2 * Copyright (c) 2000-2002 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
34 #include "xfs_macros.h"
35 #include "xfs_types.h"
38 #include "xfs_trans.h"
39 #include "xfs_buf_item.h"
43 #include "xfs_dmapi.h"
44 #include "xfs_mount.h"
45 #include "xfs_trans_priv.h"
46 #include "xfs_error.h"
50 STATIC xfs_buf_t
*xfs_trans_buf_item_match(xfs_trans_t
*, xfs_buftarg_t
*,
52 STATIC xfs_buf_t
*xfs_trans_buf_item_match_all(xfs_trans_t
*, xfs_buftarg_t
*,
57 * Get and lock the buffer for the caller if it is not already
58 * locked within the given transaction. If it is already locked
59 * within the transaction, just increment its lock recursion count
60 * and return a pointer to it.
62 * Use the fast path function xfs_trans_buf_item_match() or the buffer
63 * cache routine incore_match() to find the buffer
64 * if it is already owned by this transaction.
66 * If we don't already own the buffer, use get_buf() to get it.
67 * If it doesn't yet have an associated xfs_buf_log_item structure,
68 * then allocate one and add the item to this transaction.
70 * If the transaction pointer is NULL, make this just a normal
74 xfs_trans_get_buf(xfs_trans_t
*tp
,
75 xfs_buftarg_t
*target_dev
,
81 xfs_buf_log_item_t
*bip
;
84 flags
= XFS_BUF_LOCK
| XFS_BUF_MAPPED
;
87 * Default to a normal get_buf() call if the tp is NULL.
90 bp
= xfs_buf_get_flags(target_dev
, blkno
, len
,
96 * If we find the buffer in the cache with this transaction
97 * pointer in its b_fsprivate2 field, then we know we already
98 * have it locked. In this case we just increment the lock
99 * recursion count and return the buffer to the caller.
101 if (tp
->t_items
.lic_next
== NULL
) {
102 bp
= xfs_trans_buf_item_match(tp
, target_dev
, blkno
, len
);
104 bp
= xfs_trans_buf_item_match_all(tp
, target_dev
, blkno
, len
);
107 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
108 if (XFS_FORCED_SHUTDOWN(tp
->t_mountp
)) {
109 xfs_buftrace("TRANS GET RECUR SHUT", bp
);
110 XFS_BUF_SUPER_STALE(bp
);
113 * If the buffer is stale then it was binval'ed
114 * since last read. This doesn't matter since the
115 * caller isn't allowed to use the data anyway.
117 else if (XFS_BUF_ISSTALE(bp
)) {
118 xfs_buftrace("TRANS GET RECUR STALE", bp
);
119 ASSERT(!XFS_BUF_ISDELAYWRITE(bp
));
121 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
122 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
124 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
126 xfs_buftrace("TRANS GET RECUR", bp
);
127 xfs_buf_item_trace("GET RECUR", bip
);
132 * We always specify the BUF_BUSY flag within a transaction so
133 * that get_buf does not try to push out a delayed write buffer
134 * which might cause another transaction to take place (if the
135 * buffer was delayed alloc). Such recursive transactions can
136 * easily deadlock with our current transaction as well as cause
137 * us to run out of stack space.
139 bp
= xfs_buf_get_flags(target_dev
, blkno
, len
, flags
| BUF_BUSY
);
144 ASSERT(!XFS_BUF_GETERROR(bp
));
147 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
148 * it doesn't have one yet, then allocate one and initialize it.
149 * The checks to see if one is there are in xfs_buf_item_init().
151 xfs_buf_item_init(bp
, tp
->t_mountp
);
154 * Set the recursion count for the buffer within this transaction
157 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
158 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
159 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
160 ASSERT(!(bip
->bli_flags
& XFS_BLI_LOGGED
));
164 * Take a reference for this transaction on the buf item.
166 atomic_inc(&bip
->bli_refcount
);
169 * Get a log_item_desc to point at the new item.
171 (void) xfs_trans_add_item(tp
, (xfs_log_item_t
*)bip
);
174 * Initialize b_fsprivate2 so we can find it with incore_match()
177 XFS_BUF_SET_FSPRIVATE2(bp
, tp
);
179 xfs_buftrace("TRANS GET", bp
);
180 xfs_buf_item_trace("GET", bip
);
185 * Get and lock the superblock buffer of this file system for the
188 * We don't need to use incore_match() here, because the superblock
189 * buffer is a private buffer which we keep a pointer to in the
193 xfs_trans_getsb(xfs_trans_t
*tp
,
194 struct xfs_mount
*mp
,
198 xfs_buf_log_item_t
*bip
;
201 * Default to just trying to lock the superblock buffer
205 return (xfs_getsb(mp
, flags
));
209 * If the superblock buffer already has this transaction
210 * pointer in its b_fsprivate2 field, then we know we already
211 * have it locked. In this case we just increment the lock
212 * recursion count and return the buffer to the caller.
215 if (XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
) {
216 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
218 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
220 xfs_buf_item_trace("GETSB RECUR", bip
);
224 bp
= xfs_getsb(mp
, flags
);
230 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
231 * it doesn't have one yet, then allocate one and initialize it.
232 * The checks to see if one is there are in xfs_buf_item_init().
234 xfs_buf_item_init(bp
, mp
);
237 * Set the recursion count for the buffer within this transaction
240 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
241 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
242 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
243 ASSERT(!(bip
->bli_flags
& XFS_BLI_LOGGED
));
247 * Take a reference for this transaction on the buf item.
249 atomic_inc(&bip
->bli_refcount
);
252 * Get a log_item_desc to point at the new item.
254 (void) xfs_trans_add_item(tp
, (xfs_log_item_t
*)bip
);
257 * Initialize b_fsprivate2 so we can find it with incore_match()
260 XFS_BUF_SET_FSPRIVATE2(bp
, tp
);
262 xfs_buf_item_trace("GETSB", bip
);
267 xfs_buftarg_t
*xfs_error_target
;
270 int xfs_error_mod
= 33;
274 * Get and lock the buffer for the caller if it is not already
275 * locked within the given transaction. If it has not yet been
276 * read in, read it from disk. If it is already locked
277 * within the transaction and already read in, just increment its
278 * lock recursion count and return a pointer to it.
280 * Use the fast path function xfs_trans_buf_item_match() or the buffer
281 * cache routine incore_match() to find the buffer
282 * if it is already owned by this transaction.
284 * If we don't already own the buffer, use read_buf() to get it.
285 * If it doesn't yet have an associated xfs_buf_log_item structure,
286 * then allocate one and add the item to this transaction.
288 * If the transaction pointer is NULL, make this just a normal
295 xfs_buftarg_t
*target
,
302 xfs_buf_log_item_t
*bip
;
306 flags
= XFS_BUF_LOCK
| XFS_BUF_MAPPED
;
309 * Default to a normal get_buf() call if the tp is NULL.
312 bp
= xfs_buf_read_flags(target
, blkno
, len
, flags
| BUF_BUSY
);
314 return XFS_ERROR(ENOMEM
);
316 if ((bp
!= NULL
) && (XFS_BUF_GETERROR(bp
) != 0)) {
317 xfs_ioerror_alert("xfs_trans_read_buf", mp
,
319 error
= XFS_BUF_GETERROR(bp
);
324 if (xfs_do_error
&& (bp
!= NULL
)) {
325 if (xfs_error_target
== target
) {
326 if (((xfs_req_num
++) % xfs_error_mod
) == 0) {
328 printk("Returning error!\n");
329 return XFS_ERROR(EIO
);
334 if (XFS_FORCED_SHUTDOWN(mp
))
341 * If we find the buffer in the cache with this transaction
342 * pointer in its b_fsprivate2 field, then we know we already
343 * have it locked. If it is already read in we just increment
344 * the lock recursion count and return the buffer to the caller.
345 * If the buffer is not yet read in, then we read it in, increment
346 * the lock recursion count, and return it to the caller.
348 if (tp
->t_items
.lic_next
== NULL
) {
349 bp
= xfs_trans_buf_item_match(tp
, target
, blkno
, len
);
351 bp
= xfs_trans_buf_item_match_all(tp
, target
, blkno
, len
);
354 ASSERT(XFS_BUF_VALUSEMA(bp
) <= 0);
355 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
356 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
357 ASSERT((XFS_BUF_ISERROR(bp
)) == 0);
358 if (!(XFS_BUF_ISDONE(bp
))) {
359 xfs_buftrace("READ_BUF_INCORE !DONE", bp
);
360 ASSERT(!XFS_BUF_ISASYNC(bp
));
362 xfsbdstrat(tp
->t_mountp
, bp
);
364 if (XFS_BUF_GETERROR(bp
) != 0) {
365 xfs_ioerror_alert("xfs_trans_read_buf", mp
,
367 error
= XFS_BUF_GETERROR(bp
);
370 * We can gracefully recover from most
371 * read errors. Ones we can't are those
372 * that happen after the transaction's
375 if (tp
->t_flags
& XFS_TRANS_DIRTY
)
376 xfs_force_shutdown(tp
->t_mountp
,
377 XFS_METADATA_IO_ERROR
);
382 * We never locked this buf ourselves, so we shouldn't
383 * brelse it either. Just get out.
385 if (XFS_FORCED_SHUTDOWN(mp
)) {
386 xfs_buftrace("READ_BUF_INCORE XFSSHUTDN", bp
);
388 return XFS_ERROR(EIO
);
392 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
395 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
396 xfs_buf_item_trace("READ RECUR", bip
);
402 * We always specify the BUF_BUSY flag within a transaction so
403 * that get_buf does not try to push out a delayed write buffer
404 * which might cause another transaction to take place (if the
405 * buffer was delayed alloc). Such recursive transactions can
406 * easily deadlock with our current transaction as well as cause
407 * us to run out of stack space.
409 bp
= xfs_buf_read_flags(target
, blkno
, len
, flags
| BUF_BUSY
);
414 if (XFS_BUF_GETERROR(bp
) != 0) {
415 XFS_BUF_SUPER_STALE(bp
);
416 xfs_buftrace("READ ERROR", bp
);
417 error
= XFS_BUF_GETERROR(bp
);
419 xfs_ioerror_alert("xfs_trans_read_buf", mp
,
421 if (tp
->t_flags
& XFS_TRANS_DIRTY
)
422 xfs_force_shutdown(tp
->t_mountp
, XFS_METADATA_IO_ERROR
);
427 if (xfs_do_error
&& !(tp
->t_flags
& XFS_TRANS_DIRTY
)) {
428 if (xfs_error_target
== target
) {
429 if (((xfs_req_num
++) % xfs_error_mod
) == 0) {
430 xfs_force_shutdown(tp
->t_mountp
,
431 XFS_METADATA_IO_ERROR
);
433 printk("Returning error in trans!\n");
434 return XFS_ERROR(EIO
);
439 if (XFS_FORCED_SHUTDOWN(mp
))
443 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
444 * it doesn't have one yet, then allocate one and initialize it.
445 * The checks to see if one is there are in xfs_buf_item_init().
447 xfs_buf_item_init(bp
, tp
->t_mountp
);
450 * Set the recursion count for the buffer within this transaction
453 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
454 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
455 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
456 ASSERT(!(bip
->bli_flags
& XFS_BLI_LOGGED
));
460 * Take a reference for this transaction on the buf item.
462 atomic_inc(&bip
->bli_refcount
);
465 * Get a log_item_desc to point at the new item.
467 (void) xfs_trans_add_item(tp
, (xfs_log_item_t
*)bip
);
470 * Initialize b_fsprivate2 so we can find it with incore_match()
473 XFS_BUF_SET_FSPRIVATE2(bp
, tp
);
475 xfs_buftrace("TRANS READ", bp
);
476 xfs_buf_item_trace("READ", bip
);
482 * the theory here is that buffer is good but we're
483 * bailing out because the filesystem is being forcibly
484 * shut down. So we should leave the b_flags alone since
485 * the buffer's not staled and just get out.
488 if (XFS_BUF_ISSTALE(bp
) && XFS_BUF_ISDELAYWRITE(bp
))
489 cmn_err(CE_NOTE
, "about to pop assert, bp == 0x%p", bp
);
491 ASSERT((XFS_BUF_BFLAGS(bp
) & (XFS_B_STALE
|XFS_B_DELWRI
)) !=
492 (XFS_B_STALE
|XFS_B_DELWRI
));
494 xfs_buftrace("READ_BUF XFSSHUTDN", bp
);
497 return XFS_ERROR(EIO
);
502 * Release the buffer bp which was previously acquired with one of the
503 * xfs_trans_... buffer allocation routines if the buffer has not
504 * been modified within this transaction. If the buffer is modified
505 * within this transaction, do decrement the recursion count but do
506 * not release the buffer even if the count goes to 0. If the buffer is not
507 * modified within the transaction, decrement the recursion count and
508 * release the buffer if the recursion count goes to 0.
510 * If the buffer is to be released and it was not modified before
511 * this transaction began, then free the buf_log_item associated with it.
513 * If the transaction pointer is NULL, make this just a normal
517 xfs_trans_brelse(xfs_trans_t
*tp
,
520 xfs_buf_log_item_t
*bip
;
522 xfs_log_item_desc_t
*lidp
;
525 * Default to a normal brelse() call if the tp is NULL.
528 ASSERT(XFS_BUF_FSPRIVATE2(bp
, void *) == NULL
);
530 * If there's a buf log item attached to the buffer,
531 * then let the AIL know that the buffer is being
534 if (XFS_BUF_FSPRIVATE(bp
, void *) != NULL
) {
535 lip
= XFS_BUF_FSPRIVATE(bp
, xfs_log_item_t
*);
536 if (lip
->li_type
== XFS_LI_BUF
) {
537 bip
= XFS_BUF_FSPRIVATE(bp
,xfs_buf_log_item_t
*);
538 xfs_trans_unlocked_item(
539 bip
->bli_item
.li_mountp
,
547 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
548 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
549 ASSERT(bip
->bli_item
.li_type
== XFS_LI_BUF
);
550 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
551 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
552 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
555 * Find the item descriptor pointing to this buffer's
556 * log item. It must be there.
558 lidp
= xfs_trans_find_item(tp
, (xfs_log_item_t
*)bip
);
559 ASSERT(lidp
!= NULL
);
562 * If the release is just for a recursive lock,
563 * then decrement the count and return.
565 if (bip
->bli_recur
> 0) {
567 xfs_buf_item_trace("RELSE RECUR", bip
);
572 * If the buffer is dirty within this transaction, we can't
573 * release it until we commit.
575 if (lidp
->lid_flags
& XFS_LID_DIRTY
) {
576 xfs_buf_item_trace("RELSE DIRTY", bip
);
581 * If the buffer has been invalidated, then we can't release
582 * it until the transaction commits to disk unless it is re-dirtied
583 * as part of this transaction. This prevents us from pulling
584 * the item from the AIL before we should.
586 if (bip
->bli_flags
& XFS_BLI_STALE
) {
587 xfs_buf_item_trace("RELSE STALE", bip
);
591 ASSERT(!(bip
->bli_flags
& XFS_BLI_LOGGED
));
592 xfs_buf_item_trace("RELSE", bip
);
595 * Free up the log item descriptor tracking the released item.
597 xfs_trans_free_item(tp
, lidp
);
600 * Clear the hold flag in the buf log item if it is set.
601 * We wouldn't want the next user of the buffer to
604 if (bip
->bli_flags
& XFS_BLI_HOLD
) {
605 bip
->bli_flags
&= ~XFS_BLI_HOLD
;
609 * Drop our reference to the buf log item.
611 atomic_dec(&bip
->bli_refcount
);
614 * If the buf item is not tracking data in the log, then
615 * we must free it before releasing the buffer back to the
616 * free pool. Before releasing the buffer to the free pool,
617 * clear the transaction pointer in b_fsprivate2 to dissolve
618 * its relation to this transaction.
620 if (!xfs_buf_item_dirty(bip
)) {
622 ASSERT(bp->b_pincount == 0);
624 ASSERT(atomic_read(&bip
->bli_refcount
) == 0);
625 ASSERT(!(bip
->bli_item
.li_flags
& XFS_LI_IN_AIL
));
626 ASSERT(!(bip
->bli_flags
& XFS_BLI_INODE_ALLOC_BUF
));
627 xfs_buf_item_relse(bp
);
630 XFS_BUF_SET_FSPRIVATE2(bp
, NULL
);
633 * If we've still got a buf log item on the buffer, then
634 * tell the AIL that the buffer is being unlocked.
637 xfs_trans_unlocked_item(bip
->bli_item
.li_mountp
,
638 (xfs_log_item_t
*)bip
);
646 * Add the locked buffer to the transaction.
647 * The buffer must be locked, and it cannot be associated with any
650 * If the buffer does not yet have a buf log item associated with it,
651 * then allocate one for it. Then add the buf item to the transaction.
654 xfs_trans_bjoin(xfs_trans_t
*tp
,
657 xfs_buf_log_item_t
*bip
;
659 ASSERT(XFS_BUF_ISBUSY(bp
));
660 ASSERT(XFS_BUF_FSPRIVATE2(bp
, void *) == NULL
);
663 * The xfs_buf_log_item pointer is stored in b_fsprivate. If
664 * it doesn't have one yet, then allocate one and initialize it.
665 * The checks to see if one is there are in xfs_buf_item_init().
667 xfs_buf_item_init(bp
, tp
->t_mountp
);
668 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
669 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
670 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
671 ASSERT(!(bip
->bli_flags
& XFS_BLI_LOGGED
));
674 * Take a reference for this transaction on the buf item.
676 atomic_inc(&bip
->bli_refcount
);
679 * Get a log_item_desc to point at the new item.
681 (void) xfs_trans_add_item(tp
, (xfs_log_item_t
*)bip
);
684 * Initialize b_fsprivate2 so we can find it with incore_match()
685 * in xfs_trans_get_buf() and friends above.
687 XFS_BUF_SET_FSPRIVATE2(bp
, tp
);
689 xfs_buf_item_trace("BJOIN", bip
);
693 * Mark the buffer as not needing to be unlocked when the buf item's
694 * IOP_UNLOCK() routine is called. The buffer must already be locked
695 * and associated with the given transaction.
699 xfs_trans_bhold(xfs_trans_t
*tp
,
702 xfs_buf_log_item_t
*bip
;
704 ASSERT(XFS_BUF_ISBUSY(bp
));
705 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
706 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
708 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
709 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
710 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
711 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
712 bip
->bli_flags
|= XFS_BLI_HOLD
;
713 xfs_buf_item_trace("BHOLD", bip
);
717 * Cancel the previous buffer hold request made on this buffer
718 * for this transaction.
721 xfs_trans_bhold_release(xfs_trans_t
*tp
,
724 xfs_buf_log_item_t
*bip
;
726 ASSERT(XFS_BUF_ISBUSY(bp
));
727 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
728 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
730 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
731 ASSERT(!(bip
->bli_flags
& XFS_BLI_STALE
));
732 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
));
733 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
734 ASSERT(bip
->bli_flags
& XFS_BLI_HOLD
);
735 bip
->bli_flags
&= ~XFS_BLI_HOLD
;
736 xfs_buf_item_trace("BHOLD RELEASE", bip
);
740 * This is called to mark bytes first through last inclusive of the given
741 * buffer as needing to be logged when the transaction is committed.
742 * The buffer must already be associated with the given transaction.
744 * First and last are numbers relative to the beginning of this buffer,
745 * so the first byte in the buffer is numbered 0 regardless of the
749 xfs_trans_log_buf(xfs_trans_t
*tp
,
754 xfs_buf_log_item_t
*bip
;
755 xfs_log_item_desc_t
*lidp
;
757 ASSERT(XFS_BUF_ISBUSY(bp
));
758 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
759 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
760 ASSERT((first
<= last
) && (last
< XFS_BUF_COUNT(bp
)));
761 ASSERT((XFS_BUF_IODONE_FUNC(bp
) == NULL
) ||
762 (XFS_BUF_IODONE_FUNC(bp
) == xfs_buf_iodone_callbacks
));
765 * Mark the buffer as needing to be written out eventually,
766 * and set its iodone function to remove the buffer's buf log
767 * item from the AIL and free it when the buffer is flushed
768 * to disk. See xfs_buf_attach_iodone() for more details
769 * on li_cb and xfs_buf_iodone_callbacks().
770 * If we end up aborting this transaction, we trap this buffer
771 * inside the b_bdstrat callback so that this won't get written to
774 XFS_BUF_DELAYWRITE(bp
);
777 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
778 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
779 XFS_BUF_SET_IODONE_FUNC(bp
, xfs_buf_iodone_callbacks
);
780 bip
->bli_item
.li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*))xfs_buf_iodone
;
783 * If we invalidated the buffer within this transaction, then
784 * cancel the invalidation now that we're dirtying the buffer
785 * again. There are no races with the code in xfs_buf_item_unpin(),
786 * because we have a reference to the buffer this entire time.
788 if (bip
->bli_flags
& XFS_BLI_STALE
) {
789 xfs_buf_item_trace("BLOG UNSTALE", bip
);
790 bip
->bli_flags
&= ~XFS_BLI_STALE
;
791 ASSERT(XFS_BUF_ISSTALE(bp
));
793 bip
->bli_format
.blf_flags
&= ~XFS_BLI_CANCEL
;
796 lidp
= xfs_trans_find_item(tp
, (xfs_log_item_t
*)bip
);
797 ASSERT(lidp
!= NULL
);
799 tp
->t_flags
|= XFS_TRANS_DIRTY
;
800 lidp
->lid_flags
|= XFS_LID_DIRTY
;
801 lidp
->lid_flags
&= ~XFS_LID_BUF_STALE
;
802 bip
->bli_flags
|= XFS_BLI_LOGGED
;
803 xfs_buf_item_log(bip
, first
, last
);
804 xfs_buf_item_trace("BLOG", bip
);
809 * This called to invalidate a buffer that is being used within
810 * a transaction. Typically this is because the blocks in the
811 * buffer are being freed, so we need to prevent it from being
812 * written out when we're done. Allowing it to be written again
813 * might overwrite data in the free blocks if they are reallocated
816 * We prevent the buffer from being written out by clearing the
817 * B_DELWRI flag. We can't always
818 * get rid of the buf log item at this point, though, because
819 * the buffer may still be pinned by another transaction. If that
820 * is the case, then we'll wait until the buffer is committed to
821 * disk for the last time (we can tell by the ref count) and
822 * free it in xfs_buf_item_unpin(). Until it is cleaned up we
823 * will keep the buffer locked so that the buffer and buf log item
831 xfs_log_item_desc_t
*lidp
;
832 xfs_buf_log_item_t
*bip
;
834 ASSERT(XFS_BUF_ISBUSY(bp
));
835 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
836 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
838 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
839 lidp
= xfs_trans_find_item(tp
, (xfs_log_item_t
*)bip
);
840 ASSERT(lidp
!= NULL
);
841 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
843 if (bip
->bli_flags
& XFS_BLI_STALE
) {
845 * If the buffer is already invalidated, then
848 ASSERT(!(XFS_BUF_ISDELAYWRITE(bp
)));
849 ASSERT(XFS_BUF_ISSTALE(bp
));
850 ASSERT(!(bip
->bli_flags
& (XFS_BLI_LOGGED
| XFS_BLI_DIRTY
)));
851 ASSERT(!(bip
->bli_format
.blf_flags
& XFS_BLI_INODE_BUF
));
852 ASSERT(bip
->bli_format
.blf_flags
& XFS_BLI_CANCEL
);
853 ASSERT(lidp
->lid_flags
& XFS_LID_DIRTY
);
854 ASSERT(tp
->t_flags
& XFS_TRANS_DIRTY
);
855 xfs_buftrace("XFS_BINVAL RECUR", bp
);
856 xfs_buf_item_trace("BINVAL RECUR", bip
);
861 * Clear the dirty bit in the buffer and set the STALE flag
862 * in the buf log item. The STALE flag will be used in
863 * xfs_buf_item_unpin() to determine if it should clean up
864 * when the last reference to the buf item is given up.
865 * We set the XFS_BLI_CANCEL flag in the buf log format structure
866 * and log the buf item. This will be used at recovery time
867 * to determine that copies of the buffer in the log before
868 * this should not be replayed.
869 * We mark the item descriptor and the transaction dirty so
870 * that we'll hold the buffer until after the commit.
872 * Since we're invalidating the buffer, we also clear the state
873 * about which parts of the buffer have been logged. We also
874 * clear the flag indicating that this is an inode buffer since
875 * the data in the buffer will no longer be valid.
877 * We set the stale bit in the buffer as well since we're getting
880 XFS_BUF_UNDELAYWRITE(bp
);
882 bip
->bli_flags
|= XFS_BLI_STALE
;
883 bip
->bli_flags
&= ~(XFS_BLI_LOGGED
| XFS_BLI_DIRTY
);
884 bip
->bli_format
.blf_flags
&= ~XFS_BLI_INODE_BUF
;
885 bip
->bli_format
.blf_flags
|= XFS_BLI_CANCEL
;
886 memset((char *)(bip
->bli_format
.blf_data_map
), 0,
887 (bip
->bli_format
.blf_map_size
* sizeof(uint
)));
888 lidp
->lid_flags
|= XFS_LID_DIRTY
|XFS_LID_BUF_STALE
;
889 tp
->t_flags
|= XFS_TRANS_DIRTY
;
890 xfs_buftrace("XFS_BINVAL", bp
);
891 xfs_buf_item_trace("BINVAL", bip
);
895 * This call is used to indicate that the buffer contains on-disk
896 * inodes which must be handled specially during recovery. They
897 * require special handling because only the di_next_unlinked from
898 * the inodes in the buffer should be recovered. The rest of the
899 * data in the buffer is logged via the inodes themselves.
901 * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log
902 * format structure so that we'll know what to do at recovery time.
910 xfs_buf_log_item_t
*bip
;
912 ASSERT(XFS_BUF_ISBUSY(bp
));
913 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
914 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
916 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
917 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
919 bip
->bli_format
.blf_flags
|= XFS_BLI_INODE_BUF
;
923 * This call is used to indicate that the buffer is going to
924 * be staled and was an inode buffer. This means it gets
925 * special processing during unpin - where any inodes
926 * associated with the buffer should be removed from ail.
927 * There is also special processing during recovery,
928 * any replay of the inodes in the buffer needs to be
929 * prevented as the buffer may have been reused.
932 xfs_trans_stale_inode_buf(
936 xfs_buf_log_item_t
*bip
;
938 ASSERT(XFS_BUF_ISBUSY(bp
));
939 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
940 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
942 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
943 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
945 bip
->bli_flags
|= XFS_BLI_STALE_INODE
;
946 bip
->bli_item
.li_cb
= (void(*)(xfs_buf_t
*,xfs_log_item_t
*))
953 * Mark the buffer as being one which contains newly allocated
954 * inodes. We need to make sure that even if this buffer is
955 * relogged as an 'inode buf' we still recover all of the inode
956 * images in the face of a crash. This works in coordination with
957 * xfs_buf_item_committed() to ensure that the buffer remains in the
958 * AIL at its original location even after it has been relogged.
962 xfs_trans_inode_alloc_buf(
966 xfs_buf_log_item_t
*bip
;
968 ASSERT(XFS_BUF_ISBUSY(bp
));
969 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
970 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
972 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
973 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
975 bip
->bli_flags
|= XFS_BLI_INODE_ALLOC_BUF
;
980 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
981 * dquots. However, unlike in inode buffer recovery, dquot buffers get
982 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
983 * The only thing that makes dquot buffers different from regular
984 * buffers is that we must not replay dquot bufs when recovering
985 * if a _corresponding_ quotaoff has happened. We also have to distinguish
986 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
987 * can be turned off independently.
996 xfs_buf_log_item_t
*bip
;
998 ASSERT(XFS_BUF_ISBUSY(bp
));
999 ASSERT(XFS_BUF_FSPRIVATE2(bp
, xfs_trans_t
*) == tp
);
1000 ASSERT(XFS_BUF_FSPRIVATE(bp
, void *) != NULL
);
1001 ASSERT(type
== XFS_BLI_UDQUOT_BUF
||
1002 type
== XFS_BLI_PDQUOT_BUF
||
1003 type
== XFS_BLI_GDQUOT_BUF
);
1005 bip
= XFS_BUF_FSPRIVATE(bp
, xfs_buf_log_item_t
*);
1006 ASSERT(atomic_read(&bip
->bli_refcount
) > 0);
1008 bip
->bli_format
.blf_flags
|= type
;
1012 * Check to see if a buffer matching the given parameters is already
1013 * a part of the given transaction. Only check the first, embedded
1014 * chunk, since we don't want to spend all day scanning large transactions.
1017 xfs_trans_buf_item_match(
1019 xfs_buftarg_t
*target
,
1023 xfs_log_item_chunk_t
*licp
;
1024 xfs_log_item_desc_t
*lidp
;
1025 xfs_buf_log_item_t
*blip
;
1031 licp
= &tp
->t_items
;
1032 if (!XFS_LIC_ARE_ALL_FREE(licp
)) {
1033 for (i
= 0; i
< licp
->lic_unused
; i
++) {
1035 * Skip unoccupied slots.
1037 if (XFS_LIC_ISFREE(licp
, i
)) {
1041 lidp
= XFS_LIC_SLOT(licp
, i
);
1042 blip
= (xfs_buf_log_item_t
*)lidp
->lid_item
;
1043 if (blip
->bli_item
.li_type
!= XFS_LI_BUF
) {
1048 if ((XFS_BUF_TARGET(bp
) == target
) &&
1049 (XFS_BUF_ADDR(bp
) == blkno
) &&
1050 (XFS_BUF_COUNT(bp
) == len
)) {
1052 * We found it. Break out and
1053 * return the pointer to the buffer.
1065 * Check to see if a buffer matching the given parameters is already
1066 * a part of the given transaction. Check all the chunks, we
1067 * want to be thorough.
1070 xfs_trans_buf_item_match_all(
1072 xfs_buftarg_t
*target
,
1076 xfs_log_item_chunk_t
*licp
;
1077 xfs_log_item_desc_t
*lidp
;
1078 xfs_buf_log_item_t
*blip
;
1084 for (licp
= &tp
->t_items
; licp
!= NULL
; licp
= licp
->lic_next
) {
1085 if (XFS_LIC_ARE_ALL_FREE(licp
)) {
1086 ASSERT(licp
== &tp
->t_items
);
1087 ASSERT(licp
->lic_next
== NULL
);
1090 for (i
= 0; i
< licp
->lic_unused
; i
++) {
1092 * Skip unoccupied slots.
1094 if (XFS_LIC_ISFREE(licp
, i
)) {
1098 lidp
= XFS_LIC_SLOT(licp
, i
);
1099 blip
= (xfs_buf_log_item_t
*)lidp
->lid_item
;
1100 if (blip
->bli_item
.li_type
!= XFS_LI_BUF
) {
1105 if ((XFS_BUF_TARGET(bp
) == target
) &&
1106 (XFS_BUF_ADDR(bp
) == blkno
) &&
1107 (XFS_BUF_COUNT(bp
) == len
)) {
1109 * We found it. Break out and
1110 * return the pointer to the buffer.