2 * Copyright (c) 2000-2005 Silicon Graphics, Inc. All Rights Reserved.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of version 2 of the GNU General Public License as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it would be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
12 * Further, this software is distributed without any warranty that it is
13 * free of the rightful claim of any third person regarding infringement
14 * or the like. Any license provided herein, whether implied or
15 * otherwise, applies only to this software file. Patent licenses, if
16 * any, provided herein do not apply to combinations of this program with
17 * other software, or any other product whatsoever.
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write the Free Software Foundation, Inc., 59
21 * Temple Place - Suite 330, Boston MA 02111-1307, USA.
23 * Contact information: Silicon Graphics, Inc., 1600 Amphitheatre Pkwy,
24 * Mountain View, CA 94043, or:
28 * For further information regarding this notice, see:
30 * http://oss.sgi.com/projects/GenInfo/SGIGPLNoticeExplan/
33 #include <linux/delay.h>
37 #include "xfs_macros.h"
38 #include "xfs_types.h"
41 #include "xfs_trans.h"
46 #include "xfs_dmapi.h"
47 #include "xfs_mount.h"
48 #include "xfs_alloc_btree.h"
49 #include "xfs_bmap_btree.h"
50 #include "xfs_ialloc_btree.h"
51 #include "xfs_btree.h"
52 #include "xfs_ialloc.h"
53 #include "xfs_attr_sf.h"
54 #include "xfs_dir_sf.h"
55 #include "xfs_dir2_sf.h"
56 #include "xfs_dinode.h"
57 #include "xfs_inode.h"
58 #include "xfs_quota.h"
59 #include "xfs_utils.h"
63 * Initialize the inode hash table for the newly mounted file system.
64 * Choose an initial table size based on user specified value, else
65 * use a simple algorithm using the maximum number of inodes as an
66 * indicator for table size, and clamp it between one and some large
70 xfs_ihash_init(xfs_mount_t
*mp
)
73 uint i
, flags
= KM_SLEEP
| KM_MAYFAIL
;
76 icount
= mp
->m_maxicount
? mp
->m_maxicount
:
77 (mp
->m_sb
.sb_dblocks
<< mp
->m_sb
.sb_inopblog
);
78 mp
->m_ihsize
= 1 << max_t(uint
, 8,
79 (xfs_highbit64(icount
) + 1) / 2);
80 mp
->m_ihsize
= min_t(uint
, mp
->m_ihsize
,
81 (64 * NBPP
) / sizeof(xfs_ihash_t
));
84 while (!(mp
->m_ihash
= (xfs_ihash_t
*)kmem_zalloc(mp
->m_ihsize
*
85 sizeof(xfs_ihash_t
), flags
))) {
86 if ((mp
->m_ihsize
>>= 1) <= NBPP
)
89 for (i
= 0; i
< mp
->m_ihsize
; i
++) {
90 rwlock_init(&(mp
->m_ihash
[i
].ih_lock
));
95 * Free up structures allocated by xfs_ihash_init, at unmount time.
98 xfs_ihash_free(xfs_mount_t
*mp
)
100 kmem_free(mp
->m_ihash
, mp
->m_ihsize
*sizeof(xfs_ihash_t
));
105 * Initialize the inode cluster hash table for the newly mounted file system.
106 * Its size is derived from the ihash table size.
109 xfs_chash_init(xfs_mount_t
*mp
)
113 mp
->m_chsize
= max_t(uint
, 1, mp
->m_ihsize
/
114 (XFS_INODE_CLUSTER_SIZE(mp
) >> mp
->m_sb
.sb_inodelog
));
115 mp
->m_chsize
= min_t(uint
, mp
->m_chsize
, mp
->m_ihsize
);
116 mp
->m_chash
= (xfs_chash_t
*)kmem_zalloc(mp
->m_chsize
117 * sizeof(xfs_chash_t
),
119 for (i
= 0; i
< mp
->m_chsize
; i
++) {
120 spinlock_init(&mp
->m_chash
[i
].ch_lock
,"xfshash");
125 * Free up structures allocated by xfs_chash_init, at unmount time.
128 xfs_chash_free(xfs_mount_t
*mp
)
132 for (i
= 0; i
< mp
->m_chsize
; i
++) {
133 spinlock_destroy(&mp
->m_chash
[i
].ch_lock
);
136 kmem_free(mp
->m_chash
, mp
->m_chsize
*sizeof(xfs_chash_t
));
141 * Try to move an inode to the front of its hash list if possible
142 * (and if its not there already). Called right after obtaining
143 * the list version number and then dropping the read_lock on the
144 * hash list in question (which is done right after looking up the
145 * inode in question...).
155 if ((ip
->i_prevp
!= &ih
->ih_next
) && write_trylock(&ih
->ih_lock
)) {
156 if (likely(version
== ih
->ih_version
)) {
157 /* remove from list */
158 if ((iq
= ip
->i_next
)) {
159 iq
->i_prevp
= ip
->i_prevp
;
163 /* insert at list head */
165 iq
->i_prevp
= &ip
->i_next
;
167 ip
->i_prevp
= &ih
->ih_next
;
170 write_unlock(&ih
->ih_lock
);
175 * Look up an inode by number in the given file system.
176 * The inode is looked up in the hash table for the file system
177 * represented by the mount point parameter mp. Each bucket of
178 * the hash table is guarded by an individual semaphore.
180 * If the inode is found in the hash table, its corresponding vnode
181 * is obtained with a call to vn_get(). This call takes care of
182 * coordination with the reclamation of the inode and vnode. Note
183 * that the vmap structure is filled in while holding the hash lock.
184 * This gives us the state of the inode/vnode when we found it and
185 * is used for coordination in vn_get().
187 * If it is not in core, read it in from the file system's device and
188 * add the inode into the hash table.
190 * The inode is locked according to the value of the lock_flags parameter.
191 * This flag parameter indicates how and if the inode's IO lock and inode lock
194 * mp -- the mount point structure for the current file system. It points
195 * to the inode hash table.
196 * tp -- a pointer to the current transaction if there is one. This is
197 * simply passed through to the xfs_iread() call.
198 * ino -- the number of the inode desired. This is the unique identifier
199 * within the file system for the inode being requested.
200 * lock_flags -- flags indicating how to lock the inode. See the comment
201 * for xfs_ilock() for a list of valid values.
202 * bno -- the block number starting the buffer containing the inode,
203 * if known (as by bulkstat), else 0.
224 xfs_chashlist_t
*chl
, *chlnew
;
228 ih
= XFS_IHASH(mp
, ino
);
231 read_lock(&ih
->ih_lock
);
233 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
234 if (ip
->i_ino
== ino
) {
236 * If INEW is set this inode is being set up
237 * we need to pause and try again.
239 if (ip
->i_flags
& XFS_INEW
) {
240 read_unlock(&ih
->ih_lock
);
242 XFS_STATS_INC(xs_ig_frecycle
);
247 inode_vp
= XFS_ITOV_NULL(ip
);
248 if (inode_vp
== NULL
) {
250 * If IRECLAIM is set this inode is
251 * on its way out of the system,
252 * we need to pause and try again.
254 if (ip
->i_flags
& XFS_IRECLAIM
) {
255 read_unlock(&ih
->ih_lock
);
257 XFS_STATS_INC(xs_ig_frecycle
);
262 vn_trace_exit(vp
, "xfs_iget.alloc",
263 (inst_t
*)__return_address
);
265 XFS_STATS_INC(xs_ig_found
);
267 ip
->i_flags
&= ~XFS_IRECLAIMABLE
;
268 version
= ih
->ih_version
;
269 read_unlock(&ih
->ih_lock
);
270 xfs_ihash_promote(ih
, ip
, version
);
273 list_del_init(&ip
->i_reclaim
);
274 XFS_MOUNT_IUNLOCK(mp
);
278 } else if (vp
!= inode_vp
) {
279 struct inode
*inode
= LINVFS_GET_IP(inode_vp
);
281 /* The inode is being torn down, pause and
284 if (inode
->i_state
& (I_FREEING
| I_CLEAR
)) {
285 read_unlock(&ih
->ih_lock
);
287 XFS_STATS_INC(xs_ig_frecycle
);
291 /* Chances are the other vnode (the one in the inode) is being torn
292 * down right now, and we landed on top of it. Question is, what do
293 * we do? Unhook the old inode and hook up the new one?
296 "xfs_iget_core: ambiguous vns: vp/0x%p, invp/0x%p",
301 * Inode cache hit: if ip is not at the front of
302 * its hash chain, move it there now.
303 * Do this with the lock held for update, but
304 * do statistics after releasing the lock.
306 version
= ih
->ih_version
;
307 read_unlock(&ih
->ih_lock
);
308 xfs_ihash_promote(ih
, ip
, version
);
309 XFS_STATS_INC(xs_ig_found
);
312 if (ip
->i_d
.di_mode
== 0) {
313 if (!(flags
& IGET_CREATE
))
315 xfs_iocore_inode_reinit(ip
);
319 xfs_ilock(ip
, lock_flags
);
321 ip
->i_flags
&= ~XFS_ISTALE
;
323 vn_trace_exit(vp
, "xfs_iget.found",
324 (inst_t
*)__return_address
);
330 * Inode cache miss: save the hash chain version stamp and unlock
331 * the chain, so we don't deadlock in vn_alloc.
333 XFS_STATS_INC(xs_ig_missed
);
335 version
= ih
->ih_version
;
337 read_unlock(&ih
->ih_lock
);
340 * Read the disk inode attributes into a new inode structure and get
341 * a new vnode for it. This should also initialize i_ino and i_mount.
343 error
= xfs_iread(mp
, tp
, ino
, &ip
, bno
);
348 vn_trace_exit(vp
, "xfs_iget.alloc", (inst_t
*)__return_address
);
350 xfs_inode_lock_init(ip
, vp
);
351 xfs_iocore_inode_init(ip
);
353 if (lock_flags
!= 0) {
354 xfs_ilock(ip
, lock_flags
);
357 if ((ip
->i_d
.di_mode
== 0) && !(flags
& IGET_CREATE
)) {
363 * Put ip on its hash chain, unless someone else hashed a duplicate
364 * after we released the hash lock.
366 write_lock(&ih
->ih_lock
);
368 if (ih
->ih_version
!= version
) {
369 for (iq
= ih
->ih_next
; iq
!= NULL
; iq
= iq
->i_next
) {
370 if (iq
->i_ino
== ino
) {
371 write_unlock(&ih
->ih_lock
);
374 XFS_STATS_INC(xs_ig_dup
);
381 * These values _must_ be set before releasing ihlock!
384 if ((iq
= ih
->ih_next
)) {
385 iq
->i_prevp
= &ip
->i_next
;
388 ip
->i_prevp
= &ih
->ih_next
;
390 ip
->i_udquot
= ip
->i_gdquot
= NULL
;
392 ip
->i_flags
|= XFS_INEW
;
394 write_unlock(&ih
->ih_lock
);
397 * put ip on its cluster's hash chain
399 ASSERT(ip
->i_chash
== NULL
&& ip
->i_cprev
== NULL
&&
400 ip
->i_cnext
== NULL
);
403 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
405 s
= mutex_spinlock(&ch
->ch_lock
);
406 for (chl
= ch
->ch_list
; chl
!= NULL
; chl
= chl
->chl_next
) {
407 if (chl
->chl_blkno
== ip
->i_blkno
) {
409 /* insert this inode into the doubly-linked list
410 * where chl points */
411 if ((iq
= chl
->chl_ip
)) {
412 ip
->i_cprev
= iq
->i_cprev
;
413 iq
->i_cprev
->i_cnext
= ip
;
426 /* no hash list found for this block; add a new hash list */
428 if (chlnew
== NULL
) {
429 mutex_spinunlock(&ch
->ch_lock
, s
);
430 ASSERT(xfs_chashlist_zone
!= NULL
);
431 chlnew
= (xfs_chashlist_t
*)
432 kmem_zone_alloc(xfs_chashlist_zone
,
434 ASSERT(chlnew
!= NULL
);
439 ip
->i_chash
= chlnew
;
441 chlnew
->chl_blkno
= ip
->i_blkno
;
442 chlnew
->chl_next
= ch
->ch_list
;
443 ch
->ch_list
= chlnew
;
447 if (chlnew
!= NULL
) {
448 kmem_zone_free(xfs_chashlist_zone
, chlnew
);
452 mutex_spinunlock(&ch
->ch_lock
, s
);
456 * Link ip to its mount and thread it on the mount's inode list.
459 if ((iq
= mp
->m_inodes
)) {
460 ASSERT(iq
->i_mprev
->i_mnext
== iq
);
461 ip
->i_mprev
= iq
->i_mprev
;
462 iq
->i_mprev
->i_mnext
= ip
;
471 XFS_MOUNT_IUNLOCK(mp
);
474 ASSERT(ip
->i_df
.if_ext_max
==
475 XFS_IFORK_DSIZE(ip
) / sizeof(xfs_bmbt_rec_t
));
477 ASSERT(((ip
->i_d
.di_flags
& XFS_DIFLAG_REALTIME
) != 0) ==
478 ((ip
->i_iocore
.io_flags
& XFS_IOCORE_RT
) != 0));
483 * If we have a real type for an on-disk inode, we can set ops(&unlock)
484 * now. If it's a new inode being created, xfs_ialloc will handle it.
486 VFS_INIT_VNODE(XFS_MTOVFS(mp
), vp
, XFS_ITOBHV(ip
), 1);
493 * The 'normal' internal xfs_iget, if needed it will
494 * 'allocate', or 'get', the vnode.
510 XFS_STATS_INC(xs_ig_attempts
);
513 if ((inode
= iget_locked(XFS_MTOVFS(mp
)->vfs_super
, ino
))) {
517 vp
= LINVFS_GET_VP(inode
);
518 if (inode
->i_state
& I_NEW
) {
519 vn_initialize(inode
);
520 error
= xfs_iget_core(vp
, mp
, tp
, ino
, flags
,
521 lock_flags
, ipp
, bno
);
524 if (inode
->i_state
& I_NEW
)
525 unlock_new_inode(inode
);
530 * If the inode is not fully constructed due to
531 * filehandle mistmatches wait for the inode to go
532 * away and try again.
534 * iget_locked will call __wait_on_freeing_inode
535 * to wait for the inode to go away.
537 if (is_bad_inode(inode
) ||
538 ((bdp
= vn_bhv_lookup(VN_BHV_HEAD(vp
),
539 &xfs_vnodeops
)) == NULL
)) {
545 ip
= XFS_BHVTOI(bdp
);
547 xfs_ilock(ip
, lock_flags
);
548 XFS_STATS_INC(xs_ig_found
);
553 error
= ENOMEM
; /* If we got no inode we are out of memory */
559 * Do the setup for the various locks within the incore inode.
566 mrlock_init(&ip
->i_lock
, MRLOCK_ALLOW_EQUAL_PRI
|MRLOCK_BARRIER
,
567 "xfsino", (long)vp
->v_number
);
568 mrlock_init(&ip
->i_iolock
, MRLOCK_BARRIER
, "xfsio", vp
->v_number
);
569 init_waitqueue_head(&ip
->i_ipin_wait
);
570 atomic_set(&ip
->i_pincount
, 0);
571 init_sema(&ip
->i_flock
, 1, "xfsfino", vp
->v_number
);
575 * Look for the inode corresponding to the given ino in the hash table.
576 * If it is there and its i_transp pointer matches tp, return it.
577 * Otherwise, return NULL.
580 xfs_inode_incore(xfs_mount_t
*mp
,
588 ih
= XFS_IHASH(mp
, ino
);
589 read_lock(&ih
->ih_lock
);
590 for (ip
= ih
->ih_next
; ip
!= NULL
; ip
= ip
->i_next
) {
591 if (ip
->i_ino
== ino
) {
593 * If we find it and tp matches, return it.
594 * Also move it to the front of the hash list
595 * if we find it and it is not already there.
596 * Otherwise break from the loop and return
599 if (ip
->i_transp
== tp
) {
600 version
= ih
->ih_version
;
601 read_unlock(&ih
->ih_lock
);
602 xfs_ihash_promote(ih
, ip
, version
);
608 read_unlock(&ih
->ih_lock
);
613 * Decrement reference count of an inode structure and unlock it.
615 * ip -- the inode being released
616 * lock_flags -- this parameter indicates the inode's locks to be
617 * to be released. See the comment on xfs_iunlock() for a list
621 xfs_iput(xfs_inode_t
*ip
,
624 vnode_t
*vp
= XFS_ITOV(ip
);
626 vn_trace_entry(vp
, "xfs_iput", (inst_t
*)__return_address
);
628 xfs_iunlock(ip
, lock_flags
);
634 * Special iput for brand-new inodes that are still locked
637 xfs_iput_new(xfs_inode_t
*ip
,
640 vnode_t
*vp
= XFS_ITOV(ip
);
641 struct inode
*inode
= LINVFS_GET_IP(vp
);
643 vn_trace_entry(vp
, "xfs_iput_new", (inst_t
*)__return_address
);
645 if ((ip
->i_d
.di_mode
== 0)) {
646 ASSERT(!(ip
->i_flags
& XFS_IRECLAIMABLE
));
649 if (inode
->i_state
& I_NEW
)
650 unlock_new_inode(inode
);
652 xfs_iunlock(ip
, lock_flags
);
658 * This routine embodies the part of the reclaim code that pulls
659 * the inode from the inode hash table and the mount structure's
661 * This should only be called from xfs_reclaim().
664 xfs_ireclaim(xfs_inode_t
*ip
)
669 * Remove from old hash list and mount list.
671 XFS_STATS_INC(xs_ig_reclaims
);
676 * Here we do a spurious inode lock in order to coordinate with
677 * xfs_sync(). This is because xfs_sync() references the inodes
678 * in the mount list without taking references on the corresponding
679 * vnodes. We make that OK here by ensuring that we wait until
680 * the inode is unlocked in xfs_sync() before we go ahead and
681 * free it. We get both the regular lock and the io lock because
682 * the xfs_sync() code may need to drop the regular one but will
683 * still hold the io lock.
685 xfs_ilock(ip
, XFS_ILOCK_EXCL
| XFS_IOLOCK_EXCL
);
688 * Release dquots (and their references) if any. An inode may escape
689 * xfs_inactive and get here via vn_alloc->vn_reclaim path.
691 XFS_QM_DQDETACH(ip
->i_mount
, ip
);
694 * Pull our behavior descriptor from the vnode chain.
696 vp
= XFS_ITOV_NULL(ip
);
698 vn_bhv_remove(VN_BHV_HEAD(vp
), XFS_ITOBHV(ip
));
702 * Free all memory associated with the inode.
708 * This routine removes an about-to-be-destroyed inode from
709 * all of the lists in which it is located with the exception
710 * of the behavior chain.
720 xfs_chashlist_t
*chl
, *chm
;
724 write_lock(&ih
->ih_lock
);
725 if ((iq
= ip
->i_next
)) {
726 iq
->i_prevp
= ip
->i_prevp
;
730 write_unlock(&ih
->ih_lock
);
733 * Remove from cluster hash list
734 * 1) delete the chashlist if this is the last inode on the chashlist
735 * 2) unchain from list of inodes
736 * 3) point chashlist->chl_ip to 'chl_next' if to this inode.
739 ch
= XFS_CHASH(mp
, ip
->i_blkno
);
740 s
= mutex_spinlock(&ch
->ch_lock
);
742 if (ip
->i_cnext
== ip
) {
743 /* Last inode on chashlist */
744 ASSERT(ip
->i_cnext
== ip
&& ip
->i_cprev
== ip
);
745 ASSERT(ip
->i_chash
!= NULL
);
747 for (chl
= ch
->ch_list
; chl
!= NULL
; chl
= chl
->chl_next
) {
748 if (chl
->chl_blkno
== ip
->i_blkno
) {
750 /* first item on the list */
751 ch
->ch_list
= chl
->chl_next
;
753 chm
->chl_next
= chl
->chl_next
;
755 kmem_zone_free(xfs_chashlist_zone
, chl
);
758 ASSERT(chl
->chl_ip
!= ip
);
762 ASSERT_ALWAYS(chl
!= NULL
);
764 /* delete one inode from a non-empty list */
766 iq
->i_cprev
= ip
->i_cprev
;
767 ip
->i_cprev
->i_cnext
= iq
;
768 if (ip
->i_chash
->chl_ip
== ip
) {
769 ip
->i_chash
->chl_ip
= iq
;
771 ip
->i_chash
= __return_address
;
772 ip
->i_cprev
= __return_address
;
773 ip
->i_cnext
= __return_address
;
775 mutex_spinunlock(&ch
->ch_lock
, s
);
778 * Remove from mount's inode list.
781 ASSERT((ip
->i_mnext
!= NULL
) && (ip
->i_mprev
!= NULL
));
783 iq
->i_mprev
= ip
->i_mprev
;
784 ip
->i_mprev
->i_mnext
= iq
;
787 * Fix up the head pointer if it points to the inode being deleted.
789 if (mp
->m_inodes
== ip
) {
797 /* Deal with the deleted inodes list */
798 list_del_init(&ip
->i_reclaim
);
801 XFS_MOUNT_IUNLOCK(mp
);
805 * This is a wrapper routine around the xfs_ilock() routine
806 * used to centralize some grungy code. It is used in places
807 * that wish to lock the inode solely for reading the extents.
808 * The reason these places can't just call xfs_ilock(SHARED)
809 * is that the inode lock also guards to bringing in of the
810 * extents from disk for a file in b-tree format. If the inode
811 * is in b-tree format, then we need to lock the inode exclusively
812 * until the extents are read in. Locking it exclusively all
813 * the time would limit our parallelism unnecessarily, though.
814 * What we do instead is check to see if the extents have been
815 * read in yet, and only lock the inode exclusively if they
818 * The function returns a value which should be given to the
819 * corresponding xfs_iunlock_map_shared(). This value is
820 * the mode in which the lock was actually taken.
823 xfs_ilock_map_shared(
828 if ((ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
) &&
829 ((ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)) {
830 lock_mode
= XFS_ILOCK_EXCL
;
832 lock_mode
= XFS_ILOCK_SHARED
;
835 xfs_ilock(ip
, lock_mode
);
841 * This is simply the unlock routine to go with xfs_ilock_map_shared().
842 * All it does is call xfs_iunlock() with the given lock_mode.
845 xfs_iunlock_map_shared(
847 unsigned int lock_mode
)
849 xfs_iunlock(ip
, lock_mode
);
853 * The xfs inode contains 2 locks: a multi-reader lock called the
854 * i_iolock and a multi-reader lock called the i_lock. This routine
855 * allows either or both of the locks to be obtained.
857 * The 2 locks should always be ordered so that the IO lock is
858 * obtained first in order to prevent deadlock.
860 * ip -- the inode being locked
861 * lock_flags -- this parameter indicates the inode's locks
862 * to be locked. It can be:
867 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
868 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
869 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
870 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
873 xfs_ilock(xfs_inode_t
*ip
,
877 * You can't set both SHARED and EXCL for the same lock,
878 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
879 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
881 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
882 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
883 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
884 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
885 ASSERT((lock_flags
& ~XFS_LOCK_MASK
) == 0);
887 if (lock_flags
& XFS_IOLOCK_EXCL
) {
888 mrupdate(&ip
->i_iolock
);
889 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
890 mraccess(&ip
->i_iolock
);
892 if (lock_flags
& XFS_ILOCK_EXCL
) {
893 mrupdate(&ip
->i_lock
);
894 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
895 mraccess(&ip
->i_lock
);
897 xfs_ilock_trace(ip
, 1, lock_flags
, (inst_t
*)__return_address
);
901 * This is just like xfs_ilock(), except that the caller
902 * is guaranteed not to sleep. It returns 1 if it gets
903 * the requested locks and 0 otherwise. If the IO lock is
904 * obtained but the inode lock cannot be, then the IO lock
905 * is dropped before returning.
907 * ip -- the inode being locked
908 * lock_flags -- this parameter indicates the inode's locks to be
909 * to be locked. See the comment for xfs_ilock() for a list
914 xfs_ilock_nowait(xfs_inode_t
*ip
,
921 * You can't set both SHARED and EXCL for the same lock,
922 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
923 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
925 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
926 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
927 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
928 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
929 ASSERT((lock_flags
& ~XFS_LOCK_MASK
) == 0);
932 if (lock_flags
& XFS_IOLOCK_EXCL
) {
933 iolocked
= mrtryupdate(&ip
->i_iolock
);
937 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
938 iolocked
= mrtryaccess(&ip
->i_iolock
);
943 if (lock_flags
& XFS_ILOCK_EXCL
) {
944 ilocked
= mrtryupdate(&ip
->i_lock
);
947 mrunlock(&ip
->i_iolock
);
951 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
952 ilocked
= mrtryaccess(&ip
->i_lock
);
955 mrunlock(&ip
->i_iolock
);
960 xfs_ilock_trace(ip
, 2, lock_flags
, (inst_t
*)__return_address
);
965 * xfs_iunlock() is used to drop the inode locks acquired with
966 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
967 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
968 * that we know which locks to drop.
970 * ip -- the inode being unlocked
971 * lock_flags -- this parameter indicates the inode's locks to be
972 * to be unlocked. See the comment for xfs_ilock() for a list
973 * of valid values for this parameter.
977 xfs_iunlock(xfs_inode_t
*ip
,
981 * You can't set both SHARED and EXCL for the same lock,
982 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
983 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
985 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
986 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
987 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
988 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
989 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_IUNLOCK_NONOTIFY
)) == 0);
990 ASSERT(lock_flags
!= 0);
992 if (lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) {
993 ASSERT(!(lock_flags
& XFS_IOLOCK_SHARED
) ||
994 (ismrlocked(&ip
->i_iolock
, MR_ACCESS
)));
995 ASSERT(!(lock_flags
& XFS_IOLOCK_EXCL
) ||
996 (ismrlocked(&ip
->i_iolock
, MR_UPDATE
)));
997 mrunlock(&ip
->i_iolock
);
1000 if (lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) {
1001 ASSERT(!(lock_flags
& XFS_ILOCK_SHARED
) ||
1002 (ismrlocked(&ip
->i_lock
, MR_ACCESS
)));
1003 ASSERT(!(lock_flags
& XFS_ILOCK_EXCL
) ||
1004 (ismrlocked(&ip
->i_lock
, MR_UPDATE
)));
1005 mrunlock(&ip
->i_lock
);
1008 * Let the AIL know that this item has been unlocked in case
1009 * it is in the AIL and anyone is waiting on it. Don't do
1010 * this if the caller has asked us not to.
1012 if (!(lock_flags
& XFS_IUNLOCK_NONOTIFY
) &&
1013 ip
->i_itemp
!= NULL
) {
1014 xfs_trans_unlocked_item(ip
->i_mount
,
1015 (xfs_log_item_t
*)(ip
->i_itemp
));
1018 xfs_ilock_trace(ip
, 3, lock_flags
, (inst_t
*)__return_address
);
1022 * give up write locks. the i/o lock cannot be held nested
1023 * if it is being demoted.
1026 xfs_ilock_demote(xfs_inode_t
*ip
,
1029 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
));
1030 ASSERT((lock_flags
& ~(XFS_IOLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
1032 if (lock_flags
& XFS_ILOCK_EXCL
) {
1033 ASSERT(ismrlocked(&ip
->i_lock
, MR_UPDATE
));
1034 mrdemote(&ip
->i_lock
);
1036 if (lock_flags
& XFS_IOLOCK_EXCL
) {
1037 ASSERT(ismrlocked(&ip
->i_iolock
, MR_UPDATE
));
1038 mrdemote(&ip
->i_iolock
);
1043 * The following three routines simply manage the i_flock
1044 * semaphore embedded in the inode. This semaphore synchronizes
1045 * processes attempting to flush the in-core inode back to disk.
1048 xfs_iflock(xfs_inode_t
*ip
)
1050 psema(&(ip
->i_flock
), PINOD
|PLTWAIT
);
1054 xfs_iflock_nowait(xfs_inode_t
*ip
)
1056 return (cpsema(&(ip
->i_flock
)));
1060 xfs_ifunlock(xfs_inode_t
*ip
)
1062 ASSERT(valusema(&(ip
->i_flock
)) <= 0);
1063 vsema(&(ip
->i_flock
));