, j, jn, min_timespan_i;
770 Int n_deleted = 0;
771 Time min_timespan;
773 n_cullings++;
775 // Sets j to the index of the first not-yet-removed snapshot at or after i
776 #define FIND_SNAPSHOT(i, j) \
777 for (j = i; \
778 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
779 j++) { }
781 VERB(2, "Culling...\n");
783 // First we remove enough snapshots by clearing them in-place. Once
784 // that's done, we can slide the remaining ones down.
785 for (i = 0; i < clo_max_snapshots/2; i++) {
786 // Find the snapshot representing the smallest timespan. The timespan
787 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
788 // snapshot A and B. We don't consider the first and last snapshots for
789 // removal.
790 Snapshot* min_snapshot;
791 Int min_j;
793 // Initial triple: (prev, curr, next) == (jp, j, jn)
794 // Initial min_timespan is the first one.
795 jp = 0;
796 FIND_SNAPSHOT(1, j);
797 FIND_SNAPSHOT(j+1, jn);
798 min_timespan = 0x7fffffffffffffffLL;
799 min_j = -1;
800 while (jn < clo_max_snapshots) {
801 Time timespan = snapshots[jn].time - snapshots[jp].time;
802 tl_assert(timespan >= 0);
803 // Nb: We never cull the peak snapshot.
804 if (Peak != snapshots[j].kind && timespan < min_timespan) {
805 min_timespan = timespan;
806 min_j = j;
808 // Move on to next triple
809 jp = j;
810 j = jn;
811 FIND_SNAPSHOT(jn+1, jn);
813 // We've found the least important snapshot, now delete it. First
814 // print it if necessary.
815 tl_assert(-1 != min_j); // Check we found a minimum.
816 min_snapshot = & snapshots[ min_j ];
817 if (VG_(clo_verbosity) > 1) {
818 HChar buf[64]; // large enough
819 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
820 VERB_snapshot(2, buf, min_j);
822 delete_snapshot(min_snapshot);
823 n_deleted++;
826 // Slide down the remaining snapshots over the removed ones. First set i
827 // to point to the first empty slot, and j to the first full slot after
828 // i. Then slide everything down.
829 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { }
830 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
831 for ( ; j < clo_max_snapshots; j++) {
832 if (is_snapshot_in_use( &snapshots[j] )) {
833 snapshots[i++] = snapshots[j];
834 clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
837 next_snapshot_i = i;
839 // Check snapshots array looks ok after changes.
840 sanity_check_snapshots_array();
842 // Find the minimum timespan remaining; that will be our new minimum
843 // time interval. Note that above we were finding timespans by measuring
844 // two intervals around a snapshot that was under consideration for
845 // deletion. Here we only measure single intervals because all the
846 // deletions have occurred.
848 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
849 // peak snapshot) are uncullable. If two uncullable snapshots end up
850 // next to each other, they'll never be culled (assuming the peak doesn't
851 // change), and the time gap between them will not change. However, the
852 // time between the remaining cullable snapshots will grow ever larger.
853 // This means that the min_timespan found will always be that between the
854 // two uncullable snapshots, and it will be much smaller than it should
855 // be. To avoid this problem, when computing the minimum timespan, we
856 // ignore any timespans between two uncullable snapshots.
857 tl_assert(next_snapshot_i > 1);
858 min_timespan = 0x7fffffffffffffffLL;
859 min_timespan_i = -1;
860 for (i = 1; i < next_snapshot_i; i++) {
861 if (is_uncullable_snapshot(&snapshots[i]) &&
862 is_uncullable_snapshot(&snapshots[i-1]))
864 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
865 } else {
866 Time timespan = snapshots[i].time - snapshots[i-1].time;
867 tl_assert(timespan >= 0);
868 if (timespan < min_timespan) {
869 min_timespan = timespan;
870 min_timespan_i = i;
874 tl_assert(-1 != min_timespan_i); // Check we found a minimum.
876 // Print remaining snapshots, if necessary.
877 if (VG_(clo_verbosity) > 1) {
878 VERB(2, "Finished culling (%3d of %3d deleted)\n",
879 n_deleted, clo_max_snapshots);
880 for (i = 0; i < next_snapshot_i; i++) {
881 VERB_snapshot(2, " post-cull", i);
883 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
884 min_timespan, min_timespan_i-1, min_timespan_i);
887 return min_timespan;
890 static Time get_time(void)
892 // Get current time, in whatever time unit we're using.
893 if (clo_time_unit == TimeI) {
894 return guest_instrs_executed;
895 } else if (clo_time_unit == TimeMS) {
896 // Some stuff happens between the millisecond timer being initialised
897 // to zero and us taking our first snapshot. We determine that time
898 // gap so we can subtract it from all subsequent times so that our
899 // first snapshot is considered to be at t = 0ms. Unfortunately, a
900 // bunch of symbols get read after the first snapshot is taken but
901 // before the second one (which is triggered by the first allocation),
902 // so when the time-unit is 'ms' we always have a big gap between the
903 // first two snapshots. But at least users won't have to wonder why
904 // the first snapshot isn't at t=0.
905 static Bool is_first_get_time = True;
906 static Time start_time_ms;
907 if (is_first_get_time) {
908 start_time_ms = VG_(read_millisecond_timer)();
909 is_first_get_time = False;
910 return 0;
911 } else {
912 return VG_(read_millisecond_timer)() - start_time_ms;
914 } else if (clo_time_unit == TimeB) {
915 return total_allocs_deallocs_szB;
916 } else {
917 tl_assert2(0, "bad --time-unit value");
921 // Take a snapshot, and only that -- decisions on whether to take a
922 // snapshot, or what kind of snapshot, are made elsewhere.
923 // Nb: we call the arg "my_time" because "time" shadows a global declaration
924 // in /usr/include/time.h on Darwin.
925 static void
926 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
927 Bool is_detailed)
929 tl_assert(!is_snapshot_in_use(snapshot));
930 if (!clo_pages_as_heap) {
931 tl_assert(have_started_executing_code);
934 // Heap and heap admin.
935 if (clo_heap) {
936 snapshot->heap_szB = heap_szB;
937 if (is_detailed) {
938 snapshot->xt = VG_(XT_snapshot)(heap_xt);
940 snapshot->heap_extra_szB = heap_extra_szB;
943 // Stack(s).
944 if (clo_stacks) {
945 snapshot->stacks_szB = stacks_szB;
948 // Rest of snapshot.
949 snapshot->kind = kind;
950 snapshot->time = my_time;
951 sanity_check_snapshot(snapshot);
953 // Update stats.
954 if (Peak == kind) n_peak_snapshots++;
955 if (is_detailed) n_detailed_snapshots++;
956 n_real_snapshots++;
960 // Take a snapshot, if it's time, or if we've hit a peak.
961 static void
962 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
964 // 'min_time_interval' is the minimum time interval between snapshots.
965 // If we try to take a snapshot and less than this much time has passed,
966 // we don't take it. It gets larger as the program runs longer. It's
967 // initialised to zero so that we begin by taking snapshots as quickly as
968 // possible.
969 static Time min_time_interval = 0;
970 // Zero allows startup snapshot.
971 static Time earliest_possible_time_of_next_snapshot = 0;
972 static Int n_snapshots_since_last_detailed = 0;
973 static Int n_skipped_snapshots_since_last_snapshot = 0;
975 Snapshot* snapshot;
976 Bool is_detailed;
977 // Nb: we call this variable "my_time" because "time" shadows a global
978 // declaration in /usr/include/time.h on Darwin.
979 Time my_time = get_time();
981 switch (kind) {
982 case Normal:
983 // Only do a snapshot if it's time.
984 if (my_time < earliest_possible_time_of_next_snapshot) {
985 n_skipped_snapshots++;
986 n_skipped_snapshots_since_last_snapshot++;
987 return;
989 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
990 break;
992 case Peak: {
993 // Because we're about to do a deallocation, we're coming down from a
994 // local peak. If it is (a) actually a global peak, and (b) a certain
995 // amount bigger than the previous peak, then we take a peak snapshot.
996 // By not taking a snapshot for every peak, we save a lot of effort --
997 // because many peaks remain peak only for a short time.
998 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
999 SizeT excess_szB_for_new_peak =
1000 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1001 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1002 return;
1004 is_detailed = True;
1005 break;
1008 default:
1009 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1012 // Take the snapshot.
1013 snapshot = & snapshots[next_snapshot_i];
1014 take_snapshot(snapshot, kind, my_time, is_detailed);
1016 // Record if it was detailed.
1017 if (is_detailed) {
1018 n_snapshots_since_last_detailed = 0;
1019 } else {
1020 n_snapshots_since_last_detailed++;
1023 // Update peak data, if it's a Peak snapshot.
1024 if (Peak == kind) {
1025 Int i, number_of_peaks_snapshots_found = 0;
1027 // Sanity check the size, then update our recorded peak.
1028 SizeT snapshot_total_szB =
1029 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1030 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1031 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1032 peak_snapshot_total_szB = snapshot_total_szB;
1034 // Find the old peak snapshot, if it exists, and mark it as normal.
1035 for (i = 0; i < next_snapshot_i; i++) {
1036 if (Peak == snapshots[i].kind) {
1037 snapshots[i].kind = Normal;
1038 number_of_peaks_snapshots_found++;
1041 tl_assert(number_of_peaks_snapshots_found <= 1);
1044 // Finish up verbosity and stats stuff.
1045 if (n_skipped_snapshots_since_last_snapshot > 0) {
1046 VERB(2, " (skipped %d snapshot%s)\n",
1047 n_skipped_snapshots_since_last_snapshot,
1048 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1050 VERB_snapshot(2, what, next_snapshot_i);
1051 n_skipped_snapshots_since_last_snapshot = 0;
1053 // Cull the entries, if our snapshot table is full.
1054 next_snapshot_i++;
1055 if (clo_max_snapshots == next_snapshot_i) {
1056 min_time_interval = cull_snapshots();
1059 // Work out the earliest time when the next snapshot can happen.
1060 earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1064 //------------------------------------------------------------//
1065 //--- Sanity checking ---//
1066 //------------------------------------------------------------//
1068 static Bool ms_cheap_sanity_check ( void )
1070 return True; // Nothing useful we can cheaply check.
1073 static Bool ms_expensive_sanity_check ( void )
1075 tl_assert(heap_xt);
1076 sanity_check_snapshots_array();
1077 return True;
1081 //------------------------------------------------------------//
1082 //--- Heap management ---//
1083 //------------------------------------------------------------//
1085 // Metadata for heap blocks. Each one contains an Xecu,
1086 // which identifies the XTree ec at which it was allocated. From
1087 // HP_Chunks, XTree ec 'space' field is incremented (at allocation) and
1088 // decremented (at deallocation).
1090 // Nb: first two fields must match core's VgHashNode.
1091 typedef
1092 struct _HP_Chunk {
1093 struct _HP_Chunk* next;
1094 Addr data; // Ptr to actual block
1095 SizeT req_szB; // Size requested
1096 SizeT slop_szB; // Extra bytes given above those requested
1097 Xecu where; // Where allocated; XTree xecu from heap_xt
1099 HP_Chunk;
1101 /* Pool allocator for HP_Chunk. */
1102 static PoolAlloc *HP_chunk_poolalloc = NULL;
1104 static VgHashTable *malloc_list = NULL; // HP_Chunks
1106 static void update_alloc_stats(SSizeT szB_delta)
1108 // Update total_allocs_deallocs_szB.
1109 if (szB_delta < 0) szB_delta = -szB_delta;
1110 total_allocs_deallocs_szB += szB_delta;
1113 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1115 if (heap_szB_delta < 0)
1116 tl_assert(heap_szB >= -heap_szB_delta);
1117 if (heap_extra_szB_delta < 0)
1118 tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1120 heap_extra_szB += heap_extra_szB_delta;
1121 heap_szB += heap_szB_delta;
1123 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1126 static
1127 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1128 Bool exclude_first_entry, Bool maybe_snapshot )
1130 // Make new HP_Chunk node, add to malloc_list
1131 HP_Chunk* hc = VG_(allocEltPA)(HP_chunk_poolalloc);
1132 hc->req_szB = req_szB;
1133 hc->slop_szB = slop_szB;
1134 hc->data = (Addr)p;
1135 hc->where = 0;
1136 VG_(HT_add_node)(malloc_list, hc);
1138 if (clo_heap) {
1139 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1141 hc->where = add_heap_xt( tid, req_szB, exclude_first_entry);
1143 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1144 // Update statistics.
1145 n_heap_allocs++;
1147 // Update heap stats.
1148 update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1150 // Maybe take a snapshot.
1151 if (maybe_snapshot) {
1152 maybe_take_snapshot(Normal, " alloc");
1155 } else {
1156 // Ignored allocation.
1157 n_ignored_heap_allocs++;
1159 VERB(3, "(ignored)\n");
1162 VERB(3, ">>>\n");
1165 return p;
1168 static __inline__
1169 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1170 Bool is_zeroed )
1172 SizeT actual_szB, slop_szB;
1173 void* p;
1175 if ((SSizeT)req_szB < 0) return NULL;
1177 // Allocate and zero if necessary.
1178 p = VG_(cli_malloc)( req_alignB, req_szB );
1179 if (!p) {
1180 return NULL;
1182 if (is_zeroed) VG_(memset)(p, 0, req_szB);
1183 actual_szB = VG_(cli_malloc_usable_size)(p);
1184 tl_assert(actual_szB >= req_szB);
1185 slop_szB = actual_szB - req_szB;
1187 // Record block.
1188 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1189 /*maybe_snapshot*/True);
1191 return p;
1194 static __inline__
1195 void unrecord_block ( void* p, Bool maybe_snapshot, Bool exclude_first_entry )
1197 // Remove HP_Chunk from malloc_list
1198 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1199 if (NULL == hc) {
1200 return; // must have been a bogus free()
1203 if (clo_heap) {
1204 VERB(3, "<<< unrecord_block\n");
1206 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1207 // Update statistics.
1208 n_heap_frees++;
1210 // Maybe take a peak snapshot, since it's a deallocation.
1211 if (maybe_snapshot) {
1212 maybe_take_snapshot(Peak, "de-PEAK");
1215 // Update heap stats.
1216 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1218 // Update XTree.
1219 sub_heap_xt(hc->where, hc->req_szB, exclude_first_entry);
1221 // Maybe take a snapshot.
1222 if (maybe_snapshot) {
1223 maybe_take_snapshot(Normal, "dealloc");
1226 } else {
1227 n_ignored_heap_frees++;
1229 VERB(3, "(ignored)\n");
1232 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1235 // Actually free the chunk, and the heap block (if necessary)
1236 VG_(freeEltPA) (HP_chunk_poolalloc, hc); hc = NULL;
1239 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1240 // ignored, but the realloc is not requested to be ignored, and we are
1241 // shrinking the block, then we have to ignore the realloc -- otherwise we
1242 // could end up with negative heap sizes. This isn't a danger if we are
1243 // growing such a block, but for consistency (it also simplifies things) we
1244 // ignore such reallocs as well.
1245 // PW Nov 2016 xtree work: why can't we just consider that a realloc of an
1246 // ignored alloc is just a new alloc (i.e. do not remove the old sz from the
1247 // stats). Then everything would be fine, and a non ignored realloc would be
1248 // counted properly.
1249 static __inline__
1250 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1252 HP_Chunk* hc;
1253 void* p_new;
1254 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1255 Xecu old_where;
1256 Bool is_ignored = False;
1258 // Remove the old block
1259 hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1260 if (hc == NULL) {
1261 return NULL; // must have been a bogus realloc()
1264 old_req_szB = hc->req_szB;
1265 old_slop_szB = hc->slop_szB;
1267 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes.
1268 if (clo_heap) {
1269 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1271 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1272 // Update statistics.
1273 n_heap_reallocs++;
1275 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1276 if (new_req_szB < old_req_szB) {
1277 maybe_take_snapshot(Peak, "re-PEAK");
1279 } else {
1280 // The original malloc was ignored, so we have to ignore the
1281 // realloc as well.
1282 is_ignored = True;
1286 // Actually do the allocation, if necessary.
1287 if (new_req_szB <= old_req_szB + old_slop_szB) {
1288 // New size is smaller or same; block not moved.
1289 p_new = p_old;
1290 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1292 } else {
1293 // New size is bigger; make new block, copy shared contents, free old.
1294 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1295 if (!p_new) {
1296 // Nb: if realloc fails, NULL is returned but the old block is not
1297 // touched. What an awful function.
1298 return NULL;
1300 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1301 VG_(cli_free)(p_old);
1302 new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1303 tl_assert(new_actual_szB >= new_req_szB);
1304 new_slop_szB = new_actual_szB - new_req_szB;
1307 if (p_new) {
1308 // Update HP_Chunk.
1309 hc->data = (Addr)p_new;
1310 hc->req_szB = new_req_szB;
1311 hc->slop_szB = new_slop_szB;
1312 old_where = hc->where;
1313 hc->where = 0;
1315 // Update XTree.
1316 if (clo_heap) {
1317 hc->where = add_heap_xt( tid, new_req_szB,
1318 /*exclude_first_entry*/True);
1319 if (!is_ignored && VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1320 sub_heap_xt(old_where, old_req_szB, /*exclude_first_entry*/True);
1321 } else {
1322 // The realloc itself is ignored.
1323 is_ignored = True;
1325 /* XTREE??? hack to have something compatible with pre
1326 m_xtree massif: if the previous alloc/realloc was
1327 ignored, and this one is not ignored, then keep the
1328 previous where, to continue marking this memory as
1329 ignored. */
1330 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0
1331 && VG_(XT_n_ips_sel)(heap_xt, old_where) == 0)
1332 hc->where = old_where;
1334 // Update statistics.
1335 n_ignored_heap_reallocs++;
1340 // Now insert the new hc (with a possibly new 'data' field) into
1341 // malloc_list. If this realloc() did not increase the memory size, we
1342 // will have removed and then re-added hc unnecessarily. But that's ok
1343 // because shrinking a block with realloc() is (presumably) much rarer
1344 // than growing it, and this way simplifies the growing case.
1345 VG_(HT_add_node)(malloc_list, hc);
1347 if (clo_heap) {
1348 if (!is_ignored) {
1349 // Update heap stats.
1350 update_heap_stats(new_req_szB - old_req_szB,
1351 new_slop_szB - old_slop_szB);
1353 // Maybe take a snapshot.
1354 maybe_take_snapshot(Normal, "realloc");
1355 } else {
1357 VERB(3, "(ignored)\n");
1360 VERB(3, ">>> (%ld, %ld)\n",
1361 (SSizeT)(new_req_szB - old_req_szB),
1362 (SSizeT)(new_slop_szB - old_slop_szB));
1365 return p_new;
1369 //------------------------------------------------------------//
1370 //--- malloc() et al replacement wrappers ---//
1371 //------------------------------------------------------------//
1373 static void* ms_malloc ( ThreadId tid, SizeT szB )
1375 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1378 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1380 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1383 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1385 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1388 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1390 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1393 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1395 return alloc_and_record_block( tid, szB, alignB, False );
1398 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1400 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1401 VG_(cli_free)(p);
1404 static void ms___builtin_delete ( ThreadId tid, void* p )
1406 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1407 VG_(cli_free)(p);
1410 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1412 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1413 VG_(cli_free)(p);
1416 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1418 return realloc_block(tid, p_old, new_szB);
1421 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1423 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1425 return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1428 //------------------------------------------------------------//
1429 //--- Page handling ---//
1430 //------------------------------------------------------------//
1432 static
1433 void ms_record_page_mem ( Addr a, SizeT len )
1435 ThreadId tid = VG_(get_running_tid)();
1436 Addr end;
1437 tl_assert(VG_IS_PAGE_ALIGNED(len));
1438 tl_assert(len >= VKI_PAGE_SIZE);
1439 // Record the first N-1 pages as blocks, but don't do any snapshots.
1440 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1441 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1442 /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1444 // Record the last page as a block, and maybe do a snapshot afterwards.
1445 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1446 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1449 static
1450 void ms_unrecord_page_mem( Addr a, SizeT len )
1452 Addr end;
1453 tl_assert(VG_IS_PAGE_ALIGNED(len));
1454 tl_assert(len >= VKI_PAGE_SIZE);
1455 // Unrecord the first page. This might be the peak, so do a snapshot.
1456 unrecord_block((void*)a, /*maybe_snapshot*/True,
1457 /*exclude_first_entry*/False);
1458 a += VKI_PAGE_SIZE;
1459 // Then unrecord the remaining pages, but without snapshots.
1460 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1461 unrecord_block((void*)a, /*maybe_snapshot*/False,
1462 /*exclude_first_entry*/False);
1466 //------------------------------------------------------------//
1468 static
1469 void ms_new_mem_mmap ( Addr a, SizeT len,
1470 Bool rr, Bool ww, Bool xx, ULong di_handle )
1472 tl_assert(VG_IS_PAGE_ALIGNED(len));
1473 ms_record_page_mem(a, len);
1476 static
1477 void ms_new_mem_startup( Addr a, SizeT len,
1478 Bool rr, Bool ww, Bool xx, ULong di_handle )
1480 // startup maps are always be page-sized, except the trampoline page is
1481 // marked by the core as only being the size of the trampoline itself,
1482 // which is something like 57 bytes. Round it up to page size.
1483 len = VG_PGROUNDUP(len);
1484 ms_record_page_mem(a, len);
1487 static
1488 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1490 // brk limit is not necessarily aligned on a page boundary.
1491 // If new memory being brk-ed implies to allocate a new page,
1492 // then call ms_record_page_mem with page aligned parameters
1493 // otherwise just ignore.
1494 Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1495 Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1496 if (old_bottom_page != new_top_page)
1497 ms_record_page_mem(VG_PGROUNDDN(a),
1498 (new_top_page - old_bottom_page));
1501 static
1502 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1504 tl_assert(VG_IS_PAGE_ALIGNED(len));
1505 ms_unrecord_page_mem(from, len);
1506 ms_record_page_mem(to, len);
1509 static
1510 void ms_die_mem_munmap( Addr a, SizeT len )
1512 tl_assert(VG_IS_PAGE_ALIGNED(len));
1513 ms_unrecord_page_mem(a, len);
1516 static
1517 void ms_die_mem_brk( Addr a, SizeT len )
1519 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1520 // See ms_new_mem_brk for more details.
1521 Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1522 Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1523 if (old_top_page != new_bottom_page)
1524 ms_unrecord_page_mem(VG_PGROUNDDN(a),
1525 (old_top_page - new_bottom_page));
1529 //------------------------------------------------------------//
1530 //--- Stacks ---//
1531 //------------------------------------------------------------//
1533 // We really want the inlining to occur...
1534 #define INLINE inline __attribute__((always_inline))
1536 static void update_stack_stats(SSizeT stack_szB_delta)
1538 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1539 stacks_szB += stack_szB_delta;
1541 update_alloc_stats(stack_szB_delta);
1544 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1546 if (have_started_executing_code) {
1547 VERB(3, "<<< new_mem_stack (%lu)\n", len);
1548 n_stack_allocs++;
1549 update_stack_stats(len);
1550 maybe_take_snapshot(Normal, what);
1551 VERB(3, ">>>\n");
1555 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1557 if (have_started_executing_code) {
1558 VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1559 n_stack_frees++;
1560 maybe_take_snapshot(Peak, "stkPEAK");
1561 update_stack_stats(-len);
1562 maybe_take_snapshot(Normal, what);
1563 VERB(3, ">>>\n");
1567 static void new_mem_stack(Addr a, SizeT len)
1569 new_mem_stack_2(len, "stk-new");
1572 static void die_mem_stack(Addr a, SizeT len)
1574 die_mem_stack_2(len, "stk-die");
1577 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1579 new_mem_stack_2(len, "sig-new");
1582 static void die_mem_stack_signal(Addr a, SizeT len)
1584 die_mem_stack_2(len, "sig-die");
1588 //------------------------------------------------------------//
1589 //--- Client Requests ---//
1590 //------------------------------------------------------------//
1592 static void print_monitor_help ( void )
1594 VG_(gdb_printf) (
1595 "\n"
1596 "massif monitor commands:\n"
1597 " snapshot [<filename>]\n"
1598 " detailed_snapshot [<filename>]\n"
1599 " takes a snapshot (or a detailed snapshot)\n"
1600 " and saves it in <filename>\n"
1601 " default <filename> is massif.vgdb.out\n"
1602 " all_snapshots [<filename>]\n"
1603 " saves all snapshot(s) taken so far in <filename>\n"
1604 " default <filename> is massif.vgdb.out\n"
1605 " xtmemory [<filename>]\n"
1606 " dump xtree memory profile in <filename> (default xtmemory.kcg.%%p.%%n)\n"
1607 "\n");
1611 /* Forward declaration.
1612 return True if request recognised, False otherwise */
1613 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
1614 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1616 switch (argv[0]) {
1617 case VG_USERREQ__MALLOCLIKE_BLOCK: {
1618 void* p = (void*)argv[1];
1619 SizeT szB = argv[2];
1620 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1621 /*maybe_snapshot*/True );
1622 *ret = 0;
1623 return True;
1625 case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1626 void* p = (void*)argv[1];
1627 SizeT newSizeB = argv[3];
1629 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1630 record_block(tid, p, newSizeB, /*slop_szB*/0,
1631 /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1632 return True;
1634 case VG_USERREQ__FREELIKE_BLOCK: {
1635 void* p = (void*)argv[1];
1636 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1637 *ret = 0;
1638 return True;
1640 case VG_USERREQ__GDB_MONITOR_COMMAND: {
1641 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1642 if (handled)
1643 *ret = 1;
1644 else
1645 *ret = 0;
1646 return handled;
1649 default:
1650 *ret = 0;
1651 return False;
1655 //------------------------------------------------------------//
1656 //--- Instrumentation ---//
1657 //------------------------------------------------------------//
1659 static void add_counter_update(IRSB* sbOut, Int n)
1661 #if defined(VG_BIGENDIAN)
1662 # define END Iend_BE
1663 #elif defined(VG_LITTLEENDIAN)
1664 # define END Iend_LE
1665 #else
1666 # error "Unknown endianness"
1667 #endif
1668 // Add code to increment 'guest_instrs_executed' by 'n', like this:
1669 // WrTmp(t1, Load64(&guest_instrs_executed))
1670 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
1671 // Store(&guest_instrs_executed, t2)
1672 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
1673 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
1674 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
1676 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
1677 IRStmt* st2 =
1678 IRStmt_WrTmp(t2,
1679 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
1680 IRExpr_Const(IRConst_U64(n))));
1681 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
1683 addStmtToIRSB( sbOut, st1 );
1684 addStmtToIRSB( sbOut, st2 );
1685 addStmtToIRSB( sbOut, st3 );
1688 static IRSB* ms_instrument2( IRSB* sbIn )
1690 Int i, n = 0;
1691 IRSB* sbOut;
1693 // We increment the instruction count in two places:
1694 // - just before any Ist_Exit statements;
1695 // - just before the IRSB's end.
1696 // In the former case, we zero 'n' and then continue instrumenting.
1698 sbOut = deepCopyIRSBExceptStmts(sbIn);
1700 for (i = 0; i < sbIn->stmts_used; i++) {
1701 IRStmt* st = sbIn->stmts[i];
1703 if (!st || st->tag == Ist_NoOp) continue;
1705 if (st->tag == Ist_IMark) {
1706 n++;
1707 } else if (st->tag == Ist_Exit) {
1708 if (n > 0) {
1709 // Add an increment before the Exit statement, then reset 'n'.
1710 add_counter_update(sbOut, n);
1711 n = 0;
1714 addStmtToIRSB( sbOut, st );
1717 if (n > 0) {
1718 // Add an increment before the SB end.
1719 add_counter_update(sbOut, n);
1721 return sbOut;
1724 static
1725 IRSB* ms_instrument ( VgCallbackClosure* closure,
1726 IRSB* sbIn,
1727 const VexGuestLayout* layout,
1728 const VexGuestExtents* vge,
1729 const VexArchInfo* archinfo_host,
1730 IRType gWordTy, IRType hWordTy )
1732 if (! have_started_executing_code) {
1733 // Do an initial sample to guarantee that we have at least one.
1734 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
1735 // 'maybe_take_snapshot's internal static variables are initialised.
1736 have_started_executing_code = True;
1737 maybe_take_snapshot(Normal, "startup");
1740 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); }
1741 else if (clo_time_unit == TimeMS) { return sbIn; }
1742 else if (clo_time_unit == TimeB) { return sbIn; }
1743 else { tl_assert2(0, "bad --time-unit value"); }
1747 //------------------------------------------------------------//
1748 //--- Writing snapshots ---//
1749 //------------------------------------------------------------//
1751 static void pp_snapshot(MsFile *fp, Snapshot* snapshot, Int snapshot_n)
1753 const Massif_Header header = (Massif_Header) {
1754 .snapshot_n = snapshot_n,
1755 .time = snapshot->time,
1756 .sz_B = snapshot->heap_szB,
1757 .extra_B = snapshot->heap_extra_szB,
1758 .stacks_B = snapshot->stacks_szB,
1759 .detailed = is_detailed_snapshot(snapshot),
1760 .peak = Peak == snapshot->kind,
1761 .top_node_desc = clo_pages_as_heap ?
1762 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
1763 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.",
1764 .sig_threshold = clo_threshold
1767 sanity_check_snapshot(snapshot);
1769 VG_(XT_massif_print)(fp, snapshot->xt, &header, alloc_szB);
1772 static void write_snapshots_to_file(const HChar* massif_out_file,
1773 Snapshot snapshots_array[],
1774 Int nr_elements)
1776 Int i;
1777 MsFile *fp;
1779 fp = VG_(XT_massif_open)(massif_out_file,
1780 NULL,
1781 args_for_massif,
1782 TimeUnit_to_string(clo_time_unit));
1783 if (fp == NULL)
1784 return; // Error reported by VG_(XT_massif_open)
1786 for (i = 0; i < nr_elements; i++) {
1787 Snapshot* snapshot = & snapshots_array[i];
1788 pp_snapshot(fp, snapshot, i); // Detailed snapshot!
1790 VG_(XT_massif_close) (fp);
1793 static void write_snapshots_array_to_file(void)
1795 // Setup output filename. Nb: it's important to do this now, ie. as late
1796 // as possible. If we do it at start-up and the program forks and the
1797 // output file format string contains a %p (pid) specifier, both the
1798 // parent and child will incorrectly write to the same file; this
1799 // happened in 3.3.0.
1800 HChar* massif_out_file =
1801 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
1802 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
1803 VG_(free)(massif_out_file);
1806 static void handle_snapshot_monitor_command (const HChar *filename,
1807 Bool detailed)
1809 Snapshot snapshot;
1811 if (!clo_pages_as_heap && !have_started_executing_code) {
1812 // See comments of variable have_started_executing_code.
1813 VG_(gdb_printf)
1814 ("error: cannot take snapshot before execution has started\n");
1815 return;
1818 clear_snapshot(&snapshot, /* do_sanity_check */ False);
1819 take_snapshot(&snapshot, Normal, get_time(), detailed);
1820 write_snapshots_to_file ((filename == NULL) ?
1821 "massif.vgdb.out" : filename,
1822 &snapshot,
1824 delete_snapshot(&snapshot);
1827 static void handle_all_snapshots_monitor_command (const HChar *filename)
1829 if (!clo_pages_as_heap && !have_started_executing_code) {
1830 // See comments of variable have_started_executing_code.
1831 VG_(gdb_printf)
1832 ("error: cannot take snapshot before execution has started\n");
1833 return;
1836 write_snapshots_to_file ((filename == NULL) ?
1837 "massif.vgdb.out" : filename,
1838 snapshots, next_snapshot_i);
1841 static void xtmemory_report_next_block(XT_Allocs* xta, ExeContext** ec_alloc)
1843 const HP_Chunk* hc = VG_(HT_Next)(malloc_list);
1844 if (hc) {
1845 xta->nbytes = hc->req_szB;
1846 xta->nblocks = 1;
1847 *ec_alloc = VG_(XT_get_ec_from_xecu)(heap_xt, hc->where);
1848 } else
1849 xta->nblocks = 0;
1851 static void ms_xtmemory_report ( const HChar* filename, Bool fini )
1853 // Make xtmemory_report_next_block ready to be called.
1854 VG_(HT_ResetIter)(malloc_list);
1855 VG_(XTMemory_report)(filename, fini, xtmemory_report_next_block,
1856 VG_(XT_filter_maybe_below_main));
1857 /* As massif already filters one top function, use as filter
1858 VG_(XT_filter_maybe_below_main). */
1861 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
1863 HChar* wcmd;
1864 HChar s[VG_(strlen)(req) + 1]; /* copy for strtok_r */
1865 HChar *ssaveptr;
1867 VG_(strcpy) (s, req);
1869 wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
1870 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots"
1871 " xtmemory",
1872 wcmd, kwd_report_duplicated_matches)) {
1873 case -2: /* multiple matches */
1874 return True;
1875 case -1: /* not found */
1876 return False;
1877 case 0: /* help */
1878 print_monitor_help();
1879 return True;
1880 case 1: { /* snapshot */
1881 HChar* filename;
1882 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1883 handle_snapshot_monitor_command (filename, False /* detailed */);
1884 return True;
1886 case 2: { /* detailed_snapshot */
1887 HChar* filename;
1888 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1889 handle_snapshot_monitor_command (filename, True /* detailed */);
1890 return True;
1892 case 3: { /* all_snapshots */
1893 HChar* filename;
1894 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1895 handle_all_snapshots_monitor_command (filename);
1896 return True;
1898 case 4: { /* xtmemory */
1899 HChar* filename;
1900 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1901 ms_xtmemory_report (filename, False);
1902 return True;
1904 default:
1905 tl_assert(0);
1906 return False;
1910 static void ms_print_stats (void)
1912 #define STATS(format, args...) \
1913 VG_(dmsg)("Massif: " format, ##args)
1915 STATS("heap allocs: %u\n", n_heap_allocs);
1916 STATS("heap reallocs: %u\n", n_heap_reallocs);
1917 STATS("heap frees: %u\n", n_heap_frees);
1918 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs);
1919 STATS("ignored heap frees: %u\n", n_ignored_heap_frees);
1920 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
1921 STATS("stack allocs: %u\n", n_stack_allocs);
1922 STATS("skipped snapshots: %u\n", n_skipped_snapshots);
1923 STATS("real snapshots: %u\n", n_real_snapshots);
1924 STATS("detailed snapshots: %u\n", n_detailed_snapshots);
1925 STATS("peak snapshots: %u\n", n_peak_snapshots);
1926 STATS("cullings: %u\n", n_cullings);
1927 #undef STATS
1931 //------------------------------------------------------------//
1932 //--- Finalisation ---//
1933 //------------------------------------------------------------//
1935 static void ms_fini(Int exit_status)
1937 ms_xtmemory_report(VG_(clo_xtree_memory_file), True);
1939 // Output.
1940 write_snapshots_array_to_file();
1942 if (VG_(clo_stats))
1943 ms_print_stats();
1947 //------------------------------------------------------------//
1948 //--- Initialisation ---//
1949 //------------------------------------------------------------//
1951 static void ms_post_clo_init(void)
1953 Int i;
1954 HChar* LD_PRELOAD_val;
1956 /* We will record execontext up to clo_depth + overestimate and
1957 we will store this as ec => we need to increase the backtrace size
1958 if smaller than what we will store. */
1959 if (VG_(clo_backtrace_size) < clo_depth + MAX_OVERESTIMATE)
1960 VG_(clo_backtrace_size) = clo_depth + MAX_OVERESTIMATE;
1962 // Check options.
1963 if (clo_pages_as_heap) {
1964 if (clo_stacks) {
1965 VG_(fmsg_bad_option)("--pages-as-heap=yes",
1966 "Cannot be used together with --stacks=yes");
1969 if (!clo_heap) {
1970 clo_pages_as_heap = False;
1973 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
1974 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
1975 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup
1976 // well before tool initialisation, so this seems the best way to do it.
1977 if (clo_pages_as_heap) {
1978 HChar* s1;
1979 HChar* s2;
1981 clo_heap_admin = 0; // No heap admin on pages.
1983 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
1984 tl_assert(LD_PRELOAD_val);
1986 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val);
1988 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
1989 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
1990 tl_assert(s1);
1992 // Now find the vgpreload_massif-$PLATFORM entry.
1993 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
1994 tl_assert(s1);
1995 s2 = s1;
1997 // Position s1 on the previous ':', which must be there because
1998 // of the preceding vgpreload_core-$PLATFORM entry.
1999 for (; *s1 != ':'; s1--)
2002 // Position s2 on the next ':' or \0
2003 for (; *s2 != ':' && *s2 != '\0'; s2++)
2006 // Move all characters from s2 to s1
2007 while ((*s1++ = *s2++))
2010 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2013 // Print alloc-fns and ignore-fns, if necessary.
2014 if (VG_(clo_verbosity) > 1) {
2015 VERB(1, "alloc-fns:\n");
2016 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2017 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2018 VERB(1, " %s\n", *fn_ptr);
2021 VERB(1, "ignore-fns:\n");
2022 if (0 == VG_(sizeXA)(ignore_fns)) {
2023 VERB(1, " <empty>\n");
2025 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2026 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2027 VERB(1, " %d: %s\n", i, *fn_ptr);
2031 // Events to track.
2032 if (clo_stacks) {
2033 VG_(track_new_mem_stack) ( new_mem_stack );
2034 VG_(track_die_mem_stack) ( die_mem_stack );
2035 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2036 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2039 if (clo_pages_as_heap) {
2040 VG_(track_new_mem_startup) ( ms_new_mem_startup );
2041 VG_(track_new_mem_brk) ( ms_new_mem_brk );
2042 VG_(track_new_mem_mmap) ( ms_new_mem_mmap );
2044 VG_(track_copy_mem_remap) ( ms_copy_mem_remap );
2046 VG_(track_die_mem_brk) ( ms_die_mem_brk );
2047 VG_(track_die_mem_munmap) ( ms_die_mem_munmap );
2050 // Initialise snapshot array, and sanity-check it.
2051 snapshots = VG_(malloc)("ms.main.mpoci.1",
2052 sizeof(Snapshot) * clo_max_snapshots);
2053 // We don't want to do snapshot sanity checks here, because they're
2054 // currently uninitialised.
2055 for (i = 0; i < clo_max_snapshots; i++) {
2056 clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2058 sanity_check_snapshots_array();
2060 if (VG_(clo_xtree_memory) == Vg_XTMemory_Full)
2061 // Activate full xtree memory profiling.
2062 // As massif already filters one top function, use as filter
2063 // VG_(XT_filter_maybe_below_main).
2064 VG_(XTMemory_Full_init)(VG_(XT_filter_maybe_below_main));
2068 static void ms_pre_clo_init(void)
2070 VG_(details_name) ("Massif");
2071 VG_(details_version) (NULL);
2072 VG_(details_description) ("a heap profiler");
2073 VG_(details_copyright_author)(
2074 "Copyright (C) 2003-2017, and GNU GPL'd, by Nicholas Nethercote");
2075 VG_(details_bug_reports_to) (VG_BUGS_TO);
2077 VG_(details_avg_translation_sizeB) ( 330 );
2079 VG_(clo_vex_control).iropt_register_updates_default
2080 = VG_(clo_px_file_backed)
2081 = VexRegUpdSpAtMemAccess; // overridable by the user.
2083 // Basic functions.
2084 VG_(basic_tool_funcs) (ms_post_clo_init,
2085 ms_instrument,
2086 ms_fini);
2088 // Needs.
2089 VG_(needs_libc_freeres)();
2090 VG_(needs_cxx_freeres)();
2091 VG_(needs_command_line_options)(ms_process_cmd_line_option,
2092 ms_print_usage,
2093 ms_print_debug_usage);
2094 VG_(needs_client_requests) (ms_handle_client_request);
2095 VG_(needs_sanity_checks) (ms_cheap_sanity_check,
2096 ms_expensive_sanity_check);
2097 VG_(needs_print_stats) (ms_print_stats);
2098 VG_(needs_malloc_replacement) (ms_malloc,
2099 ms___builtin_new,
2100 ms___builtin_vec_new,
2101 ms_memalign,
2102 ms_calloc,
2103 ms_free,
2104 ms___builtin_delete,
2105 ms___builtin_vec_delete,
2106 ms_realloc,
2107 ms_malloc_usable_size,
2108 0 );
2110 // HP_Chunks.
2111 HP_chunk_poolalloc = VG_(newPA)
2112 (sizeof(HP_Chunk),
2113 1000,
2114 VG_(malloc),
2115 "massif MC_Chunk pool",
2116 VG_(free));
2117 malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2119 // Heap XTree
2120 heap_xt = VG_(XT_create)(VG_(malloc),
2121 "ms.xtrees",
2122 VG_(free),
2123 sizeof(SizeT),
2124 init_szB, add_szB, sub_szB,
2125 filter_IPs);
2127 // Initialise alloc_fns and ignore_fns.
2128 init_alloc_fns();
2129 init_ignore_fns();
2131 // Initialise args_for_massif.
2132 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2133 VG_(free), sizeof(HChar*));
2136 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2138 //--------------------------------------------------------------------//
2139 //--- end ---//
2140 //--------------------------------------------------------------------//