Allow spaces in .valgrindrc files
[valgrind.git] / massif / ms_main.c
blob1040ad53f4b2afca1ec31554a320a3cced7b542d
1 //--------------------------------------------------------------------//
2 //--- Massif: a heap profiling tool. ms_main.c ---//
3 //--------------------------------------------------------------------//
5 /*
6 This file is part of Massif, a Valgrind tool for profiling memory
7 usage of programs.
9 Copyright (C) 2003-2017 Nicholas Nethercote
10 njn@valgrind.org
12 This program is free software; you can redistribute it and/or
13 modify it under the terms of the GNU General Public License as
14 published by the Free Software Foundation; either version 2 of the
15 License, or (at your option) any later version.
17 This program is distributed in the hope that it will be useful, but
18 WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, see <http://www.gnu.org/licenses/>.
25 The GNU General Public License is contained in the file COPYING.
28 //---------------------------------------------------------------------------
29 // XXX:
30 //---------------------------------------------------------------------------
31 // Todo -- nice, but less critical:
32 // - do a graph-drawing test
33 // - make file format more generic. Obstacles:
34 // - unit prefixes are not generic
35 // - preset column widths for stats are not generic
36 // - preset column headers are not generic
37 // - "Massif arguments:" line is not generic
38 // - do snapshots on some specific client requests
39 // - "show me the extra allocations since the last snapshot"
40 // - "start/stop logging" (eg. quickly skip boring bits)
41 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
42 // Give each graph a title. (try to do it generically!)
43 // - make --show-below-main=no work
44 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
45 // don't work in a .valgrindrc file or in $VALGRIND_OPTS.
46 // m_commandline.c:add_args_from_string() needs to respect single quotes.
47 // - With --stack=yes, want to add a stack trace for detailed snapshots so
48 // it's clear where/why the peak is occurring. (Mattieu Castet) Also,
49 // possibly useful even with --stack=no? (Andi Yin)
51 // Performance:
52 // - To run the benchmarks:
54 // perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
55 // time valgrind --tool=massif --depth=100 konqueror
57 // The other benchmarks don't do much allocation, and so give similar speeds
58 // to Nulgrind.
60 // Timing results on 'nevermore' (njn's machine) as of r7013:
62 // heap 0.53s ma:12.4s (23.5x, -----)
63 // tinycc 0.46s ma: 4.9s (10.7x, -----)
64 // many-xpts 0.08s ma: 2.0s (25.0x, -----)
65 // konqueror 29.6s real 0:21.0s user
67 // [Introduction of --time-unit=i as the default slowed things down by
68 // roughly 0--20%.]
70 // Todo -- low priority:
71 // - In each XPt, record both bytes and the number of allocations, and
72 // possibly the global number of allocations.
73 // - (Andy Lin) Give a stack trace on detailed snapshots?
74 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
75 // than a certain size! Because: "linux's malloc allows to set a
76 // MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
77 // be handled directly by the kernel, and are guaranteed to be returned to
78 // the system when freed. So we needed to profile only blocks below this
79 // limit."
81 // File format working notes:
83 #if 0
84 desc: --heap-admin=foo
85 cmd: date
86 time_unit: ms
87 #-----------
88 snapshot=0
89 #-----------
90 time=0
91 mem_heap_B=0
92 mem_heap_admin_B=0
93 mem_stacks_B=0
94 heap_tree=empty
95 #-----------
96 snapshot=1
97 #-----------
98 time=353
99 mem_heap_B=5
100 mem_heap_admin_B=0
101 mem_stacks_B=0
102 heap_tree=detailed
103 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
104 n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
105 n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
106 n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
107 n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
108 n1: 5 0x8049821: (within /bin/date)
109 n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
112 n_events: n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
113 t_events: B
114 n 0 0 0 0 0
115 n 0 0 0 0 0
116 t1: 5 <string...>
117 t1: 6 <string...>
119 Ideas:
120 - each snapshot specifies an x-axis value and one or more y-axis values.
121 - can display the y-axis values separately if you like
122 - can completely separate connection between snapshots and trees.
124 Challenges:
125 - how to specify and scale/abbreviate units on axes?
126 - how to combine multiple values into the y-axis?
128 --------------------------------------------------------------------------------Command: date
129 Massif arguments: --heap-admin=foo
130 ms_print arguments: massif.out
131 --------------------------------------------------------------------------------
133 6.472^ :#
134 | :# :: . .
136 | ::@ :@ :@ :@:::# :: : ::::
137 0 +-----------------------------------@---@---@-----@--@---#-------------->ms 0 713
139 Number of snapshots: 50
140 Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
141 -------------------------------------------------------------------------------- n time(ms) total(B) useful-heap(B) admin-heap(B) stacks(B)
142 -------------------------------------------------------------------------------- 0 0 0 0 0 0
143 1 345 5 5 0 0
144 2 353 5 5 0 0
145 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
146 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
147 #endif
149 //---------------------------------------------------------------------------
151 #include "pub_tool_basics.h"
152 #include "pub_tool_vki.h"
153 #include "pub_tool_aspacemgr.h"
154 #include "pub_tool_debuginfo.h"
155 #include "pub_tool_hashtable.h"
156 #include "pub_tool_libcbase.h"
157 #include "pub_tool_libcassert.h"
158 #include "pub_tool_libcfile.h"
159 #include "pub_tool_libcprint.h"
160 #include "pub_tool_libcproc.h"
161 #include "pub_tool_machine.h"
162 #include "pub_tool_mallocfree.h"
163 #include "pub_tool_options.h"
164 #include "pub_tool_poolalloc.h"
165 #include "pub_tool_replacemalloc.h"
166 #include "pub_tool_stacktrace.h"
167 #include "pub_tool_threadstate.h"
168 #include "pub_tool_tooliface.h"
169 #include "pub_tool_xarray.h"
170 #include "pub_tool_xtree.h"
171 #include "pub_tool_xtmemory.h"
172 #include "pub_tool_clientstate.h"
173 #include "pub_tool_gdbserver.h"
175 #include "pub_tool_clreq.h" // For {MALLOC,FREE}LIKE_BLOCK
177 //------------------------------------------------------------*/
178 //--- Overview of operation ---*/
179 //------------------------------------------------------------*/
181 // The size of the stacks and heap is tracked. The heap is tracked in a lot
182 // of detail, enough to tell how many bytes each line of code is responsible
183 // for, more or less. The main data structure is an xtree maintaining the
184 // call tree beneath all the allocation functions like malloc().
185 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
186 // the page level, and each page is treated much like a heap block. We use
187 // "heap" throughout below to cover this case because the concepts are all the
188 // same.)
190 // "Snapshots" are recordings of the memory usage. There are two basic
191 // kinds:
192 // - Normal: these record the current time, total memory size, total heap
193 // size, heap admin size and stack size.
194 // - Detailed: these record those things in a normal snapshot, plus a very
195 // detailed XTree (see below) indicating how the heap is structured.
197 // Snapshots are taken every so often. There are two storage classes of
198 // snapshots:
199 // - Temporary: Massif does a temporary snapshot every so often. The idea
200 // is to always have a certain number of temporary snapshots around. So
201 // we take them frequently to begin with, but decreasingly often as the
202 // program continues to run. Also, we remove some old ones after a while.
203 // Overall it's a kind of exponential decay thing. Most of these are
204 // normal snapshots, a small fraction are detailed snapshots.
205 // - Permanent: Massif takes a permanent (detailed) snapshot in some
206 // circumstances. They are:
207 // - Peak snapshot: When the memory usage peak is reached, it takes a
208 // snapshot. It keeps this, unless the peak is subsequently exceeded,
209 // in which case it will overwrite the peak snapshot.
210 // - User-requested snapshots: These are done in response to client
211 // requests. They are always kept.
213 // Used for printing things when clo_verbosity > 1.
214 #define VERB(verb, format, args...) \
215 if (UNLIKELY(VG_(clo_verbosity) > verb)) { \
216 VG_(dmsg)("Massif: " format, ##args); \
219 //------------------------------------------------------------//
220 //--- Statistics ---//
221 //------------------------------------------------------------//
223 // Konqueror startup, to give an idea of the numbers involved with a biggish
224 // program, with default depth:
226 // depth=3 depth=40
227 // - 310,000 allocations
228 // - 300,000 frees
229 // - 15,000 XPts 800,000 XPts
230 // - 1,800 top-XPts
232 static UInt n_heap_allocs = 0;
233 static UInt n_heap_reallocs = 0;
234 static UInt n_heap_frees = 0;
235 static UInt n_ignored_heap_allocs = 0;
236 static UInt n_ignored_heap_frees = 0;
237 static UInt n_ignored_heap_reallocs = 0;
238 static UInt n_stack_allocs = 0;
239 static UInt n_stack_frees = 0;
241 static UInt n_skipped_snapshots = 0;
242 static UInt n_real_snapshots = 0;
243 static UInt n_detailed_snapshots = 0;
244 static UInt n_peak_snapshots = 0;
245 static UInt n_cullings = 0;
247 //------------------------------------------------------------//
248 //--- Globals ---//
249 //------------------------------------------------------------//
251 // Number of guest instructions executed so far. Only used with
252 // --time-unit=i.
253 static Long guest_instrs_executed = 0;
255 static SizeT heap_szB = 0; // Live heap size
256 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
257 static SizeT stacks_szB = 0; // Live stacks size
259 // This is the total size from the current peak snapshot, or 0 if no peak
260 // snapshot has been taken yet.
261 static SizeT peak_snapshot_total_szB = 0;
263 // Incremented every time memory is allocated/deallocated, by the
264 // allocated/deallocated amount; includes heap, heap-admin and stack
265 // memory. An alternative to milliseconds as a unit of program "time".
266 static ULong total_allocs_deallocs_szB = 0;
268 // When running with --heap=yes --pages-as-heap=no, we don't start taking
269 // snapshots until the first basic block is executed, rather than doing it in
270 // ms_post_clo_init (which is the obvious spot), for two reasons.
271 // - It lets us ignore stack events prior to that, because they're not
272 // really proper ones and just would screw things up.
273 // - Because there's still some core initialisation to do, and so there
274 // would be an artificial time gap between the first and second snapshots.
276 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
277 // earlier due to new_mem_startup so this isn't relevant.
279 static Bool have_started_executing_code = False;
281 //------------------------------------------------------------//
282 //--- Alloc fns ---//
283 //------------------------------------------------------------//
285 static XArray* alloc_fns;
286 static XArray* ignore_fns;
288 static void init_alloc_fns(void)
290 // Create the list, and add the default elements.
291 alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
292 VG_(free), sizeof(HChar*));
293 #define DO(x) { const HChar* s = x; VG_(addToXA)(alloc_fns, &s); }
295 // Ordered roughly according to (presumed) frequency.
296 // Nb: The C++ "operator new*" ones are overloadable. We include them
297 // always anyway, because even if they're overloaded, it would be a
298 // prodigiously stupid overloading that caused them to not allocate
299 // memory.
301 // XXX: because we don't look at the first stack entry (unless it's a
302 // custom allocation) there's not much point to having all these alloc
303 // functions here -- they should never appear anywhere (I think?) other
304 // than the top stack entry. The only exceptions are those that in
305 // vg_replace_malloc.c are partly or fully implemented in terms of another
306 // alloc function: realloc (which uses malloc); valloc,
307 // malloc_zone_valloc, posix_memalign and memalign_common (which use
308 // memalign).
310 DO("malloc" );
311 DO("__builtin_new" );
312 DO("operator new(unsigned)" );
313 DO("operator new(unsigned long)" );
314 DO("__builtin_vec_new" );
315 DO("operator new[](unsigned)" );
316 DO("operator new[](unsigned long)" );
317 DO("calloc" );
318 DO("realloc" );
319 DO("memalign" );
320 DO("posix_memalign" );
321 DO("valloc" );
322 DO("operator new(unsigned, std::nothrow_t const&)" );
323 DO("operator new[](unsigned, std::nothrow_t const&)" );
324 DO("operator new(unsigned long, std::nothrow_t const&)" );
325 DO("operator new[](unsigned long, std::nothrow_t const&)");
326 #if defined(VGO_darwin)
327 DO("malloc_zone_malloc" );
328 DO("malloc_zone_calloc" );
329 DO("malloc_zone_realloc" );
330 DO("malloc_zone_memalign" );
331 DO("malloc_zone_valloc" );
332 #endif
335 static void init_ignore_fns(void)
337 // Create the (empty) list.
338 ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
339 VG_(free), sizeof(HChar*));
342 //------------------------------------------------------------//
343 //--- Command line args ---//
344 //------------------------------------------------------------//
346 #define MAX_DEPTH 200
348 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
350 static const HChar* TimeUnit_to_string(TimeUnit time_unit)
352 switch (time_unit) {
353 case TimeI: return "i";
354 case TimeMS: return "ms";
355 case TimeB: return "B";
356 default: tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
360 static Bool clo_heap = True;
361 // clo_heap_admin is deliberately a word-sized type. At one point it was
362 // a UInt, but this caused problems on 64-bit machines when it was
363 // multiplied by a small negative number and then promoted to a
364 // word-sized type -- it ended up with a value of 4.2 billion. Sigh.
365 static SSizeT clo_heap_admin = 8;
366 static Bool clo_pages_as_heap = False;
367 static Bool clo_stacks = False;
368 static Int clo_depth = 30;
369 static double clo_threshold = 1.0; // percentage
370 static double clo_peak_inaccuracy = 1.0; // percentage
371 static Int clo_time_unit = TimeI;
372 static Int clo_detailed_freq = 10;
373 static Int clo_max_snapshots = 100;
374 static const HChar* clo_massif_out_file = "massif.out.%p";
376 static XArray* args_for_massif;
378 static Bool ms_process_cmd_line_option(const HChar* arg)
380 const HChar* tmp_str;
382 // Remember the arg for later use.
383 VG_(addToXA)(args_for_massif, &arg);
385 if VG_BOOL_CLO(arg, "--heap", clo_heap) {}
386 else if VG_BINT_CLO(arg, "--heap-admin", clo_heap_admin, 0, 1024) {}
388 else if VG_BOOL_CLO(arg, "--stacks", clo_stacks) {}
390 else if VG_BOOL_CLO(arg, "--pages-as-heap", clo_pages_as_heap) {}
392 else if VG_BINT_CLO(arg, "--depth", clo_depth, 1, MAX_DEPTH) {}
394 else if VG_STR_CLO(arg, "--alloc-fn", tmp_str) {
395 VG_(addToXA)(alloc_fns, &tmp_str);
397 else if VG_STR_CLO(arg, "--ignore-fn", tmp_str) {
398 VG_(addToXA)(ignore_fns, &tmp_str);
401 else if VG_DBL_CLO(arg, "--threshold", clo_threshold) {
402 if (clo_threshold < 0 || clo_threshold > 100) {
403 VG_(fmsg_bad_option)(arg,
404 "--threshold must be between 0.0 and 100.0\n");
408 else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
410 else if VG_XACT_CLO(arg, "--time-unit=i", clo_time_unit, TimeI) {}
411 else if VG_XACT_CLO(arg, "--time-unit=ms", clo_time_unit, TimeMS) {}
412 else if VG_XACT_CLO(arg, "--time-unit=B", clo_time_unit, TimeB) {}
414 else if VG_BINT_CLO(arg, "--detailed-freq", clo_detailed_freq, 1, 1000000) {}
416 else if VG_BINT_CLO(arg, "--max-snapshots", clo_max_snapshots, 10, 1000) {}
418 else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
420 else
421 return VG_(replacement_malloc_process_cmd_line_option)(arg);
423 return True;
426 static void ms_print_usage(void)
428 VG_(printf)(
429 " --heap=no|yes profile heap blocks [yes]\n"
430 " --heap-admin=<size> average admin bytes per heap block;\n"
431 " ignored if --heap=no [8]\n"
432 " --stacks=no|yes profile stack(s) [no]\n"
433 " --pages-as-heap=no|yes profile memory at the page level [no]\n"
434 " --depth=<number> depth of contexts [30]\n"
435 " --alloc-fn=<name> specify <name> as an alloc function [empty]\n"
436 " --ignore-fn=<name> ignore heap allocations within <name> [empty]\n"
437 " --threshold=<m.n> significance threshold, as a percentage [1.0]\n"
438 " --peak-inaccuracy=<m.n> maximum peak inaccuracy, as a percentage [1.0]\n"
439 " --time-unit=i|ms|B time unit: instructions executed, milliseconds\n"
440 " or heap bytes alloc'd/dealloc'd [i]\n"
441 " --detailed-freq=<N> every Nth snapshot should be detailed [10]\n"
442 " --max-snapshots=<N> maximum number of snapshots recorded [100]\n"
443 " --massif-out-file=<file> output file name [massif.out.%%p]\n"
447 static void ms_print_debug_usage(void)
449 VG_(printf)(
450 " (none)\n"
455 //------------------------------------------------------------//
456 //--- XTrees ---//
457 //------------------------------------------------------------//
459 // The details of the heap are represented by a single XTree.
460 // This XTree maintains the nr of allocated bytes for each
461 // stacktrace/execontext.
463 // The root of the Xtree will be output as a top node 'alloc functions',
464 // which represents all allocation functions, eg:
465 // - malloc/calloc/realloc/memalign/new/new[];
466 // - user-specified allocation functions (using --alloc-fn);
467 // - custom allocation (MALLOCLIKE) points
468 static XTree* heap_xt;
469 /* heap_xt contains a SizeT: the nr of allocated bytes by this execontext. */
470 static void init_szB(void* value)
472 *((SizeT*)value) = 0;
474 static void add_szB(void* to, const void* value)
476 *((SizeT*)to) += *((const SizeT*)value);
478 static void sub_szB(void* from, const void* value)
480 *((SizeT*)from) -= *((const SizeT*)value);
482 static ULong alloc_szB(const void* value)
484 return (ULong)*((const SizeT*)value);
488 //------------------------------------------------------------//
489 //--- XTree Operations ---//
490 //------------------------------------------------------------//
492 // This is the limit on the number of filtered alloc-fns that can be in a
493 // single stacktrace.
494 #define MAX_OVERESTIMATE 50
495 #define MAX_IPS (MAX_DEPTH + MAX_OVERESTIMATE)
497 // filtering out uninteresting entries:
498 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
499 // Eg: alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
500 // becomes: a / b / main
501 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
502 // as an alloc-fn. This is ok.
503 static
504 void filter_IPs (Addr* ips, Int n_ips,
505 UInt* top, UInt* n_ips_sel)
507 Int i;
508 Bool top_has_fnname = False;
509 Bool is_alloc_fn = False;
510 Bool is_inline_fn = False;
511 const HChar *fnname;
513 *top = 0;
514 *n_ips_sel = n_ips;
516 // Advance *top as long as we find alloc functions
517 // PW Nov 2016 xtree work:
518 // old massif code was doing something really strange(?buggy):
519 // 'sliding' a bunch of functions without names by removing an
520 // alloc function 'inside' a stacktrace e.g.
521 // 0x1 0x2 0x3 alloc func1 main
522 // became 0x1 0x2 0x3 func1 main
523 const DiEpoch ep = VG_(current_DiEpoch)();
524 InlIPCursor *iipc = NULL;
526 for (i = *top; i < n_ips; ++i) {
527 iipc = VG_(new_IIPC)(ep, ips[i]);
528 do {
529 top_has_fnname = VG_(get_fnname_inl)(ep, ips[i], &fnname, iipc);
530 is_alloc_fn = top_has_fnname && VG_(strIsMemberXA)(alloc_fns, fnname);
531 is_inline_fn = VG_(next_IIPC)(iipc);
532 if (is_alloc_fn && is_inline_fn) {
533 VERB(4, "filtering inline alloc fn %s\n", fnname);
535 } while (is_alloc_fn && is_inline_fn);
536 VG_(delete_IIPC)(iipc);
538 if (is_alloc_fn) {
539 VERB(4, "filtering alloc fn %s\n", fnname);
540 (*top)++;
541 (*n_ips_sel)--;
542 } else {
543 break;
547 // filter the whole stacktrace if this allocation has to be ignored.
548 if (*n_ips_sel > 0 && VG_(sizeXA)(ignore_fns) > 0) {
549 if (!top_has_fnname) {
550 // top has no fnname => search for the first entry that has a fnname
551 for (i = *top; i < n_ips && !top_has_fnname; ++i) {
552 iipc = VG_(new_IIPC)(ep, ips[i]);
553 do {
554 top_has_fnname = VG_(get_fnname_inl)(ep, ips[i], &fnname, iipc);
555 if (top_has_fnname) {
556 break;
558 } while (VG_(next_IIPC)(iipc));
559 VG_(delete_IIPC)(iipc);
562 if (top_has_fnname && VG_(strIsMemberXA)(ignore_fns, fnname)) {
563 VERB(4, "ignored allocation from fn %s\n", fnname);
564 *top = n_ips;
565 *n_ips_sel = 0;
569 if (!VG_(clo_show_below_main) && *n_ips_sel > 0 ) {
570 // Technically, it would be better to use the 'real' epoch that
571 // was used to capture ips/n_ips. However, this searches
572 // for a main or below_main function. It is technically possible
573 // but unlikely that main or below main fn is in a dlclose-d library,
574 // so current epoch is reasonable enough, even if not perfect.
575 // FIXME PW EPOCH: would be better to also use the real ips epoch here,
576 // once m_xtree.c massif output format properly supports epoch.
577 const DiEpoch cur_ep = VG_(current_DiEpoch)();
578 Int mbm = VG_(XT_offset_main_or_below_main)(cur_ep, ips, n_ips);
580 if (mbm < *top) {
581 // Special case: the first main (or below main) function is an
582 // alloc function.
583 *n_ips_sel = 1;
584 VERB(4, "main/below main: keeping 1 fn\n");
585 } else {
586 *n_ips_sel -= n_ips - mbm - 1;
587 VERB(4, "main/below main: filtering %d\n", n_ips - mbm - 1);
591 // filter the frames if we have more than clo_depth
592 if (*n_ips_sel > clo_depth) {
593 VERB(4, "filtering IPs above clo_depth\n");
594 *n_ips_sel = clo_depth;
598 // Capture a stacktrace, and make an ec of it, without the first entry
599 // if exclude_first_entry is True.
600 static ExeContext* make_ec(ThreadId tid, Bool exclude_first_entry)
602 static Addr ips[MAX_IPS];
604 // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
605 Int n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + MAX_OVERESTIMATE,
606 NULL/*array to dump SP values in*/,
607 NULL/*array to dump FP values in*/,
608 0/*first_ip_delta*/ );
609 if (exclude_first_entry) {
610 if (n_ips > 1) {
611 const HChar *fnname;
612 VERB(4, "removing top fn %s from stacktrace\n",
613 VG_(get_fnname)(VG_(current_DiEpoch)(), ips[0], &fnname)
614 ? fnname : "???");
615 return VG_(make_ExeContext_from_StackTrace)(ips+1, n_ips-1);
616 } else {
617 VERB(4, "null execontext as removing top fn with n_ips %d\n", n_ips);
618 return VG_(null_ExeContext) ();
620 } else
621 return VG_(make_ExeContext_from_StackTrace)(ips, n_ips);
624 // Create (or update) in heap_xt an xec corresponding to the stacktrace of tid.
625 // req_szB is added to the xec (unless ec is fully filtered).
626 // Returns the correspding XTree xec.
627 // exclude_first_entry is an optimisation: if True, automatically removes
628 // the top level IP from the stacktrace. Should be set to True if it is known
629 // that this is an alloc fn. The top function presumably will be something like
630 // malloc or __builtin_new that we're sure to filter out).
631 static Xecu add_heap_xt( ThreadId tid, SizeT req_szB, Bool exclude_first_entry)
633 ExeContext *ec = make_ec(tid, exclude_first_entry);
635 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full))
636 VG_(XTMemory_Full_alloc)(req_szB, ec);
637 return VG_(XT_add_to_ec) (heap_xt, ec, &req_szB);
640 // Substract req_szB from the heap_xt where.
641 static void sub_heap_xt(Xecu where, SizeT req_szB, Bool exclude_first_entry)
643 tl_assert(clo_heap);
645 if (0 == req_szB)
646 return;
648 VG_(XT_sub_from_xecu) (heap_xt, where, &req_szB);
649 if (UNLIKELY(VG_(clo_xtree_memory) == Vg_XTMemory_Full)) {
650 ExeContext *ec_free = make_ec(VG_(get_running_tid)(),
651 exclude_first_entry);
652 VG_(XTMemory_Full_free)(req_szB,
653 VG_(XT_get_ec_from_xecu)(heap_xt, where),
654 ec_free);
659 //------------------------------------------------------------//
660 //--- Snapshots ---//
661 //------------------------------------------------------------//
663 // Snapshots are done in a way so that we always have a reasonable number of
664 // them. We start by taking them quickly. Once we hit our limit, we cull
665 // some (eg. half), and start taking them more slowly. Once we hit the
666 // limit again, we again cull and then take them even more slowly, and so
667 // on.
669 #define UNUSED_SNAPSHOT_TIME -333 // A conspicuous negative number.
671 typedef
672 enum {
673 Normal = 77,
674 Peak,
675 Unused
677 SnapshotKind;
679 typedef
680 struct {
681 SnapshotKind kind;
682 Time time;
683 SizeT heap_szB;
684 SizeT heap_extra_szB;// Heap slop + admin bytes.
685 SizeT stacks_szB;
686 XTree* xt; // Snapshot of heap_xt, if a detailed snapshot,
687 } // otherwise NULL.
688 Snapshot;
690 static UInt next_snapshot_i = 0; // Index of where next snapshot will go.
691 static Snapshot* snapshots; // Array of snapshots.
693 static Bool is_snapshot_in_use(Snapshot* snapshot)
695 if (Unused == snapshot->kind) {
696 // If snapshot is unused, check all the fields are unset.
697 tl_assert(snapshot->time == UNUSED_SNAPSHOT_TIME);
698 tl_assert(snapshot->heap_extra_szB == 0);
699 tl_assert(snapshot->heap_szB == 0);
700 tl_assert(snapshot->stacks_szB == 0);
701 tl_assert(snapshot->xt == NULL);
702 return False;
703 } else {
704 tl_assert(snapshot->time != UNUSED_SNAPSHOT_TIME);
705 return True;
709 static Bool is_detailed_snapshot(Snapshot* snapshot)
711 return (snapshot->xt ? True : False);
714 static Bool is_uncullable_snapshot(Snapshot* snapshot)
716 return &snapshots[0] == snapshot // First snapshot
717 || &snapshots[next_snapshot_i-1] == snapshot // Last snapshot
718 || snapshot->kind == Peak; // Peak snapshot
721 static void sanity_check_snapshot(Snapshot* snapshot)
723 // Not much we can sanity check.
724 tl_assert(snapshot->xt == NULL || snapshot->kind != Unused);
727 // All the used entries should look used, all the unused ones should be clear.
728 static void sanity_check_snapshots_array(void)
730 Int i;
731 for (i = 0; i < next_snapshot_i; i++) {
732 tl_assert( is_snapshot_in_use( & snapshots[i] ));
734 for ( ; i < clo_max_snapshots; i++) {
735 tl_assert(!is_snapshot_in_use( & snapshots[i] ));
739 // This zeroes all the fields in the snapshot, but does not free the xt
740 // XTree if present. It also does a sanity check unless asked not to; we
741 // can't sanity check at startup when clearing the initial snapshots because
742 // they're full of junk.
743 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
745 if (do_sanity_check) sanity_check_snapshot(snapshot);
746 snapshot->kind = Unused;
747 snapshot->time = UNUSED_SNAPSHOT_TIME;
748 snapshot->heap_extra_szB = 0;
749 snapshot->heap_szB = 0;
750 snapshot->stacks_szB = 0;
751 snapshot->xt = NULL;
754 // This zeroes all the fields in the snapshot, and frees the heap XTree xt if
755 // present.
756 static void delete_snapshot(Snapshot* snapshot)
758 // Nb: if there's an XTree, we free it after calling clear_snapshot,
759 // because clear_snapshot does a sanity check which includes checking the
760 // XTree.
761 XTree* tmp_xt = snapshot->xt;
762 clear_snapshot(snapshot, /*do_sanity_check*/True);
763 if (tmp_xt) {
764 VG_(XT_delete)(tmp_xt);
768 static void VERB_snapshot(Int verbosity, const HChar* prefix, Int i)
770 Snapshot* snapshot = &snapshots[i];
771 const HChar* suffix;
772 switch (snapshot->kind) {
773 case Peak: suffix = "p"; break;
774 case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
775 case Unused: suffix = "u"; break;
776 default:
777 tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
779 VERB(verbosity, "%s S%s%3d (t:%lld, hp:%lu, ex:%lu, st:%lu)\n",
780 prefix, suffix, i,
781 snapshot->time,
782 snapshot->heap_szB,
783 snapshot->heap_extra_szB,
784 snapshot->stacks_szB
788 // Cull half the snapshots; we choose those that represent the smallest
789 // time-spans, because that gives us the most even distribution of snapshots
790 // over time. (It's possible to lose interesting spikes, however.)
792 // Algorithm for N snapshots: We find the snapshot representing the smallest
793 // timeframe, and remove it. We repeat this until (N/2) snapshots are gone.
794 // We have to do this one snapshot at a time, rather than finding the (N/2)
795 // smallest snapshots in one hit, because when a snapshot is removed, its
796 // neighbours immediately cover greater timespans. So it's O(N^2), but N is
797 // small, and it's not done very often.
799 // Once we're done, we return the new smallest interval between snapshots.
800 // That becomes our minimum time interval.
801 static UInt cull_snapshots(void)
803 Int i, jp, j, jn, min_timespan_i;
804 Int n_deleted = 0;
805 Time min_timespan;
807 n_cullings++;
809 // Sets j to the index of the first not-yet-removed snapshot at or after i
810 #define FIND_SNAPSHOT(i, j) \
811 for (j = i; \
812 j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
813 j++) { }
815 VERB(2, "Culling...\n");
817 // First we remove enough snapshots by clearing them in-place. Once
818 // that's done, we can slide the remaining ones down.
819 for (i = 0; i < clo_max_snapshots/2; i++) {
820 // Find the snapshot representing the smallest timespan. The timespan
821 // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
822 // snapshot A and B. We don't consider the first and last snapshots for
823 // removal.
824 Snapshot* min_snapshot;
825 Int min_j;
827 // Initial triple: (prev, curr, next) == (jp, j, jn)
828 // Initial min_timespan is the first one.
829 jp = 0;
830 FIND_SNAPSHOT(1, j);
831 FIND_SNAPSHOT(j+1, jn);
832 min_timespan = 0x7fffffffffffffffLL;
833 min_j = -1;
834 while (jn < clo_max_snapshots) {
835 Time timespan = snapshots[jn].time - snapshots[jp].time;
836 tl_assert(timespan >= 0);
837 // Nb: We never cull the peak snapshot.
838 if (Peak != snapshots[j].kind && timespan < min_timespan) {
839 min_timespan = timespan;
840 min_j = j;
842 // Move on to next triple
843 jp = j;
844 j = jn;
845 FIND_SNAPSHOT(jn+1, jn);
847 // We've found the least important snapshot, now delete it. First
848 // print it if necessary.
849 tl_assert(-1 != min_j); // Check we found a minimum.
850 min_snapshot = & snapshots[ min_j ];
851 if (VG_(clo_verbosity) > 1) {
852 HChar buf[64]; // large enough
853 VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
854 VERB_snapshot(2, buf, min_j);
856 delete_snapshot(min_snapshot);
857 n_deleted++;
860 // Slide down the remaining snapshots over the removed ones. First set i
861 // to point to the first empty slot, and j to the first full slot after
862 // i. Then slide everything down.
863 for (i = 0; is_snapshot_in_use( &snapshots[i] ); i++) { }
864 for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
865 for ( ; j < clo_max_snapshots; j++) {
866 if (is_snapshot_in_use( &snapshots[j] )) {
867 snapshots[i++] = snapshots[j];
868 clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
871 next_snapshot_i = i;
873 // Check snapshots array looks ok after changes.
874 sanity_check_snapshots_array();
876 // Find the minimum timespan remaining; that will be our new minimum
877 // time interval. Note that above we were finding timespans by measuring
878 // two intervals around a snapshot that was under consideration for
879 // deletion. Here we only measure single intervals because all the
880 // deletions have occurred.
882 // But we have to be careful -- some snapshots (eg. snapshot 0, and the
883 // peak snapshot) are uncullable. If two uncullable snapshots end up
884 // next to each other, they'll never be culled (assuming the peak doesn't
885 // change), and the time gap between them will not change. However, the
886 // time between the remaining cullable snapshots will grow ever larger.
887 // This means that the min_timespan found will always be that between the
888 // two uncullable snapshots, and it will be much smaller than it should
889 // be. To avoid this problem, when computing the minimum timespan, we
890 // ignore any timespans between two uncullable snapshots.
891 tl_assert(next_snapshot_i > 1);
892 min_timespan = 0x7fffffffffffffffLL;
893 min_timespan_i = -1;
894 for (i = 1; i < next_snapshot_i; i++) {
895 if (is_uncullable_snapshot(&snapshots[i]) &&
896 is_uncullable_snapshot(&snapshots[i-1]))
898 VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
899 } else {
900 Time timespan = snapshots[i].time - snapshots[i-1].time;
901 tl_assert(timespan >= 0);
902 if (timespan < min_timespan) {
903 min_timespan = timespan;
904 min_timespan_i = i;
908 tl_assert(-1 != min_timespan_i); // Check we found a minimum.
910 // Print remaining snapshots, if necessary.
911 if (VG_(clo_verbosity) > 1) {
912 VERB(2, "Finished culling (%3d of %3d deleted)\n",
913 n_deleted, clo_max_snapshots);
914 for (i = 0; i < next_snapshot_i; i++) {
915 VERB_snapshot(2, " post-cull", i);
917 VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
918 min_timespan, min_timespan_i-1, min_timespan_i);
921 return min_timespan;
924 static Time get_time(void)
926 // Get current time, in whatever time unit we're using.
927 if (clo_time_unit == TimeI) {
928 return guest_instrs_executed;
929 } else if (clo_time_unit == TimeMS) {
930 // Some stuff happens between the millisecond timer being initialised
931 // to zero and us taking our first snapshot. We determine that time
932 // gap so we can subtract it from all subsequent times so that our
933 // first snapshot is considered to be at t = 0ms. Unfortunately, a
934 // bunch of symbols get read after the first snapshot is taken but
935 // before the second one (which is triggered by the first allocation),
936 // so when the time-unit is 'ms' we always have a big gap between the
937 // first two snapshots. But at least users won't have to wonder why
938 // the first snapshot isn't at t=0.
939 static Bool is_first_get_time = True;
940 static Time start_time_ms;
941 if (is_first_get_time) {
942 start_time_ms = VG_(read_millisecond_timer)();
943 is_first_get_time = False;
944 return 0;
945 } else {
946 return VG_(read_millisecond_timer)() - start_time_ms;
948 } else if (clo_time_unit == TimeB) {
949 return total_allocs_deallocs_szB;
950 } else {
951 tl_assert2(0, "bad --time-unit value");
955 // Take a snapshot, and only that -- decisions on whether to take a
956 // snapshot, or what kind of snapshot, are made elsewhere.
957 // Nb: we call the arg "my_time" because "time" shadows a global declaration
958 // in /usr/include/time.h on Darwin.
959 static void
960 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
961 Bool is_detailed)
963 tl_assert(!is_snapshot_in_use(snapshot));
964 if (!clo_pages_as_heap) {
965 tl_assert(have_started_executing_code);
968 // Heap and heap admin.
969 if (clo_heap) {
970 snapshot->heap_szB = heap_szB;
971 if (is_detailed) {
972 snapshot->xt = VG_(XT_snapshot)(heap_xt);
974 snapshot->heap_extra_szB = heap_extra_szB;
977 // Stack(s).
978 if (clo_stacks) {
979 snapshot->stacks_szB = stacks_szB;
982 // Rest of snapshot.
983 snapshot->kind = kind;
984 snapshot->time = my_time;
985 sanity_check_snapshot(snapshot);
987 // Update stats.
988 if (Peak == kind) n_peak_snapshots++;
989 if (is_detailed) n_detailed_snapshots++;
990 n_real_snapshots++;
994 // Take a snapshot, if it's time, or if we've hit a peak.
995 static void
996 maybe_take_snapshot(SnapshotKind kind, const HChar* what)
998 // 'min_time_interval' is the minimum time interval between snapshots.
999 // If we try to take a snapshot and less than this much time has passed,
1000 // we don't take it. It gets larger as the program runs longer. It's
1001 // initialised to zero so that we begin by taking snapshots as quickly as
1002 // possible.
1003 static Time min_time_interval = 0;
1004 // Zero allows startup snapshot.
1005 static Time earliest_possible_time_of_next_snapshot = 0;
1006 static Int n_snapshots_since_last_detailed = 0;
1007 static Int n_skipped_snapshots_since_last_snapshot = 0;
1009 Snapshot* snapshot;
1010 Bool is_detailed;
1011 // Nb: we call this variable "my_time" because "time" shadows a global
1012 // declaration in /usr/include/time.h on Darwin.
1013 Time my_time = get_time();
1015 switch (kind) {
1016 case Normal:
1017 // Only do a snapshot if it's time.
1018 if (my_time < earliest_possible_time_of_next_snapshot) {
1019 n_skipped_snapshots++;
1020 n_skipped_snapshots_since_last_snapshot++;
1021 return;
1023 is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1024 break;
1026 case Peak: {
1027 // Because we're about to do a deallocation, we're coming down from a
1028 // local peak. If it is (a) actually a global peak, and (b) a certain
1029 // amount bigger than the previous peak, then we take a peak snapshot.
1030 // By not taking a snapshot for every peak, we save a lot of effort --
1031 // because many peaks remain peak only for a short time.
1032 SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1033 SizeT excess_szB_for_new_peak =
1034 (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1035 if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1036 return;
1038 is_detailed = True;
1039 break;
1042 default:
1043 tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1046 // Take the snapshot.
1047 snapshot = & snapshots[next_snapshot_i];
1048 take_snapshot(snapshot, kind, my_time, is_detailed);
1050 // Record if it was detailed.
1051 if (is_detailed) {
1052 n_snapshots_since_last_detailed = 0;
1053 } else {
1054 n_snapshots_since_last_detailed++;
1057 // Update peak data, if it's a Peak snapshot.
1058 if (Peak == kind) {
1059 Int i, number_of_peaks_snapshots_found = 0;
1061 // Sanity check the size, then update our recorded peak.
1062 SizeT snapshot_total_szB =
1063 snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1064 tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1065 "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1066 peak_snapshot_total_szB = snapshot_total_szB;
1068 // Find the old peak snapshot, if it exists, and mark it as normal.
1069 for (i = 0; i < next_snapshot_i; i++) {
1070 if (Peak == snapshots[i].kind) {
1071 snapshots[i].kind = Normal;
1072 number_of_peaks_snapshots_found++;
1075 tl_assert(number_of_peaks_snapshots_found <= 1);
1078 // Finish up verbosity and stats stuff.
1079 if (n_skipped_snapshots_since_last_snapshot > 0) {
1080 VERB(2, " (skipped %d snapshot%s)\n",
1081 n_skipped_snapshots_since_last_snapshot,
1082 ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1084 VERB_snapshot(2, what, next_snapshot_i);
1085 n_skipped_snapshots_since_last_snapshot = 0;
1087 // Cull the entries, if our snapshot table is full.
1088 next_snapshot_i++;
1089 if (clo_max_snapshots == next_snapshot_i) {
1090 min_time_interval = cull_snapshots();
1093 // Work out the earliest time when the next snapshot can happen.
1094 earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1098 //------------------------------------------------------------//
1099 //--- Sanity checking ---//
1100 //------------------------------------------------------------//
1102 static Bool ms_cheap_sanity_check ( void )
1104 return True; // Nothing useful we can cheaply check.
1107 static Bool ms_expensive_sanity_check ( void )
1109 tl_assert(heap_xt);
1110 sanity_check_snapshots_array();
1111 return True;
1115 //------------------------------------------------------------//
1116 //--- Heap management ---//
1117 //------------------------------------------------------------//
1119 // Metadata for heap blocks. Each one contains an Xecu,
1120 // which identifies the XTree ec at which it was allocated. From
1121 // HP_Chunks, XTree ec 'space' field is incremented (at allocation) and
1122 // decremented (at deallocation).
1124 // Nb: first two fields must match core's VgHashNode.
1125 typedef
1126 struct _HP_Chunk {
1127 struct _HP_Chunk* next;
1128 Addr data; // Ptr to actual block
1129 SizeT req_szB; // Size requested
1130 SizeT slop_szB; // Extra bytes given above those requested
1131 Xecu where; // Where allocated; XTree xecu from heap_xt
1133 HP_Chunk;
1135 /* Pool allocator for HP_Chunk. */
1136 static PoolAlloc *HP_chunk_poolalloc = NULL;
1138 static VgHashTable *malloc_list = NULL; // HP_Chunks
1140 static void update_alloc_stats(SSizeT szB_delta)
1142 // Update total_allocs_deallocs_szB.
1143 if (szB_delta < 0) szB_delta = -szB_delta;
1144 total_allocs_deallocs_szB += szB_delta;
1147 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1149 if (heap_szB_delta < 0)
1150 tl_assert(heap_szB >= -heap_szB_delta);
1151 if (heap_extra_szB_delta < 0)
1152 tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1154 heap_extra_szB += heap_extra_szB_delta;
1155 heap_szB += heap_szB_delta;
1157 update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1160 static
1161 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1162 Bool exclude_first_entry, Bool maybe_snapshot )
1164 // Make new HP_Chunk node, add to malloc_list
1165 HP_Chunk* hc = VG_(allocEltPA)(HP_chunk_poolalloc);
1166 hc->req_szB = req_szB;
1167 hc->slop_szB = slop_szB;
1168 hc->data = (Addr)p;
1169 hc->where = 0;
1170 VG_(HT_add_node)(malloc_list, hc);
1172 if (clo_heap) {
1173 VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1175 hc->where = add_heap_xt( tid, req_szB, exclude_first_entry);
1177 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1178 // Update statistics.
1179 n_heap_allocs++;
1181 // Update heap stats.
1182 update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1184 // Maybe take a snapshot.
1185 if (maybe_snapshot) {
1186 maybe_take_snapshot(Normal, " alloc");
1189 } else {
1190 // Ignored allocation.
1191 n_ignored_heap_allocs++;
1193 VERB(3, "(ignored)\n");
1196 VERB(3, ">>>\n");
1199 return p;
1202 static __inline__
1203 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1204 Bool is_zeroed )
1206 SizeT actual_szB, slop_szB;
1207 void* p;
1209 if ((SSizeT)req_szB < 0) return NULL;
1211 // Allocate and zero if necessary.
1212 p = VG_(cli_malloc)( req_alignB, req_szB );
1213 if (!p) {
1214 return NULL;
1216 if (is_zeroed) VG_(memset)(p, 0, req_szB);
1217 actual_szB = VG_(cli_malloc_usable_size)(p);
1218 tl_assert(actual_szB >= req_szB);
1219 slop_szB = actual_szB - req_szB;
1221 // Record block.
1222 record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1223 /*maybe_snapshot*/True);
1225 return p;
1228 static __inline__
1229 void unrecord_block ( void* p, Bool maybe_snapshot, Bool exclude_first_entry )
1231 // Remove HP_Chunk from malloc_list
1232 HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1233 if (NULL == hc) {
1234 return; // must have been a bogus free()
1237 if (clo_heap) {
1238 VERB(3, "<<< unrecord_block\n");
1240 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1241 // Update statistics.
1242 n_heap_frees++;
1244 // Maybe take a peak snapshot, since it's a deallocation.
1245 if (maybe_snapshot) {
1246 maybe_take_snapshot(Peak, "de-PEAK");
1249 // Update heap stats.
1250 update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1252 // Update XTree.
1253 sub_heap_xt(hc->where, hc->req_szB, exclude_first_entry);
1255 // Maybe take a snapshot.
1256 if (maybe_snapshot) {
1257 maybe_take_snapshot(Normal, "dealloc");
1260 } else {
1261 n_ignored_heap_frees++;
1263 VERB(3, "(ignored)\n");
1266 VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1269 // Actually free the chunk, and the heap block (if necessary)
1270 VG_(freeEltPA) (HP_chunk_poolalloc, hc); hc = NULL;
1273 // Nb: --ignore-fn is tricky for realloc. If the block's original alloc was
1274 // ignored, but the realloc is not requested to be ignored, and we are
1275 // shrinking the block, then we have to ignore the realloc -- otherwise we
1276 // could end up with negative heap sizes. This isn't a danger if we are
1277 // growing such a block, but for consistency (it also simplifies things) we
1278 // ignore such reallocs as well.
1279 // PW Nov 2016 xtree work: why can't we just consider that a realloc of an
1280 // ignored alloc is just a new alloc (i.e. do not remove the old sz from the
1281 // stats). Then everything would be fine, and a non ignored realloc would be
1282 // counted properly.
1283 static __inline__
1284 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1286 HP_Chunk* hc;
1287 void* p_new;
1288 SizeT old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1289 Xecu old_where;
1290 Bool is_ignored = False;
1292 if (p_old == NULL) {
1293 return alloc_and_record_block( tid, new_req_szB, VG_(clo_alignment), /*is_zeroed*/False );
1296 if (new_req_szB == 0U) {
1297 if (VG_(clo_realloc_zero_bytes_frees) == True) {
1298 /* like ms_free */
1299 unrecord_block(p_old, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1300 VG_(cli_free)(p_old);
1301 return NULL;
1303 new_req_szB = 1U;
1306 // Remove the old block
1307 hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1308 if (hc == NULL) {
1309 return NULL; // must have been a bogus realloc()
1312 old_req_szB = hc->req_szB;
1313 old_slop_szB = hc->slop_szB;
1315 tl_assert(!clo_pages_as_heap); // Shouldn't be here if --pages-as-heap=yes.
1316 if (clo_heap) {
1317 VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1319 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1320 // Update statistics.
1321 n_heap_reallocs++;
1323 // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1324 if (new_req_szB < old_req_szB) {
1325 maybe_take_snapshot(Peak, "re-PEAK");
1327 } else {
1328 // The original malloc was ignored, so we have to ignore the
1329 // realloc as well.
1330 is_ignored = True;
1334 // Actually do the allocation, if necessary.
1335 if (new_req_szB <= old_req_szB + old_slop_szB) {
1336 // New size is smaller or same; block not moved.
1337 p_new = p_old;
1338 new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1340 } else {
1341 // New size is bigger; make new block, copy shared contents, free old.
1342 p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1343 if (!p_new) {
1344 // Nb: if realloc fails, NULL is returned but the old block is not
1345 // touched. What an awful function.
1346 return NULL;
1348 VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1349 VG_(cli_free)(p_old);
1350 new_actual_szB = VG_(cli_malloc_usable_size)(p_new);
1351 tl_assert(new_actual_szB >= new_req_szB);
1352 new_slop_szB = new_actual_szB - new_req_szB;
1355 if (p_new) {
1356 // Update HP_Chunk.
1357 hc->data = (Addr)p_new;
1358 hc->req_szB = new_req_szB;
1359 hc->slop_szB = new_slop_szB;
1360 old_where = hc->where;
1361 hc->where = 0;
1363 // Update XTree.
1364 if (clo_heap) {
1365 hc->where = add_heap_xt( tid, new_req_szB,
1366 /*exclude_first_entry*/True);
1367 if (!is_ignored && VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0) {
1368 sub_heap_xt(old_where, old_req_szB, /*exclude_first_entry*/True);
1369 } else {
1370 // The realloc itself is ignored.
1371 is_ignored = True;
1373 /* XTREE??? hack to have something compatible with pre
1374 m_xtree massif: if the previous alloc/realloc was
1375 ignored, and this one is not ignored, then keep the
1376 previous where, to continue marking this memory as
1377 ignored. */
1378 if (VG_(XT_n_ips_sel)(heap_xt, hc->where) > 0
1379 && VG_(XT_n_ips_sel)(heap_xt, old_where) == 0)
1380 hc->where = old_where;
1382 // Update statistics.
1383 n_ignored_heap_reallocs++;
1388 // Now insert the new hc (with a possibly new 'data' field) into
1389 // malloc_list. If this realloc() did not increase the memory size, we
1390 // will have removed and then re-added hc unnecessarily. But that's ok
1391 // because shrinking a block with realloc() is (presumably) much rarer
1392 // than growing it, and this way simplifies the growing case.
1393 VG_(HT_add_node)(malloc_list, hc);
1395 if (clo_heap) {
1396 if (!is_ignored) {
1397 // Update heap stats.
1398 update_heap_stats(new_req_szB - old_req_szB,
1399 new_slop_szB - old_slop_szB);
1401 // Maybe take a snapshot.
1402 maybe_take_snapshot(Normal, "realloc");
1403 } else {
1405 VERB(3, "(ignored)\n");
1408 VERB(3, ">>> (%ld, %ld)\n",
1409 (SSizeT)(new_req_szB - old_req_szB),
1410 (SSizeT)(new_slop_szB - old_slop_szB));
1413 return p_new;
1417 //------------------------------------------------------------//
1418 //--- malloc() et al replacement wrappers ---//
1419 //------------------------------------------------------------//
1421 static void* ms_malloc ( ThreadId tid, SizeT szB )
1423 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1426 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1428 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1431 static void* ms___builtin_new_aligned ( ThreadId tid, SizeT szB, SizeT alignB )
1433 return alloc_and_record_block( tid, szB, alignB, /*is_zeroed*/False );
1436 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1438 return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1441 static void* ms___builtin_vec_new_aligned ( ThreadId tid, SizeT szB, SizeT alignB )
1443 return alloc_and_record_block( tid, szB, alignB, /*is_zeroed*/False );
1446 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1448 return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1451 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1453 return alloc_and_record_block( tid, szB, alignB, False );
1456 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1458 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1459 VG_(cli_free)(p);
1462 static void ms___builtin_delete ( ThreadId tid, void* p )
1464 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1465 VG_(cli_free)(p);
1468 static void ms___builtin_delete_aligned ( ThreadId tid, void* p, SizeT align )
1470 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1471 VG_(cli_free)(p);
1474 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1476 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1477 VG_(cli_free)(p);
1480 static void ms___builtin_vec_delete_aligned ( ThreadId tid, void* p, SizeT align )
1482 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/True);
1483 VG_(cli_free)(p);
1486 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1488 return realloc_block(tid, p_old, new_szB);
1491 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1493 HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1495 return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1498 //------------------------------------------------------------//
1499 //--- Page handling ---//
1500 //------------------------------------------------------------//
1502 static
1503 void ms_record_page_mem ( Addr a, SizeT len )
1505 ThreadId tid = VG_(get_running_tid)();
1506 Addr end;
1507 tl_assert(VG_IS_PAGE_ALIGNED(len));
1508 tl_assert(len >= VKI_PAGE_SIZE);
1509 // Record the first N-1 pages as blocks, but don't do any snapshots.
1510 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1511 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1512 /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1514 // Record the last page as a block, and maybe do a snapshot afterwards.
1515 record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1516 /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1519 static
1520 void ms_unrecord_page_mem( Addr a, SizeT len )
1522 Addr end;
1523 tl_assert(VG_IS_PAGE_ALIGNED(len));
1524 tl_assert(len >= VKI_PAGE_SIZE);
1525 // Unrecord the first page. This might be the peak, so do a snapshot.
1526 unrecord_block((void*)a, /*maybe_snapshot*/True,
1527 /*exclude_first_entry*/False);
1528 a += VKI_PAGE_SIZE;
1529 // Then unrecord the remaining pages, but without snapshots.
1530 for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1531 unrecord_block((void*)a, /*maybe_snapshot*/False,
1532 /*exclude_first_entry*/False);
1536 //------------------------------------------------------------//
1538 static
1539 void ms_new_mem_mmap ( Addr a, SizeT len,
1540 Bool rr, Bool ww, Bool xx, ULong di_handle )
1542 tl_assert(VG_IS_PAGE_ALIGNED(len));
1543 ms_record_page_mem(a, len);
1546 static
1547 void ms_new_mem_startup( Addr a, SizeT len,
1548 Bool rr, Bool ww, Bool xx, ULong di_handle )
1550 // startup maps are always be page-sized, except the trampoline page is
1551 // marked by the core as only being the size of the trampoline itself,
1552 // which is something like 57 bytes. Round it up to page size.
1553 len = VG_PGROUNDUP(len);
1554 ms_record_page_mem(a, len);
1557 static
1558 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1560 // brk limit is not necessarily aligned on a page boundary.
1561 // If new memory being brk-ed implies to allocate a new page,
1562 // then call ms_record_page_mem with page aligned parameters
1563 // otherwise just ignore.
1564 Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1565 Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1566 if (old_bottom_page != new_top_page)
1567 ms_record_page_mem(VG_PGROUNDDN(a),
1568 (new_top_page - old_bottom_page));
1571 static
1572 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1574 tl_assert(VG_IS_PAGE_ALIGNED(len));
1575 ms_unrecord_page_mem(from, len);
1576 ms_record_page_mem(to, len);
1579 static
1580 void ms_die_mem_munmap( Addr a, SizeT len )
1582 tl_assert(VG_IS_PAGE_ALIGNED(len));
1583 ms_unrecord_page_mem(a, len);
1586 static
1587 void ms_die_mem_brk( Addr a, SizeT len )
1589 // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1590 // See ms_new_mem_brk for more details.
1591 Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1592 Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1593 if (old_top_page != new_bottom_page)
1594 ms_unrecord_page_mem(VG_PGROUNDDN(a),
1595 (old_top_page - new_bottom_page));
1599 //------------------------------------------------------------//
1600 //--- Stacks ---//
1601 //------------------------------------------------------------//
1603 // We really want the inlining to occur...
1604 #define INLINE inline __attribute__((always_inline))
1606 static void update_stack_stats(SSizeT stack_szB_delta)
1608 if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1609 stacks_szB += stack_szB_delta;
1611 update_alloc_stats(stack_szB_delta);
1614 static INLINE void new_mem_stack_2(SizeT len, const HChar* what)
1616 if (have_started_executing_code) {
1617 VERB(3, "<<< new_mem_stack (%lu)\n", len);
1618 n_stack_allocs++;
1619 update_stack_stats(len);
1620 maybe_take_snapshot(Normal, what);
1621 VERB(3, ">>>\n");
1625 static INLINE void die_mem_stack_2(SizeT len, const HChar* what)
1627 if (have_started_executing_code) {
1628 VERB(3, "<<< die_mem_stack (-%lu)\n", len);
1629 n_stack_frees++;
1630 maybe_take_snapshot(Peak, "stkPEAK");
1631 update_stack_stats(-len);
1632 maybe_take_snapshot(Normal, what);
1633 VERB(3, ">>>\n");
1637 static void new_mem_stack(Addr a, SizeT len)
1639 new_mem_stack_2(len, "stk-new");
1642 static void die_mem_stack(Addr a, SizeT len)
1644 die_mem_stack_2(len, "stk-die");
1647 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1649 new_mem_stack_2(len, "sig-new");
1652 static void die_mem_stack_signal(Addr a, SizeT len)
1654 die_mem_stack_2(len, "sig-die");
1658 //------------------------------------------------------------//
1659 //--- Client Requests ---//
1660 //------------------------------------------------------------//
1662 static void print_monitor_help ( void )
1664 VG_(gdb_printf) (
1665 "\n"
1666 "massif monitor commands:\n"
1667 " snapshot [<filename>]\n"
1668 " detailed_snapshot [<filename>]\n"
1669 " takes a snapshot (or a detailed snapshot)\n"
1670 " and saves it in <filename>\n"
1671 " default <filename> is massif.vgdb.out\n"
1672 " all_snapshots [<filename>]\n"
1673 " saves all snapshot(s) taken so far in <filename>\n"
1674 " default <filename> is massif.vgdb.out\n"
1675 " xtmemory [<filename>]\n"
1676 " dump xtree memory profile in <filename> (default xtmemory.kcg.%%p.%%n)\n"
1677 "\n");
1681 /* Forward declaration.
1682 return True if request recognised, False otherwise */
1683 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req);
1684 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
1686 switch (argv[0]) {
1687 case VG_USERREQ__MALLOCLIKE_BLOCK: {
1688 void* p = (void*)argv[1];
1689 SizeT szB = argv[2];
1690 record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
1691 /*maybe_snapshot*/True );
1692 *ret = 0;
1693 return True;
1695 case VG_USERREQ__RESIZEINPLACE_BLOCK: {
1696 void* p = (void*)argv[1];
1697 SizeT newSizeB = argv[3];
1699 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1700 record_block(tid, p, newSizeB, /*slop_szB*/0,
1701 /*exclude_first_entry*/False, /*maybe_snapshot*/True);
1702 return True;
1704 case VG_USERREQ__FREELIKE_BLOCK: {
1705 void* p = (void*)argv[1];
1706 unrecord_block(p, /*maybe_snapshot*/True, /*exclude_first_entry*/False);
1707 *ret = 0;
1708 return True;
1710 case VG_USERREQ__GDB_MONITOR_COMMAND: {
1711 Bool handled = handle_gdb_monitor_command (tid, (HChar*)argv[1]);
1712 if (handled)
1713 *ret = 1;
1714 else
1715 *ret = 0;
1716 return handled;
1719 default:
1720 *ret = 0;
1721 return False;
1725 //------------------------------------------------------------//
1726 //--- Instrumentation ---//
1727 //------------------------------------------------------------//
1729 static void add_counter_update(IRSB* sbOut, Int n)
1731 #if defined(VG_BIGENDIAN)
1732 # define END Iend_BE
1733 #elif defined(VG_LITTLEENDIAN)
1734 # define END Iend_LE
1735 #else
1736 # error "Unknown endianness"
1737 #endif
1738 // Add code to increment 'guest_instrs_executed' by 'n', like this:
1739 // WrTmp(t1, Load64(&guest_instrs_executed))
1740 // WrTmp(t2, Add64(RdTmp(t1), Const(n)))
1741 // Store(&guest_instrs_executed, t2)
1742 IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
1743 IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
1744 IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
1746 IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
1747 IRStmt* st2 =
1748 IRStmt_WrTmp(t2,
1749 IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
1750 IRExpr_Const(IRConst_U64(n))));
1751 IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
1753 addStmtToIRSB( sbOut, st1 );
1754 addStmtToIRSB( sbOut, st2 );
1755 addStmtToIRSB( sbOut, st3 );
1758 static IRSB* ms_instrument2( IRSB* sbIn )
1760 Int i, n = 0;
1761 IRSB* sbOut;
1763 // We increment the instruction count in two places:
1764 // - just before any Ist_Exit statements;
1765 // - just before the IRSB's end.
1766 // In the former case, we zero 'n' and then continue instrumenting.
1768 sbOut = deepCopyIRSBExceptStmts(sbIn);
1770 for (i = 0; i < sbIn->stmts_used; i++) {
1771 IRStmt* st = sbIn->stmts[i];
1773 if (!st || st->tag == Ist_NoOp) continue;
1775 if (st->tag == Ist_IMark) {
1776 n++;
1777 } else if (st->tag == Ist_Exit) {
1778 if (n > 0) {
1779 // Add an increment before the Exit statement, then reset 'n'.
1780 add_counter_update(sbOut, n);
1781 n = 0;
1784 addStmtToIRSB( sbOut, st );
1787 if (n > 0) {
1788 // Add an increment before the SB end.
1789 add_counter_update(sbOut, n);
1791 return sbOut;
1794 static
1795 IRSB* ms_instrument ( VgCallbackClosure* closure,
1796 IRSB* sbIn,
1797 const VexGuestLayout* layout,
1798 const VexGuestExtents* vge,
1799 const VexArchInfo* archinfo_host,
1800 IRType gWordTy, IRType hWordTy )
1802 if (! have_started_executing_code) {
1803 // Do an initial sample to guarantee that we have at least one.
1804 // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
1805 // 'maybe_take_snapshot's internal static variables are initialised.
1806 have_started_executing_code = True;
1807 maybe_take_snapshot(Normal, "startup");
1810 if (clo_time_unit == TimeI) { return ms_instrument2(sbIn); }
1811 else if (clo_time_unit == TimeMS) { return sbIn; }
1812 else if (clo_time_unit == TimeB) { return sbIn; }
1813 else { tl_assert2(0, "bad --time-unit value"); }
1817 //------------------------------------------------------------//
1818 //--- Writing snapshots ---//
1819 //------------------------------------------------------------//
1821 static void pp_snapshot(MsFile *fp, Snapshot* snapshot, Int snapshot_n)
1823 const Massif_Header header = (Massif_Header) {
1824 .snapshot_n = snapshot_n,
1825 .time = snapshot->time,
1826 .sz_B = snapshot->heap_szB,
1827 .extra_B = snapshot->heap_extra_szB,
1828 .stacks_B = snapshot->stacks_szB,
1829 .detailed = is_detailed_snapshot(snapshot),
1830 .peak = Peak == snapshot->kind,
1831 .top_node_desc = clo_pages_as_heap ?
1832 "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
1833 : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc.",
1834 .sig_threshold = clo_threshold
1837 sanity_check_snapshot(snapshot);
1839 VG_(XT_massif_print)(fp, snapshot->xt, &header, alloc_szB);
1842 static void write_snapshots_to_file(const HChar* massif_out_file,
1843 Snapshot snapshots_array[],
1844 Int nr_elements)
1846 Int i;
1847 MsFile *fp;
1849 fp = VG_(XT_massif_open)(massif_out_file,
1850 NULL,
1851 args_for_massif,
1852 TimeUnit_to_string(clo_time_unit));
1853 if (fp == NULL)
1854 return; // Error reported by VG_(XT_massif_open)
1856 for (i = 0; i < nr_elements; i++) {
1857 Snapshot* snapshot = & snapshots_array[i];
1858 pp_snapshot(fp, snapshot, i); // Detailed snapshot!
1860 VG_(XT_massif_close) (fp);
1863 static void write_snapshots_array_to_file(void)
1865 // Setup output filename. Nb: it's important to do this now, ie. as late
1866 // as possible. If we do it at start-up and the program forks and the
1867 // output file format string contains a %p (pid) specifier, both the
1868 // parent and child will incorrectly write to the same file; this
1869 // happened in 3.3.0.
1870 HChar* massif_out_file =
1871 VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
1872 write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
1873 VG_(free)(massif_out_file);
1876 static void handle_snapshot_monitor_command (const HChar *filename,
1877 Bool detailed)
1879 Snapshot snapshot;
1881 if (!clo_pages_as_heap && !have_started_executing_code) {
1882 // See comments of variable have_started_executing_code.
1883 VG_(gdb_printf)
1884 ("error: cannot take snapshot before execution has started\n");
1885 return;
1888 clear_snapshot(&snapshot, /* do_sanity_check */ False);
1889 take_snapshot(&snapshot, Normal, get_time(), detailed);
1890 write_snapshots_to_file ((filename == NULL) ?
1891 "massif.vgdb.out" : filename,
1892 &snapshot,
1894 delete_snapshot(&snapshot);
1897 static void handle_all_snapshots_monitor_command (const HChar *filename)
1899 if (!clo_pages_as_heap && !have_started_executing_code) {
1900 // See comments of variable have_started_executing_code.
1901 VG_(gdb_printf)
1902 ("error: cannot take snapshot before execution has started\n");
1903 return;
1906 write_snapshots_to_file ((filename == NULL) ?
1907 "massif.vgdb.out" : filename,
1908 snapshots, next_snapshot_i);
1911 static void xtmemory_report_next_block(XT_Allocs* xta, ExeContext** ec_alloc)
1913 const HP_Chunk* hc = VG_(HT_Next)(malloc_list);
1914 if (hc) {
1915 xta->nbytes = hc->req_szB;
1916 xta->nblocks = 1;
1917 *ec_alloc = VG_(XT_get_ec_from_xecu)(heap_xt, hc->where);
1918 } else
1919 xta->nblocks = 0;
1921 static void ms_xtmemory_report ( const HChar* filename, Bool fini )
1923 // Make xtmemory_report_next_block ready to be called.
1924 VG_(HT_ResetIter)(malloc_list);
1925 VG_(XTMemory_report)(filename, fini, xtmemory_report_next_block,
1926 VG_(XT_filter_maybe_below_main));
1927 /* As massif already filters one top function, use as filter
1928 VG_(XT_filter_maybe_below_main). */
1931 static Bool handle_gdb_monitor_command (ThreadId tid, HChar *req)
1933 HChar* wcmd;
1934 HChar s[VG_(strlen)(req) + 1]; /* copy for strtok_r */
1935 HChar *ssaveptr;
1937 VG_(strcpy) (s, req);
1939 wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
1940 switch (VG_(keyword_id) ("help snapshot detailed_snapshot all_snapshots"
1941 " xtmemory",
1942 wcmd, kwd_report_duplicated_matches)) {
1943 case -2: /* multiple matches */
1944 return True;
1945 case -1: /* not found */
1946 return False;
1947 case 0: /* help */
1948 print_monitor_help();
1949 return True;
1950 case 1: { /* snapshot */
1951 HChar* filename;
1952 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1953 handle_snapshot_monitor_command (filename, False /* detailed */);
1954 return True;
1956 case 2: { /* detailed_snapshot */
1957 HChar* filename;
1958 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1959 handle_snapshot_monitor_command (filename, True /* detailed */);
1960 return True;
1962 case 3: { /* all_snapshots */
1963 HChar* filename;
1964 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1965 handle_all_snapshots_monitor_command (filename);
1966 return True;
1968 case 4: { /* xtmemory */
1969 HChar* filename;
1970 filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
1971 ms_xtmemory_report (filename, False);
1972 return True;
1974 default:
1975 tl_assert(0);
1976 return False;
1980 static void ms_print_stats (void)
1982 #define STATS(format, args...) \
1983 VG_(dmsg)("Massif: " format, ##args)
1985 STATS("heap allocs: %u\n", n_heap_allocs);
1986 STATS("heap reallocs: %u\n", n_heap_reallocs);
1987 STATS("heap frees: %u\n", n_heap_frees);
1988 STATS("ignored heap allocs: %u\n", n_ignored_heap_allocs);
1989 STATS("ignored heap frees: %u\n", n_ignored_heap_frees);
1990 STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
1991 STATS("stack allocs: %u\n", n_stack_allocs);
1992 STATS("skipped snapshots: %u\n", n_skipped_snapshots);
1993 STATS("real snapshots: %u\n", n_real_snapshots);
1994 STATS("detailed snapshots: %u\n", n_detailed_snapshots);
1995 STATS("peak snapshots: %u\n", n_peak_snapshots);
1996 STATS("cullings: %u\n", n_cullings);
1997 #undef STATS
2001 //------------------------------------------------------------//
2002 //--- Finalisation ---//
2003 //------------------------------------------------------------//
2005 static void ms_fini(Int exit_status)
2007 ms_xtmemory_report(VG_(clo_xtree_memory_file), True);
2009 // Output.
2010 write_snapshots_array_to_file();
2012 if (VG_(clo_stats))
2013 ms_print_stats();
2017 //------------------------------------------------------------//
2018 //--- Initialisation ---//
2019 //------------------------------------------------------------//
2021 static void ms_post_clo_init(void)
2023 Int i;
2024 HChar* LD_PRELOAD_val;
2026 /* We will record execontext up to clo_depth + overestimate and
2027 we will store this as ec => we need to increase the backtrace size
2028 if smaller than what we will store. */
2029 if (VG_(clo_backtrace_size) < clo_depth + MAX_OVERESTIMATE)
2030 VG_(clo_backtrace_size) = clo_depth + MAX_OVERESTIMATE;
2032 // Check options.
2033 if (clo_pages_as_heap) {
2034 if (clo_stacks) {
2035 VG_(fmsg_bad_option)("--pages-as-heap=yes",
2036 "Cannot be used together with --stacks=yes");
2039 if (!clo_heap) {
2040 clo_pages_as_heap = False;
2043 // If --pages-as-heap=yes we don't want malloc replacement to occur. So we
2044 // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2045 // platform-equivalent). This is a bit of a hack, but LD_PRELOAD is setup
2046 // well before tool initialisation, so this seems the best way to do it.
2047 if (clo_pages_as_heap) {
2048 HChar* s1;
2049 HChar* s2;
2051 clo_heap_admin = 0; // No heap admin on pages.
2053 LD_PRELOAD_val = VG_(getenv)( VG_(LD_PRELOAD_var_name) );
2054 tl_assert(LD_PRELOAD_val);
2056 VERB(2, "clo_pages_as_heap orig LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2058 // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2059 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2060 tl_assert(s1);
2062 // Now find the vgpreload_massif-$PLATFORM entry.
2063 s1 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2064 tl_assert(s1);
2065 s2 = s1;
2067 // Position s1 on the previous ':', which must be there because
2068 // of the preceding vgpreload_core-$PLATFORM entry.
2069 for (; *s1 != ':'; s1--)
2072 // Position s2 on the next ':' or \0
2073 for (; *s2 != ':' && *s2 != '\0'; s2++)
2076 // Move all characters from s2 to s1
2077 while ((*s1++ = *s2++))
2080 VERB(2, "clo_pages_as_heap cleaned LD_PRELOAD '%s'\n", LD_PRELOAD_val);
2083 // Print alloc-fns and ignore-fns, if necessary.
2084 if (VG_(clo_verbosity) > 1) {
2085 VERB(1, "alloc-fns:\n");
2086 for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2087 HChar** fn_ptr = VG_(indexXA)(alloc_fns, i);
2088 VERB(1, " %s\n", *fn_ptr);
2091 VERB(1, "ignore-fns:\n");
2092 if (0 == VG_(sizeXA)(ignore_fns)) {
2093 VERB(1, " <empty>\n");
2095 for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2096 HChar** fn_ptr = VG_(indexXA)(ignore_fns, i);
2097 VERB(1, " %d: %s\n", i, *fn_ptr);
2101 // Events to track.
2102 if (clo_stacks) {
2103 VG_(track_new_mem_stack) ( new_mem_stack );
2104 VG_(track_die_mem_stack) ( die_mem_stack );
2105 VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2106 VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2109 if (clo_pages_as_heap) {
2110 VG_(track_new_mem_startup) ( ms_new_mem_startup );
2111 VG_(track_new_mem_brk) ( ms_new_mem_brk );
2112 VG_(track_new_mem_mmap) ( ms_new_mem_mmap );
2114 VG_(track_copy_mem_remap) ( ms_copy_mem_remap );
2116 VG_(track_die_mem_brk) ( ms_die_mem_brk );
2117 VG_(track_die_mem_munmap) ( ms_die_mem_munmap );
2120 // Initialise snapshot array, and sanity-check it.
2121 snapshots = VG_(malloc)("ms.main.mpoci.1",
2122 sizeof(Snapshot) * clo_max_snapshots);
2123 // We don't want to do snapshot sanity checks here, because they're
2124 // currently uninitialised.
2125 for (i = 0; i < clo_max_snapshots; i++) {
2126 clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2128 sanity_check_snapshots_array();
2130 if (VG_(clo_xtree_memory) == Vg_XTMemory_Full)
2131 // Activate full xtree memory profiling.
2132 // As massif already filters one top function, use as filter
2133 // VG_(XT_filter_maybe_below_main).
2134 VG_(XTMemory_Full_init)(VG_(XT_filter_maybe_below_main));
2138 static void ms_pre_clo_init(void)
2140 VG_(details_name) ("Massif");
2141 VG_(details_version) (NULL);
2142 VG_(details_description) ("a heap profiler");
2143 VG_(details_copyright_author)(
2144 "Copyright (C) 2003-2017, and GNU GPL'd, by Nicholas Nethercote");
2145 VG_(details_bug_reports_to) (VG_BUGS_TO);
2147 VG_(details_avg_translation_sizeB) ( 330 );
2149 VG_(clo_vex_control).iropt_register_updates_default
2150 = VG_(clo_px_file_backed)
2151 = VexRegUpdSpAtMemAccess; // overridable by the user.
2153 // Basic functions.
2154 VG_(basic_tool_funcs) (ms_post_clo_init,
2155 ms_instrument,
2156 ms_fini);
2158 // Needs.
2159 VG_(needs_libc_freeres)();
2160 VG_(needs_cxx_freeres)();
2161 VG_(needs_command_line_options)(ms_process_cmd_line_option,
2162 ms_print_usage,
2163 ms_print_debug_usage);
2164 VG_(needs_client_requests) (ms_handle_client_request);
2165 VG_(needs_sanity_checks) (ms_cheap_sanity_check,
2166 ms_expensive_sanity_check);
2167 VG_(needs_print_stats) (ms_print_stats);
2168 VG_(needs_malloc_replacement) (ms_malloc,
2169 ms___builtin_new,
2170 ms___builtin_new_aligned,
2171 ms___builtin_vec_new,
2172 ms___builtin_vec_new_aligned,
2173 ms_memalign,
2174 ms_calloc,
2175 ms_free,
2176 ms___builtin_delete,
2177 ms___builtin_delete_aligned,
2178 ms___builtin_vec_delete,
2179 ms___builtin_vec_delete_aligned,
2180 ms_realloc,
2181 ms_malloc_usable_size,
2182 0 );
2184 // HP_Chunks.
2185 HP_chunk_poolalloc = VG_(newPA)
2186 (sizeof(HP_Chunk),
2187 1000,
2188 VG_(malloc),
2189 "massif MC_Chunk pool",
2190 VG_(free));
2191 malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2193 // Heap XTree
2194 heap_xt = VG_(XT_create)(VG_(malloc),
2195 "ms.xtrees",
2196 VG_(free),
2197 sizeof(SizeT),
2198 init_szB, add_szB, sub_szB,
2199 filter_IPs);
2201 // Initialise alloc_fns and ignore_fns.
2202 init_alloc_fns();
2203 init_ignore_fns();
2205 // Initialise args_for_massif.
2206 args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2207 VG_(free), sizeof(HChar*));
2210 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2212 //--------------------------------------------------------------------//
2213 //--- end ---//
2214 //--------------------------------------------------------------------//