[PATCH] sched: dont decrease idle sleep avg
[usb.git] / kernel / sched.c
blob7b371931114f56b1c0a9b168364d412ab58bf72c
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
52 #include <linux/kprobes.h>
53 #include <asm/tlb.h>
55 #include <asm/unistd.h>
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
62 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
71 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76 * Some helpers for converting nanosecond timing to jiffy resolution
78 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82 * These are the 'tuning knobs' of the scheduler:
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
88 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89 #define DEF_TIMESLICE (100 * HZ / 1000)
90 #define ON_RUNQUEUE_WEIGHT 30
91 #define CHILD_PENALTY 95
92 #define PARENT_PENALTY 100
93 #define EXIT_WEIGHT 3
94 #define PRIO_BONUS_RATIO 25
95 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96 #define INTERACTIVE_DELTA 2
97 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
99 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
107 * This part scales the interactivity limit depending on niceness.
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
129 #define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
133 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #ifdef CONFIG_SMP
136 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139 #else
140 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142 #endif
144 #define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
147 #define DELTA(p) \
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
151 #define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
154 #define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
158 #define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
170 #define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
173 static unsigned int task_timeslice(task_t *p)
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
180 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
184 * These are the runqueue data structures:
187 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
189 typedef struct runqueue runqueue_t;
191 struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
198 * This is the main, per-CPU runqueue data structure.
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
204 struct runqueue {
205 spinlock_t lock;
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
211 unsigned long nr_running;
212 #ifdef CONFIG_SMP
213 unsigned long cpu_load[3];
214 #endif
215 unsigned long long nr_switches;
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
223 unsigned long nr_uninterruptible;
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
233 #ifdef CONFIG_SMP
234 struct sched_domain *sd;
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
240 task_t *migration_thread;
241 struct list_head migration_queue;
242 int cpu;
243 #endif
245 #ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263 #endif
266 static DEFINE_PER_CPU(struct runqueue, runqueues);
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
270 * See detach_destroy_domains: synchronize_sched for details.
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
275 #define for_each_domain(cpu, domain) \
276 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
278 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279 #define this_rq() (&__get_cpu_var(runqueues))
280 #define task_rq(p) cpu_rq(task_cpu(p))
281 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
283 #ifndef prepare_arch_switch
284 # define prepare_arch_switch(next) do { } while (0)
285 #endif
286 #ifndef finish_arch_switch
287 # define finish_arch_switch(prev) do { } while (0)
288 #endif
290 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
291 static inline int task_running(runqueue_t *rq, task_t *p)
293 return rq->curr == p;
296 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
300 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
302 #ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305 #endif
306 spin_unlock_irq(&rq->lock);
309 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
310 static inline int task_running(runqueue_t *rq, task_t *p)
312 #ifdef CONFIG_SMP
313 return p->oncpu;
314 #else
315 return rq->curr == p;
316 #endif
319 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
321 #ifdef CONFIG_SMP
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
327 next->oncpu = 1;
328 #endif
329 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331 #else
332 spin_unlock(&rq->lock);
333 #endif
336 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
338 #ifdef CONFIG_SMP
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
344 smp_wmb();
345 prev->oncpu = 0;
346 #endif
347 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
349 #endif
351 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
358 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
361 struct runqueue *rq;
363 repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
371 return rq;
374 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
377 spin_unlock_irqrestore(&rq->lock, *flags);
380 #ifdef CONFIG_SCHEDSTATS
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
385 #define SCHEDSTAT_VERSION 12
387 static int show_schedstat(struct seq_file *seq, void *v)
389 int cpu;
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395 #ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398 #endif
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
410 seq_printf(seq, "\n");
412 #ifdef CONFIG_SMP
413 /* domain-specific stats */
414 preempt_disable();
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
439 preempt_enable();
440 #endif
442 return 0;
445 static int schedstat_open(struct inode *inode, struct file *file)
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
464 struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
471 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473 #else /* !CONFIG_SCHEDSTATS */
474 # define schedstat_inc(rq, field) do { } while (0)
475 # define schedstat_add(rq, field, amt) do { } while (0)
476 #endif
479 * rq_lock - lock a given runqueue and disable interrupts.
481 static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
484 runqueue_t *rq;
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
490 return rq;
493 #ifdef CONFIG_SCHEDSTATS
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
509 static inline void sched_info_dequeued(task_t *t)
511 t->sched_info.last_queued = 0;
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
519 static void sched_info_arrive(task_t *t)
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
531 if (!rq)
532 return;
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
553 static inline void sched_info_queued(task_t *t)
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
563 static inline void sched_info_depart(task_t *t)
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
568 t->sched_info.cpu_time += diff;
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
579 static inline void sched_info_switch(task_t *prev, task_t *next)
581 struct runqueue *rq = task_rq(prev);
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
588 if (prev != rq->idle)
589 sched_info_depart(prev);
591 if (next != rq->idle)
592 sched_info_arrive(next);
594 #else
595 #define sched_info_queued(t) do { } while (0)
596 #define sched_info_switch(t, next) do { } while (0)
597 #endif /* CONFIG_SCHEDSTATS */
600 * Adding/removing a task to/from a priority array:
602 static void dequeue_task(struct task_struct *p, prio_array_t *array)
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
610 static void enqueue_task(struct task_struct *p, prio_array_t *array)
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
623 static void requeue_task(struct task_struct *p, prio_array_t *array)
625 list_move_tail(&p->run_list, array->queue + p->prio);
628 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
643 * We use 25% of the full 0...39 priority range so that:
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
648 * Both properties are important to certain workloads.
650 static int effective_prio(task_t *p)
652 int bonus, prio;
654 if (rt_task(p))
655 return p->prio;
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
668 * __activate_task - move a task to the runqueue.
670 static inline void __activate_task(task_t *p, runqueue_t *rq)
672 enqueue_task(p, rq->active);
673 rq->nr_running++;
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
679 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
681 enqueue_task_head(p, rq->active);
682 rq->nr_running++;
685 static int recalc_task_prio(task_t *p, unsigned long long now)
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
700 if (likely(sleep_time > 0)) {
702 * User tasks that sleep a long time are categorised as
703 * idle. They will only have their sleep_avg increased to a
704 * level that makes them just interactive priority to stay
705 * active yet prevent them suddenly becoming cpu hogs and
706 * starving other processes.
708 if (p->mm && p->sleep_type != SLEEP_NONINTERACTIVE &&
709 sleep_time > INTERACTIVE_SLEEP(p)) {
710 unsigned long ceiling;
712 ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG -
713 DEF_TIMESLICE);
714 if (p->sleep_avg < ceiling)
715 p->sleep_avg = ceiling;
716 } else {
718 * Tasks waking from uninterruptible sleep are
719 * limited in their sleep_avg rise as they
720 * are likely to be waiting on I/O
722 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
723 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
724 sleep_time = 0;
725 else if (p->sleep_avg + sleep_time >=
726 INTERACTIVE_SLEEP(p)) {
727 p->sleep_avg = INTERACTIVE_SLEEP(p);
728 sleep_time = 0;
733 * This code gives a bonus to interactive tasks.
735 * The boost works by updating the 'average sleep time'
736 * value here, based on ->timestamp. The more time a
737 * task spends sleeping, the higher the average gets -
738 * and the higher the priority boost gets as well.
740 p->sleep_avg += sleep_time;
742 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
743 p->sleep_avg = NS_MAX_SLEEP_AVG;
747 return effective_prio(p);
751 * activate_task - move a task to the runqueue and do priority recalculation
753 * Update all the scheduling statistics stuff. (sleep average
754 * calculation, priority modifiers, etc.)
756 static void activate_task(task_t *p, runqueue_t *rq, int local)
758 unsigned long long now;
760 now = sched_clock();
761 #ifdef CONFIG_SMP
762 if (!local) {
763 /* Compensate for drifting sched_clock */
764 runqueue_t *this_rq = this_rq();
765 now = (now - this_rq->timestamp_last_tick)
766 + rq->timestamp_last_tick;
768 #endif
770 if (!rt_task(p))
771 p->prio = recalc_task_prio(p, now);
774 * This checks to make sure it's not an uninterruptible task
775 * that is now waking up.
777 if (p->sleep_type == SLEEP_NORMAL) {
779 * Tasks which were woken up by interrupts (ie. hw events)
780 * are most likely of interactive nature. So we give them
781 * the credit of extending their sleep time to the period
782 * of time they spend on the runqueue, waiting for execution
783 * on a CPU, first time around:
785 if (in_interrupt())
786 p->sleep_type = SLEEP_INTERRUPTED;
787 else {
789 * Normal first-time wakeups get a credit too for
790 * on-runqueue time, but it will be weighted down:
792 p->sleep_type = SLEEP_INTERACTIVE;
795 p->timestamp = now;
797 __activate_task(p, rq);
801 * deactivate_task - remove a task from the runqueue.
803 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
805 rq->nr_running--;
806 dequeue_task(p, p->array);
807 p->array = NULL;
811 * resched_task - mark a task 'to be rescheduled now'.
813 * On UP this means the setting of the need_resched flag, on SMP it
814 * might also involve a cross-CPU call to trigger the scheduler on
815 * the target CPU.
817 #ifdef CONFIG_SMP
818 static void resched_task(task_t *p)
820 int cpu;
822 assert_spin_locked(&task_rq(p)->lock);
824 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
825 return;
827 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
829 cpu = task_cpu(p);
830 if (cpu == smp_processor_id())
831 return;
833 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
834 smp_mb();
835 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
836 smp_send_reschedule(cpu);
838 #else
839 static inline void resched_task(task_t *p)
841 assert_spin_locked(&task_rq(p)->lock);
842 set_tsk_need_resched(p);
844 #endif
847 * task_curr - is this task currently executing on a CPU?
848 * @p: the task in question.
850 inline int task_curr(const task_t *p)
852 return cpu_curr(task_cpu(p)) == p;
855 #ifdef CONFIG_SMP
856 typedef struct {
857 struct list_head list;
859 task_t *task;
860 int dest_cpu;
862 struct completion done;
863 } migration_req_t;
866 * The task's runqueue lock must be held.
867 * Returns true if you have to wait for migration thread.
869 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
871 runqueue_t *rq = task_rq(p);
874 * If the task is not on a runqueue (and not running), then
875 * it is sufficient to simply update the task's cpu field.
877 if (!p->array && !task_running(rq, p)) {
878 set_task_cpu(p, dest_cpu);
879 return 0;
882 init_completion(&req->done);
883 req->task = p;
884 req->dest_cpu = dest_cpu;
885 list_add(&req->list, &rq->migration_queue);
886 return 1;
890 * wait_task_inactive - wait for a thread to unschedule.
892 * The caller must ensure that the task *will* unschedule sometime soon,
893 * else this function might spin for a *long* time. This function can't
894 * be called with interrupts off, or it may introduce deadlock with
895 * smp_call_function() if an IPI is sent by the same process we are
896 * waiting to become inactive.
898 void wait_task_inactive(task_t *p)
900 unsigned long flags;
901 runqueue_t *rq;
902 int preempted;
904 repeat:
905 rq = task_rq_lock(p, &flags);
906 /* Must be off runqueue entirely, not preempted. */
907 if (unlikely(p->array || task_running(rq, p))) {
908 /* If it's preempted, we yield. It could be a while. */
909 preempted = !task_running(rq, p);
910 task_rq_unlock(rq, &flags);
911 cpu_relax();
912 if (preempted)
913 yield();
914 goto repeat;
916 task_rq_unlock(rq, &flags);
919 /***
920 * kick_process - kick a running thread to enter/exit the kernel
921 * @p: the to-be-kicked thread
923 * Cause a process which is running on another CPU to enter
924 * kernel-mode, without any delay. (to get signals handled.)
926 * NOTE: this function doesnt have to take the runqueue lock,
927 * because all it wants to ensure is that the remote task enters
928 * the kernel. If the IPI races and the task has been migrated
929 * to another CPU then no harm is done and the purpose has been
930 * achieved as well.
932 void kick_process(task_t *p)
934 int cpu;
936 preempt_disable();
937 cpu = task_cpu(p);
938 if ((cpu != smp_processor_id()) && task_curr(p))
939 smp_send_reschedule(cpu);
940 preempt_enable();
944 * Return a low guess at the load of a migration-source cpu.
946 * We want to under-estimate the load of migration sources, to
947 * balance conservatively.
949 static inline unsigned long source_load(int cpu, int type)
951 runqueue_t *rq = cpu_rq(cpu);
952 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
953 if (type == 0)
954 return load_now;
956 return min(rq->cpu_load[type-1], load_now);
960 * Return a high guess at the load of a migration-target cpu
962 static inline unsigned long target_load(int cpu, int type)
964 runqueue_t *rq = cpu_rq(cpu);
965 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
966 if (type == 0)
967 return load_now;
969 return max(rq->cpu_load[type-1], load_now);
973 * find_idlest_group finds and returns the least busy CPU group within the
974 * domain.
976 static struct sched_group *
977 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
979 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
980 unsigned long min_load = ULONG_MAX, this_load = 0;
981 int load_idx = sd->forkexec_idx;
982 int imbalance = 100 + (sd->imbalance_pct-100)/2;
984 do {
985 unsigned long load, avg_load;
986 int local_group;
987 int i;
989 /* Skip over this group if it has no CPUs allowed */
990 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
991 goto nextgroup;
993 local_group = cpu_isset(this_cpu, group->cpumask);
995 /* Tally up the load of all CPUs in the group */
996 avg_load = 0;
998 for_each_cpu_mask(i, group->cpumask) {
999 /* Bias balancing toward cpus of our domain */
1000 if (local_group)
1001 load = source_load(i, load_idx);
1002 else
1003 load = target_load(i, load_idx);
1005 avg_load += load;
1008 /* Adjust by relative CPU power of the group */
1009 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1011 if (local_group) {
1012 this_load = avg_load;
1013 this = group;
1014 } else if (avg_load < min_load) {
1015 min_load = avg_load;
1016 idlest = group;
1018 nextgroup:
1019 group = group->next;
1020 } while (group != sd->groups);
1022 if (!idlest || 100*this_load < imbalance*min_load)
1023 return NULL;
1024 return idlest;
1028 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1030 static int
1031 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1033 cpumask_t tmp;
1034 unsigned long load, min_load = ULONG_MAX;
1035 int idlest = -1;
1036 int i;
1038 /* Traverse only the allowed CPUs */
1039 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1041 for_each_cpu_mask(i, tmp) {
1042 load = source_load(i, 0);
1044 if (load < min_load || (load == min_load && i == this_cpu)) {
1045 min_load = load;
1046 idlest = i;
1050 return idlest;
1054 * sched_balance_self: balance the current task (running on cpu) in domains
1055 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1056 * SD_BALANCE_EXEC.
1058 * Balance, ie. select the least loaded group.
1060 * Returns the target CPU number, or the same CPU if no balancing is needed.
1062 * preempt must be disabled.
1064 static int sched_balance_self(int cpu, int flag)
1066 struct task_struct *t = current;
1067 struct sched_domain *tmp, *sd = NULL;
1069 for_each_domain(cpu, tmp)
1070 if (tmp->flags & flag)
1071 sd = tmp;
1073 while (sd) {
1074 cpumask_t span;
1075 struct sched_group *group;
1076 int new_cpu;
1077 int weight;
1079 span = sd->span;
1080 group = find_idlest_group(sd, t, cpu);
1081 if (!group)
1082 goto nextlevel;
1084 new_cpu = find_idlest_cpu(group, t, cpu);
1085 if (new_cpu == -1 || new_cpu == cpu)
1086 goto nextlevel;
1088 /* Now try balancing at a lower domain level */
1089 cpu = new_cpu;
1090 nextlevel:
1091 sd = NULL;
1092 weight = cpus_weight(span);
1093 for_each_domain(cpu, tmp) {
1094 if (weight <= cpus_weight(tmp->span))
1095 break;
1096 if (tmp->flags & flag)
1097 sd = tmp;
1099 /* while loop will break here if sd == NULL */
1102 return cpu;
1105 #endif /* CONFIG_SMP */
1108 * wake_idle() will wake a task on an idle cpu if task->cpu is
1109 * not idle and an idle cpu is available. The span of cpus to
1110 * search starts with cpus closest then further out as needed,
1111 * so we always favor a closer, idle cpu.
1113 * Returns the CPU we should wake onto.
1115 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1116 static int wake_idle(int cpu, task_t *p)
1118 cpumask_t tmp;
1119 struct sched_domain *sd;
1120 int i;
1122 if (idle_cpu(cpu))
1123 return cpu;
1125 for_each_domain(cpu, sd) {
1126 if (sd->flags & SD_WAKE_IDLE) {
1127 cpus_and(tmp, sd->span, p->cpus_allowed);
1128 for_each_cpu_mask(i, tmp) {
1129 if (idle_cpu(i))
1130 return i;
1133 else
1134 break;
1136 return cpu;
1138 #else
1139 static inline int wake_idle(int cpu, task_t *p)
1141 return cpu;
1143 #endif
1145 /***
1146 * try_to_wake_up - wake up a thread
1147 * @p: the to-be-woken-up thread
1148 * @state: the mask of task states that can be woken
1149 * @sync: do a synchronous wakeup?
1151 * Put it on the run-queue if it's not already there. The "current"
1152 * thread is always on the run-queue (except when the actual
1153 * re-schedule is in progress), and as such you're allowed to do
1154 * the simpler "current->state = TASK_RUNNING" to mark yourself
1155 * runnable without the overhead of this.
1157 * returns failure only if the task is already active.
1159 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1161 int cpu, this_cpu, success = 0;
1162 unsigned long flags;
1163 long old_state;
1164 runqueue_t *rq;
1165 #ifdef CONFIG_SMP
1166 unsigned long load, this_load;
1167 struct sched_domain *sd, *this_sd = NULL;
1168 int new_cpu;
1169 #endif
1171 rq = task_rq_lock(p, &flags);
1172 old_state = p->state;
1173 if (!(old_state & state))
1174 goto out;
1176 if (p->array)
1177 goto out_running;
1179 cpu = task_cpu(p);
1180 this_cpu = smp_processor_id();
1182 #ifdef CONFIG_SMP
1183 if (unlikely(task_running(rq, p)))
1184 goto out_activate;
1186 new_cpu = cpu;
1188 schedstat_inc(rq, ttwu_cnt);
1189 if (cpu == this_cpu) {
1190 schedstat_inc(rq, ttwu_local);
1191 goto out_set_cpu;
1194 for_each_domain(this_cpu, sd) {
1195 if (cpu_isset(cpu, sd->span)) {
1196 schedstat_inc(sd, ttwu_wake_remote);
1197 this_sd = sd;
1198 break;
1202 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1203 goto out_set_cpu;
1206 * Check for affine wakeup and passive balancing possibilities.
1208 if (this_sd) {
1209 int idx = this_sd->wake_idx;
1210 unsigned int imbalance;
1212 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1214 load = source_load(cpu, idx);
1215 this_load = target_load(this_cpu, idx);
1217 new_cpu = this_cpu; /* Wake to this CPU if we can */
1219 if (this_sd->flags & SD_WAKE_AFFINE) {
1220 unsigned long tl = this_load;
1222 * If sync wakeup then subtract the (maximum possible)
1223 * effect of the currently running task from the load
1224 * of the current CPU:
1226 if (sync)
1227 tl -= SCHED_LOAD_SCALE;
1229 if ((tl <= load &&
1230 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1231 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1233 * This domain has SD_WAKE_AFFINE and
1234 * p is cache cold in this domain, and
1235 * there is no bad imbalance.
1237 schedstat_inc(this_sd, ttwu_move_affine);
1238 goto out_set_cpu;
1243 * Start passive balancing when half the imbalance_pct
1244 * limit is reached.
1246 if (this_sd->flags & SD_WAKE_BALANCE) {
1247 if (imbalance*this_load <= 100*load) {
1248 schedstat_inc(this_sd, ttwu_move_balance);
1249 goto out_set_cpu;
1254 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1255 out_set_cpu:
1256 new_cpu = wake_idle(new_cpu, p);
1257 if (new_cpu != cpu) {
1258 set_task_cpu(p, new_cpu);
1259 task_rq_unlock(rq, &flags);
1260 /* might preempt at this point */
1261 rq = task_rq_lock(p, &flags);
1262 old_state = p->state;
1263 if (!(old_state & state))
1264 goto out;
1265 if (p->array)
1266 goto out_running;
1268 this_cpu = smp_processor_id();
1269 cpu = task_cpu(p);
1272 out_activate:
1273 #endif /* CONFIG_SMP */
1274 if (old_state == TASK_UNINTERRUPTIBLE) {
1275 rq->nr_uninterruptible--;
1277 * Tasks on involuntary sleep don't earn
1278 * sleep_avg beyond just interactive state.
1280 p->sleep_type = SLEEP_NONINTERACTIVE;
1281 } else
1284 * Tasks that have marked their sleep as noninteractive get
1285 * woken up with their sleep average not weighted in an
1286 * interactive way.
1288 if (old_state & TASK_NONINTERACTIVE)
1289 p->sleep_type = SLEEP_NONINTERACTIVE;
1292 activate_task(p, rq, cpu == this_cpu);
1294 * Sync wakeups (i.e. those types of wakeups where the waker
1295 * has indicated that it will leave the CPU in short order)
1296 * don't trigger a preemption, if the woken up task will run on
1297 * this cpu. (in this case the 'I will reschedule' promise of
1298 * the waker guarantees that the freshly woken up task is going
1299 * to be considered on this CPU.)
1301 if (!sync || cpu != this_cpu) {
1302 if (TASK_PREEMPTS_CURR(p, rq))
1303 resched_task(rq->curr);
1305 success = 1;
1307 out_running:
1308 p->state = TASK_RUNNING;
1309 out:
1310 task_rq_unlock(rq, &flags);
1312 return success;
1315 int fastcall wake_up_process(task_t *p)
1317 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1318 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1321 EXPORT_SYMBOL(wake_up_process);
1323 int fastcall wake_up_state(task_t *p, unsigned int state)
1325 return try_to_wake_up(p, state, 0);
1329 * Perform scheduler related setup for a newly forked process p.
1330 * p is forked by current.
1332 void fastcall sched_fork(task_t *p, int clone_flags)
1334 int cpu = get_cpu();
1336 #ifdef CONFIG_SMP
1337 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1338 #endif
1339 set_task_cpu(p, cpu);
1342 * We mark the process as running here, but have not actually
1343 * inserted it onto the runqueue yet. This guarantees that
1344 * nobody will actually run it, and a signal or other external
1345 * event cannot wake it up and insert it on the runqueue either.
1347 p->state = TASK_RUNNING;
1348 INIT_LIST_HEAD(&p->run_list);
1349 p->array = NULL;
1350 #ifdef CONFIG_SCHEDSTATS
1351 memset(&p->sched_info, 0, sizeof(p->sched_info));
1352 #endif
1353 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1354 p->oncpu = 0;
1355 #endif
1356 #ifdef CONFIG_PREEMPT
1357 /* Want to start with kernel preemption disabled. */
1358 task_thread_info(p)->preempt_count = 1;
1359 #endif
1361 * Share the timeslice between parent and child, thus the
1362 * total amount of pending timeslices in the system doesn't change,
1363 * resulting in more scheduling fairness.
1365 local_irq_disable();
1366 p->time_slice = (current->time_slice + 1) >> 1;
1368 * The remainder of the first timeslice might be recovered by
1369 * the parent if the child exits early enough.
1371 p->first_time_slice = 1;
1372 current->time_slice >>= 1;
1373 p->timestamp = sched_clock();
1374 if (unlikely(!current->time_slice)) {
1376 * This case is rare, it happens when the parent has only
1377 * a single jiffy left from its timeslice. Taking the
1378 * runqueue lock is not a problem.
1380 current->time_slice = 1;
1381 scheduler_tick();
1383 local_irq_enable();
1384 put_cpu();
1388 * wake_up_new_task - wake up a newly created task for the first time.
1390 * This function will do some initial scheduler statistics housekeeping
1391 * that must be done for every newly created context, then puts the task
1392 * on the runqueue and wakes it.
1394 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1396 unsigned long flags;
1397 int this_cpu, cpu;
1398 runqueue_t *rq, *this_rq;
1400 rq = task_rq_lock(p, &flags);
1401 BUG_ON(p->state != TASK_RUNNING);
1402 this_cpu = smp_processor_id();
1403 cpu = task_cpu(p);
1406 * We decrease the sleep average of forking parents
1407 * and children as well, to keep max-interactive tasks
1408 * from forking tasks that are max-interactive. The parent
1409 * (current) is done further down, under its lock.
1411 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1412 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1414 p->prio = effective_prio(p);
1416 if (likely(cpu == this_cpu)) {
1417 if (!(clone_flags & CLONE_VM)) {
1419 * The VM isn't cloned, so we're in a good position to
1420 * do child-runs-first in anticipation of an exec. This
1421 * usually avoids a lot of COW overhead.
1423 if (unlikely(!current->array))
1424 __activate_task(p, rq);
1425 else {
1426 p->prio = current->prio;
1427 list_add_tail(&p->run_list, &current->run_list);
1428 p->array = current->array;
1429 p->array->nr_active++;
1430 rq->nr_running++;
1432 set_need_resched();
1433 } else
1434 /* Run child last */
1435 __activate_task(p, rq);
1437 * We skip the following code due to cpu == this_cpu
1439 * task_rq_unlock(rq, &flags);
1440 * this_rq = task_rq_lock(current, &flags);
1442 this_rq = rq;
1443 } else {
1444 this_rq = cpu_rq(this_cpu);
1447 * Not the local CPU - must adjust timestamp. This should
1448 * get optimised away in the !CONFIG_SMP case.
1450 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1451 + rq->timestamp_last_tick;
1452 __activate_task(p, rq);
1453 if (TASK_PREEMPTS_CURR(p, rq))
1454 resched_task(rq->curr);
1457 * Parent and child are on different CPUs, now get the
1458 * parent runqueue to update the parent's ->sleep_avg:
1460 task_rq_unlock(rq, &flags);
1461 this_rq = task_rq_lock(current, &flags);
1463 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1464 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1465 task_rq_unlock(this_rq, &flags);
1469 * Potentially available exiting-child timeslices are
1470 * retrieved here - this way the parent does not get
1471 * penalized for creating too many threads.
1473 * (this cannot be used to 'generate' timeslices
1474 * artificially, because any timeslice recovered here
1475 * was given away by the parent in the first place.)
1477 void fastcall sched_exit(task_t *p)
1479 unsigned long flags;
1480 runqueue_t *rq;
1483 * If the child was a (relative-) CPU hog then decrease
1484 * the sleep_avg of the parent as well.
1486 rq = task_rq_lock(p->parent, &flags);
1487 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1488 p->parent->time_slice += p->time_slice;
1489 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1490 p->parent->time_slice = task_timeslice(p);
1492 if (p->sleep_avg < p->parent->sleep_avg)
1493 p->parent->sleep_avg = p->parent->sleep_avg /
1494 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1495 (EXIT_WEIGHT + 1);
1496 task_rq_unlock(rq, &flags);
1500 * prepare_task_switch - prepare to switch tasks
1501 * @rq: the runqueue preparing to switch
1502 * @next: the task we are going to switch to.
1504 * This is called with the rq lock held and interrupts off. It must
1505 * be paired with a subsequent finish_task_switch after the context
1506 * switch.
1508 * prepare_task_switch sets up locking and calls architecture specific
1509 * hooks.
1511 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1513 prepare_lock_switch(rq, next);
1514 prepare_arch_switch(next);
1518 * finish_task_switch - clean up after a task-switch
1519 * @rq: runqueue associated with task-switch
1520 * @prev: the thread we just switched away from.
1522 * finish_task_switch must be called after the context switch, paired
1523 * with a prepare_task_switch call before the context switch.
1524 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1525 * and do any other architecture-specific cleanup actions.
1527 * Note that we may have delayed dropping an mm in context_switch(). If
1528 * so, we finish that here outside of the runqueue lock. (Doing it
1529 * with the lock held can cause deadlocks; see schedule() for
1530 * details.)
1532 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1533 __releases(rq->lock)
1535 struct mm_struct *mm = rq->prev_mm;
1536 unsigned long prev_task_flags;
1538 rq->prev_mm = NULL;
1541 * A task struct has one reference for the use as "current".
1542 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1543 * calls schedule one last time. The schedule call will never return,
1544 * and the scheduled task must drop that reference.
1545 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1546 * still held, otherwise prev could be scheduled on another cpu, die
1547 * there before we look at prev->state, and then the reference would
1548 * be dropped twice.
1549 * Manfred Spraul <manfred@colorfullife.com>
1551 prev_task_flags = prev->flags;
1552 finish_arch_switch(prev);
1553 finish_lock_switch(rq, prev);
1554 if (mm)
1555 mmdrop(mm);
1556 if (unlikely(prev_task_flags & PF_DEAD)) {
1558 * Remove function-return probe instances associated with this
1559 * task and put them back on the free list.
1561 kprobe_flush_task(prev);
1562 put_task_struct(prev);
1567 * schedule_tail - first thing a freshly forked thread must call.
1568 * @prev: the thread we just switched away from.
1570 asmlinkage void schedule_tail(task_t *prev)
1571 __releases(rq->lock)
1573 runqueue_t *rq = this_rq();
1574 finish_task_switch(rq, prev);
1575 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1576 /* In this case, finish_task_switch does not reenable preemption */
1577 preempt_enable();
1578 #endif
1579 if (current->set_child_tid)
1580 put_user(current->pid, current->set_child_tid);
1584 * context_switch - switch to the new MM and the new
1585 * thread's register state.
1587 static inline
1588 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1590 struct mm_struct *mm = next->mm;
1591 struct mm_struct *oldmm = prev->active_mm;
1593 if (unlikely(!mm)) {
1594 next->active_mm = oldmm;
1595 atomic_inc(&oldmm->mm_count);
1596 enter_lazy_tlb(oldmm, next);
1597 } else
1598 switch_mm(oldmm, mm, next);
1600 if (unlikely(!prev->mm)) {
1601 prev->active_mm = NULL;
1602 WARN_ON(rq->prev_mm);
1603 rq->prev_mm = oldmm;
1606 /* Here we just switch the register state and the stack. */
1607 switch_to(prev, next, prev);
1609 return prev;
1613 * nr_running, nr_uninterruptible and nr_context_switches:
1615 * externally visible scheduler statistics: current number of runnable
1616 * threads, current number of uninterruptible-sleeping threads, total
1617 * number of context switches performed since bootup.
1619 unsigned long nr_running(void)
1621 unsigned long i, sum = 0;
1623 for_each_online_cpu(i)
1624 sum += cpu_rq(i)->nr_running;
1626 return sum;
1629 unsigned long nr_uninterruptible(void)
1631 unsigned long i, sum = 0;
1633 for_each_possible_cpu(i)
1634 sum += cpu_rq(i)->nr_uninterruptible;
1637 * Since we read the counters lockless, it might be slightly
1638 * inaccurate. Do not allow it to go below zero though:
1640 if (unlikely((long)sum < 0))
1641 sum = 0;
1643 return sum;
1646 unsigned long long nr_context_switches(void)
1648 unsigned long long i, sum = 0;
1650 for_each_possible_cpu(i)
1651 sum += cpu_rq(i)->nr_switches;
1653 return sum;
1656 unsigned long nr_iowait(void)
1658 unsigned long i, sum = 0;
1660 for_each_possible_cpu(i)
1661 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1663 return sum;
1666 unsigned long nr_active(void)
1668 unsigned long i, running = 0, uninterruptible = 0;
1670 for_each_online_cpu(i) {
1671 running += cpu_rq(i)->nr_running;
1672 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1675 if (unlikely((long)uninterruptible < 0))
1676 uninterruptible = 0;
1678 return running + uninterruptible;
1681 #ifdef CONFIG_SMP
1684 * double_rq_lock - safely lock two runqueues
1686 * We must take them in cpu order to match code in
1687 * dependent_sleeper and wake_dependent_sleeper.
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1692 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1693 __acquires(rq1->lock)
1694 __acquires(rq2->lock)
1696 if (rq1 == rq2) {
1697 spin_lock(&rq1->lock);
1698 __acquire(rq2->lock); /* Fake it out ;) */
1699 } else {
1700 if (rq1->cpu < rq2->cpu) {
1701 spin_lock(&rq1->lock);
1702 spin_lock(&rq2->lock);
1703 } else {
1704 spin_lock(&rq2->lock);
1705 spin_lock(&rq1->lock);
1711 * double_rq_unlock - safely unlock two runqueues
1713 * Note this does not restore interrupts like task_rq_unlock,
1714 * you need to do so manually after calling.
1716 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1717 __releases(rq1->lock)
1718 __releases(rq2->lock)
1720 spin_unlock(&rq1->lock);
1721 if (rq1 != rq2)
1722 spin_unlock(&rq2->lock);
1723 else
1724 __release(rq2->lock);
1728 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1730 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1731 __releases(this_rq->lock)
1732 __acquires(busiest->lock)
1733 __acquires(this_rq->lock)
1735 if (unlikely(!spin_trylock(&busiest->lock))) {
1736 if (busiest->cpu < this_rq->cpu) {
1737 spin_unlock(&this_rq->lock);
1738 spin_lock(&busiest->lock);
1739 spin_lock(&this_rq->lock);
1740 } else
1741 spin_lock(&busiest->lock);
1746 * If dest_cpu is allowed for this process, migrate the task to it.
1747 * This is accomplished by forcing the cpu_allowed mask to only
1748 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1749 * the cpu_allowed mask is restored.
1751 static void sched_migrate_task(task_t *p, int dest_cpu)
1753 migration_req_t req;
1754 runqueue_t *rq;
1755 unsigned long flags;
1757 rq = task_rq_lock(p, &flags);
1758 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1759 || unlikely(cpu_is_offline(dest_cpu)))
1760 goto out;
1762 /* force the process onto the specified CPU */
1763 if (migrate_task(p, dest_cpu, &req)) {
1764 /* Need to wait for migration thread (might exit: take ref). */
1765 struct task_struct *mt = rq->migration_thread;
1766 get_task_struct(mt);
1767 task_rq_unlock(rq, &flags);
1768 wake_up_process(mt);
1769 put_task_struct(mt);
1770 wait_for_completion(&req.done);
1771 return;
1773 out:
1774 task_rq_unlock(rq, &flags);
1778 * sched_exec - execve() is a valuable balancing opportunity, because at
1779 * this point the task has the smallest effective memory and cache footprint.
1781 void sched_exec(void)
1783 int new_cpu, this_cpu = get_cpu();
1784 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1785 put_cpu();
1786 if (new_cpu != this_cpu)
1787 sched_migrate_task(current, new_cpu);
1791 * pull_task - move a task from a remote runqueue to the local runqueue.
1792 * Both runqueues must be locked.
1794 static
1795 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1796 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1798 dequeue_task(p, src_array);
1799 src_rq->nr_running--;
1800 set_task_cpu(p, this_cpu);
1801 this_rq->nr_running++;
1802 enqueue_task(p, this_array);
1803 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1804 + this_rq->timestamp_last_tick;
1806 * Note that idle threads have a prio of MAX_PRIO, for this test
1807 * to be always true for them.
1809 if (TASK_PREEMPTS_CURR(p, this_rq))
1810 resched_task(this_rq->curr);
1814 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1816 static
1817 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1818 struct sched_domain *sd, enum idle_type idle,
1819 int *all_pinned)
1822 * We do not migrate tasks that are:
1823 * 1) running (obviously), or
1824 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1825 * 3) are cache-hot on their current CPU.
1827 if (!cpu_isset(this_cpu, p->cpus_allowed))
1828 return 0;
1829 *all_pinned = 0;
1831 if (task_running(rq, p))
1832 return 0;
1835 * Aggressive migration if:
1836 * 1) task is cache cold, or
1837 * 2) too many balance attempts have failed.
1840 if (sd->nr_balance_failed > sd->cache_nice_tries)
1841 return 1;
1843 if (task_hot(p, rq->timestamp_last_tick, sd))
1844 return 0;
1845 return 1;
1849 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1850 * as part of a balancing operation within "domain". Returns the number of
1851 * tasks moved.
1853 * Called with both runqueues locked.
1855 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1856 unsigned long max_nr_move, struct sched_domain *sd,
1857 enum idle_type idle, int *all_pinned)
1859 prio_array_t *array, *dst_array;
1860 struct list_head *head, *curr;
1861 int idx, pulled = 0, pinned = 0;
1862 task_t *tmp;
1864 if (max_nr_move == 0)
1865 goto out;
1867 pinned = 1;
1870 * We first consider expired tasks. Those will likely not be
1871 * executed in the near future, and they are most likely to
1872 * be cache-cold, thus switching CPUs has the least effect
1873 * on them.
1875 if (busiest->expired->nr_active) {
1876 array = busiest->expired;
1877 dst_array = this_rq->expired;
1878 } else {
1879 array = busiest->active;
1880 dst_array = this_rq->active;
1883 new_array:
1884 /* Start searching at priority 0: */
1885 idx = 0;
1886 skip_bitmap:
1887 if (!idx)
1888 idx = sched_find_first_bit(array->bitmap);
1889 else
1890 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1891 if (idx >= MAX_PRIO) {
1892 if (array == busiest->expired && busiest->active->nr_active) {
1893 array = busiest->active;
1894 dst_array = this_rq->active;
1895 goto new_array;
1897 goto out;
1900 head = array->queue + idx;
1901 curr = head->prev;
1902 skip_queue:
1903 tmp = list_entry(curr, task_t, run_list);
1905 curr = curr->prev;
1907 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1908 if (curr != head)
1909 goto skip_queue;
1910 idx++;
1911 goto skip_bitmap;
1914 #ifdef CONFIG_SCHEDSTATS
1915 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1916 schedstat_inc(sd, lb_hot_gained[idle]);
1917 #endif
1919 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1920 pulled++;
1922 /* We only want to steal up to the prescribed number of tasks. */
1923 if (pulled < max_nr_move) {
1924 if (curr != head)
1925 goto skip_queue;
1926 idx++;
1927 goto skip_bitmap;
1929 out:
1931 * Right now, this is the only place pull_task() is called,
1932 * so we can safely collect pull_task() stats here rather than
1933 * inside pull_task().
1935 schedstat_add(sd, lb_gained[idle], pulled);
1937 if (all_pinned)
1938 *all_pinned = pinned;
1939 return pulled;
1943 * find_busiest_group finds and returns the busiest CPU group within the
1944 * domain. It calculates and returns the number of tasks which should be
1945 * moved to restore balance via the imbalance parameter.
1947 static struct sched_group *
1948 find_busiest_group(struct sched_domain *sd, int this_cpu,
1949 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1951 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1952 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1953 unsigned long max_pull;
1954 int load_idx;
1956 max_load = this_load = total_load = total_pwr = 0;
1957 if (idle == NOT_IDLE)
1958 load_idx = sd->busy_idx;
1959 else if (idle == NEWLY_IDLE)
1960 load_idx = sd->newidle_idx;
1961 else
1962 load_idx = sd->idle_idx;
1964 do {
1965 unsigned long load;
1966 int local_group;
1967 int i;
1969 local_group = cpu_isset(this_cpu, group->cpumask);
1971 /* Tally up the load of all CPUs in the group */
1972 avg_load = 0;
1974 for_each_cpu_mask(i, group->cpumask) {
1975 if (*sd_idle && !idle_cpu(i))
1976 *sd_idle = 0;
1978 /* Bias balancing toward cpus of our domain */
1979 if (local_group)
1980 load = target_load(i, load_idx);
1981 else
1982 load = source_load(i, load_idx);
1984 avg_load += load;
1987 total_load += avg_load;
1988 total_pwr += group->cpu_power;
1990 /* Adjust by relative CPU power of the group */
1991 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1993 if (local_group) {
1994 this_load = avg_load;
1995 this = group;
1996 } else if (avg_load > max_load) {
1997 max_load = avg_load;
1998 busiest = group;
2000 group = group->next;
2001 } while (group != sd->groups);
2003 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2004 goto out_balanced;
2006 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2008 if (this_load >= avg_load ||
2009 100*max_load <= sd->imbalance_pct*this_load)
2010 goto out_balanced;
2013 * We're trying to get all the cpus to the average_load, so we don't
2014 * want to push ourselves above the average load, nor do we wish to
2015 * reduce the max loaded cpu below the average load, as either of these
2016 * actions would just result in more rebalancing later, and ping-pong
2017 * tasks around. Thus we look for the minimum possible imbalance.
2018 * Negative imbalances (*we* are more loaded than anyone else) will
2019 * be counted as no imbalance for these purposes -- we can't fix that
2020 * by pulling tasks to us. Be careful of negative numbers as they'll
2021 * appear as very large values with unsigned longs.
2024 /* Don't want to pull so many tasks that a group would go idle */
2025 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2027 /* How much load to actually move to equalise the imbalance */
2028 *imbalance = min(max_pull * busiest->cpu_power,
2029 (avg_load - this_load) * this->cpu_power)
2030 / SCHED_LOAD_SCALE;
2032 if (*imbalance < SCHED_LOAD_SCALE) {
2033 unsigned long pwr_now = 0, pwr_move = 0;
2034 unsigned long tmp;
2036 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2037 *imbalance = 1;
2038 return busiest;
2042 * OK, we don't have enough imbalance to justify moving tasks,
2043 * however we may be able to increase total CPU power used by
2044 * moving them.
2047 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2048 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2049 pwr_now /= SCHED_LOAD_SCALE;
2051 /* Amount of load we'd subtract */
2052 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2053 if (max_load > tmp)
2054 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2055 max_load - tmp);
2057 /* Amount of load we'd add */
2058 if (max_load*busiest->cpu_power <
2059 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2060 tmp = max_load*busiest->cpu_power/this->cpu_power;
2061 else
2062 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2063 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2064 pwr_move /= SCHED_LOAD_SCALE;
2066 /* Move if we gain throughput */
2067 if (pwr_move <= pwr_now)
2068 goto out_balanced;
2070 *imbalance = 1;
2071 return busiest;
2074 /* Get rid of the scaling factor, rounding down as we divide */
2075 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2076 return busiest;
2078 out_balanced:
2080 *imbalance = 0;
2081 return NULL;
2085 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2087 static runqueue_t *find_busiest_queue(struct sched_group *group,
2088 enum idle_type idle)
2090 unsigned long load, max_load = 0;
2091 runqueue_t *busiest = NULL;
2092 int i;
2094 for_each_cpu_mask(i, group->cpumask) {
2095 load = source_load(i, 0);
2097 if (load > max_load) {
2098 max_load = load;
2099 busiest = cpu_rq(i);
2103 return busiest;
2107 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2108 * so long as it is large enough.
2110 #define MAX_PINNED_INTERVAL 512
2113 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2114 * tasks if there is an imbalance.
2116 * Called with this_rq unlocked.
2118 static int load_balance(int this_cpu, runqueue_t *this_rq,
2119 struct sched_domain *sd, enum idle_type idle)
2121 struct sched_group *group;
2122 runqueue_t *busiest;
2123 unsigned long imbalance;
2124 int nr_moved, all_pinned = 0;
2125 int active_balance = 0;
2126 int sd_idle = 0;
2128 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2129 sd_idle = 1;
2131 schedstat_inc(sd, lb_cnt[idle]);
2133 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2134 if (!group) {
2135 schedstat_inc(sd, lb_nobusyg[idle]);
2136 goto out_balanced;
2139 busiest = find_busiest_queue(group, idle);
2140 if (!busiest) {
2141 schedstat_inc(sd, lb_nobusyq[idle]);
2142 goto out_balanced;
2145 BUG_ON(busiest == this_rq);
2147 schedstat_add(sd, lb_imbalance[idle], imbalance);
2149 nr_moved = 0;
2150 if (busiest->nr_running > 1) {
2152 * Attempt to move tasks. If find_busiest_group has found
2153 * an imbalance but busiest->nr_running <= 1, the group is
2154 * still unbalanced. nr_moved simply stays zero, so it is
2155 * correctly treated as an imbalance.
2157 double_rq_lock(this_rq, busiest);
2158 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2159 imbalance, sd, idle, &all_pinned);
2160 double_rq_unlock(this_rq, busiest);
2162 /* All tasks on this runqueue were pinned by CPU affinity */
2163 if (unlikely(all_pinned))
2164 goto out_balanced;
2167 if (!nr_moved) {
2168 schedstat_inc(sd, lb_failed[idle]);
2169 sd->nr_balance_failed++;
2171 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2173 spin_lock(&busiest->lock);
2175 /* don't kick the migration_thread, if the curr
2176 * task on busiest cpu can't be moved to this_cpu
2178 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2179 spin_unlock(&busiest->lock);
2180 all_pinned = 1;
2181 goto out_one_pinned;
2184 if (!busiest->active_balance) {
2185 busiest->active_balance = 1;
2186 busiest->push_cpu = this_cpu;
2187 active_balance = 1;
2189 spin_unlock(&busiest->lock);
2190 if (active_balance)
2191 wake_up_process(busiest->migration_thread);
2194 * We've kicked active balancing, reset the failure
2195 * counter.
2197 sd->nr_balance_failed = sd->cache_nice_tries+1;
2199 } else
2200 sd->nr_balance_failed = 0;
2202 if (likely(!active_balance)) {
2203 /* We were unbalanced, so reset the balancing interval */
2204 sd->balance_interval = sd->min_interval;
2205 } else {
2207 * If we've begun active balancing, start to back off. This
2208 * case may not be covered by the all_pinned logic if there
2209 * is only 1 task on the busy runqueue (because we don't call
2210 * move_tasks).
2212 if (sd->balance_interval < sd->max_interval)
2213 sd->balance_interval *= 2;
2216 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2217 return -1;
2218 return nr_moved;
2220 out_balanced:
2221 schedstat_inc(sd, lb_balanced[idle]);
2223 sd->nr_balance_failed = 0;
2225 out_one_pinned:
2226 /* tune up the balancing interval */
2227 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2228 (sd->balance_interval < sd->max_interval))
2229 sd->balance_interval *= 2;
2231 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2232 return -1;
2233 return 0;
2237 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2238 * tasks if there is an imbalance.
2240 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2241 * this_rq is locked.
2243 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2244 struct sched_domain *sd)
2246 struct sched_group *group;
2247 runqueue_t *busiest = NULL;
2248 unsigned long imbalance;
2249 int nr_moved = 0;
2250 int sd_idle = 0;
2252 if (sd->flags & SD_SHARE_CPUPOWER)
2253 sd_idle = 1;
2255 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2256 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2257 if (!group) {
2258 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2259 goto out_balanced;
2262 busiest = find_busiest_queue(group, NEWLY_IDLE);
2263 if (!busiest) {
2264 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2265 goto out_balanced;
2268 BUG_ON(busiest == this_rq);
2270 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2272 nr_moved = 0;
2273 if (busiest->nr_running > 1) {
2274 /* Attempt to move tasks */
2275 double_lock_balance(this_rq, busiest);
2276 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2277 imbalance, sd, NEWLY_IDLE, NULL);
2278 spin_unlock(&busiest->lock);
2281 if (!nr_moved) {
2282 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2283 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2284 return -1;
2285 } else
2286 sd->nr_balance_failed = 0;
2288 return nr_moved;
2290 out_balanced:
2291 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2292 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2293 return -1;
2294 sd->nr_balance_failed = 0;
2295 return 0;
2299 * idle_balance is called by schedule() if this_cpu is about to become
2300 * idle. Attempts to pull tasks from other CPUs.
2302 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2304 struct sched_domain *sd;
2306 for_each_domain(this_cpu, sd) {
2307 if (sd->flags & SD_BALANCE_NEWIDLE) {
2308 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2309 /* We've pulled tasks over so stop searching */
2310 break;
2317 * active_load_balance is run by migration threads. It pushes running tasks
2318 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2319 * running on each physical CPU where possible, and avoids physical /
2320 * logical imbalances.
2322 * Called with busiest_rq locked.
2324 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2326 struct sched_domain *sd;
2327 runqueue_t *target_rq;
2328 int target_cpu = busiest_rq->push_cpu;
2330 if (busiest_rq->nr_running <= 1)
2331 /* no task to move */
2332 return;
2334 target_rq = cpu_rq(target_cpu);
2337 * This condition is "impossible", if it occurs
2338 * we need to fix it. Originally reported by
2339 * Bjorn Helgaas on a 128-cpu setup.
2341 BUG_ON(busiest_rq == target_rq);
2343 /* move a task from busiest_rq to target_rq */
2344 double_lock_balance(busiest_rq, target_rq);
2346 /* Search for an sd spanning us and the target CPU. */
2347 for_each_domain(target_cpu, sd)
2348 if ((sd->flags & SD_LOAD_BALANCE) &&
2349 cpu_isset(busiest_cpu, sd->span))
2350 break;
2352 if (unlikely(sd == NULL))
2353 goto out;
2355 schedstat_inc(sd, alb_cnt);
2357 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2358 schedstat_inc(sd, alb_pushed);
2359 else
2360 schedstat_inc(sd, alb_failed);
2361 out:
2362 spin_unlock(&target_rq->lock);
2366 * rebalance_tick will get called every timer tick, on every CPU.
2368 * It checks each scheduling domain to see if it is due to be balanced,
2369 * and initiates a balancing operation if so.
2371 * Balancing parameters are set up in arch_init_sched_domains.
2374 /* Don't have all balancing operations going off at once */
2375 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2377 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2378 enum idle_type idle)
2380 unsigned long old_load, this_load;
2381 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2382 struct sched_domain *sd;
2383 int i;
2385 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2386 /* Update our load */
2387 for (i = 0; i < 3; i++) {
2388 unsigned long new_load = this_load;
2389 int scale = 1 << i;
2390 old_load = this_rq->cpu_load[i];
2392 * Round up the averaging division if load is increasing. This
2393 * prevents us from getting stuck on 9 if the load is 10, for
2394 * example.
2396 if (new_load > old_load)
2397 new_load += scale-1;
2398 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2401 for_each_domain(this_cpu, sd) {
2402 unsigned long interval;
2404 if (!(sd->flags & SD_LOAD_BALANCE))
2405 continue;
2407 interval = sd->balance_interval;
2408 if (idle != SCHED_IDLE)
2409 interval *= sd->busy_factor;
2411 /* scale ms to jiffies */
2412 interval = msecs_to_jiffies(interval);
2413 if (unlikely(!interval))
2414 interval = 1;
2416 if (j - sd->last_balance >= interval) {
2417 if (load_balance(this_cpu, this_rq, sd, idle)) {
2419 * We've pulled tasks over so either we're no
2420 * longer idle, or one of our SMT siblings is
2421 * not idle.
2423 idle = NOT_IDLE;
2425 sd->last_balance += interval;
2429 #else
2431 * on UP we do not need to balance between CPUs:
2433 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2436 static inline void idle_balance(int cpu, runqueue_t *rq)
2439 #endif
2441 static inline int wake_priority_sleeper(runqueue_t *rq)
2443 int ret = 0;
2444 #ifdef CONFIG_SCHED_SMT
2445 spin_lock(&rq->lock);
2447 * If an SMT sibling task has been put to sleep for priority
2448 * reasons reschedule the idle task to see if it can now run.
2450 if (rq->nr_running) {
2451 resched_task(rq->idle);
2452 ret = 1;
2454 spin_unlock(&rq->lock);
2455 #endif
2456 return ret;
2459 DEFINE_PER_CPU(struct kernel_stat, kstat);
2461 EXPORT_PER_CPU_SYMBOL(kstat);
2464 * This is called on clock ticks and on context switches.
2465 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2467 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2468 unsigned long long now)
2470 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2471 p->sched_time += now - last;
2475 * Return current->sched_time plus any more ns on the sched_clock
2476 * that have not yet been banked.
2478 unsigned long long current_sched_time(const task_t *tsk)
2480 unsigned long long ns;
2481 unsigned long flags;
2482 local_irq_save(flags);
2483 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2484 ns = tsk->sched_time + (sched_clock() - ns);
2485 local_irq_restore(flags);
2486 return ns;
2490 * We place interactive tasks back into the active array, if possible.
2492 * To guarantee that this does not starve expired tasks we ignore the
2493 * interactivity of a task if the first expired task had to wait more
2494 * than a 'reasonable' amount of time. This deadline timeout is
2495 * load-dependent, as the frequency of array switched decreases with
2496 * increasing number of running tasks. We also ignore the interactivity
2497 * if a better static_prio task has expired:
2499 #define EXPIRED_STARVING(rq) \
2500 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2501 (jiffies - (rq)->expired_timestamp >= \
2502 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2503 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2506 * Account user cpu time to a process.
2507 * @p: the process that the cpu time gets accounted to
2508 * @hardirq_offset: the offset to subtract from hardirq_count()
2509 * @cputime: the cpu time spent in user space since the last update
2511 void account_user_time(struct task_struct *p, cputime_t cputime)
2513 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2514 cputime64_t tmp;
2516 p->utime = cputime_add(p->utime, cputime);
2518 /* Add user time to cpustat. */
2519 tmp = cputime_to_cputime64(cputime);
2520 if (TASK_NICE(p) > 0)
2521 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2522 else
2523 cpustat->user = cputime64_add(cpustat->user, tmp);
2527 * Account system cpu time to a process.
2528 * @p: the process that the cpu time gets accounted to
2529 * @hardirq_offset: the offset to subtract from hardirq_count()
2530 * @cputime: the cpu time spent in kernel space since the last update
2532 void account_system_time(struct task_struct *p, int hardirq_offset,
2533 cputime_t cputime)
2535 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2536 runqueue_t *rq = this_rq();
2537 cputime64_t tmp;
2539 p->stime = cputime_add(p->stime, cputime);
2541 /* Add system time to cpustat. */
2542 tmp = cputime_to_cputime64(cputime);
2543 if (hardirq_count() - hardirq_offset)
2544 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2545 else if (softirq_count())
2546 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2547 else if (p != rq->idle)
2548 cpustat->system = cputime64_add(cpustat->system, tmp);
2549 else if (atomic_read(&rq->nr_iowait) > 0)
2550 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2551 else
2552 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2553 /* Account for system time used */
2554 acct_update_integrals(p);
2558 * Account for involuntary wait time.
2559 * @p: the process from which the cpu time has been stolen
2560 * @steal: the cpu time spent in involuntary wait
2562 void account_steal_time(struct task_struct *p, cputime_t steal)
2564 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2565 cputime64_t tmp = cputime_to_cputime64(steal);
2566 runqueue_t *rq = this_rq();
2568 if (p == rq->idle) {
2569 p->stime = cputime_add(p->stime, steal);
2570 if (atomic_read(&rq->nr_iowait) > 0)
2571 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2572 else
2573 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2574 } else
2575 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2579 * This function gets called by the timer code, with HZ frequency.
2580 * We call it with interrupts disabled.
2582 * It also gets called by the fork code, when changing the parent's
2583 * timeslices.
2585 void scheduler_tick(void)
2587 int cpu = smp_processor_id();
2588 runqueue_t *rq = this_rq();
2589 task_t *p = current;
2590 unsigned long long now = sched_clock();
2592 update_cpu_clock(p, rq, now);
2594 rq->timestamp_last_tick = now;
2596 if (p == rq->idle) {
2597 if (wake_priority_sleeper(rq))
2598 goto out;
2599 rebalance_tick(cpu, rq, SCHED_IDLE);
2600 return;
2603 /* Task might have expired already, but not scheduled off yet */
2604 if (p->array != rq->active) {
2605 set_tsk_need_resched(p);
2606 goto out;
2608 spin_lock(&rq->lock);
2610 * The task was running during this tick - update the
2611 * time slice counter. Note: we do not update a thread's
2612 * priority until it either goes to sleep or uses up its
2613 * timeslice. This makes it possible for interactive tasks
2614 * to use up their timeslices at their highest priority levels.
2616 if (rt_task(p)) {
2618 * RR tasks need a special form of timeslice management.
2619 * FIFO tasks have no timeslices.
2621 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2622 p->time_slice = task_timeslice(p);
2623 p->first_time_slice = 0;
2624 set_tsk_need_resched(p);
2626 /* put it at the end of the queue: */
2627 requeue_task(p, rq->active);
2629 goto out_unlock;
2631 if (!--p->time_slice) {
2632 dequeue_task(p, rq->active);
2633 set_tsk_need_resched(p);
2634 p->prio = effective_prio(p);
2635 p->time_slice = task_timeslice(p);
2636 p->first_time_slice = 0;
2638 if (!rq->expired_timestamp)
2639 rq->expired_timestamp = jiffies;
2640 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2641 enqueue_task(p, rq->expired);
2642 if (p->static_prio < rq->best_expired_prio)
2643 rq->best_expired_prio = p->static_prio;
2644 } else
2645 enqueue_task(p, rq->active);
2646 } else {
2648 * Prevent a too long timeslice allowing a task to monopolize
2649 * the CPU. We do this by splitting up the timeslice into
2650 * smaller pieces.
2652 * Note: this does not mean the task's timeslices expire or
2653 * get lost in any way, they just might be preempted by
2654 * another task of equal priority. (one with higher
2655 * priority would have preempted this task already.) We
2656 * requeue this task to the end of the list on this priority
2657 * level, which is in essence a round-robin of tasks with
2658 * equal priority.
2660 * This only applies to tasks in the interactive
2661 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2663 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2664 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2665 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2666 (p->array == rq->active)) {
2668 requeue_task(p, rq->active);
2669 set_tsk_need_resched(p);
2672 out_unlock:
2673 spin_unlock(&rq->lock);
2674 out:
2675 rebalance_tick(cpu, rq, NOT_IDLE);
2678 #ifdef CONFIG_SCHED_SMT
2679 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2681 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2682 if (rq->curr == rq->idle && rq->nr_running)
2683 resched_task(rq->idle);
2686 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2688 struct sched_domain *tmp, *sd = NULL;
2689 cpumask_t sibling_map;
2690 int i;
2692 for_each_domain(this_cpu, tmp)
2693 if (tmp->flags & SD_SHARE_CPUPOWER)
2694 sd = tmp;
2696 if (!sd)
2697 return;
2700 * Unlock the current runqueue because we have to lock in
2701 * CPU order to avoid deadlocks. Caller knows that we might
2702 * unlock. We keep IRQs disabled.
2704 spin_unlock(&this_rq->lock);
2706 sibling_map = sd->span;
2708 for_each_cpu_mask(i, sibling_map)
2709 spin_lock(&cpu_rq(i)->lock);
2711 * We clear this CPU from the mask. This both simplifies the
2712 * inner loop and keps this_rq locked when we exit:
2714 cpu_clear(this_cpu, sibling_map);
2716 for_each_cpu_mask(i, sibling_map) {
2717 runqueue_t *smt_rq = cpu_rq(i);
2719 wakeup_busy_runqueue(smt_rq);
2722 for_each_cpu_mask(i, sibling_map)
2723 spin_unlock(&cpu_rq(i)->lock);
2725 * We exit with this_cpu's rq still held and IRQs
2726 * still disabled:
2731 * number of 'lost' timeslices this task wont be able to fully
2732 * utilize, if another task runs on a sibling. This models the
2733 * slowdown effect of other tasks running on siblings:
2735 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2737 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2740 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2742 struct sched_domain *tmp, *sd = NULL;
2743 cpumask_t sibling_map;
2744 prio_array_t *array;
2745 int ret = 0, i;
2746 task_t *p;
2748 for_each_domain(this_cpu, tmp)
2749 if (tmp->flags & SD_SHARE_CPUPOWER)
2750 sd = tmp;
2752 if (!sd)
2753 return 0;
2756 * The same locking rules and details apply as for
2757 * wake_sleeping_dependent():
2759 spin_unlock(&this_rq->lock);
2760 sibling_map = sd->span;
2761 for_each_cpu_mask(i, sibling_map)
2762 spin_lock(&cpu_rq(i)->lock);
2763 cpu_clear(this_cpu, sibling_map);
2766 * Establish next task to be run - it might have gone away because
2767 * we released the runqueue lock above:
2769 if (!this_rq->nr_running)
2770 goto out_unlock;
2771 array = this_rq->active;
2772 if (!array->nr_active)
2773 array = this_rq->expired;
2774 BUG_ON(!array->nr_active);
2776 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2777 task_t, run_list);
2779 for_each_cpu_mask(i, sibling_map) {
2780 runqueue_t *smt_rq = cpu_rq(i);
2781 task_t *smt_curr = smt_rq->curr;
2783 /* Kernel threads do not participate in dependent sleeping */
2784 if (!p->mm || !smt_curr->mm || rt_task(p))
2785 goto check_smt_task;
2788 * If a user task with lower static priority than the
2789 * running task on the SMT sibling is trying to schedule,
2790 * delay it till there is proportionately less timeslice
2791 * left of the sibling task to prevent a lower priority
2792 * task from using an unfair proportion of the
2793 * physical cpu's resources. -ck
2795 if (rt_task(smt_curr)) {
2797 * With real time tasks we run non-rt tasks only
2798 * per_cpu_gain% of the time.
2800 if ((jiffies % DEF_TIMESLICE) >
2801 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2802 ret = 1;
2803 } else
2804 if (smt_curr->static_prio < p->static_prio &&
2805 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2806 smt_slice(smt_curr, sd) > task_timeslice(p))
2807 ret = 1;
2809 check_smt_task:
2810 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2811 rt_task(smt_curr))
2812 continue;
2813 if (!p->mm) {
2814 wakeup_busy_runqueue(smt_rq);
2815 continue;
2819 * Reschedule a lower priority task on the SMT sibling for
2820 * it to be put to sleep, or wake it up if it has been put to
2821 * sleep for priority reasons to see if it should run now.
2823 if (rt_task(p)) {
2824 if ((jiffies % DEF_TIMESLICE) >
2825 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2826 resched_task(smt_curr);
2827 } else {
2828 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2829 smt_slice(p, sd) > task_timeslice(smt_curr))
2830 resched_task(smt_curr);
2831 else
2832 wakeup_busy_runqueue(smt_rq);
2835 out_unlock:
2836 for_each_cpu_mask(i, sibling_map)
2837 spin_unlock(&cpu_rq(i)->lock);
2838 return ret;
2840 #else
2841 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2845 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2847 return 0;
2849 #endif
2851 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2853 void fastcall add_preempt_count(int val)
2856 * Underflow?
2858 BUG_ON((preempt_count() < 0));
2859 preempt_count() += val;
2861 * Spinlock count overflowing soon?
2863 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2865 EXPORT_SYMBOL(add_preempt_count);
2867 void fastcall sub_preempt_count(int val)
2870 * Underflow?
2872 BUG_ON(val > preempt_count());
2874 * Is the spinlock portion underflowing?
2876 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2877 preempt_count() -= val;
2879 EXPORT_SYMBOL(sub_preempt_count);
2881 #endif
2883 static inline int interactive_sleep(enum sleep_type sleep_type)
2885 return (sleep_type == SLEEP_INTERACTIVE ||
2886 sleep_type == SLEEP_INTERRUPTED);
2890 * schedule() is the main scheduler function.
2892 asmlinkage void __sched schedule(void)
2894 long *switch_count;
2895 task_t *prev, *next;
2896 runqueue_t *rq;
2897 prio_array_t *array;
2898 struct list_head *queue;
2899 unsigned long long now;
2900 unsigned long run_time;
2901 int cpu, idx, new_prio;
2904 * Test if we are atomic. Since do_exit() needs to call into
2905 * schedule() atomically, we ignore that path for now.
2906 * Otherwise, whine if we are scheduling when we should not be.
2908 if (unlikely(in_atomic() && !current->exit_state)) {
2909 printk(KERN_ERR "BUG: scheduling while atomic: "
2910 "%s/0x%08x/%d\n",
2911 current->comm, preempt_count(), current->pid);
2912 dump_stack();
2914 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2916 need_resched:
2917 preempt_disable();
2918 prev = current;
2919 release_kernel_lock(prev);
2920 need_resched_nonpreemptible:
2921 rq = this_rq();
2924 * The idle thread is not allowed to schedule!
2925 * Remove this check after it has been exercised a bit.
2927 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2928 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2929 dump_stack();
2932 schedstat_inc(rq, sched_cnt);
2933 now = sched_clock();
2934 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2935 run_time = now - prev->timestamp;
2936 if (unlikely((long long)(now - prev->timestamp) < 0))
2937 run_time = 0;
2938 } else
2939 run_time = NS_MAX_SLEEP_AVG;
2942 * Tasks charged proportionately less run_time at high sleep_avg to
2943 * delay them losing their interactive status
2945 run_time /= (CURRENT_BONUS(prev) ? : 1);
2947 spin_lock_irq(&rq->lock);
2949 if (unlikely(prev->flags & PF_DEAD))
2950 prev->state = EXIT_DEAD;
2952 switch_count = &prev->nivcsw;
2953 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2954 switch_count = &prev->nvcsw;
2955 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2956 unlikely(signal_pending(prev))))
2957 prev->state = TASK_RUNNING;
2958 else {
2959 if (prev->state == TASK_UNINTERRUPTIBLE)
2960 rq->nr_uninterruptible++;
2961 deactivate_task(prev, rq);
2965 cpu = smp_processor_id();
2966 if (unlikely(!rq->nr_running)) {
2967 go_idle:
2968 idle_balance(cpu, rq);
2969 if (!rq->nr_running) {
2970 next = rq->idle;
2971 rq->expired_timestamp = 0;
2972 wake_sleeping_dependent(cpu, rq);
2974 * wake_sleeping_dependent() might have released
2975 * the runqueue, so break out if we got new
2976 * tasks meanwhile:
2978 if (!rq->nr_running)
2979 goto switch_tasks;
2981 } else {
2982 if (dependent_sleeper(cpu, rq)) {
2983 next = rq->idle;
2984 goto switch_tasks;
2987 * dependent_sleeper() releases and reacquires the runqueue
2988 * lock, hence go into the idle loop if the rq went
2989 * empty meanwhile:
2991 if (unlikely(!rq->nr_running))
2992 goto go_idle;
2995 array = rq->active;
2996 if (unlikely(!array->nr_active)) {
2998 * Switch the active and expired arrays.
3000 schedstat_inc(rq, sched_switch);
3001 rq->active = rq->expired;
3002 rq->expired = array;
3003 array = rq->active;
3004 rq->expired_timestamp = 0;
3005 rq->best_expired_prio = MAX_PRIO;
3008 idx = sched_find_first_bit(array->bitmap);
3009 queue = array->queue + idx;
3010 next = list_entry(queue->next, task_t, run_list);
3012 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3013 unsigned long long delta = now - next->timestamp;
3014 if (unlikely((long long)(now - next->timestamp) < 0))
3015 delta = 0;
3017 if (next->sleep_type == SLEEP_INTERACTIVE)
3018 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3020 array = next->array;
3021 new_prio = recalc_task_prio(next, next->timestamp + delta);
3023 if (unlikely(next->prio != new_prio)) {
3024 dequeue_task(next, array);
3025 next->prio = new_prio;
3026 enqueue_task(next, array);
3027 } else
3028 requeue_task(next, array);
3030 next->sleep_type = SLEEP_NORMAL;
3031 switch_tasks:
3032 if (next == rq->idle)
3033 schedstat_inc(rq, sched_goidle);
3034 prefetch(next);
3035 prefetch_stack(next);
3036 clear_tsk_need_resched(prev);
3037 rcu_qsctr_inc(task_cpu(prev));
3039 update_cpu_clock(prev, rq, now);
3041 prev->sleep_avg -= run_time;
3042 if ((long)prev->sleep_avg <= 0)
3043 prev->sleep_avg = 0;
3044 prev->timestamp = prev->last_ran = now;
3046 sched_info_switch(prev, next);
3047 if (likely(prev != next)) {
3048 next->timestamp = now;
3049 rq->nr_switches++;
3050 rq->curr = next;
3051 ++*switch_count;
3053 prepare_task_switch(rq, next);
3054 prev = context_switch(rq, prev, next);
3055 barrier();
3057 * this_rq must be evaluated again because prev may have moved
3058 * CPUs since it called schedule(), thus the 'rq' on its stack
3059 * frame will be invalid.
3061 finish_task_switch(this_rq(), prev);
3062 } else
3063 spin_unlock_irq(&rq->lock);
3065 prev = current;
3066 if (unlikely(reacquire_kernel_lock(prev) < 0))
3067 goto need_resched_nonpreemptible;
3068 preempt_enable_no_resched();
3069 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3070 goto need_resched;
3073 EXPORT_SYMBOL(schedule);
3075 #ifdef CONFIG_PREEMPT
3077 * this is is the entry point to schedule() from in-kernel preemption
3078 * off of preempt_enable. Kernel preemptions off return from interrupt
3079 * occur there and call schedule directly.
3081 asmlinkage void __sched preempt_schedule(void)
3083 struct thread_info *ti = current_thread_info();
3084 #ifdef CONFIG_PREEMPT_BKL
3085 struct task_struct *task = current;
3086 int saved_lock_depth;
3087 #endif
3089 * If there is a non-zero preempt_count or interrupts are disabled,
3090 * we do not want to preempt the current task. Just return..
3092 if (unlikely(ti->preempt_count || irqs_disabled()))
3093 return;
3095 need_resched:
3096 add_preempt_count(PREEMPT_ACTIVE);
3098 * We keep the big kernel semaphore locked, but we
3099 * clear ->lock_depth so that schedule() doesnt
3100 * auto-release the semaphore:
3102 #ifdef CONFIG_PREEMPT_BKL
3103 saved_lock_depth = task->lock_depth;
3104 task->lock_depth = -1;
3105 #endif
3106 schedule();
3107 #ifdef CONFIG_PREEMPT_BKL
3108 task->lock_depth = saved_lock_depth;
3109 #endif
3110 sub_preempt_count(PREEMPT_ACTIVE);
3112 /* we could miss a preemption opportunity between schedule and now */
3113 barrier();
3114 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3115 goto need_resched;
3118 EXPORT_SYMBOL(preempt_schedule);
3121 * this is is the entry point to schedule() from kernel preemption
3122 * off of irq context.
3123 * Note, that this is called and return with irqs disabled. This will
3124 * protect us against recursive calling from irq.
3126 asmlinkage void __sched preempt_schedule_irq(void)
3128 struct thread_info *ti = current_thread_info();
3129 #ifdef CONFIG_PREEMPT_BKL
3130 struct task_struct *task = current;
3131 int saved_lock_depth;
3132 #endif
3133 /* Catch callers which need to be fixed*/
3134 BUG_ON(ti->preempt_count || !irqs_disabled());
3136 need_resched:
3137 add_preempt_count(PREEMPT_ACTIVE);
3139 * We keep the big kernel semaphore locked, but we
3140 * clear ->lock_depth so that schedule() doesnt
3141 * auto-release the semaphore:
3143 #ifdef CONFIG_PREEMPT_BKL
3144 saved_lock_depth = task->lock_depth;
3145 task->lock_depth = -1;
3146 #endif
3147 local_irq_enable();
3148 schedule();
3149 local_irq_disable();
3150 #ifdef CONFIG_PREEMPT_BKL
3151 task->lock_depth = saved_lock_depth;
3152 #endif
3153 sub_preempt_count(PREEMPT_ACTIVE);
3155 /* we could miss a preemption opportunity between schedule and now */
3156 barrier();
3157 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3158 goto need_resched;
3161 #endif /* CONFIG_PREEMPT */
3163 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3164 void *key)
3166 task_t *p = curr->private;
3167 return try_to_wake_up(p, mode, sync);
3170 EXPORT_SYMBOL(default_wake_function);
3173 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3174 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3175 * number) then we wake all the non-exclusive tasks and one exclusive task.
3177 * There are circumstances in which we can try to wake a task which has already
3178 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3179 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3181 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3182 int nr_exclusive, int sync, void *key)
3184 struct list_head *tmp, *next;
3186 list_for_each_safe(tmp, next, &q->task_list) {
3187 wait_queue_t *curr;
3188 unsigned flags;
3189 curr = list_entry(tmp, wait_queue_t, task_list);
3190 flags = curr->flags;
3191 if (curr->func(curr, mode, sync, key) &&
3192 (flags & WQ_FLAG_EXCLUSIVE) &&
3193 !--nr_exclusive)
3194 break;
3199 * __wake_up - wake up threads blocked on a waitqueue.
3200 * @q: the waitqueue
3201 * @mode: which threads
3202 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3203 * @key: is directly passed to the wakeup function
3205 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3206 int nr_exclusive, void *key)
3208 unsigned long flags;
3210 spin_lock_irqsave(&q->lock, flags);
3211 __wake_up_common(q, mode, nr_exclusive, 0, key);
3212 spin_unlock_irqrestore(&q->lock, flags);
3215 EXPORT_SYMBOL(__wake_up);
3218 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3220 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3222 __wake_up_common(q, mode, 1, 0, NULL);
3226 * __wake_up_sync - wake up threads blocked on a waitqueue.
3227 * @q: the waitqueue
3228 * @mode: which threads
3229 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3231 * The sync wakeup differs that the waker knows that it will schedule
3232 * away soon, so while the target thread will be woken up, it will not
3233 * be migrated to another CPU - ie. the two threads are 'synchronized'
3234 * with each other. This can prevent needless bouncing between CPUs.
3236 * On UP it can prevent extra preemption.
3238 void fastcall
3239 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3241 unsigned long flags;
3242 int sync = 1;
3244 if (unlikely(!q))
3245 return;
3247 if (unlikely(!nr_exclusive))
3248 sync = 0;
3250 spin_lock_irqsave(&q->lock, flags);
3251 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3252 spin_unlock_irqrestore(&q->lock, flags);
3254 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3256 void fastcall complete(struct completion *x)
3258 unsigned long flags;
3260 spin_lock_irqsave(&x->wait.lock, flags);
3261 x->done++;
3262 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3263 1, 0, NULL);
3264 spin_unlock_irqrestore(&x->wait.lock, flags);
3266 EXPORT_SYMBOL(complete);
3268 void fastcall complete_all(struct completion *x)
3270 unsigned long flags;
3272 spin_lock_irqsave(&x->wait.lock, flags);
3273 x->done += UINT_MAX/2;
3274 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3275 0, 0, NULL);
3276 spin_unlock_irqrestore(&x->wait.lock, flags);
3278 EXPORT_SYMBOL(complete_all);
3280 void fastcall __sched wait_for_completion(struct completion *x)
3282 might_sleep();
3283 spin_lock_irq(&x->wait.lock);
3284 if (!x->done) {
3285 DECLARE_WAITQUEUE(wait, current);
3287 wait.flags |= WQ_FLAG_EXCLUSIVE;
3288 __add_wait_queue_tail(&x->wait, &wait);
3289 do {
3290 __set_current_state(TASK_UNINTERRUPTIBLE);
3291 spin_unlock_irq(&x->wait.lock);
3292 schedule();
3293 spin_lock_irq(&x->wait.lock);
3294 } while (!x->done);
3295 __remove_wait_queue(&x->wait, &wait);
3297 x->done--;
3298 spin_unlock_irq(&x->wait.lock);
3300 EXPORT_SYMBOL(wait_for_completion);
3302 unsigned long fastcall __sched
3303 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3305 might_sleep();
3307 spin_lock_irq(&x->wait.lock);
3308 if (!x->done) {
3309 DECLARE_WAITQUEUE(wait, current);
3311 wait.flags |= WQ_FLAG_EXCLUSIVE;
3312 __add_wait_queue_tail(&x->wait, &wait);
3313 do {
3314 __set_current_state(TASK_UNINTERRUPTIBLE);
3315 spin_unlock_irq(&x->wait.lock);
3316 timeout = schedule_timeout(timeout);
3317 spin_lock_irq(&x->wait.lock);
3318 if (!timeout) {
3319 __remove_wait_queue(&x->wait, &wait);
3320 goto out;
3322 } while (!x->done);
3323 __remove_wait_queue(&x->wait, &wait);
3325 x->done--;
3326 out:
3327 spin_unlock_irq(&x->wait.lock);
3328 return timeout;
3330 EXPORT_SYMBOL(wait_for_completion_timeout);
3332 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3334 int ret = 0;
3336 might_sleep();
3338 spin_lock_irq(&x->wait.lock);
3339 if (!x->done) {
3340 DECLARE_WAITQUEUE(wait, current);
3342 wait.flags |= WQ_FLAG_EXCLUSIVE;
3343 __add_wait_queue_tail(&x->wait, &wait);
3344 do {
3345 if (signal_pending(current)) {
3346 ret = -ERESTARTSYS;
3347 __remove_wait_queue(&x->wait, &wait);
3348 goto out;
3350 __set_current_state(TASK_INTERRUPTIBLE);
3351 spin_unlock_irq(&x->wait.lock);
3352 schedule();
3353 spin_lock_irq(&x->wait.lock);
3354 } while (!x->done);
3355 __remove_wait_queue(&x->wait, &wait);
3357 x->done--;
3358 out:
3359 spin_unlock_irq(&x->wait.lock);
3361 return ret;
3363 EXPORT_SYMBOL(wait_for_completion_interruptible);
3365 unsigned long fastcall __sched
3366 wait_for_completion_interruptible_timeout(struct completion *x,
3367 unsigned long timeout)
3369 might_sleep();
3371 spin_lock_irq(&x->wait.lock);
3372 if (!x->done) {
3373 DECLARE_WAITQUEUE(wait, current);
3375 wait.flags |= WQ_FLAG_EXCLUSIVE;
3376 __add_wait_queue_tail(&x->wait, &wait);
3377 do {
3378 if (signal_pending(current)) {
3379 timeout = -ERESTARTSYS;
3380 __remove_wait_queue(&x->wait, &wait);
3381 goto out;
3383 __set_current_state(TASK_INTERRUPTIBLE);
3384 spin_unlock_irq(&x->wait.lock);
3385 timeout = schedule_timeout(timeout);
3386 spin_lock_irq(&x->wait.lock);
3387 if (!timeout) {
3388 __remove_wait_queue(&x->wait, &wait);
3389 goto out;
3391 } while (!x->done);
3392 __remove_wait_queue(&x->wait, &wait);
3394 x->done--;
3395 out:
3396 spin_unlock_irq(&x->wait.lock);
3397 return timeout;
3399 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3402 #define SLEEP_ON_VAR \
3403 unsigned long flags; \
3404 wait_queue_t wait; \
3405 init_waitqueue_entry(&wait, current);
3407 #define SLEEP_ON_HEAD \
3408 spin_lock_irqsave(&q->lock,flags); \
3409 __add_wait_queue(q, &wait); \
3410 spin_unlock(&q->lock);
3412 #define SLEEP_ON_TAIL \
3413 spin_lock_irq(&q->lock); \
3414 __remove_wait_queue(q, &wait); \
3415 spin_unlock_irqrestore(&q->lock, flags);
3417 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3419 SLEEP_ON_VAR
3421 current->state = TASK_INTERRUPTIBLE;
3423 SLEEP_ON_HEAD
3424 schedule();
3425 SLEEP_ON_TAIL
3428 EXPORT_SYMBOL(interruptible_sleep_on);
3430 long fastcall __sched
3431 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3433 SLEEP_ON_VAR
3435 current->state = TASK_INTERRUPTIBLE;
3437 SLEEP_ON_HEAD
3438 timeout = schedule_timeout(timeout);
3439 SLEEP_ON_TAIL
3441 return timeout;
3444 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3446 void fastcall __sched sleep_on(wait_queue_head_t *q)
3448 SLEEP_ON_VAR
3450 current->state = TASK_UNINTERRUPTIBLE;
3452 SLEEP_ON_HEAD
3453 schedule();
3454 SLEEP_ON_TAIL
3457 EXPORT_SYMBOL(sleep_on);
3459 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3461 SLEEP_ON_VAR
3463 current->state = TASK_UNINTERRUPTIBLE;
3465 SLEEP_ON_HEAD
3466 timeout = schedule_timeout(timeout);
3467 SLEEP_ON_TAIL
3469 return timeout;
3472 EXPORT_SYMBOL(sleep_on_timeout);
3474 void set_user_nice(task_t *p, long nice)
3476 unsigned long flags;
3477 prio_array_t *array;
3478 runqueue_t *rq;
3479 int old_prio, new_prio, delta;
3481 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3482 return;
3484 * We have to be careful, if called from sys_setpriority(),
3485 * the task might be in the middle of scheduling on another CPU.
3487 rq = task_rq_lock(p, &flags);
3489 * The RT priorities are set via sched_setscheduler(), but we still
3490 * allow the 'normal' nice value to be set - but as expected
3491 * it wont have any effect on scheduling until the task is
3492 * not SCHED_NORMAL/SCHED_BATCH:
3494 if (rt_task(p)) {
3495 p->static_prio = NICE_TO_PRIO(nice);
3496 goto out_unlock;
3498 array = p->array;
3499 if (array)
3500 dequeue_task(p, array);
3502 old_prio = p->prio;
3503 new_prio = NICE_TO_PRIO(nice);
3504 delta = new_prio - old_prio;
3505 p->static_prio = NICE_TO_PRIO(nice);
3506 p->prio += delta;
3508 if (array) {
3509 enqueue_task(p, array);
3511 * If the task increased its priority or is running and
3512 * lowered its priority, then reschedule its CPU:
3514 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3515 resched_task(rq->curr);
3517 out_unlock:
3518 task_rq_unlock(rq, &flags);
3521 EXPORT_SYMBOL(set_user_nice);
3524 * can_nice - check if a task can reduce its nice value
3525 * @p: task
3526 * @nice: nice value
3528 int can_nice(const task_t *p, const int nice)
3530 /* convert nice value [19,-20] to rlimit style value [1,40] */
3531 int nice_rlim = 20 - nice;
3532 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3533 capable(CAP_SYS_NICE));
3536 #ifdef __ARCH_WANT_SYS_NICE
3539 * sys_nice - change the priority of the current process.
3540 * @increment: priority increment
3542 * sys_setpriority is a more generic, but much slower function that
3543 * does similar things.
3545 asmlinkage long sys_nice(int increment)
3547 int retval;
3548 long nice;
3551 * Setpriority might change our priority at the same moment.
3552 * We don't have to worry. Conceptually one call occurs first
3553 * and we have a single winner.
3555 if (increment < -40)
3556 increment = -40;
3557 if (increment > 40)
3558 increment = 40;
3560 nice = PRIO_TO_NICE(current->static_prio) + increment;
3561 if (nice < -20)
3562 nice = -20;
3563 if (nice > 19)
3564 nice = 19;
3566 if (increment < 0 && !can_nice(current, nice))
3567 return -EPERM;
3569 retval = security_task_setnice(current, nice);
3570 if (retval)
3571 return retval;
3573 set_user_nice(current, nice);
3574 return 0;
3577 #endif
3580 * task_prio - return the priority value of a given task.
3581 * @p: the task in question.
3583 * This is the priority value as seen by users in /proc.
3584 * RT tasks are offset by -200. Normal tasks are centered
3585 * around 0, value goes from -16 to +15.
3587 int task_prio(const task_t *p)
3589 return p->prio - MAX_RT_PRIO;
3593 * task_nice - return the nice value of a given task.
3594 * @p: the task in question.
3596 int task_nice(const task_t *p)
3598 return TASK_NICE(p);
3600 EXPORT_SYMBOL_GPL(task_nice);
3603 * idle_cpu - is a given cpu idle currently?
3604 * @cpu: the processor in question.
3606 int idle_cpu(int cpu)
3608 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3612 * idle_task - return the idle task for a given cpu.
3613 * @cpu: the processor in question.
3615 task_t *idle_task(int cpu)
3617 return cpu_rq(cpu)->idle;
3621 * find_process_by_pid - find a process with a matching PID value.
3622 * @pid: the pid in question.
3624 static inline task_t *find_process_by_pid(pid_t pid)
3626 return pid ? find_task_by_pid(pid) : current;
3629 /* Actually do priority change: must hold rq lock. */
3630 static void __setscheduler(struct task_struct *p, int policy, int prio)
3632 BUG_ON(p->array);
3633 p->policy = policy;
3634 p->rt_priority = prio;
3635 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3636 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3637 } else {
3638 p->prio = p->static_prio;
3640 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3642 if (policy == SCHED_BATCH)
3643 p->sleep_avg = 0;
3648 * sched_setscheduler - change the scheduling policy and/or RT priority of
3649 * a thread.
3650 * @p: the task in question.
3651 * @policy: new policy.
3652 * @param: structure containing the new RT priority.
3654 int sched_setscheduler(struct task_struct *p, int policy,
3655 struct sched_param *param)
3657 int retval;
3658 int oldprio, oldpolicy = -1;
3659 prio_array_t *array;
3660 unsigned long flags;
3661 runqueue_t *rq;
3663 recheck:
3664 /* double check policy once rq lock held */
3665 if (policy < 0)
3666 policy = oldpolicy = p->policy;
3667 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3668 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3669 return -EINVAL;
3671 * Valid priorities for SCHED_FIFO and SCHED_RR are
3672 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3673 * SCHED_BATCH is 0.
3675 if (param->sched_priority < 0 ||
3676 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3677 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3678 return -EINVAL;
3679 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3680 != (param->sched_priority == 0))
3681 return -EINVAL;
3684 * Allow unprivileged RT tasks to decrease priority:
3686 if (!capable(CAP_SYS_NICE)) {
3688 * can't change policy, except between SCHED_NORMAL
3689 * and SCHED_BATCH:
3691 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3692 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3693 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3694 return -EPERM;
3695 /* can't increase priority */
3696 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3697 param->sched_priority > p->rt_priority &&
3698 param->sched_priority >
3699 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3700 return -EPERM;
3701 /* can't change other user's priorities */
3702 if ((current->euid != p->euid) &&
3703 (current->euid != p->uid))
3704 return -EPERM;
3707 retval = security_task_setscheduler(p, policy, param);
3708 if (retval)
3709 return retval;
3711 * To be able to change p->policy safely, the apropriate
3712 * runqueue lock must be held.
3714 rq = task_rq_lock(p, &flags);
3715 /* recheck policy now with rq lock held */
3716 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3717 policy = oldpolicy = -1;
3718 task_rq_unlock(rq, &flags);
3719 goto recheck;
3721 array = p->array;
3722 if (array)
3723 deactivate_task(p, rq);
3724 oldprio = p->prio;
3725 __setscheduler(p, policy, param->sched_priority);
3726 if (array) {
3727 __activate_task(p, rq);
3729 * Reschedule if we are currently running on this runqueue and
3730 * our priority decreased, or if we are not currently running on
3731 * this runqueue and our priority is higher than the current's
3733 if (task_running(rq, p)) {
3734 if (p->prio > oldprio)
3735 resched_task(rq->curr);
3736 } else if (TASK_PREEMPTS_CURR(p, rq))
3737 resched_task(rq->curr);
3739 task_rq_unlock(rq, &flags);
3740 return 0;
3742 EXPORT_SYMBOL_GPL(sched_setscheduler);
3744 static int
3745 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3747 int retval;
3748 struct sched_param lparam;
3749 struct task_struct *p;
3751 if (!param || pid < 0)
3752 return -EINVAL;
3753 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3754 return -EFAULT;
3755 read_lock_irq(&tasklist_lock);
3756 p = find_process_by_pid(pid);
3757 if (!p) {
3758 read_unlock_irq(&tasklist_lock);
3759 return -ESRCH;
3761 retval = sched_setscheduler(p, policy, &lparam);
3762 read_unlock_irq(&tasklist_lock);
3763 return retval;
3767 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3768 * @pid: the pid in question.
3769 * @policy: new policy.
3770 * @param: structure containing the new RT priority.
3772 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3773 struct sched_param __user *param)
3775 /* negative values for policy are not valid */
3776 if (policy < 0)
3777 return -EINVAL;
3779 return do_sched_setscheduler(pid, policy, param);
3783 * sys_sched_setparam - set/change the RT priority of a thread
3784 * @pid: the pid in question.
3785 * @param: structure containing the new RT priority.
3787 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3789 return do_sched_setscheduler(pid, -1, param);
3793 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3794 * @pid: the pid in question.
3796 asmlinkage long sys_sched_getscheduler(pid_t pid)
3798 int retval = -EINVAL;
3799 task_t *p;
3801 if (pid < 0)
3802 goto out_nounlock;
3804 retval = -ESRCH;
3805 read_lock(&tasklist_lock);
3806 p = find_process_by_pid(pid);
3807 if (p) {
3808 retval = security_task_getscheduler(p);
3809 if (!retval)
3810 retval = p->policy;
3812 read_unlock(&tasklist_lock);
3814 out_nounlock:
3815 return retval;
3819 * sys_sched_getscheduler - get the RT priority of a thread
3820 * @pid: the pid in question.
3821 * @param: structure containing the RT priority.
3823 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3825 struct sched_param lp;
3826 int retval = -EINVAL;
3827 task_t *p;
3829 if (!param || pid < 0)
3830 goto out_nounlock;
3832 read_lock(&tasklist_lock);
3833 p = find_process_by_pid(pid);
3834 retval = -ESRCH;
3835 if (!p)
3836 goto out_unlock;
3838 retval = security_task_getscheduler(p);
3839 if (retval)
3840 goto out_unlock;
3842 lp.sched_priority = p->rt_priority;
3843 read_unlock(&tasklist_lock);
3846 * This one might sleep, we cannot do it with a spinlock held ...
3848 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3850 out_nounlock:
3851 return retval;
3853 out_unlock:
3854 read_unlock(&tasklist_lock);
3855 return retval;
3858 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3860 task_t *p;
3861 int retval;
3862 cpumask_t cpus_allowed;
3864 lock_cpu_hotplug();
3865 read_lock(&tasklist_lock);
3867 p = find_process_by_pid(pid);
3868 if (!p) {
3869 read_unlock(&tasklist_lock);
3870 unlock_cpu_hotplug();
3871 return -ESRCH;
3875 * It is not safe to call set_cpus_allowed with the
3876 * tasklist_lock held. We will bump the task_struct's
3877 * usage count and then drop tasklist_lock.
3879 get_task_struct(p);
3880 read_unlock(&tasklist_lock);
3882 retval = -EPERM;
3883 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3884 !capable(CAP_SYS_NICE))
3885 goto out_unlock;
3887 cpus_allowed = cpuset_cpus_allowed(p);
3888 cpus_and(new_mask, new_mask, cpus_allowed);
3889 retval = set_cpus_allowed(p, new_mask);
3891 out_unlock:
3892 put_task_struct(p);
3893 unlock_cpu_hotplug();
3894 return retval;
3897 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3898 cpumask_t *new_mask)
3900 if (len < sizeof(cpumask_t)) {
3901 memset(new_mask, 0, sizeof(cpumask_t));
3902 } else if (len > sizeof(cpumask_t)) {
3903 len = sizeof(cpumask_t);
3905 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3909 * sys_sched_setaffinity - set the cpu affinity of a process
3910 * @pid: pid of the process
3911 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3912 * @user_mask_ptr: user-space pointer to the new cpu mask
3914 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3915 unsigned long __user *user_mask_ptr)
3917 cpumask_t new_mask;
3918 int retval;
3920 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3921 if (retval)
3922 return retval;
3924 return sched_setaffinity(pid, new_mask);
3928 * Represents all cpu's present in the system
3929 * In systems capable of hotplug, this map could dynamically grow
3930 * as new cpu's are detected in the system via any platform specific
3931 * method, such as ACPI for e.g.
3934 cpumask_t cpu_present_map __read_mostly;
3935 EXPORT_SYMBOL(cpu_present_map);
3937 #ifndef CONFIG_SMP
3938 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3939 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3940 #endif
3942 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3944 int retval;
3945 task_t *p;
3947 lock_cpu_hotplug();
3948 read_lock(&tasklist_lock);
3950 retval = -ESRCH;
3951 p = find_process_by_pid(pid);
3952 if (!p)
3953 goto out_unlock;
3955 retval = 0;
3956 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3958 out_unlock:
3959 read_unlock(&tasklist_lock);
3960 unlock_cpu_hotplug();
3961 if (retval)
3962 return retval;
3964 return 0;
3968 * sys_sched_getaffinity - get the cpu affinity of a process
3969 * @pid: pid of the process
3970 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3971 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3973 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3974 unsigned long __user *user_mask_ptr)
3976 int ret;
3977 cpumask_t mask;
3979 if (len < sizeof(cpumask_t))
3980 return -EINVAL;
3982 ret = sched_getaffinity(pid, &mask);
3983 if (ret < 0)
3984 return ret;
3986 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3987 return -EFAULT;
3989 return sizeof(cpumask_t);
3993 * sys_sched_yield - yield the current processor to other threads.
3995 * this function yields the current CPU by moving the calling thread
3996 * to the expired array. If there are no other threads running on this
3997 * CPU then this function will return.
3999 asmlinkage long sys_sched_yield(void)
4001 runqueue_t *rq = this_rq_lock();
4002 prio_array_t *array = current->array;
4003 prio_array_t *target = rq->expired;
4005 schedstat_inc(rq, yld_cnt);
4007 * We implement yielding by moving the task into the expired
4008 * queue.
4010 * (special rule: RT tasks will just roundrobin in the active
4011 * array.)
4013 if (rt_task(current))
4014 target = rq->active;
4016 if (array->nr_active == 1) {
4017 schedstat_inc(rq, yld_act_empty);
4018 if (!rq->expired->nr_active)
4019 schedstat_inc(rq, yld_both_empty);
4020 } else if (!rq->expired->nr_active)
4021 schedstat_inc(rq, yld_exp_empty);
4023 if (array != target) {
4024 dequeue_task(current, array);
4025 enqueue_task(current, target);
4026 } else
4028 * requeue_task is cheaper so perform that if possible.
4030 requeue_task(current, array);
4033 * Since we are going to call schedule() anyway, there's
4034 * no need to preempt or enable interrupts:
4036 __release(rq->lock);
4037 _raw_spin_unlock(&rq->lock);
4038 preempt_enable_no_resched();
4040 schedule();
4042 return 0;
4045 static inline void __cond_resched(void)
4048 * The BKS might be reacquired before we have dropped
4049 * PREEMPT_ACTIVE, which could trigger a second
4050 * cond_resched() call.
4052 if (unlikely(preempt_count()))
4053 return;
4054 if (unlikely(system_state != SYSTEM_RUNNING))
4055 return;
4056 do {
4057 add_preempt_count(PREEMPT_ACTIVE);
4058 schedule();
4059 sub_preempt_count(PREEMPT_ACTIVE);
4060 } while (need_resched());
4063 int __sched cond_resched(void)
4065 if (need_resched()) {
4066 __cond_resched();
4067 return 1;
4069 return 0;
4072 EXPORT_SYMBOL(cond_resched);
4075 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4076 * call schedule, and on return reacquire the lock.
4078 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4079 * operations here to prevent schedule() from being called twice (once via
4080 * spin_unlock(), once by hand).
4082 int cond_resched_lock(spinlock_t *lock)
4084 int ret = 0;
4086 if (need_lockbreak(lock)) {
4087 spin_unlock(lock);
4088 cpu_relax();
4089 ret = 1;
4090 spin_lock(lock);
4092 if (need_resched()) {
4093 _raw_spin_unlock(lock);
4094 preempt_enable_no_resched();
4095 __cond_resched();
4096 ret = 1;
4097 spin_lock(lock);
4099 return ret;
4102 EXPORT_SYMBOL(cond_resched_lock);
4104 int __sched cond_resched_softirq(void)
4106 BUG_ON(!in_softirq());
4108 if (need_resched()) {
4109 __local_bh_enable();
4110 __cond_resched();
4111 local_bh_disable();
4112 return 1;
4114 return 0;
4117 EXPORT_SYMBOL(cond_resched_softirq);
4121 * yield - yield the current processor to other threads.
4123 * this is a shortcut for kernel-space yielding - it marks the
4124 * thread runnable and calls sys_sched_yield().
4126 void __sched yield(void)
4128 set_current_state(TASK_RUNNING);
4129 sys_sched_yield();
4132 EXPORT_SYMBOL(yield);
4135 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4136 * that process accounting knows that this is a task in IO wait state.
4138 * But don't do that if it is a deliberate, throttling IO wait (this task
4139 * has set its backing_dev_info: the queue against which it should throttle)
4141 void __sched io_schedule(void)
4143 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4145 atomic_inc(&rq->nr_iowait);
4146 schedule();
4147 atomic_dec(&rq->nr_iowait);
4150 EXPORT_SYMBOL(io_schedule);
4152 long __sched io_schedule_timeout(long timeout)
4154 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4155 long ret;
4157 atomic_inc(&rq->nr_iowait);
4158 ret = schedule_timeout(timeout);
4159 atomic_dec(&rq->nr_iowait);
4160 return ret;
4164 * sys_sched_get_priority_max - return maximum RT priority.
4165 * @policy: scheduling class.
4167 * this syscall returns the maximum rt_priority that can be used
4168 * by a given scheduling class.
4170 asmlinkage long sys_sched_get_priority_max(int policy)
4172 int ret = -EINVAL;
4174 switch (policy) {
4175 case SCHED_FIFO:
4176 case SCHED_RR:
4177 ret = MAX_USER_RT_PRIO-1;
4178 break;
4179 case SCHED_NORMAL:
4180 case SCHED_BATCH:
4181 ret = 0;
4182 break;
4184 return ret;
4188 * sys_sched_get_priority_min - return minimum RT priority.
4189 * @policy: scheduling class.
4191 * this syscall returns the minimum rt_priority that can be used
4192 * by a given scheduling class.
4194 asmlinkage long sys_sched_get_priority_min(int policy)
4196 int ret = -EINVAL;
4198 switch (policy) {
4199 case SCHED_FIFO:
4200 case SCHED_RR:
4201 ret = 1;
4202 break;
4203 case SCHED_NORMAL:
4204 case SCHED_BATCH:
4205 ret = 0;
4207 return ret;
4211 * sys_sched_rr_get_interval - return the default timeslice of a process.
4212 * @pid: pid of the process.
4213 * @interval: userspace pointer to the timeslice value.
4215 * this syscall writes the default timeslice value of a given process
4216 * into the user-space timespec buffer. A value of '0' means infinity.
4218 asmlinkage
4219 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4221 int retval = -EINVAL;
4222 struct timespec t;
4223 task_t *p;
4225 if (pid < 0)
4226 goto out_nounlock;
4228 retval = -ESRCH;
4229 read_lock(&tasklist_lock);
4230 p = find_process_by_pid(pid);
4231 if (!p)
4232 goto out_unlock;
4234 retval = security_task_getscheduler(p);
4235 if (retval)
4236 goto out_unlock;
4238 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4239 0 : task_timeslice(p), &t);
4240 read_unlock(&tasklist_lock);
4241 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4242 out_nounlock:
4243 return retval;
4244 out_unlock:
4245 read_unlock(&tasklist_lock);
4246 return retval;
4249 static inline struct task_struct *eldest_child(struct task_struct *p)
4251 if (list_empty(&p->children)) return NULL;
4252 return list_entry(p->children.next,struct task_struct,sibling);
4255 static inline struct task_struct *older_sibling(struct task_struct *p)
4257 if (p->sibling.prev==&p->parent->children) return NULL;
4258 return list_entry(p->sibling.prev,struct task_struct,sibling);
4261 static inline struct task_struct *younger_sibling(struct task_struct *p)
4263 if (p->sibling.next==&p->parent->children) return NULL;
4264 return list_entry(p->sibling.next,struct task_struct,sibling);
4267 static void show_task(task_t *p)
4269 task_t *relative;
4270 unsigned state;
4271 unsigned long free = 0;
4272 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4274 printk("%-13.13s ", p->comm);
4275 state = p->state ? __ffs(p->state) + 1 : 0;
4276 if (state < ARRAY_SIZE(stat_nam))
4277 printk(stat_nam[state]);
4278 else
4279 printk("?");
4280 #if (BITS_PER_LONG == 32)
4281 if (state == TASK_RUNNING)
4282 printk(" running ");
4283 else
4284 printk(" %08lX ", thread_saved_pc(p));
4285 #else
4286 if (state == TASK_RUNNING)
4287 printk(" running task ");
4288 else
4289 printk(" %016lx ", thread_saved_pc(p));
4290 #endif
4291 #ifdef CONFIG_DEBUG_STACK_USAGE
4293 unsigned long *n = end_of_stack(p);
4294 while (!*n)
4295 n++;
4296 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4298 #endif
4299 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4300 if ((relative = eldest_child(p)))
4301 printk("%5d ", relative->pid);
4302 else
4303 printk(" ");
4304 if ((relative = younger_sibling(p)))
4305 printk("%7d", relative->pid);
4306 else
4307 printk(" ");
4308 if ((relative = older_sibling(p)))
4309 printk(" %5d", relative->pid);
4310 else
4311 printk(" ");
4312 if (!p->mm)
4313 printk(" (L-TLB)\n");
4314 else
4315 printk(" (NOTLB)\n");
4317 if (state != TASK_RUNNING)
4318 show_stack(p, NULL);
4321 void show_state(void)
4323 task_t *g, *p;
4325 #if (BITS_PER_LONG == 32)
4326 printk("\n"
4327 " sibling\n");
4328 printk(" task PC pid father child younger older\n");
4329 #else
4330 printk("\n"
4331 " sibling\n");
4332 printk(" task PC pid father child younger older\n");
4333 #endif
4334 read_lock(&tasklist_lock);
4335 do_each_thread(g, p) {
4337 * reset the NMI-timeout, listing all files on a slow
4338 * console might take alot of time:
4340 touch_nmi_watchdog();
4341 show_task(p);
4342 } while_each_thread(g, p);
4344 read_unlock(&tasklist_lock);
4345 mutex_debug_show_all_locks();
4349 * init_idle - set up an idle thread for a given CPU
4350 * @idle: task in question
4351 * @cpu: cpu the idle task belongs to
4353 * NOTE: this function does not set the idle thread's NEED_RESCHED
4354 * flag, to make booting more robust.
4356 void __devinit init_idle(task_t *idle, int cpu)
4358 runqueue_t *rq = cpu_rq(cpu);
4359 unsigned long flags;
4361 idle->timestamp = sched_clock();
4362 idle->sleep_avg = 0;
4363 idle->array = NULL;
4364 idle->prio = MAX_PRIO;
4365 idle->state = TASK_RUNNING;
4366 idle->cpus_allowed = cpumask_of_cpu(cpu);
4367 set_task_cpu(idle, cpu);
4369 spin_lock_irqsave(&rq->lock, flags);
4370 rq->curr = rq->idle = idle;
4371 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4372 idle->oncpu = 1;
4373 #endif
4374 spin_unlock_irqrestore(&rq->lock, flags);
4376 /* Set the preempt count _outside_ the spinlocks! */
4377 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4378 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4379 #else
4380 task_thread_info(idle)->preempt_count = 0;
4381 #endif
4385 * In a system that switches off the HZ timer nohz_cpu_mask
4386 * indicates which cpus entered this state. This is used
4387 * in the rcu update to wait only for active cpus. For system
4388 * which do not switch off the HZ timer nohz_cpu_mask should
4389 * always be CPU_MASK_NONE.
4391 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4393 #ifdef CONFIG_SMP
4395 * This is how migration works:
4397 * 1) we queue a migration_req_t structure in the source CPU's
4398 * runqueue and wake up that CPU's migration thread.
4399 * 2) we down() the locked semaphore => thread blocks.
4400 * 3) migration thread wakes up (implicitly it forces the migrated
4401 * thread off the CPU)
4402 * 4) it gets the migration request and checks whether the migrated
4403 * task is still in the wrong runqueue.
4404 * 5) if it's in the wrong runqueue then the migration thread removes
4405 * it and puts it into the right queue.
4406 * 6) migration thread up()s the semaphore.
4407 * 7) we wake up and the migration is done.
4411 * Change a given task's CPU affinity. Migrate the thread to a
4412 * proper CPU and schedule it away if the CPU it's executing on
4413 * is removed from the allowed bitmask.
4415 * NOTE: the caller must have a valid reference to the task, the
4416 * task must not exit() & deallocate itself prematurely. The
4417 * call is not atomic; no spinlocks may be held.
4419 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4421 unsigned long flags;
4422 int ret = 0;
4423 migration_req_t req;
4424 runqueue_t *rq;
4426 rq = task_rq_lock(p, &flags);
4427 if (!cpus_intersects(new_mask, cpu_online_map)) {
4428 ret = -EINVAL;
4429 goto out;
4432 p->cpus_allowed = new_mask;
4433 /* Can the task run on the task's current CPU? If so, we're done */
4434 if (cpu_isset(task_cpu(p), new_mask))
4435 goto out;
4437 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4438 /* Need help from migration thread: drop lock and wait. */
4439 task_rq_unlock(rq, &flags);
4440 wake_up_process(rq->migration_thread);
4441 wait_for_completion(&req.done);
4442 tlb_migrate_finish(p->mm);
4443 return 0;
4445 out:
4446 task_rq_unlock(rq, &flags);
4447 return ret;
4450 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4453 * Move (not current) task off this cpu, onto dest cpu. We're doing
4454 * this because either it can't run here any more (set_cpus_allowed()
4455 * away from this CPU, or CPU going down), or because we're
4456 * attempting to rebalance this task on exec (sched_exec).
4458 * So we race with normal scheduler movements, but that's OK, as long
4459 * as the task is no longer on this CPU.
4461 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4463 runqueue_t *rq_dest, *rq_src;
4465 if (unlikely(cpu_is_offline(dest_cpu)))
4466 return;
4468 rq_src = cpu_rq(src_cpu);
4469 rq_dest = cpu_rq(dest_cpu);
4471 double_rq_lock(rq_src, rq_dest);
4472 /* Already moved. */
4473 if (task_cpu(p) != src_cpu)
4474 goto out;
4475 /* Affinity changed (again). */
4476 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4477 goto out;
4479 set_task_cpu(p, dest_cpu);
4480 if (p->array) {
4482 * Sync timestamp with rq_dest's before activating.
4483 * The same thing could be achieved by doing this step
4484 * afterwards, and pretending it was a local activate.
4485 * This way is cleaner and logically correct.
4487 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4488 + rq_dest->timestamp_last_tick;
4489 deactivate_task(p, rq_src);
4490 activate_task(p, rq_dest, 0);
4491 if (TASK_PREEMPTS_CURR(p, rq_dest))
4492 resched_task(rq_dest->curr);
4495 out:
4496 double_rq_unlock(rq_src, rq_dest);
4500 * migration_thread - this is a highprio system thread that performs
4501 * thread migration by bumping thread off CPU then 'pushing' onto
4502 * another runqueue.
4504 static int migration_thread(void *data)
4506 runqueue_t *rq;
4507 int cpu = (long)data;
4509 rq = cpu_rq(cpu);
4510 BUG_ON(rq->migration_thread != current);
4512 set_current_state(TASK_INTERRUPTIBLE);
4513 while (!kthread_should_stop()) {
4514 struct list_head *head;
4515 migration_req_t *req;
4517 try_to_freeze();
4519 spin_lock_irq(&rq->lock);
4521 if (cpu_is_offline(cpu)) {
4522 spin_unlock_irq(&rq->lock);
4523 goto wait_to_die;
4526 if (rq->active_balance) {
4527 active_load_balance(rq, cpu);
4528 rq->active_balance = 0;
4531 head = &rq->migration_queue;
4533 if (list_empty(head)) {
4534 spin_unlock_irq(&rq->lock);
4535 schedule();
4536 set_current_state(TASK_INTERRUPTIBLE);
4537 continue;
4539 req = list_entry(head->next, migration_req_t, list);
4540 list_del_init(head->next);
4542 spin_unlock(&rq->lock);
4543 __migrate_task(req->task, cpu, req->dest_cpu);
4544 local_irq_enable();
4546 complete(&req->done);
4548 __set_current_state(TASK_RUNNING);
4549 return 0;
4551 wait_to_die:
4552 /* Wait for kthread_stop */
4553 set_current_state(TASK_INTERRUPTIBLE);
4554 while (!kthread_should_stop()) {
4555 schedule();
4556 set_current_state(TASK_INTERRUPTIBLE);
4558 __set_current_state(TASK_RUNNING);
4559 return 0;
4562 #ifdef CONFIG_HOTPLUG_CPU
4563 /* Figure out where task on dead CPU should go, use force if neccessary. */
4564 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4566 int dest_cpu;
4567 cpumask_t mask;
4569 /* On same node? */
4570 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4571 cpus_and(mask, mask, tsk->cpus_allowed);
4572 dest_cpu = any_online_cpu(mask);
4574 /* On any allowed CPU? */
4575 if (dest_cpu == NR_CPUS)
4576 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4578 /* No more Mr. Nice Guy. */
4579 if (dest_cpu == NR_CPUS) {
4580 cpus_setall(tsk->cpus_allowed);
4581 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4584 * Don't tell them about moving exiting tasks or
4585 * kernel threads (both mm NULL), since they never
4586 * leave kernel.
4588 if (tsk->mm && printk_ratelimit())
4589 printk(KERN_INFO "process %d (%s) no "
4590 "longer affine to cpu%d\n",
4591 tsk->pid, tsk->comm, dead_cpu);
4593 __migrate_task(tsk, dead_cpu, dest_cpu);
4597 * While a dead CPU has no uninterruptible tasks queued at this point,
4598 * it might still have a nonzero ->nr_uninterruptible counter, because
4599 * for performance reasons the counter is not stricly tracking tasks to
4600 * their home CPUs. So we just add the counter to another CPU's counter,
4601 * to keep the global sum constant after CPU-down:
4603 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4605 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4606 unsigned long flags;
4608 local_irq_save(flags);
4609 double_rq_lock(rq_src, rq_dest);
4610 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4611 rq_src->nr_uninterruptible = 0;
4612 double_rq_unlock(rq_src, rq_dest);
4613 local_irq_restore(flags);
4616 /* Run through task list and migrate tasks from the dead cpu. */
4617 static void migrate_live_tasks(int src_cpu)
4619 struct task_struct *tsk, *t;
4621 write_lock_irq(&tasklist_lock);
4623 do_each_thread(t, tsk) {
4624 if (tsk == current)
4625 continue;
4627 if (task_cpu(tsk) == src_cpu)
4628 move_task_off_dead_cpu(src_cpu, tsk);
4629 } while_each_thread(t, tsk);
4631 write_unlock_irq(&tasklist_lock);
4634 /* Schedules idle task to be the next runnable task on current CPU.
4635 * It does so by boosting its priority to highest possible and adding it to
4636 * the _front_ of runqueue. Used by CPU offline code.
4638 void sched_idle_next(void)
4640 int cpu = smp_processor_id();
4641 runqueue_t *rq = this_rq();
4642 struct task_struct *p = rq->idle;
4643 unsigned long flags;
4645 /* cpu has to be offline */
4646 BUG_ON(cpu_online(cpu));
4648 /* Strictly not necessary since rest of the CPUs are stopped by now
4649 * and interrupts disabled on current cpu.
4651 spin_lock_irqsave(&rq->lock, flags);
4653 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4654 /* Add idle task to _front_ of it's priority queue */
4655 __activate_idle_task(p, rq);
4657 spin_unlock_irqrestore(&rq->lock, flags);
4660 /* Ensures that the idle task is using init_mm right before its cpu goes
4661 * offline.
4663 void idle_task_exit(void)
4665 struct mm_struct *mm = current->active_mm;
4667 BUG_ON(cpu_online(smp_processor_id()));
4669 if (mm != &init_mm)
4670 switch_mm(mm, &init_mm, current);
4671 mmdrop(mm);
4674 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4676 struct runqueue *rq = cpu_rq(dead_cpu);
4678 /* Must be exiting, otherwise would be on tasklist. */
4679 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4681 /* Cannot have done final schedule yet: would have vanished. */
4682 BUG_ON(tsk->flags & PF_DEAD);
4684 get_task_struct(tsk);
4687 * Drop lock around migration; if someone else moves it,
4688 * that's OK. No task can be added to this CPU, so iteration is
4689 * fine.
4691 spin_unlock_irq(&rq->lock);
4692 move_task_off_dead_cpu(dead_cpu, tsk);
4693 spin_lock_irq(&rq->lock);
4695 put_task_struct(tsk);
4698 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4699 static void migrate_dead_tasks(unsigned int dead_cpu)
4701 unsigned arr, i;
4702 struct runqueue *rq = cpu_rq(dead_cpu);
4704 for (arr = 0; arr < 2; arr++) {
4705 for (i = 0; i < MAX_PRIO; i++) {
4706 struct list_head *list = &rq->arrays[arr].queue[i];
4707 while (!list_empty(list))
4708 migrate_dead(dead_cpu,
4709 list_entry(list->next, task_t,
4710 run_list));
4714 #endif /* CONFIG_HOTPLUG_CPU */
4717 * migration_call - callback that gets triggered when a CPU is added.
4718 * Here we can start up the necessary migration thread for the new CPU.
4720 static int migration_call(struct notifier_block *nfb, unsigned long action,
4721 void *hcpu)
4723 int cpu = (long)hcpu;
4724 struct task_struct *p;
4725 struct runqueue *rq;
4726 unsigned long flags;
4728 switch (action) {
4729 case CPU_UP_PREPARE:
4730 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4731 if (IS_ERR(p))
4732 return NOTIFY_BAD;
4733 p->flags |= PF_NOFREEZE;
4734 kthread_bind(p, cpu);
4735 /* Must be high prio: stop_machine expects to yield to it. */
4736 rq = task_rq_lock(p, &flags);
4737 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4738 task_rq_unlock(rq, &flags);
4739 cpu_rq(cpu)->migration_thread = p;
4740 break;
4741 case CPU_ONLINE:
4742 /* Strictly unneccessary, as first user will wake it. */
4743 wake_up_process(cpu_rq(cpu)->migration_thread);
4744 break;
4745 #ifdef CONFIG_HOTPLUG_CPU
4746 case CPU_UP_CANCELED:
4747 /* Unbind it from offline cpu so it can run. Fall thru. */
4748 kthread_bind(cpu_rq(cpu)->migration_thread,
4749 any_online_cpu(cpu_online_map));
4750 kthread_stop(cpu_rq(cpu)->migration_thread);
4751 cpu_rq(cpu)->migration_thread = NULL;
4752 break;
4753 case CPU_DEAD:
4754 migrate_live_tasks(cpu);
4755 rq = cpu_rq(cpu);
4756 kthread_stop(rq->migration_thread);
4757 rq->migration_thread = NULL;
4758 /* Idle task back to normal (off runqueue, low prio) */
4759 rq = task_rq_lock(rq->idle, &flags);
4760 deactivate_task(rq->idle, rq);
4761 rq->idle->static_prio = MAX_PRIO;
4762 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4763 migrate_dead_tasks(cpu);
4764 task_rq_unlock(rq, &flags);
4765 migrate_nr_uninterruptible(rq);
4766 BUG_ON(rq->nr_running != 0);
4768 /* No need to migrate the tasks: it was best-effort if
4769 * they didn't do lock_cpu_hotplug(). Just wake up
4770 * the requestors. */
4771 spin_lock_irq(&rq->lock);
4772 while (!list_empty(&rq->migration_queue)) {
4773 migration_req_t *req;
4774 req = list_entry(rq->migration_queue.next,
4775 migration_req_t, list);
4776 list_del_init(&req->list);
4777 complete(&req->done);
4779 spin_unlock_irq(&rq->lock);
4780 break;
4781 #endif
4783 return NOTIFY_OK;
4786 /* Register at highest priority so that task migration (migrate_all_tasks)
4787 * happens before everything else.
4789 static struct notifier_block __devinitdata migration_notifier = {
4790 .notifier_call = migration_call,
4791 .priority = 10
4794 int __init migration_init(void)
4796 void *cpu = (void *)(long)smp_processor_id();
4797 /* Start one for boot CPU. */
4798 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4799 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4800 register_cpu_notifier(&migration_notifier);
4801 return 0;
4803 #endif
4805 #ifdef CONFIG_SMP
4806 #undef SCHED_DOMAIN_DEBUG
4807 #ifdef SCHED_DOMAIN_DEBUG
4808 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4810 int level = 0;
4812 if (!sd) {
4813 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4814 return;
4817 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4819 do {
4820 int i;
4821 char str[NR_CPUS];
4822 struct sched_group *group = sd->groups;
4823 cpumask_t groupmask;
4825 cpumask_scnprintf(str, NR_CPUS, sd->span);
4826 cpus_clear(groupmask);
4828 printk(KERN_DEBUG);
4829 for (i = 0; i < level + 1; i++)
4830 printk(" ");
4831 printk("domain %d: ", level);
4833 if (!(sd->flags & SD_LOAD_BALANCE)) {
4834 printk("does not load-balance\n");
4835 if (sd->parent)
4836 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4837 break;
4840 printk("span %s\n", str);
4842 if (!cpu_isset(cpu, sd->span))
4843 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4844 if (!cpu_isset(cpu, group->cpumask))
4845 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4847 printk(KERN_DEBUG);
4848 for (i = 0; i < level + 2; i++)
4849 printk(" ");
4850 printk("groups:");
4851 do {
4852 if (!group) {
4853 printk("\n");
4854 printk(KERN_ERR "ERROR: group is NULL\n");
4855 break;
4858 if (!group->cpu_power) {
4859 printk("\n");
4860 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4863 if (!cpus_weight(group->cpumask)) {
4864 printk("\n");
4865 printk(KERN_ERR "ERROR: empty group\n");
4868 if (cpus_intersects(groupmask, group->cpumask)) {
4869 printk("\n");
4870 printk(KERN_ERR "ERROR: repeated CPUs\n");
4873 cpus_or(groupmask, groupmask, group->cpumask);
4875 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4876 printk(" %s", str);
4878 group = group->next;
4879 } while (group != sd->groups);
4880 printk("\n");
4882 if (!cpus_equal(sd->span, groupmask))
4883 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4885 level++;
4886 sd = sd->parent;
4888 if (sd) {
4889 if (!cpus_subset(groupmask, sd->span))
4890 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4893 } while (sd);
4895 #else
4896 #define sched_domain_debug(sd, cpu) {}
4897 #endif
4899 static int sd_degenerate(struct sched_domain *sd)
4901 if (cpus_weight(sd->span) == 1)
4902 return 1;
4904 /* Following flags need at least 2 groups */
4905 if (sd->flags & (SD_LOAD_BALANCE |
4906 SD_BALANCE_NEWIDLE |
4907 SD_BALANCE_FORK |
4908 SD_BALANCE_EXEC)) {
4909 if (sd->groups != sd->groups->next)
4910 return 0;
4913 /* Following flags don't use groups */
4914 if (sd->flags & (SD_WAKE_IDLE |
4915 SD_WAKE_AFFINE |
4916 SD_WAKE_BALANCE))
4917 return 0;
4919 return 1;
4922 static int sd_parent_degenerate(struct sched_domain *sd,
4923 struct sched_domain *parent)
4925 unsigned long cflags = sd->flags, pflags = parent->flags;
4927 if (sd_degenerate(parent))
4928 return 1;
4930 if (!cpus_equal(sd->span, parent->span))
4931 return 0;
4933 /* Does parent contain flags not in child? */
4934 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4935 if (cflags & SD_WAKE_AFFINE)
4936 pflags &= ~SD_WAKE_BALANCE;
4937 /* Flags needing groups don't count if only 1 group in parent */
4938 if (parent->groups == parent->groups->next) {
4939 pflags &= ~(SD_LOAD_BALANCE |
4940 SD_BALANCE_NEWIDLE |
4941 SD_BALANCE_FORK |
4942 SD_BALANCE_EXEC);
4944 if (~cflags & pflags)
4945 return 0;
4947 return 1;
4951 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4952 * hold the hotplug lock.
4954 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4956 runqueue_t *rq = cpu_rq(cpu);
4957 struct sched_domain *tmp;
4959 /* Remove the sched domains which do not contribute to scheduling. */
4960 for (tmp = sd; tmp; tmp = tmp->parent) {
4961 struct sched_domain *parent = tmp->parent;
4962 if (!parent)
4963 break;
4964 if (sd_parent_degenerate(tmp, parent))
4965 tmp->parent = parent->parent;
4968 if (sd && sd_degenerate(sd))
4969 sd = sd->parent;
4971 sched_domain_debug(sd, cpu);
4973 rcu_assign_pointer(rq->sd, sd);
4976 /* cpus with isolated domains */
4977 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4979 /* Setup the mask of cpus configured for isolated domains */
4980 static int __init isolated_cpu_setup(char *str)
4982 int ints[NR_CPUS], i;
4984 str = get_options(str, ARRAY_SIZE(ints), ints);
4985 cpus_clear(cpu_isolated_map);
4986 for (i = 1; i <= ints[0]; i++)
4987 if (ints[i] < NR_CPUS)
4988 cpu_set(ints[i], cpu_isolated_map);
4989 return 1;
4992 __setup ("isolcpus=", isolated_cpu_setup);
4995 * init_sched_build_groups takes an array of groups, the cpumask we wish
4996 * to span, and a pointer to a function which identifies what group a CPU
4997 * belongs to. The return value of group_fn must be a valid index into the
4998 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4999 * keep track of groups covered with a cpumask_t).
5001 * init_sched_build_groups will build a circular linked list of the groups
5002 * covered by the given span, and will set each group's ->cpumask correctly,
5003 * and ->cpu_power to 0.
5005 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5006 int (*group_fn)(int cpu))
5008 struct sched_group *first = NULL, *last = NULL;
5009 cpumask_t covered = CPU_MASK_NONE;
5010 int i;
5012 for_each_cpu_mask(i, span) {
5013 int group = group_fn(i);
5014 struct sched_group *sg = &groups[group];
5015 int j;
5017 if (cpu_isset(i, covered))
5018 continue;
5020 sg->cpumask = CPU_MASK_NONE;
5021 sg->cpu_power = 0;
5023 for_each_cpu_mask(j, span) {
5024 if (group_fn(j) != group)
5025 continue;
5027 cpu_set(j, covered);
5028 cpu_set(j, sg->cpumask);
5030 if (!first)
5031 first = sg;
5032 if (last)
5033 last->next = sg;
5034 last = sg;
5036 last->next = first;
5039 #define SD_NODES_PER_DOMAIN 16
5042 * Self-tuning task migration cost measurement between source and target CPUs.
5044 * This is done by measuring the cost of manipulating buffers of varying
5045 * sizes. For a given buffer-size here are the steps that are taken:
5047 * 1) the source CPU reads+dirties a shared buffer
5048 * 2) the target CPU reads+dirties the same shared buffer
5050 * We measure how long they take, in the following 4 scenarios:
5052 * - source: CPU1, target: CPU2 | cost1
5053 * - source: CPU2, target: CPU1 | cost2
5054 * - source: CPU1, target: CPU1 | cost3
5055 * - source: CPU2, target: CPU2 | cost4
5057 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5058 * the cost of migration.
5060 * We then start off from a small buffer-size and iterate up to larger
5061 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5062 * doing a maximum search for the cost. (The maximum cost for a migration
5063 * normally occurs when the working set size is around the effective cache
5064 * size.)
5066 #define SEARCH_SCOPE 2
5067 #define MIN_CACHE_SIZE (64*1024U)
5068 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5069 #define ITERATIONS 1
5070 #define SIZE_THRESH 130
5071 #define COST_THRESH 130
5074 * The migration cost is a function of 'domain distance'. Domain
5075 * distance is the number of steps a CPU has to iterate down its
5076 * domain tree to share a domain with the other CPU. The farther
5077 * two CPUs are from each other, the larger the distance gets.
5079 * Note that we use the distance only to cache measurement results,
5080 * the distance value is not used numerically otherwise. When two
5081 * CPUs have the same distance it is assumed that the migration
5082 * cost is the same. (this is a simplification but quite practical)
5084 #define MAX_DOMAIN_DISTANCE 32
5086 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5087 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5089 * Architectures may override the migration cost and thus avoid
5090 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5091 * virtualized hardware:
5093 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5094 CONFIG_DEFAULT_MIGRATION_COST
5095 #else
5096 -1LL
5097 #endif
5101 * Allow override of migration cost - in units of microseconds.
5102 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5103 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5105 static int __init migration_cost_setup(char *str)
5107 int ints[MAX_DOMAIN_DISTANCE+1], i;
5109 str = get_options(str, ARRAY_SIZE(ints), ints);
5111 printk("#ints: %d\n", ints[0]);
5112 for (i = 1; i <= ints[0]; i++) {
5113 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5114 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5116 return 1;
5119 __setup ("migration_cost=", migration_cost_setup);
5122 * Global multiplier (divisor) for migration-cutoff values,
5123 * in percentiles. E.g. use a value of 150 to get 1.5 times
5124 * longer cache-hot cutoff times.
5126 * (We scale it from 100 to 128 to long long handling easier.)
5129 #define MIGRATION_FACTOR_SCALE 128
5131 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5133 static int __init setup_migration_factor(char *str)
5135 get_option(&str, &migration_factor);
5136 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5137 return 1;
5140 __setup("migration_factor=", setup_migration_factor);
5143 * Estimated distance of two CPUs, measured via the number of domains
5144 * we have to pass for the two CPUs to be in the same span:
5146 static unsigned long domain_distance(int cpu1, int cpu2)
5148 unsigned long distance = 0;
5149 struct sched_domain *sd;
5151 for_each_domain(cpu1, sd) {
5152 WARN_ON(!cpu_isset(cpu1, sd->span));
5153 if (cpu_isset(cpu2, sd->span))
5154 return distance;
5155 distance++;
5157 if (distance >= MAX_DOMAIN_DISTANCE) {
5158 WARN_ON(1);
5159 distance = MAX_DOMAIN_DISTANCE-1;
5162 return distance;
5165 static unsigned int migration_debug;
5167 static int __init setup_migration_debug(char *str)
5169 get_option(&str, &migration_debug);
5170 return 1;
5173 __setup("migration_debug=", setup_migration_debug);
5176 * Maximum cache-size that the scheduler should try to measure.
5177 * Architectures with larger caches should tune this up during
5178 * bootup. Gets used in the domain-setup code (i.e. during SMP
5179 * bootup).
5181 unsigned int max_cache_size;
5183 static int __init setup_max_cache_size(char *str)
5185 get_option(&str, &max_cache_size);
5186 return 1;
5189 __setup("max_cache_size=", setup_max_cache_size);
5192 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5193 * is the operation that is timed, so we try to generate unpredictable
5194 * cachemisses that still end up filling the L2 cache:
5196 static void touch_cache(void *__cache, unsigned long __size)
5198 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5199 chunk2 = 2*size/3;
5200 unsigned long *cache = __cache;
5201 int i;
5203 for (i = 0; i < size/6; i += 8) {
5204 switch (i % 6) {
5205 case 0: cache[i]++;
5206 case 1: cache[size-1-i]++;
5207 case 2: cache[chunk1-i]++;
5208 case 3: cache[chunk1+i]++;
5209 case 4: cache[chunk2-i]++;
5210 case 5: cache[chunk2+i]++;
5216 * Measure the cache-cost of one task migration. Returns in units of nsec.
5218 static unsigned long long measure_one(void *cache, unsigned long size,
5219 int source, int target)
5221 cpumask_t mask, saved_mask;
5222 unsigned long long t0, t1, t2, t3, cost;
5224 saved_mask = current->cpus_allowed;
5227 * Flush source caches to RAM and invalidate them:
5229 sched_cacheflush();
5232 * Migrate to the source CPU:
5234 mask = cpumask_of_cpu(source);
5235 set_cpus_allowed(current, mask);
5236 WARN_ON(smp_processor_id() != source);
5239 * Dirty the working set:
5241 t0 = sched_clock();
5242 touch_cache(cache, size);
5243 t1 = sched_clock();
5246 * Migrate to the target CPU, dirty the L2 cache and access
5247 * the shared buffer. (which represents the working set
5248 * of a migrated task.)
5250 mask = cpumask_of_cpu(target);
5251 set_cpus_allowed(current, mask);
5252 WARN_ON(smp_processor_id() != target);
5254 t2 = sched_clock();
5255 touch_cache(cache, size);
5256 t3 = sched_clock();
5258 cost = t1-t0 + t3-t2;
5260 if (migration_debug >= 2)
5261 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5262 source, target, t1-t0, t1-t0, t3-t2, cost);
5264 * Flush target caches to RAM and invalidate them:
5266 sched_cacheflush();
5268 set_cpus_allowed(current, saved_mask);
5270 return cost;
5274 * Measure a series of task migrations and return the average
5275 * result. Since this code runs early during bootup the system
5276 * is 'undisturbed' and the average latency makes sense.
5278 * The algorithm in essence auto-detects the relevant cache-size,
5279 * so it will properly detect different cachesizes for different
5280 * cache-hierarchies, depending on how the CPUs are connected.
5282 * Architectures can prime the upper limit of the search range via
5283 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5285 static unsigned long long
5286 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5288 unsigned long long cost1, cost2;
5289 int i;
5292 * Measure the migration cost of 'size' bytes, over an
5293 * average of 10 runs:
5295 * (We perturb the cache size by a small (0..4k)
5296 * value to compensate size/alignment related artifacts.
5297 * We also subtract the cost of the operation done on
5298 * the same CPU.)
5300 cost1 = 0;
5303 * dry run, to make sure we start off cache-cold on cpu1,
5304 * and to get any vmalloc pagefaults in advance:
5306 measure_one(cache, size, cpu1, cpu2);
5307 for (i = 0; i < ITERATIONS; i++)
5308 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5310 measure_one(cache, size, cpu2, cpu1);
5311 for (i = 0; i < ITERATIONS; i++)
5312 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5315 * (We measure the non-migrating [cached] cost on both
5316 * cpu1 and cpu2, to handle CPUs with different speeds)
5318 cost2 = 0;
5320 measure_one(cache, size, cpu1, cpu1);
5321 for (i = 0; i < ITERATIONS; i++)
5322 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5324 measure_one(cache, size, cpu2, cpu2);
5325 for (i = 0; i < ITERATIONS; i++)
5326 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5329 * Get the per-iteration migration cost:
5331 do_div(cost1, 2*ITERATIONS);
5332 do_div(cost2, 2*ITERATIONS);
5334 return cost1 - cost2;
5337 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5339 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5340 unsigned int max_size, size, size_found = 0;
5341 long long cost = 0, prev_cost;
5342 void *cache;
5345 * Search from max_cache_size*5 down to 64K - the real relevant
5346 * cachesize has to lie somewhere inbetween.
5348 if (max_cache_size) {
5349 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5350 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5351 } else {
5353 * Since we have no estimation about the relevant
5354 * search range
5356 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5357 size = MIN_CACHE_SIZE;
5360 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5361 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5362 return 0;
5366 * Allocate the working set:
5368 cache = vmalloc(max_size);
5369 if (!cache) {
5370 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5371 return 1000000; // return 1 msec on very small boxen
5374 while (size <= max_size) {
5375 prev_cost = cost;
5376 cost = measure_cost(cpu1, cpu2, cache, size);
5379 * Update the max:
5381 if (cost > 0) {
5382 if (max_cost < cost) {
5383 max_cost = cost;
5384 size_found = size;
5388 * Calculate average fluctuation, we use this to prevent
5389 * noise from triggering an early break out of the loop:
5391 fluct = abs(cost - prev_cost);
5392 avg_fluct = (avg_fluct + fluct)/2;
5394 if (migration_debug)
5395 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5396 cpu1, cpu2, size,
5397 (long)cost / 1000000,
5398 ((long)cost / 100000) % 10,
5399 (long)max_cost / 1000000,
5400 ((long)max_cost / 100000) % 10,
5401 domain_distance(cpu1, cpu2),
5402 cost, avg_fluct);
5405 * If we iterated at least 20% past the previous maximum,
5406 * and the cost has dropped by more than 20% already,
5407 * (taking fluctuations into account) then we assume to
5408 * have found the maximum and break out of the loop early:
5410 if (size_found && (size*100 > size_found*SIZE_THRESH))
5411 if (cost+avg_fluct <= 0 ||
5412 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5414 if (migration_debug)
5415 printk("-> found max.\n");
5416 break;
5419 * Increase the cachesize in 10% steps:
5421 size = size * 10 / 9;
5424 if (migration_debug)
5425 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5426 cpu1, cpu2, size_found, max_cost);
5428 vfree(cache);
5431 * A task is considered 'cache cold' if at least 2 times
5432 * the worst-case cost of migration has passed.
5434 * (this limit is only listened to if the load-balancing
5435 * situation is 'nice' - if there is a large imbalance we
5436 * ignore it for the sake of CPU utilization and
5437 * processing fairness.)
5439 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5442 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5444 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5445 unsigned long j0, j1, distance, max_distance = 0;
5446 struct sched_domain *sd;
5448 j0 = jiffies;
5451 * First pass - calculate the cacheflush times:
5453 for_each_cpu_mask(cpu1, *cpu_map) {
5454 for_each_cpu_mask(cpu2, *cpu_map) {
5455 if (cpu1 == cpu2)
5456 continue;
5457 distance = domain_distance(cpu1, cpu2);
5458 max_distance = max(max_distance, distance);
5460 * No result cached yet?
5462 if (migration_cost[distance] == -1LL)
5463 migration_cost[distance] =
5464 measure_migration_cost(cpu1, cpu2);
5468 * Second pass - update the sched domain hierarchy with
5469 * the new cache-hot-time estimations:
5471 for_each_cpu_mask(cpu, *cpu_map) {
5472 distance = 0;
5473 for_each_domain(cpu, sd) {
5474 sd->cache_hot_time = migration_cost[distance];
5475 distance++;
5479 * Print the matrix:
5481 if (migration_debug)
5482 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5483 max_cache_size,
5484 #ifdef CONFIG_X86
5485 cpu_khz/1000
5486 #else
5488 #endif
5490 if (system_state == SYSTEM_BOOTING) {
5491 printk("migration_cost=");
5492 for (distance = 0; distance <= max_distance; distance++) {
5493 if (distance)
5494 printk(",");
5495 printk("%ld", (long)migration_cost[distance] / 1000);
5497 printk("\n");
5499 j1 = jiffies;
5500 if (migration_debug)
5501 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5504 * Move back to the original CPU. NUMA-Q gets confused
5505 * if we migrate to another quad during bootup.
5507 if (raw_smp_processor_id() != orig_cpu) {
5508 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5509 saved_mask = current->cpus_allowed;
5511 set_cpus_allowed(current, mask);
5512 set_cpus_allowed(current, saved_mask);
5516 #ifdef CONFIG_NUMA
5519 * find_next_best_node - find the next node to include in a sched_domain
5520 * @node: node whose sched_domain we're building
5521 * @used_nodes: nodes already in the sched_domain
5523 * Find the next node to include in a given scheduling domain. Simply
5524 * finds the closest node not already in the @used_nodes map.
5526 * Should use nodemask_t.
5528 static int find_next_best_node(int node, unsigned long *used_nodes)
5530 int i, n, val, min_val, best_node = 0;
5532 min_val = INT_MAX;
5534 for (i = 0; i < MAX_NUMNODES; i++) {
5535 /* Start at @node */
5536 n = (node + i) % MAX_NUMNODES;
5538 if (!nr_cpus_node(n))
5539 continue;
5541 /* Skip already used nodes */
5542 if (test_bit(n, used_nodes))
5543 continue;
5545 /* Simple min distance search */
5546 val = node_distance(node, n);
5548 if (val < min_val) {
5549 min_val = val;
5550 best_node = n;
5554 set_bit(best_node, used_nodes);
5555 return best_node;
5559 * sched_domain_node_span - get a cpumask for a node's sched_domain
5560 * @node: node whose cpumask we're constructing
5561 * @size: number of nodes to include in this span
5563 * Given a node, construct a good cpumask for its sched_domain to span. It
5564 * should be one that prevents unnecessary balancing, but also spreads tasks
5565 * out optimally.
5567 static cpumask_t sched_domain_node_span(int node)
5569 int i;
5570 cpumask_t span, nodemask;
5571 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5573 cpus_clear(span);
5574 bitmap_zero(used_nodes, MAX_NUMNODES);
5576 nodemask = node_to_cpumask(node);
5577 cpus_or(span, span, nodemask);
5578 set_bit(node, used_nodes);
5580 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5581 int next_node = find_next_best_node(node, used_nodes);
5582 nodemask = node_to_cpumask(next_node);
5583 cpus_or(span, span, nodemask);
5586 return span;
5588 #endif
5591 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5592 * can switch it on easily if needed.
5594 #ifdef CONFIG_SCHED_SMT
5595 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5596 static struct sched_group sched_group_cpus[NR_CPUS];
5597 static int cpu_to_cpu_group(int cpu)
5599 return cpu;
5601 #endif
5603 #ifdef CONFIG_SCHED_MC
5604 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5605 static struct sched_group sched_group_core[NR_CPUS];
5606 #endif
5608 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5609 static int cpu_to_core_group(int cpu)
5611 return first_cpu(cpu_sibling_map[cpu]);
5613 #elif defined(CONFIG_SCHED_MC)
5614 static int cpu_to_core_group(int cpu)
5616 return cpu;
5618 #endif
5620 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5621 static struct sched_group sched_group_phys[NR_CPUS];
5622 static int cpu_to_phys_group(int cpu)
5624 #if defined(CONFIG_SCHED_MC)
5625 cpumask_t mask = cpu_coregroup_map(cpu);
5626 return first_cpu(mask);
5627 #elif defined(CONFIG_SCHED_SMT)
5628 return first_cpu(cpu_sibling_map[cpu]);
5629 #else
5630 return cpu;
5631 #endif
5634 #ifdef CONFIG_NUMA
5636 * The init_sched_build_groups can't handle what we want to do with node
5637 * groups, so roll our own. Now each node has its own list of groups which
5638 * gets dynamically allocated.
5640 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5641 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5643 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5644 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5646 static int cpu_to_allnodes_group(int cpu)
5648 return cpu_to_node(cpu);
5650 static void init_numa_sched_groups_power(struct sched_group *group_head)
5652 struct sched_group *sg = group_head;
5653 int j;
5655 if (!sg)
5656 return;
5657 next_sg:
5658 for_each_cpu_mask(j, sg->cpumask) {
5659 struct sched_domain *sd;
5661 sd = &per_cpu(phys_domains, j);
5662 if (j != first_cpu(sd->groups->cpumask)) {
5664 * Only add "power" once for each
5665 * physical package.
5667 continue;
5670 sg->cpu_power += sd->groups->cpu_power;
5672 sg = sg->next;
5673 if (sg != group_head)
5674 goto next_sg;
5676 #endif
5679 * Build sched domains for a given set of cpus and attach the sched domains
5680 * to the individual cpus
5682 void build_sched_domains(const cpumask_t *cpu_map)
5684 int i;
5685 #ifdef CONFIG_NUMA
5686 struct sched_group **sched_group_nodes = NULL;
5687 struct sched_group *sched_group_allnodes = NULL;
5690 * Allocate the per-node list of sched groups
5692 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5693 GFP_ATOMIC);
5694 if (!sched_group_nodes) {
5695 printk(KERN_WARNING "Can not alloc sched group node list\n");
5696 return;
5698 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5699 #endif
5702 * Set up domains for cpus specified by the cpu_map.
5704 for_each_cpu_mask(i, *cpu_map) {
5705 int group;
5706 struct sched_domain *sd = NULL, *p;
5707 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5709 cpus_and(nodemask, nodemask, *cpu_map);
5711 #ifdef CONFIG_NUMA
5712 if (cpus_weight(*cpu_map)
5713 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5714 if (!sched_group_allnodes) {
5715 sched_group_allnodes
5716 = kmalloc(sizeof(struct sched_group)
5717 * MAX_NUMNODES,
5718 GFP_KERNEL);
5719 if (!sched_group_allnodes) {
5720 printk(KERN_WARNING
5721 "Can not alloc allnodes sched group\n");
5722 break;
5724 sched_group_allnodes_bycpu[i]
5725 = sched_group_allnodes;
5727 sd = &per_cpu(allnodes_domains, i);
5728 *sd = SD_ALLNODES_INIT;
5729 sd->span = *cpu_map;
5730 group = cpu_to_allnodes_group(i);
5731 sd->groups = &sched_group_allnodes[group];
5732 p = sd;
5733 } else
5734 p = NULL;
5736 sd = &per_cpu(node_domains, i);
5737 *sd = SD_NODE_INIT;
5738 sd->span = sched_domain_node_span(cpu_to_node(i));
5739 sd->parent = p;
5740 cpus_and(sd->span, sd->span, *cpu_map);
5741 #endif
5743 p = sd;
5744 sd = &per_cpu(phys_domains, i);
5745 group = cpu_to_phys_group(i);
5746 *sd = SD_CPU_INIT;
5747 sd->span = nodemask;
5748 sd->parent = p;
5749 sd->groups = &sched_group_phys[group];
5751 #ifdef CONFIG_SCHED_MC
5752 p = sd;
5753 sd = &per_cpu(core_domains, i);
5754 group = cpu_to_core_group(i);
5755 *sd = SD_MC_INIT;
5756 sd->span = cpu_coregroup_map(i);
5757 cpus_and(sd->span, sd->span, *cpu_map);
5758 sd->parent = p;
5759 sd->groups = &sched_group_core[group];
5760 #endif
5762 #ifdef CONFIG_SCHED_SMT
5763 p = sd;
5764 sd = &per_cpu(cpu_domains, i);
5765 group = cpu_to_cpu_group(i);
5766 *sd = SD_SIBLING_INIT;
5767 sd->span = cpu_sibling_map[i];
5768 cpus_and(sd->span, sd->span, *cpu_map);
5769 sd->parent = p;
5770 sd->groups = &sched_group_cpus[group];
5771 #endif
5774 #ifdef CONFIG_SCHED_SMT
5775 /* Set up CPU (sibling) groups */
5776 for_each_cpu_mask(i, *cpu_map) {
5777 cpumask_t this_sibling_map = cpu_sibling_map[i];
5778 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5779 if (i != first_cpu(this_sibling_map))
5780 continue;
5782 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5783 &cpu_to_cpu_group);
5785 #endif
5787 #ifdef CONFIG_SCHED_MC
5788 /* Set up multi-core groups */
5789 for_each_cpu_mask(i, *cpu_map) {
5790 cpumask_t this_core_map = cpu_coregroup_map(i);
5791 cpus_and(this_core_map, this_core_map, *cpu_map);
5792 if (i != first_cpu(this_core_map))
5793 continue;
5794 init_sched_build_groups(sched_group_core, this_core_map,
5795 &cpu_to_core_group);
5797 #endif
5800 /* Set up physical groups */
5801 for (i = 0; i < MAX_NUMNODES; i++) {
5802 cpumask_t nodemask = node_to_cpumask(i);
5804 cpus_and(nodemask, nodemask, *cpu_map);
5805 if (cpus_empty(nodemask))
5806 continue;
5808 init_sched_build_groups(sched_group_phys, nodemask,
5809 &cpu_to_phys_group);
5812 #ifdef CONFIG_NUMA
5813 /* Set up node groups */
5814 if (sched_group_allnodes)
5815 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5816 &cpu_to_allnodes_group);
5818 for (i = 0; i < MAX_NUMNODES; i++) {
5819 /* Set up node groups */
5820 struct sched_group *sg, *prev;
5821 cpumask_t nodemask = node_to_cpumask(i);
5822 cpumask_t domainspan;
5823 cpumask_t covered = CPU_MASK_NONE;
5824 int j;
5826 cpus_and(nodemask, nodemask, *cpu_map);
5827 if (cpus_empty(nodemask)) {
5828 sched_group_nodes[i] = NULL;
5829 continue;
5832 domainspan = sched_domain_node_span(i);
5833 cpus_and(domainspan, domainspan, *cpu_map);
5835 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5836 sched_group_nodes[i] = sg;
5837 for_each_cpu_mask(j, nodemask) {
5838 struct sched_domain *sd;
5839 sd = &per_cpu(node_domains, j);
5840 sd->groups = sg;
5841 if (sd->groups == NULL) {
5842 /* Turn off balancing if we have no groups */
5843 sd->flags = 0;
5846 if (!sg) {
5847 printk(KERN_WARNING
5848 "Can not alloc domain group for node %d\n", i);
5849 continue;
5851 sg->cpu_power = 0;
5852 sg->cpumask = nodemask;
5853 cpus_or(covered, covered, nodemask);
5854 prev = sg;
5856 for (j = 0; j < MAX_NUMNODES; j++) {
5857 cpumask_t tmp, notcovered;
5858 int n = (i + j) % MAX_NUMNODES;
5860 cpus_complement(notcovered, covered);
5861 cpus_and(tmp, notcovered, *cpu_map);
5862 cpus_and(tmp, tmp, domainspan);
5863 if (cpus_empty(tmp))
5864 break;
5866 nodemask = node_to_cpumask(n);
5867 cpus_and(tmp, tmp, nodemask);
5868 if (cpus_empty(tmp))
5869 continue;
5871 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5872 if (!sg) {
5873 printk(KERN_WARNING
5874 "Can not alloc domain group for node %d\n", j);
5875 break;
5877 sg->cpu_power = 0;
5878 sg->cpumask = tmp;
5879 cpus_or(covered, covered, tmp);
5880 prev->next = sg;
5881 prev = sg;
5883 prev->next = sched_group_nodes[i];
5885 #endif
5887 /* Calculate CPU power for physical packages and nodes */
5888 for_each_cpu_mask(i, *cpu_map) {
5889 int power;
5890 struct sched_domain *sd;
5891 #ifdef CONFIG_SCHED_SMT
5892 sd = &per_cpu(cpu_domains, i);
5893 power = SCHED_LOAD_SCALE;
5894 sd->groups->cpu_power = power;
5895 #endif
5896 #ifdef CONFIG_SCHED_MC
5897 sd = &per_cpu(core_domains, i);
5898 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5899 * SCHED_LOAD_SCALE / 10;
5900 sd->groups->cpu_power = power;
5902 sd = &per_cpu(phys_domains, i);
5905 * This has to be < 2 * SCHED_LOAD_SCALE
5906 * Lets keep it SCHED_LOAD_SCALE, so that
5907 * while calculating NUMA group's cpu_power
5908 * we can simply do
5909 * numa_group->cpu_power += phys_group->cpu_power;
5911 * See "only add power once for each physical pkg"
5912 * comment below
5914 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5915 #else
5916 sd = &per_cpu(phys_domains, i);
5917 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5918 (cpus_weight(sd->groups->cpumask)-1) / 10;
5919 sd->groups->cpu_power = power;
5920 #endif
5923 #ifdef CONFIG_NUMA
5924 for (i = 0; i < MAX_NUMNODES; i++)
5925 init_numa_sched_groups_power(sched_group_nodes[i]);
5927 init_numa_sched_groups_power(sched_group_allnodes);
5928 #endif
5930 /* Attach the domains */
5931 for_each_cpu_mask(i, *cpu_map) {
5932 struct sched_domain *sd;
5933 #ifdef CONFIG_SCHED_SMT
5934 sd = &per_cpu(cpu_domains, i);
5935 #elif defined(CONFIG_SCHED_MC)
5936 sd = &per_cpu(core_domains, i);
5937 #else
5938 sd = &per_cpu(phys_domains, i);
5939 #endif
5940 cpu_attach_domain(sd, i);
5943 * Tune cache-hot values:
5945 calibrate_migration_costs(cpu_map);
5948 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5950 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5952 cpumask_t cpu_default_map;
5955 * Setup mask for cpus without special case scheduling requirements.
5956 * For now this just excludes isolated cpus, but could be used to
5957 * exclude other special cases in the future.
5959 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5961 build_sched_domains(&cpu_default_map);
5964 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5966 #ifdef CONFIG_NUMA
5967 int i;
5968 int cpu;
5970 for_each_cpu_mask(cpu, *cpu_map) {
5971 struct sched_group *sched_group_allnodes
5972 = sched_group_allnodes_bycpu[cpu];
5973 struct sched_group **sched_group_nodes
5974 = sched_group_nodes_bycpu[cpu];
5976 if (sched_group_allnodes) {
5977 kfree(sched_group_allnodes);
5978 sched_group_allnodes_bycpu[cpu] = NULL;
5981 if (!sched_group_nodes)
5982 continue;
5984 for (i = 0; i < MAX_NUMNODES; i++) {
5985 cpumask_t nodemask = node_to_cpumask(i);
5986 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5988 cpus_and(nodemask, nodemask, *cpu_map);
5989 if (cpus_empty(nodemask))
5990 continue;
5992 if (sg == NULL)
5993 continue;
5994 sg = sg->next;
5995 next_sg:
5996 oldsg = sg;
5997 sg = sg->next;
5998 kfree(oldsg);
5999 if (oldsg != sched_group_nodes[i])
6000 goto next_sg;
6002 kfree(sched_group_nodes);
6003 sched_group_nodes_bycpu[cpu] = NULL;
6005 #endif
6009 * Detach sched domains from a group of cpus specified in cpu_map
6010 * These cpus will now be attached to the NULL domain
6012 static void detach_destroy_domains(const cpumask_t *cpu_map)
6014 int i;
6016 for_each_cpu_mask(i, *cpu_map)
6017 cpu_attach_domain(NULL, i);
6018 synchronize_sched();
6019 arch_destroy_sched_domains(cpu_map);
6023 * Partition sched domains as specified by the cpumasks below.
6024 * This attaches all cpus from the cpumasks to the NULL domain,
6025 * waits for a RCU quiescent period, recalculates sched
6026 * domain information and then attaches them back to the
6027 * correct sched domains
6028 * Call with hotplug lock held
6030 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6032 cpumask_t change_map;
6034 cpus_and(*partition1, *partition1, cpu_online_map);
6035 cpus_and(*partition2, *partition2, cpu_online_map);
6036 cpus_or(change_map, *partition1, *partition2);
6038 /* Detach sched domains from all of the affected cpus */
6039 detach_destroy_domains(&change_map);
6040 if (!cpus_empty(*partition1))
6041 build_sched_domains(partition1);
6042 if (!cpus_empty(*partition2))
6043 build_sched_domains(partition2);
6046 #ifdef CONFIG_HOTPLUG_CPU
6048 * Force a reinitialization of the sched domains hierarchy. The domains
6049 * and groups cannot be updated in place without racing with the balancing
6050 * code, so we temporarily attach all running cpus to the NULL domain
6051 * which will prevent rebalancing while the sched domains are recalculated.
6053 static int update_sched_domains(struct notifier_block *nfb,
6054 unsigned long action, void *hcpu)
6056 switch (action) {
6057 case CPU_UP_PREPARE:
6058 case CPU_DOWN_PREPARE:
6059 detach_destroy_domains(&cpu_online_map);
6060 return NOTIFY_OK;
6062 case CPU_UP_CANCELED:
6063 case CPU_DOWN_FAILED:
6064 case CPU_ONLINE:
6065 case CPU_DEAD:
6067 * Fall through and re-initialise the domains.
6069 break;
6070 default:
6071 return NOTIFY_DONE;
6074 /* The hotplug lock is already held by cpu_up/cpu_down */
6075 arch_init_sched_domains(&cpu_online_map);
6077 return NOTIFY_OK;
6079 #endif
6081 void __init sched_init_smp(void)
6083 lock_cpu_hotplug();
6084 arch_init_sched_domains(&cpu_online_map);
6085 unlock_cpu_hotplug();
6086 /* XXX: Theoretical race here - CPU may be hotplugged now */
6087 hotcpu_notifier(update_sched_domains, 0);
6089 #else
6090 void __init sched_init_smp(void)
6093 #endif /* CONFIG_SMP */
6095 int in_sched_functions(unsigned long addr)
6097 /* Linker adds these: start and end of __sched functions */
6098 extern char __sched_text_start[], __sched_text_end[];
6099 return in_lock_functions(addr) ||
6100 (addr >= (unsigned long)__sched_text_start
6101 && addr < (unsigned long)__sched_text_end);
6104 void __init sched_init(void)
6106 runqueue_t *rq;
6107 int i, j, k;
6109 for_each_possible_cpu(i) {
6110 prio_array_t *array;
6112 rq = cpu_rq(i);
6113 spin_lock_init(&rq->lock);
6114 rq->nr_running = 0;
6115 rq->active = rq->arrays;
6116 rq->expired = rq->arrays + 1;
6117 rq->best_expired_prio = MAX_PRIO;
6119 #ifdef CONFIG_SMP
6120 rq->sd = NULL;
6121 for (j = 1; j < 3; j++)
6122 rq->cpu_load[j] = 0;
6123 rq->active_balance = 0;
6124 rq->push_cpu = 0;
6125 rq->migration_thread = NULL;
6126 INIT_LIST_HEAD(&rq->migration_queue);
6127 rq->cpu = i;
6128 #endif
6129 atomic_set(&rq->nr_iowait, 0);
6131 for (j = 0; j < 2; j++) {
6132 array = rq->arrays + j;
6133 for (k = 0; k < MAX_PRIO; k++) {
6134 INIT_LIST_HEAD(array->queue + k);
6135 __clear_bit(k, array->bitmap);
6137 // delimiter for bitsearch
6138 __set_bit(MAX_PRIO, array->bitmap);
6143 * The boot idle thread does lazy MMU switching as well:
6145 atomic_inc(&init_mm.mm_count);
6146 enter_lazy_tlb(&init_mm, current);
6149 * Make us the idle thread. Technically, schedule() should not be
6150 * called from this thread, however somewhere below it might be,
6151 * but because we are the idle thread, we just pick up running again
6152 * when this runqueue becomes "idle".
6154 init_idle(current, smp_processor_id());
6157 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6158 void __might_sleep(char *file, int line)
6160 #if defined(in_atomic)
6161 static unsigned long prev_jiffy; /* ratelimiting */
6163 if ((in_atomic() || irqs_disabled()) &&
6164 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6165 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6166 return;
6167 prev_jiffy = jiffies;
6168 printk(KERN_ERR "BUG: sleeping function called from invalid"
6169 " context at %s:%d\n", file, line);
6170 printk("in_atomic():%d, irqs_disabled():%d\n",
6171 in_atomic(), irqs_disabled());
6172 dump_stack();
6174 #endif
6176 EXPORT_SYMBOL(__might_sleep);
6177 #endif
6179 #ifdef CONFIG_MAGIC_SYSRQ
6180 void normalize_rt_tasks(void)
6182 struct task_struct *p;
6183 prio_array_t *array;
6184 unsigned long flags;
6185 runqueue_t *rq;
6187 read_lock_irq(&tasklist_lock);
6188 for_each_process (p) {
6189 if (!rt_task(p))
6190 continue;
6192 rq = task_rq_lock(p, &flags);
6194 array = p->array;
6195 if (array)
6196 deactivate_task(p, task_rq(p));
6197 __setscheduler(p, SCHED_NORMAL, 0);
6198 if (array) {
6199 __activate_task(p, task_rq(p));
6200 resched_task(rq->curr);
6203 task_rq_unlock(rq, &flags);
6205 read_unlock_irq(&tasklist_lock);
6208 #endif /* CONFIG_MAGIC_SYSRQ */
6210 #ifdef CONFIG_IA64
6212 * These functions are only useful for the IA64 MCA handling.
6214 * They can only be called when the whole system has been
6215 * stopped - every CPU needs to be quiescent, and no scheduling
6216 * activity can take place. Using them for anything else would
6217 * be a serious bug, and as a result, they aren't even visible
6218 * under any other configuration.
6222 * curr_task - return the current task for a given cpu.
6223 * @cpu: the processor in question.
6225 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6227 task_t *curr_task(int cpu)
6229 return cpu_curr(cpu);
6233 * set_curr_task - set the current task for a given cpu.
6234 * @cpu: the processor in question.
6235 * @p: the task pointer to set.
6237 * Description: This function must only be used when non-maskable interrupts
6238 * are serviced on a separate stack. It allows the architecture to switch the
6239 * notion of the current task on a cpu in a non-blocking manner. This function
6240 * must be called with all CPU's synchronized, and interrupts disabled, the
6241 * and caller must save the original value of the current task (see
6242 * curr_task() above) and restore that value before reenabling interrupts and
6243 * re-starting the system.
6245 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6247 void set_curr_task(int cpu, task_t *p)
6249 cpu_curr(cpu) = p;
6252 #endif