expr_is_guardable, stmt_is_guardable, add_guarded_stmt_to_end_of: handle GetI/PutI...
[valgrind.git] / VEX / test / mmxtest.c
blobe1ca5473490dd253a437e0ebcda3f54dbfd1dd52
2 #include <stdio.h>
3 #include <stdlib.h>
5 #define HAVE_SSE2 1
7 /* DO NOT COMPILE WITH -O/-O2/-O3 ! GENERATES INVALID ASSEMBLY. */
10 /* mmx.h
12 MultiMedia eXtensions GCC interface library for IA32.
14 To use this library, simply include this header file
15 and compile with GCC. You MUST have inlining enabled
16 in order for mmx_ok() to work; this can be done by
17 simply using -O on the GCC command line.
19 Compiling with -DMMX_TRACE will cause detailed trace
20 output to be sent to stderr for each mmx operation.
21 This adds lots of code, and obviously slows execution to
22 a crawl, but can be very useful for debugging.
24 THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY
25 EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
26 LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY
27 AND FITNESS FOR ANY PARTICULAR PURPOSE.
29 June 11, 1998 by H. Dietz and R. Fisher
33 /* The type of an value that fits in an MMX register
34 (note that long long constant values MUST be suffixed
35 by LL and unsigned long long values by ULL, lest
36 they be truncated by the compiler)
38 typedef union {
39 long long q; /* Quadword (64-bit) value */
40 unsigned long long uq; /* Unsigned Quadword */
41 int d[2]; /* 2 Doubleword (32-bit) values */
42 unsigned int ud[2]; /* 2 Unsigned Doubleword */
43 short w[4]; /* 4 Word (16-bit) values */
44 unsigned short uw[4]; /* 4 Unsigned Word */
45 char b[8]; /* 8 Byte (8-bit) values */
46 unsigned char ub[8]; /* 8 Unsigned Byte */
47 } mmx_t;
50 /* Function to test if mmx instructions are supported...
52 inline extern int
53 mmx_ok(void)
55 /* Returns 1 if mmx instructions are ok,
56 0 if hardware does not support mmx
58 register int ok = 0;
60 __asm__ __volatile__ (
61 /* Get CPU version information */
62 "movl $1, %%eax\n\t"
63 "cpuid\n\t"
64 "movl %%edx, %0"
65 : "=a" (ok)
66 : /* no input */
68 return((ok & 0x800000) == 0x800000);
72 /* Helper functions for the instruction macros that follow...
73 (note that memory-to-register, m2r, instructions are nearly
74 as efficient as register-to-register, r2r, instructions;
75 however, memory-to-memory instructions are really simulated
76 as a convenience, and are only 1/3 as efficient)
78 #ifdef MMX_TRACE
80 /* Include the stuff for printing a trace to stderr...
83 #include <stdio.h>
85 #define mmx_m2r(op, mem, reg) \
86 { \
87 mmx_t mmx_trace; \
88 mmx_trace = (mem); \
89 fprintf(stderr, #op "_m2r(" #mem "=0x%016llx, ", mmx_trace.q); \
90 __asm__ __volatile__ ("movq %%" #reg ", %0" \
91 : "=X" (mmx_trace) \
92 : /* nothing */ ); \
93 fprintf(stderr, #reg "=0x%016llx) => ", mmx_trace.q); \
94 __asm__ __volatile__ (#op " %0, %%" #reg \
95 : /* nothing */ \
96 : "X" (mem)); \
97 __asm__ __volatile__ ("movq %%" #reg ", %0" \
98 : "=X" (mmx_trace) \
99 : /* nothing */ ); \
100 fprintf(stderr, #reg "=0x%016llx\n", mmx_trace.q); \
103 #define mmx_r2m(op, reg, mem) \
105 mmx_t mmx_trace; \
106 __asm__ __volatile__ ("movq %%" #reg ", %0" \
107 : "=X" (mmx_trace) \
108 : /* nothing */ ); \
109 fprintf(stderr, #op "_r2m(" #reg "=0x%016llx, ", mmx_trace.q); \
110 mmx_trace = (mem); \
111 fprintf(stderr, #mem "=0x%016llx) => ", mmx_trace.q); \
112 __asm__ __volatile__ (#op " %%" #reg ", %0" \
113 : "=X" (mem) \
114 : /* nothing */ ); \
115 mmx_trace = (mem); \
116 fprintf(stderr, #mem "=0x%016llx\n", mmx_trace.q); \
119 #define mmx_r2r(op, regs, regd) \
121 mmx_t mmx_trace; \
122 __asm__ __volatile__ ("movq %%" #regs ", %0" \
123 : "=X" (mmx_trace) \
124 : /* nothing */ ); \
125 fprintf(stderr, #op "_r2r(" #regs "=0x%016llx, ", mmx_trace.q); \
126 __asm__ __volatile__ ("movq %%" #regd ", %0" \
127 : "=X" (mmx_trace) \
128 : /* nothing */ ); \
129 fprintf(stderr, #regd "=0x%016llx) => ", mmx_trace.q); \
130 __asm__ __volatile__ (#op " %" #regs ", %" #regd); \
131 __asm__ __volatile__ ("movq %%" #regd ", %0" \
132 : "=X" (mmx_trace) \
133 : /* nothing */ ); \
134 fprintf(stderr, #regd "=0x%016llx\n", mmx_trace.q); \
137 #define mmx_m2m(op, mems, memd) \
139 mmx_t mmx_trace; \
140 mmx_trace = (mems); \
141 fprintf(stderr, #op "_m2m(" #mems "=0x%016llx, ", mmx_trace.q); \
142 mmx_trace = (memd); \
143 fprintf(stderr, #memd "=0x%016llx) => ", mmx_trace.q); \
144 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
145 #op " %1, %%mm0\n\t" \
146 "movq %%mm0, %0" \
147 : "=X" (memd) \
148 : "X" (mems)); \
149 mmx_trace = (memd); \
150 fprintf(stderr, #memd "=0x%016llx\n", mmx_trace.q); \
153 #else
155 /* These macros are a lot simpler without the tracing...
158 #define mmx_m2r(op, mem, reg) \
159 __asm__ __volatile__ (#op " %0, %%" #reg \
160 : /* nothing */ \
161 : "X" (mem))
163 #define mmx_r2m(op, reg, mem) \
164 __asm__ __volatile__ (#op " %%" #reg ", %0" \
165 : "=X" (mem) \
166 : /* nothing */ )
168 #define mmx_r2r(op, regs, regd) \
169 __asm__ __volatile__ (#op " %" #regs ", %" #regd)
171 #define mmx_m2m(op, mems, memd) \
172 __asm__ __volatile__ ("movq %0, %%mm0\n\t" \
173 #op " %1, %%mm0\n\t" \
174 "movq %%mm0, %0" \
175 : "=X" (memd) \
176 : "X" (mems))
178 #endif
181 /* 1x64 MOVe Quadword
182 (this is both a load and a store...
183 in fact, it is the only way to store)
185 #define movq_m2r(var, reg) mmx_m2r(movq, var, reg)
186 #define movq_r2m(reg, var) mmx_r2m(movq, reg, var)
187 #define movq_r2r(regs, regd) mmx_r2r(movq, regs, regd)
188 #define movq(vars, vard) \
189 __asm__ __volatile__ ("movq %1, %%mm0\n\t" \
190 "movq %%mm0, %0" \
191 : "=X" (vard) \
192 : "X" (vars))
195 /* 1x64 MOVe Doubleword
196 (like movq, this is both load and store...
197 but is most useful for moving things between
198 mmx registers and ordinary registers)
200 #define movd_m2r(var, reg) mmx_m2r(movd, var, reg)
201 #define movd_r2m(reg, var) mmx_r2m(movd, reg, var)
202 #define movd_r2r(regs, regd) mmx_r2r(movd, regs, regd)
203 #define movd(vars, vard) \
204 __asm__ __volatile__ ("movd %1, %%mm0\n\t" \
205 "movd %%mm0, %0" \
206 : "=X" (vard) \
207 : "X" (vars))
210 /* 2x32, 4x16, and 8x8 Parallel ADDs
212 #define paddd_m2r(var, reg) mmx_m2r(paddd, var, reg)
213 #define paddd_r2r(regs, regd) mmx_r2r(paddd, regs, regd)
214 #define paddd(vars, vard) mmx_m2m(paddd, vars, vard)
216 #define paddw_m2r(var, reg) mmx_m2r(paddw, var, reg)
217 #define paddw_r2r(regs, regd) mmx_r2r(paddw, regs, regd)
218 #define paddw(vars, vard) mmx_m2m(paddw, vars, vard)
220 #define paddb_m2r(var, reg) mmx_m2r(paddb, var, reg)
221 #define paddb_r2r(regs, regd) mmx_r2r(paddb, regs, regd)
222 #define paddb(vars, vard) mmx_m2m(paddb, vars, vard)
225 /* 4x16 and 8x8 Parallel ADDs using Saturation arithmetic
227 #define paddsw_m2r(var, reg) mmx_m2r(paddsw, var, reg)
228 #define paddsw_r2r(regs, regd) mmx_r2r(paddsw, regs, regd)
229 #define paddsw(vars, vard) mmx_m2m(paddsw, vars, vard)
231 #define paddsb_m2r(var, reg) mmx_m2r(paddsb, var, reg)
232 #define paddsb_r2r(regs, regd) mmx_r2r(paddsb, regs, regd)
233 #define paddsb(vars, vard) mmx_m2m(paddsb, vars, vard)
236 /* 4x16 and 8x8 Parallel ADDs using Unsigned Saturation arithmetic
238 #define paddusw_m2r(var, reg) mmx_m2r(paddusw, var, reg)
239 #define paddusw_r2r(regs, regd) mmx_r2r(paddusw, regs, regd)
240 #define paddusw(vars, vard) mmx_m2m(paddusw, vars, vard)
242 #define paddusb_m2r(var, reg) mmx_m2r(paddusb, var, reg)
243 #define paddusb_r2r(regs, regd) mmx_r2r(paddusb, regs, regd)
244 #define paddusb(vars, vard) mmx_m2m(paddusb, vars, vard)
247 /* 2x32, 4x16, and 8x8 Parallel SUBs
249 #define psubd_m2r(var, reg) mmx_m2r(psubd, var, reg)
250 #define psubd_r2r(regs, regd) mmx_r2r(psubd, regs, regd)
251 #define psubd(vars, vard) mmx_m2m(psubd, vars, vard)
253 #define psubw_m2r(var, reg) mmx_m2r(psubw, var, reg)
254 #define psubw_r2r(regs, regd) mmx_r2r(psubw, regs, regd)
255 #define psubw(vars, vard) mmx_m2m(psubw, vars, vard)
257 #define psubb_m2r(var, reg) mmx_m2r(psubb, var, reg)
258 #define psubb_r2r(regs, regd) mmx_r2r(psubb, regs, regd)
259 #define psubb(vars, vard) mmx_m2m(psubb, vars, vard)
262 /* 4x16 and 8x8 Parallel SUBs using Saturation arithmetic
264 #define psubsw_m2r(var, reg) mmx_m2r(psubsw, var, reg)
265 #define psubsw_r2r(regs, regd) mmx_r2r(psubsw, regs, regd)
266 #define psubsw(vars, vard) mmx_m2m(psubsw, vars, vard)
268 #define psubsb_m2r(var, reg) mmx_m2r(psubsb, var, reg)
269 #define psubsb_r2r(regs, regd) mmx_r2r(psubsb, regs, regd)
270 #define psubsb(vars, vard) mmx_m2m(psubsb, vars, vard)
273 /* 4x16 and 8x8 Parallel SUBs using Unsigned Saturation arithmetic
275 #define psubusw_m2r(var, reg) mmx_m2r(psubusw, var, reg)
276 #define psubusw_r2r(regs, regd) mmx_r2r(psubusw, regs, regd)
277 #define psubusw(vars, vard) mmx_m2m(psubusw, vars, vard)
279 #define psubusb_m2r(var, reg) mmx_m2r(psubusb, var, reg)
280 #define psubusb_r2r(regs, regd) mmx_r2r(psubusb, regs, regd)
281 #define psubusb(vars, vard) mmx_m2m(psubusb, vars, vard)
284 /* 4x16 Parallel MULs giving Low 4x16 portions of results
286 #define pmullw_m2r(var, reg) mmx_m2r(pmullw, var, reg)
287 #define pmullw_r2r(regs, regd) mmx_r2r(pmullw, regs, regd)
288 #define pmullw(vars, vard) mmx_m2m(pmullw, vars, vard)
291 /* 4x16 Parallel MULs giving High 4x16 portions of results
293 #define pmulhw_m2r(var, reg) mmx_m2r(pmulhw, var, reg)
294 #define pmulhw_r2r(regs, regd) mmx_r2r(pmulhw, regs, regd)
295 #define pmulhw(vars, vard) mmx_m2m(pmulhw, vars, vard)
298 /* 4x16->2x32 Parallel Mul-ADD
299 (muls like pmullw, then adds adjacent 16-bit fields
300 in the multiply result to make the final 2x32 result)
302 #define pmaddwd_m2r(var, reg) mmx_m2r(pmaddwd, var, reg)
303 #define pmaddwd_r2r(regs, regd) mmx_r2r(pmaddwd, regs, regd)
304 #define pmaddwd(vars, vard) mmx_m2m(pmaddwd, vars, vard)
307 /* 1x64 bitwise AND
309 #define pand_m2r(var, reg) mmx_m2r(pand, var, reg)
310 #define pand_r2r(regs, regd) mmx_r2r(pand, regs, regd)
311 #define pand(vars, vard) mmx_m2m(pand, vars, vard)
314 /* 1x64 bitwise AND with Not the destination
316 #define pandn_m2r(var, reg) mmx_m2r(pandn, var, reg)
317 #define pandn_r2r(regs, regd) mmx_r2r(pandn, regs, regd)
318 #define pandn(vars, vard) mmx_m2m(pandn, vars, vard)
321 /* 1x64 bitwise OR
323 #define por_m2r(var, reg) mmx_m2r(por, var, reg)
324 #define por_r2r(regs, regd) mmx_r2r(por, regs, regd)
325 #define por(vars, vard) mmx_m2m(por, vars, vard)
328 /* 1x64 bitwise eXclusive OR
330 #define pxor_m2r(var, reg) mmx_m2r(pxor, var, reg)
331 #define pxor_r2r(regs, regd) mmx_r2r(pxor, regs, regd)
332 #define pxor(vars, vard) mmx_m2m(pxor, vars, vard)
335 /* 2x32, 4x16, and 8x8 Parallel CoMPare for EQuality
336 (resulting fields are either 0 or -1)
338 #define pcmpeqd_m2r(var, reg) mmx_m2r(pcmpeqd, var, reg)
339 #define pcmpeqd_r2r(regs, regd) mmx_r2r(pcmpeqd, regs, regd)
340 #define pcmpeqd(vars, vard) mmx_m2m(pcmpeqd, vars, vard)
342 #define pcmpeqw_m2r(var, reg) mmx_m2r(pcmpeqw, var, reg)
343 #define pcmpeqw_r2r(regs, regd) mmx_r2r(pcmpeqw, regs, regd)
344 #define pcmpeqw(vars, vard) mmx_m2m(pcmpeqw, vars, vard)
346 #define pcmpeqb_m2r(var, reg) mmx_m2r(pcmpeqb, var, reg)
347 #define pcmpeqb_r2r(regs, regd) mmx_r2r(pcmpeqb, regs, regd)
348 #define pcmpeqb(vars, vard) mmx_m2m(pcmpeqb, vars, vard)
351 /* 2x32, 4x16, and 8x8 Parallel CoMPare for Greater Than
352 (resulting fields are either 0 or -1)
354 #define pcmpgtd_m2r(var, reg) mmx_m2r(pcmpgtd, var, reg)
355 #define pcmpgtd_r2r(regs, regd) mmx_r2r(pcmpgtd, regs, regd)
356 #define pcmpgtd(vars, vard) mmx_m2m(pcmpgtd, vars, vard)
358 #define pcmpgtw_m2r(var, reg) mmx_m2r(pcmpgtw, var, reg)
359 #define pcmpgtw_r2r(regs, regd) mmx_r2r(pcmpgtw, regs, regd)
360 #define pcmpgtw(vars, vard) mmx_m2m(pcmpgtw, vars, vard)
362 #define pcmpgtb_m2r(var, reg) mmx_m2r(pcmpgtb, var, reg)
363 #define pcmpgtb_r2r(regs, regd) mmx_r2r(pcmpgtb, regs, regd)
364 #define pcmpgtb(vars, vard) mmx_m2m(pcmpgtb, vars, vard)
367 /* 1x64, 2x32, and 4x16 Parallel Shift Left Logical
369 #define psllq_m2r(var, reg) mmx_m2r(psllq, var, reg)
370 #define psllq_r2r(regs, regd) mmx_r2r(psllq, regs, regd)
371 #define psllq(vars, vard) mmx_m2m(psllq, vars, vard)
373 #define pslld_m2r(var, reg) mmx_m2r(pslld, var, reg)
374 #define pslld_r2r(regs, regd) mmx_r2r(pslld, regs, regd)
375 #define pslld(vars, vard) mmx_m2m(pslld, vars, vard)
377 #define psllw_m2r(var, reg) mmx_m2r(psllw, var, reg)
378 #define psllw_r2r(regs, regd) mmx_r2r(psllw, regs, regd)
379 #define psllw(vars, vard) mmx_m2m(psllw, vars, vard)
382 /* 1x64, 2x32, and 4x16 Parallel Shift Right Logical
384 #define psrlq_m2r(var, reg) mmx_m2r(psrlq, var, reg)
385 #define psrlq_r2r(regs, regd) mmx_r2r(psrlq, regs, regd)
386 #define psrlq(vars, vard) mmx_m2m(psrlq, vars, vard)
388 #define psrld_m2r(var, reg) mmx_m2r(psrld, var, reg)
389 #define psrld_r2r(regs, regd) mmx_r2r(psrld, regs, regd)
390 #define psrld(vars, vard) mmx_m2m(psrld, vars, vard)
392 #define psrlw_m2r(var, reg) mmx_m2r(psrlw, var, reg)
393 #define psrlw_r2r(regs, regd) mmx_r2r(psrlw, regs, regd)
394 #define psrlw(vars, vard) mmx_m2m(psrlw, vars, vard)
397 /* 2x32 and 4x16 Parallel Shift Right Arithmetic
399 #define psrad_m2r(var, reg) mmx_m2r(psrad, var, reg)
400 #define psrad_r2r(regs, regd) mmx_r2r(psrad, regs, regd)
401 #define psrad(vars, vard) mmx_m2m(psrad, vars, vard)
403 #define psraw_m2r(var, reg) mmx_m2r(psraw, var, reg)
404 #define psraw_r2r(regs, regd) mmx_r2r(psraw, regs, regd)
405 #define psraw(vars, vard) mmx_m2m(psraw, vars, vard)
408 /* 2x32->4x16 and 4x16->8x8 PACK and Signed Saturate
409 (packs source and dest fields into dest in that order)
411 #define packssdw_m2r(var, reg) mmx_m2r(packssdw, var, reg)
412 #define packssdw_r2r(regs, regd) mmx_r2r(packssdw, regs, regd)
413 #define packssdw(vars, vard) mmx_m2m(packssdw, vars, vard)
415 #define packsswb_m2r(var, reg) mmx_m2r(packsswb, var, reg)
416 #define packsswb_r2r(regs, regd) mmx_r2r(packsswb, regs, regd)
417 #define packsswb(vars, vard) mmx_m2m(packsswb, vars, vard)
420 /* 4x16->8x8 PACK and Unsigned Saturate
421 (packs source and dest fields into dest in that order)
423 #define packuswb_m2r(var, reg) mmx_m2r(packuswb, var, reg)
424 #define packuswb_r2r(regs, regd) mmx_r2r(packuswb, regs, regd)
425 #define packuswb(vars, vard) mmx_m2m(packuswb, vars, vard)
428 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK Low
429 (interleaves low half of dest with low half of source
430 as padding in each result field)
432 #define punpckldq_m2r(var, reg) mmx_m2r(punpckldq, var, reg)
433 #define punpckldq_r2r(regs, regd) mmx_r2r(punpckldq, regs, regd)
434 #define punpckldq(vars, vard) mmx_m2m(punpckldq, vars, vard)
436 #define punpcklwd_m2r(var, reg) mmx_m2r(punpcklwd, var, reg)
437 #define punpcklwd_r2r(regs, regd) mmx_r2r(punpcklwd, regs, regd)
438 #define punpcklwd(vars, vard) mmx_m2m(punpcklwd, vars, vard)
440 #define punpcklbw_m2r(var, reg) mmx_m2r(punpcklbw, var, reg)
441 #define punpcklbw_r2r(regs, regd) mmx_r2r(punpcklbw, regs, regd)
442 #define punpcklbw(vars, vard) mmx_m2m(punpcklbw, vars, vard)
445 /* 2x32->1x64, 4x16->2x32, and 8x8->4x16 UNPaCK High
446 (interleaves high half of dest with high half of source
447 as padding in each result field)
449 #define punpckhdq_m2r(var, reg) mmx_m2r(punpckhdq, var, reg)
450 #define punpckhdq_r2r(regs, regd) mmx_r2r(punpckhdq, regs, regd)
451 #define punpckhdq(vars, vard) mmx_m2m(punpckhdq, vars, vard)
453 #define punpckhwd_m2r(var, reg) mmx_m2r(punpckhwd, var, reg)
454 #define punpckhwd_r2r(regs, regd) mmx_r2r(punpckhwd, regs, regd)
455 #define punpckhwd(vars, vard) mmx_m2m(punpckhwd, vars, vard)
457 #define punpckhbw_m2r(var, reg) mmx_m2r(punpckhbw, var, reg)
458 #define punpckhbw_r2r(regs, regd) mmx_r2r(punpckhbw, regs, regd)
459 #define punpckhbw(vars, vard) mmx_m2m(punpckhbw, vars, vard)
462 /* 1x64 add/sub -- this is in sse2, not in mmx. */
463 #define paddq_m2r(var, reg) mmx_m2r(paddq, var, reg)
464 #define paddq_r2r(regs, regd) mmx_r2r(paddq, regs, regd)
465 #define paddq(vars, vard) mmx_m2m(paddq, vars, vard)
467 #define psubq_m2r(var, reg) mmx_m2r(psubq, var, reg)
468 #define psubq_r2r(regs, regd) mmx_r2r(psubq, regs, regd)
469 #define psubq(vars, vard) mmx_m2m(psubq, vars, vard)
473 /* Empty MMx State
474 (used to clean-up when going from mmx to float use
475 of the registers that are shared by both; note that
476 there is no float-to-mmx operation needed, because
477 only the float tag word info is corruptible)
479 #ifdef MMX_TRACE
481 #define emms() \
483 fprintf(stderr, "emms()\n"); \
484 __asm__ __volatile__ ("emms"); \
487 #else
489 #define emms() __asm__ __volatile__ ("emms")
491 #endif
493 void mkRand( mmx_t* mm )
495 mm->uw[0] = 0xFFFF & (random() >> 7);
496 mm->uw[1] = 0xFFFF & (random() >> 7);
497 mm->uw[2] = 0xFFFF & (random() >> 7);
498 mm->uw[3] = 0xFFFF & (random() >> 7);
503 int main( void )
505 int i;
506 // int rval;
507 mmx_t ma;
508 mmx_t mb;
509 mmx_t ma0, mb0;
510 movq_r2r(mm0, mm1);
512 // rval = mmx_ok();
514 /* Announce return value of mmx_ok() */
515 // printf("Value returned from init was %x.", rval);
516 // printf(" (Indicates MMX %s available)\n\n",(rval)? "is" : "not");
517 // fflush(stdout); fflush(stdout);
519 // if(rval)
521 #define do_test(_name, _operation) \
522 for (i = 0; i < 25000; i++) { \
523 mkRand(&ma); \
524 mkRand(&mb); \
525 ma0 = ma; mb0 = mb; \
526 _operation; \
527 fprintf(stdout, "%s ( %016llx, %016llx ) -> %016llx\n", \
528 _name, ma0.q, mb0.q, mb.q); \
529 fflush(stdout); \
534 do_test("paddd", paddd(ma,mb));
535 do_test("paddw", paddw(ma,mb));
536 do_test("paddb", paddb(ma,mb));
538 do_test("paddsw", paddsw(ma,mb));
539 do_test("paddsb", paddsb(ma,mb));
541 do_test("paddusw", paddusw(ma,mb));
542 do_test("paddusb", paddusb(ma,mb));
544 do_test("psubd", psubd(ma,mb));
545 do_test("psubw", psubw(ma,mb));
546 do_test("psubb", psubb(ma,mb));
548 do_test("psubsw", psubsw(ma,mb));
549 do_test("psubsb", psubsb(ma,mb));
551 do_test("psubusw", psubusw(ma,mb));
552 do_test("psubusb", psubusb(ma,mb));
554 do_test("pmulhw", pmulhw(ma,mb));
555 do_test("pmullw", pmullw(ma,mb));
557 do_test("pmaddwd", pmaddwd(ma,mb));
559 do_test("pcmpeqd", pcmpeqd(ma,mb));
560 do_test("pcmpeqw", pcmpeqw(ma,mb));
561 do_test("pcmpeqb", pcmpeqb(ma,mb));
563 do_test("pcmpgtd", pcmpgtd(ma,mb));
564 do_test("pcmpgtw", pcmpgtw(ma,mb));
565 do_test("pcmpgtb", pcmpgtb(ma,mb));
567 do_test("packssdw", packssdw(ma,mb));
568 do_test("packsswb", packsswb(ma,mb));
569 do_test("packuswb", packuswb(ma,mb));
571 do_test("punpckhdq", punpckhdq(ma,mb));
572 do_test("punpckhwd", punpckhwd(ma,mb));
573 do_test("punpckhbw", punpckhbw(ma,mb));
575 do_test("punpckldq", punpckldq(ma,mb));
576 do_test("punpcklwd", punpcklwd(ma,mb));
577 do_test("punpcklbw", punpcklbw(ma,mb));
579 do_test("pand", pand(ma,mb));
580 do_test("pandn", pandn(ma,mb));
581 do_test("por", por(ma,mb));
582 do_test("pxor", pxor(ma,mb));
584 do_test("psllq", psllq(ma,mb));
585 do_test("pslld", pslld(ma,mb));
586 do_test("psllw", psllw(ma,mb));
588 do_test("psrlq", psrlq(ma,mb));
589 do_test("psrld", psrld(ma,mb));
590 do_test("psrlw", psrlw(ma,mb));
592 do_test("psrad", psrad(ma,mb));
593 do_test("psraw", psraw(ma,mb));
595 #if HAVE_SSE2
596 do_test("paddq", paddq(ma,mb));
597 do_test("psubq", psubq(ma,mb));
598 #endif
600 emms();
603 /* Clean-up and exit nicely */
604 exit(0);