Initial implementation of C-source-level &&-idiom recovery
[valgrind.git] / VEX / priv / guest_amd64_defs.h
blob54672dc225dfe28e97c215f5b2980de649cbb876
2 /*---------------------------------------------------------------*/
3 /*--- begin guest_amd64_defs.h ---*/
4 /*---------------------------------------------------------------*/
6 /*
7 This file is part of Valgrind, a dynamic binary instrumentation
8 framework.
10 Copyright (C) 2004-2017 OpenWorks LLP
11 info@open-works.net
13 This program is free software; you can redistribute it and/or
14 modify it under the terms of the GNU General Public License as
15 published by the Free Software Foundation; either version 2 of the
16 License, or (at your option) any later version.
18 This program is distributed in the hope that it will be useful, but
19 WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 General Public License for more details.
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, see <http://www.gnu.org/licenses/>.
26 The GNU General Public License is contained in the file COPYING.
28 Neither the names of the U.S. Department of Energy nor the
29 University of California nor the names of its contributors may be
30 used to endorse or promote products derived from this software
31 without prior written permission.
34 /* Only to be used within the guest-amd64 directory. */
36 #ifndef __VEX_GUEST_AMD64_DEFS_H
37 #define __VEX_GUEST_AMD64_DEFS_H
39 #include "libvex_basictypes.h"
40 #include "libvex_emnote.h" // VexEmNote
41 #include "libvex_guest_amd64.h" // VexGuestAMD64State
42 #include "guest_generic_bb_to_IR.h" // DisResult
44 /*---------------------------------------------------------*/
45 /*--- amd64 to IR conversion ---*/
46 /*---------------------------------------------------------*/
48 /* Convert one amd64 insn to IR. See the type DisOneInstrFn in
49 guest_generic_bb_to_IR.h. */
50 extern
51 DisResult disInstr_AMD64 ( IRSB* irbb,
52 const UChar* guest_code,
53 Long delta,
54 Addr guest_IP,
55 VexArch guest_arch,
56 const VexArchInfo* archinfo,
57 const VexAbiInfo* abiinfo,
58 VexEndness host_endness,
59 Bool sigill_diag );
61 /* Used by the optimiser to specialise calls to helpers. */
62 extern
63 IRExpr* guest_amd64_spechelper ( const HChar* function_name,
64 IRExpr** args,
65 IRStmt** precedingStmts,
66 Int n_precedingStmts );
68 /* Describes to the optimiser which part of the guest state require
69 precise memory exceptions. This is logically part of the guest
70 state description. */
71 extern
72 Bool guest_amd64_state_requires_precise_mem_exns ( Int, Int,
73 VexRegisterUpdates );
75 extern
76 VexGuestLayout amd64guest_layout;
79 /*---------------------------------------------------------*/
80 /*--- amd64 guest helpers ---*/
81 /*---------------------------------------------------------*/
83 /* --- CLEAN HELPERS --- */
85 extern ULong amd64g_calculate_rflags_all (
86 ULong cc_op,
87 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
90 extern ULong amd64g_calculate_rflags_c (
91 ULong cc_op,
92 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
95 extern ULong amd64g_calculate_condition (
96 ULong/*AMD64Condcode*/ cond,
97 ULong cc_op,
98 ULong cc_dep1, ULong cc_dep2, ULong cc_ndep
101 extern ULong amd64g_calculate_FXAM ( ULong tag, ULong dbl );
103 extern ULong amd64g_calculate_RCR (
104 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
107 extern ULong amd64g_calculate_RCL (
108 ULong arg, ULong rot_amt, ULong rflags_in, Long sz
111 extern ULong amd64g_calculate_pclmul(ULong s1, ULong s2, ULong which);
113 extern ULong amd64g_check_fldcw ( ULong fpucw );
115 extern ULong amd64g_create_fpucw ( ULong fpround );
117 extern ULong amd64g_check_ldmxcsr ( ULong mxcsr );
119 extern ULong amd64g_create_mxcsr ( ULong sseround );
121 extern VexEmNote amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord );
122 extern VexEmNote amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord );
123 extern VexEmNote amd64g_dirtyhelper_FRSTORS ( VexGuestAMD64State*, HWord );
125 extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord );
126 extern void amd64g_dirtyhelper_FNSAVE ( VexGuestAMD64State*, HWord );
127 extern void amd64g_dirtyhelper_FNSAVES ( VexGuestAMD64State*, HWord );
129 /* Translate a guest virtual_addr into a guest linear address by
130 consulting the supplied LDT/GDT structures. Their representation
131 must be as specified in pub/libvex_guest_amd64.h. To indicate a
132 translation failure, 1<<32 is returned. On success, the lower 32
133 bits of the returned result indicate the linear address.
135 //extern
136 //ULong amd64g_use_seg_selector ( HWord ldt, HWord gdt,
137 // UInt seg_selector, UInt virtual_addr );
139 extern ULong amd64g_calculate_mmx_pmaddwd ( ULong, ULong );
140 extern ULong amd64g_calculate_mmx_psadbw ( ULong, ULong );
142 extern ULong amd64g_calculate_sse_phminposuw ( ULong sLo, ULong sHi );
144 extern ULong amd64g_calc_crc32b ( ULong crcIn, ULong b );
145 extern ULong amd64g_calc_crc32w ( ULong crcIn, ULong w );
146 extern ULong amd64g_calc_crc32l ( ULong crcIn, ULong l );
147 extern ULong amd64g_calc_crc32q ( ULong crcIn, ULong q );
149 extern ULong amd64g_calc_mpsadbw ( ULong sHi, ULong sLo,
150 ULong dHi, ULong dLo,
151 ULong imm_and_return_control_bit );
153 extern ULong amd64g_calculate_pext ( ULong, ULong );
154 extern ULong amd64g_calculate_pdep ( ULong, ULong );
156 /* --- DIRTY HELPERS --- */
158 extern ULong amd64g_dirtyhelper_loadF80le ( Addr/*addr*/ );
160 extern void amd64g_dirtyhelper_storeF80le ( Addr/*addr*/, ULong/*data*/ );
162 extern void amd64g_dirtyhelper_CPUID_baseline ( VexGuestAMD64State* st );
163 extern void amd64g_dirtyhelper_CPUID_sse3_and_cx16 ( VexGuestAMD64State* st );
164 extern void amd64g_dirtyhelper_CPUID_sse42_and_cx16 ( VexGuestAMD64State* st );
165 extern void amd64g_dirtyhelper_CPUID_avx_and_cx16 ( VexGuestAMD64State* st,
166 ULong hasF16C,
167 ULong hasRDRAND );
168 extern void amd64g_dirtyhelper_CPUID_avx2 ( VexGuestAMD64State* st,
169 ULong hasF16C, ULong hasRDRAND );
171 extern void amd64g_dirtyhelper_FINIT ( VexGuestAMD64State* );
173 extern void amd64g_dirtyhelper_XSAVE_COMPONENT_0
174 ( VexGuestAMD64State* gst, HWord addr );
175 extern void amd64g_dirtyhelper_XSAVE_COMPONENT_1_EXCLUDING_XMMREGS
176 ( VexGuestAMD64State* gst, HWord addr );
178 extern VexEmNote amd64g_dirtyhelper_XRSTOR_COMPONENT_0
179 ( VexGuestAMD64State* gst, HWord addr );
180 extern VexEmNote amd64g_dirtyhelper_XRSTOR_COMPONENT_1_EXCLUDING_XMMREGS
181 ( VexGuestAMD64State* gst, HWord addr );
183 extern ULong amd64g_dirtyhelper_RDTSC ( void );
184 extern void amd64g_dirtyhelper_RDTSCP ( VexGuestAMD64State* st );
186 extern ULong amd64g_dirtyhelper_IN ( ULong portno, ULong sz/*1,2 or 4*/ );
187 extern void amd64g_dirtyhelper_OUT ( ULong portno, ULong data,
188 ULong sz/*1,2 or 4*/ );
190 extern void amd64g_dirtyhelper_SxDT ( void* address,
191 ULong op /* 0 or 1 */ );
193 // This returns a 32-bit value from the host's RDRAND in bits 31:0, and the
194 // resulting C flag value in bit 32.
195 extern ULong amd64g_dirtyhelper_RDRAND ( void );
198 /* Helps with PCMP{I,E}STR{I,M}.
200 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really,
201 actually it could be a clean helper, but for the fact that we can't
202 pass by value 2 x V128 to a clean helper, nor have one returned.)
203 Reads guest state, writes to guest state for the xSTRM cases, no
204 accesses of memory, is a pure function.
206 opc_and_imm contains (4th byte of opcode << 8) | the-imm8-byte so
207 the callee knows which I/E and I/M variant it is dealing with and
208 what the specific operation is. 4th byte of opcode is in the range
209 0x60 to 0x63:
210 istri 66 0F 3A 63
211 istrm 66 0F 3A 62
212 estri 66 0F 3A 61
213 estrm 66 0F 3A 60
215 gstOffL and gstOffR are the guest state offsets for the two XMM
216 register inputs. We never have to deal with the memory case since
217 that is handled by pre-loading the relevant value into the fake
218 XMM16 register.
220 For ESTRx variants, edxIN and eaxIN hold the values of those two
221 registers.
223 In all cases, the bottom 16 bits of the result contain the new
224 OSZACP %rflags values. For xSTRI variants, bits[31:16] of the
225 result hold the new %ecx value. For xSTRM variants, the helper
226 writes the result directly to the guest XMM0.
228 Declarable side effects: in all cases, reads guest state at
229 [gstOffL, +16) and [gstOffR, +16). For xSTRM variants, also writes
230 guest_XMM0.
232 Is expected to be called with opc_and_imm combinations which have
233 actually been validated, and will assert if otherwise. The front
234 end should ensure we're only called with verified values.
236 extern ULong amd64g_dirtyhelper_PCMPxSTRx (
237 VexGuestAMD64State*,
238 HWord opc4_and_imm,
239 HWord gstOffL, HWord gstOffR,
240 HWord edxIN, HWord eaxIN
243 /* Implementation of intel AES instructions as described in
244 Intel Advanced Vector Extensions
245 Programming Reference
246 MARCH 2008
247 319433-002.
249 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really,
250 actually it could be a clean helper, but for the fact that we can't
251 pass by value 2 x V128 to a clean helper, nor have one returned.)
252 Reads guest state, writes to guest state, no
253 accesses of memory, is a pure function.
255 opc4 contains the 4th byte of opcode. Front-end should only
256 give opcode corresponding to AESENC/AESENCLAST/AESDEC/AESDECLAST/AESIMC.
257 (will assert otherwise).
259 gstOffL and gstOffR are the guest state offsets for the two XMM
260 register inputs, gstOffD is the guest state offset for the XMM register
261 output. We never have to deal with the memory case since that is handled
262 by pre-loading the relevant value into the fake XMM16 register.
265 extern void amd64g_dirtyhelper_AES (
266 VexGuestAMD64State* gst,
267 HWord opc4, HWord gstOffD,
268 HWord gstOffL, HWord gstOffR
271 /* Implementation of AESKEYGENASSIST.
273 CALLED FROM GENERATED CODE: DIRTY HELPER(s). (But not really,
274 actually it could be a clean helper, but for the fact that we can't
275 pass by value 1 x V128 to a clean helper, nor have one returned.)
276 Reads guest state, writes to guest state, no
277 accesses of memory, is a pure function.
279 imm8 is the Round Key constant.
281 gstOffL and gstOffR are the guest state offsets for the two XMM
282 register input and output. We never have to deal with the memory case since
283 that is handled by pre-loading the relevant value into the fake
284 XMM16 register.
287 extern void amd64g_dirtyhelper_AESKEYGENASSIST (
288 VexGuestAMD64State* gst,
289 HWord imm8,
290 HWord gstOffL, HWord gstOffR
293 //extern void amd64g_dirtyhelper_CPUID_sse0 ( VexGuestAMD64State* );
294 //extern void amd64g_dirtyhelper_CPUID_sse1 ( VexGuestAMD64State* );
295 //extern void amd64g_dirtyhelper_CPUID_sse2 ( VexGuestAMD64State* );
297 //extern void amd64g_dirtyhelper_FSAVE ( VexGuestAMD64State*, HWord );
299 //extern VexEmNote
300 // amd64g_dirtyhelper_FRSTOR ( VexGuestAMD64State*, HWord );
302 //extern void amd64g_dirtyhelper_FSTENV ( VexGuestAMD64State*, HWord );
304 //extern VexEmNote
305 // amd64g_dirtyhelper_FLDENV ( VexGuestAMD64State*, HWord );
309 /*---------------------------------------------------------*/
310 /*--- Condition code stuff ---*/
311 /*---------------------------------------------------------*/
313 /* rflags masks */
314 #define AMD64G_CC_SHIFT_O 11
315 #define AMD64G_CC_SHIFT_S 7
316 #define AMD64G_CC_SHIFT_Z 6
317 #define AMD64G_CC_SHIFT_A 4
318 #define AMD64G_CC_SHIFT_C 0
319 #define AMD64G_CC_SHIFT_P 2
321 #define AMD64G_CC_MASK_O (1ULL << AMD64G_CC_SHIFT_O)
322 #define AMD64G_CC_MASK_S (1ULL << AMD64G_CC_SHIFT_S)
323 #define AMD64G_CC_MASK_Z (1ULL << AMD64G_CC_SHIFT_Z)
324 #define AMD64G_CC_MASK_A (1ULL << AMD64G_CC_SHIFT_A)
325 #define AMD64G_CC_MASK_C (1ULL << AMD64G_CC_SHIFT_C)
326 #define AMD64G_CC_MASK_P (1ULL << AMD64G_CC_SHIFT_P)
328 /* additional rflags masks */
329 #define AMD64G_CC_SHIFT_ID 21
330 #define AMD64G_CC_SHIFT_AC 18
331 #define AMD64G_CC_SHIFT_D 10
333 #define AMD64G_CC_MASK_ID (1ULL << AMD64G_CC_SHIFT_ID)
334 #define AMD64G_CC_MASK_AC (1ULL << AMD64G_CC_SHIFT_AC)
335 #define AMD64G_CC_MASK_D (1ULL << AMD64G_CC_SHIFT_D)
337 /* FPU flag masks */
338 #define AMD64G_FC_SHIFT_C3 14
339 #define AMD64G_FC_SHIFT_C2 10
340 #define AMD64G_FC_SHIFT_C1 9
341 #define AMD64G_FC_SHIFT_C0 8
343 #define AMD64G_FC_MASK_C3 (1ULL << AMD64G_FC_SHIFT_C3)
344 #define AMD64G_FC_MASK_C2 (1ULL << AMD64G_FC_SHIFT_C2)
345 #define AMD64G_FC_MASK_C1 (1ULL << AMD64G_FC_SHIFT_C1)
346 #define AMD64G_FC_MASK_C0 (1ULL << AMD64G_FC_SHIFT_C0)
349 /* %RFLAGS thunk descriptors. A four-word thunk is used to record
350 details of the most recent flag-setting operation, so the flags can
351 be computed later if needed. It is possible to do this a little
352 more efficiently using a 3-word thunk, but that makes it impossible
353 to describe the flag data dependencies sufficiently accurately for
354 Memcheck. Hence 4 words are used, with minimal loss of efficiency.
356 The four words are:
358 CC_OP, which describes the operation.
360 CC_DEP1 and CC_DEP2. These are arguments to the operation.
361 We want Memcheck to believe that the resulting flags are
362 data-dependent on both CC_DEP1 and CC_DEP2, hence the
363 name DEP.
365 CC_NDEP. This is a 3rd argument to the operation which is
366 sometimes needed. We arrange things so that Memcheck does
367 not believe the resulting flags are data-dependent on CC_NDEP
368 ("not dependent").
370 To make Memcheck believe that (the definedness of) the encoded
371 flags depends only on (the definedness of) CC_DEP1 and CC_DEP2
372 requires two things:
374 (1) In the guest state layout info (amd64guest_layout), CC_OP and
375 CC_NDEP are marked as always defined.
377 (2) When passing the thunk components to an evaluation function
378 (calculate_condition, calculate_eflags, calculate_eflags_c) the
379 IRCallee's mcx_mask must be set so as to exclude from
380 consideration all passed args except CC_DEP1 and CC_DEP2.
382 Strictly speaking only (2) is necessary for correctness. However,
383 (1) helps efficiency in that since (2) means we never ask about the
384 definedness of CC_OP or CC_NDEP, we may as well not even bother to
385 track their definedness.
387 When building the thunk, it is always necessary to write words into
388 CC_DEP1 and CC_DEP2, even if those args are not used given the
389 CC_OP field (eg, CC_DEP2 is not used if CC_OP is CC_LOGIC1/2/4).
390 This is important because otherwise Memcheck could give false
391 positives as it does not understand the relationship between the
392 CC_OP field and CC_DEP1 and CC_DEP2, and so believes that the
393 definedness of the stored flags always depends on both CC_DEP1 and
394 CC_DEP2.
396 However, it is only necessary to set CC_NDEP when the CC_OP value
397 requires it, because Memcheck ignores CC_NDEP, and the evaluation
398 functions do understand the CC_OP fields and will only examine
399 CC_NDEP for suitable values of CC_OP.
401 A summary of the field usages is:
403 Operation DEP1 DEP2 NDEP
404 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
406 add/sub/mul first arg second arg unused
408 adc/sbb first arg (second arg)
409 XOR old_carry old_carry
411 and/or/xor result zero unused
413 inc/dec result zero old_carry
415 shl/shr/sar result subshifted- unused
416 result
418 rol/ror result zero old_flags
420 copy old_flags zero unused.
423 Therefore Memcheck will believe the following:
425 * add/sub/mul -- definedness of result flags depends on definedness
426 of both args.
428 * adc/sbb -- definedness of result flags depends on definedness of
429 both args and definedness of the old C flag. Because only two
430 DEP fields are available, the old C flag is XOR'd into the second
431 arg so that Memcheck sees the data dependency on it. That means
432 the NDEP field must contain a second copy of the old C flag
433 so that the evaluation functions can correctly recover the second
434 arg.
436 * and/or/xor are straightforward -- definedness of result flags
437 depends on definedness of result value.
439 * inc/dec -- definedness of result flags depends only on
440 definedness of result. This isn't really true -- it also depends
441 on the old C flag. However, we don't want Memcheck to see that,
442 and so the old C flag must be passed in NDEP and not in DEP2.
443 It's inconceivable that a compiler would generate code that puts
444 the C flag in an undefined state, then does an inc/dec, which
445 leaves C unchanged, and then makes a conditional jump/move based
446 on C. So our fiction seems a good approximation.
448 * shl/shr/sar -- straightforward, again, definedness of result
449 flags depends on definedness of result value. The subshifted
450 value (value shifted one less) is also needed, but its
451 definedness is the same as the definedness of the shifted value.
453 * rol/ror -- these only set O and C, and leave A Z C P alone.
454 However it seems prudent (as per inc/dec) to say the definedness
455 of all resulting flags depends on the definedness of the result,
456 hence the old flags must go in as NDEP and not DEP2.
458 * rcl/rcr are too difficult to do in-line, and so are done by a
459 helper function. They are not part of this scheme. The helper
460 function takes the value to be rotated, the rotate amount and the
461 old flags, and returns the new flags and the rotated value.
462 Since the helper's mcx_mask does not have any set bits, Memcheck
463 will lazily propagate undefinedness from any of the 3 args into
464 both results (flags and actual value).
466 enum {
467 AMD64G_CC_OP_COPY=0, /* DEP1 = current flags, DEP2 = 0, NDEP = unused */
468 /* just copy DEP1 to output */
470 AMD64G_CC_OP_ADDB, /* 1 */
471 AMD64G_CC_OP_ADDW, /* 2 DEP1 = argL, DEP2 = argR, NDEP = unused */
472 AMD64G_CC_OP_ADDL, /* 3 */
473 AMD64G_CC_OP_ADDQ, /* 4 */
475 AMD64G_CC_OP_SUBB, /* 5 */
476 AMD64G_CC_OP_SUBW, /* 6 DEP1 = argL, DEP2 = argR, NDEP = unused */
477 AMD64G_CC_OP_SUBL, /* 7 */
478 AMD64G_CC_OP_SUBQ, /* 8 */
480 AMD64G_CC_OP_ADCB, /* 9 */
481 AMD64G_CC_OP_ADCW, /* 10 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
482 AMD64G_CC_OP_ADCL, /* 11 */
483 AMD64G_CC_OP_ADCQ, /* 12 */
485 AMD64G_CC_OP_SBBB, /* 13 */
486 AMD64G_CC_OP_SBBW, /* 14 DEP1 = argL, DEP2 = argR ^ oldCarry, NDEP = oldCarry */
487 AMD64G_CC_OP_SBBL, /* 15 */
488 AMD64G_CC_OP_SBBQ, /* 16 */
490 AMD64G_CC_OP_LOGICB, /* 17 */
491 AMD64G_CC_OP_LOGICW, /* 18 DEP1 = result, DEP2 = 0, NDEP = unused */
492 AMD64G_CC_OP_LOGICL, /* 19 */
493 AMD64G_CC_OP_LOGICQ, /* 20 */
495 AMD64G_CC_OP_INCB, /* 21 */
496 AMD64G_CC_OP_INCW, /* 22 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
497 AMD64G_CC_OP_INCL, /* 23 */
498 AMD64G_CC_OP_INCQ, /* 24 */
500 AMD64G_CC_OP_DECB, /* 25 */
501 AMD64G_CC_OP_DECW, /* 26 DEP1 = result, DEP2 = 0, NDEP = oldCarry (0 or 1) */
502 AMD64G_CC_OP_DECL, /* 27 */
503 AMD64G_CC_OP_DECQ, /* 28 */
505 AMD64G_CC_OP_SHLB, /* 29 DEP1 = res, DEP2 = res', NDEP = unused */
506 AMD64G_CC_OP_SHLW, /* 30 where res' is like res but shifted one bit less */
507 AMD64G_CC_OP_SHLL, /* 31 */
508 AMD64G_CC_OP_SHLQ, /* 32 */
510 AMD64G_CC_OP_SHRB, /* 33 DEP1 = res, DEP2 = res', NDEP = unused */
511 AMD64G_CC_OP_SHRW, /* 34 where res' is like res but shifted one bit less */
512 AMD64G_CC_OP_SHRL, /* 35 */
513 AMD64G_CC_OP_SHRQ, /* 36 */
515 AMD64G_CC_OP_ROLB, /* 37 */
516 AMD64G_CC_OP_ROLW, /* 38 DEP1 = res, DEP2 = 0, NDEP = old flags */
517 AMD64G_CC_OP_ROLL, /* 39 */
518 AMD64G_CC_OP_ROLQ, /* 40 */
520 AMD64G_CC_OP_RORB, /* 41 */
521 AMD64G_CC_OP_RORW, /* 42 DEP1 = res, DEP2 = 0, NDEP = old flags */
522 AMD64G_CC_OP_RORL, /* 43 */
523 AMD64G_CC_OP_RORQ, /* 44 */
525 AMD64G_CC_OP_UMULB, /* 45 */
526 AMD64G_CC_OP_UMULW, /* 46 DEP1 = argL, DEP2 = argR, NDEP = unused */
527 AMD64G_CC_OP_UMULL, /* 47 */
528 AMD64G_CC_OP_UMULQ, /* 48 */
530 AMD64G_CC_OP_SMULB, /* 49 */
531 AMD64G_CC_OP_SMULW, /* 50 DEP1 = argL, DEP2 = argR, NDEP = unused */
532 AMD64G_CC_OP_SMULL, /* 51 */
533 AMD64G_CC_OP_SMULQ, /* 52 */
535 AMD64G_CC_OP_ANDN32, /* 53 */
536 AMD64G_CC_OP_ANDN64, /* 54 DEP1 = res, DEP2 = 0, NDEP = unused */
538 AMD64G_CC_OP_BLSI32, /* 55 */
539 AMD64G_CC_OP_BLSI64, /* 56 DEP1 = res, DEP2 = arg, NDEP = unused */
541 AMD64G_CC_OP_BLSMSK32,/* 57 */
542 AMD64G_CC_OP_BLSMSK64,/* 58 DEP1 = res, DEP2 = arg, NDEP = unused */
544 AMD64G_CC_OP_BLSR32, /* 59 */
545 AMD64G_CC_OP_BLSR64, /* 60 DEP1 = res, DEP2 = arg, NDEP = unused */
547 AMD64G_CC_OP_ADCX32, /* 61 DEP1 = argL, DEP2 = argR ^ oldCarry, .. */
548 AMD64G_CC_OP_ADCX64, /* 62 .. NDEP = old flags */
550 AMD64G_CC_OP_ADOX32, /* 63 DEP1 = argL, DEP2 = argR ^ oldOverflow, .. */
551 AMD64G_CC_OP_ADOX64, /* 64 .. NDEP = old flags */
553 AMD64G_CC_OP_NUMBER
556 typedef
557 enum {
558 AMD64CondO = 0, /* overflow */
559 AMD64CondNO = 1, /* no overflow */
561 AMD64CondB = 2, /* below */
562 AMD64CondNB = 3, /* not below */
564 AMD64CondZ = 4, /* zero */
565 AMD64CondNZ = 5, /* not zero */
567 AMD64CondBE = 6, /* below or equal */
568 AMD64CondNBE = 7, /* not below or equal */
570 AMD64CondS = 8, /* negative */
571 AMD64CondNS = 9, /* not negative */
573 AMD64CondP = 10, /* parity even */
574 AMD64CondNP = 11, /* not parity even */
576 AMD64CondL = 12, /* less */
577 AMD64CondNL = 13, /* not less */
579 AMD64CondLE = 14, /* less or equal */
580 AMD64CondNLE = 15, /* not less or equal */
582 AMD64CondAlways = 16 /* HACK */
584 AMD64Condcode;
586 #endif /* ndef __VEX_GUEST_AMD64_DEFS_H */
588 /*---------------------------------------------------------------*/
589 /*--- end guest_amd64_defs.h ---*/
590 /*---------------------------------------------------------------*/