[PATCH] x86_64: Clarify Booting processor ... message
[usb.git] / arch / x86_64 / kernel / smpboot.c
blob001c2d57248586464da570017e368e188eb4d270
1 /*
2 * x86 SMP booting functions
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
15 * This code is released under the GNU General Public License version 2
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
37 * Ashok Raj : CPU hotplug support
41 #include <linux/config.h>
42 #include <linux/init.h>
44 #include <linux/mm.h>
45 #include <linux/kernel_stat.h>
46 #include <linux/smp_lock.h>
47 #include <linux/irq.h>
48 #include <linux/bootmem.h>
49 #include <linux/thread_info.h>
50 #include <linux/module.h>
52 #include <linux/delay.h>
53 #include <linux/mc146818rtc.h>
54 #include <asm/mtrr.h>
55 #include <asm/pgalloc.h>
56 #include <asm/desc.h>
57 #include <asm/kdebug.h>
58 #include <asm/tlbflush.h>
59 #include <asm/proto.h>
60 #include <asm/nmi.h>
62 /* Number of siblings per CPU package */
63 int smp_num_siblings = 1;
64 /* Package ID of each logical CPU */
65 u8 phys_proc_id[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID };
66 u8 cpu_core_id[NR_CPUS] = { [0 ... NR_CPUS-1] = BAD_APICID };
67 EXPORT_SYMBOL(phys_proc_id);
68 EXPORT_SYMBOL(cpu_core_id);
70 /* Bitmask of currently online CPUs */
71 cpumask_t cpu_online_map;
73 EXPORT_SYMBOL(cpu_online_map);
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
79 cpumask_t cpu_callin_map;
80 cpumask_t cpu_callout_map;
82 cpumask_t cpu_possible_map;
83 EXPORT_SYMBOL(cpu_possible_map);
85 /* Per CPU bogomips and other parameters */
86 struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
88 /* Set when the idlers are all forked */
89 int smp_threads_ready;
91 cpumask_t cpu_sibling_map[NR_CPUS] __cacheline_aligned;
92 cpumask_t cpu_core_map[NR_CPUS] __cacheline_aligned;
93 EXPORT_SYMBOL(cpu_core_map);
96 * Trampoline 80x86 program as an array.
99 extern unsigned char trampoline_data[];
100 extern unsigned char trampoline_end[];
102 /* State of each CPU */
103 DEFINE_PER_CPU(int, cpu_state) = { 0 };
106 * Store all idle threads, this can be reused instead of creating
107 * a new thread. Also avoids complicated thread destroy functionality
108 * for idle threads.
110 struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
112 #define get_idle_for_cpu(x) (idle_thread_array[(x)])
113 #define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
116 * Currently trivial. Write the real->protected mode
117 * bootstrap into the page concerned. The caller
118 * has made sure it's suitably aligned.
121 static unsigned long __cpuinit setup_trampoline(void)
123 void *tramp = __va(SMP_TRAMPOLINE_BASE);
124 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
125 return virt_to_phys(tramp);
129 * The bootstrap kernel entry code has set these up. Save them for
130 * a given CPU
133 static void __cpuinit smp_store_cpu_info(int id)
135 struct cpuinfo_x86 *c = cpu_data + id;
137 *c = boot_cpu_data;
138 identify_cpu(c);
139 print_cpu_info(c);
143 * New Funky TSC sync algorithm borrowed from IA64.
144 * Main advantage is that it doesn't reset the TSCs fully and
145 * in general looks more robust and it works better than my earlier
146 * attempts. I believe it was written by David Mosberger. Some minor
147 * adjustments for x86-64 by me -AK
149 * Original comment reproduced below.
151 * Synchronize TSC of the current (slave) CPU with the TSC of the
152 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
153 * eliminate the possibility of unaccounted-for errors (such as
154 * getting a machine check in the middle of a calibration step). The
155 * basic idea is for the slave to ask the master what itc value it has
156 * and to read its own itc before and after the master responds. Each
157 * iteration gives us three timestamps:
159 * slave master
161 * t0 ---\
162 * ---\
163 * --->
164 * tm
165 * /---
166 * /---
167 * t1 <---
170 * The goal is to adjust the slave's TSC such that tm falls exactly
171 * half-way between t0 and t1. If we achieve this, the clocks are
172 * synchronized provided the interconnect between the slave and the
173 * master is symmetric. Even if the interconnect were asymmetric, we
174 * would still know that the synchronization error is smaller than the
175 * roundtrip latency (t0 - t1).
177 * When the interconnect is quiet and symmetric, this lets us
178 * synchronize the TSC to within one or two cycles. However, we can
179 * only *guarantee* that the synchronization is accurate to within a
180 * round-trip time, which is typically in the range of several hundred
181 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
182 * are usually almost perfectly synchronized, but we shouldn't assume
183 * that the accuracy is much better than half a micro second or so.
185 * [there are other errors like the latency of RDTSC and of the
186 * WRMSR. These can also account to hundreds of cycles. So it's
187 * probably worse. It claims 153 cycles error on a dual Opteron,
188 * but I suspect the numbers are actually somewhat worse -AK]
191 #define MASTER 0
192 #define SLAVE (SMP_CACHE_BYTES/8)
194 /* Intentionally don't use cpu_relax() while TSC synchronization
195 because we don't want to go into funky power save modi or cause
196 hypervisors to schedule us away. Going to sleep would likely affect
197 latency and low latency is the primary objective here. -AK */
198 #define no_cpu_relax() barrier()
200 static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
201 static volatile __cpuinitdata unsigned long go[SLAVE + 1];
202 static int notscsync __cpuinitdata;
204 #undef DEBUG_TSC_SYNC
206 #define NUM_ROUNDS 64 /* magic value */
207 #define NUM_ITERS 5 /* likewise */
209 /* Callback on boot CPU */
210 static __cpuinit void sync_master(void *arg)
212 unsigned long flags, i;
214 if (smp_processor_id() != 0)
215 return;
217 go[MASTER] = 0;
219 local_irq_save(flags);
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
228 local_irq_restore(flags);
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
236 static inline long
237 get_delta(long *rt, long *master)
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
265 static __cpuinit void sync_tsc(void)
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
270 #ifdef DEBUG_TSC_SYNC
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277 #endif
279 go[MASTER] = 1;
281 smp_call_function(sync_master, NULL, 1, 0);
283 while (go[MASTER]) /* wait for master to be ready */
284 no_cpu_relax();
286 spin_lock_irqsave(&tsc_sync_lock, flags);
288 for (i = 0; i < NUM_ROUNDS; ++i) {
289 delta = get_delta(&rt, &master_time_stamp);
290 if (delta == 0) {
291 done = 1; /* let's lock on to this... */
292 bound = rt;
295 if (!done) {
296 unsigned long t;
297 if (i > 0) {
298 adjust_latency += -delta;
299 adj = -delta + adjust_latency/4;
300 } else
301 adj = -delta;
303 rdtscll(t);
304 wrmsrl(MSR_IA32_TSC, t + adj);
306 #ifdef DEBUG_TSC_SYNC
307 t[i].rt = rt;
308 t[i].master = master_time_stamp;
309 t[i].diff = delta;
310 t[i].lat = adjust_latency/4;
311 #endif
314 spin_unlock_irqrestore(&tsc_sync_lock, flags);
316 #ifdef DEBUG_TSC_SYNC
317 for (i = 0; i < NUM_ROUNDS; ++i)
318 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
319 t[i].rt, t[i].master, t[i].diff, t[i].lat);
320 #endif
322 printk(KERN_INFO
323 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
324 "maxerr %lu cycles)\n",
325 smp_processor_id(), boot_cpu_id, delta, rt);
328 static void __cpuinit tsc_sync_wait(void)
330 if (notscsync || !cpu_has_tsc)
331 return;
332 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n", smp_processor_id(),
333 boot_cpu_id);
334 sync_tsc();
337 static __init int notscsync_setup(char *s)
339 notscsync = 1;
340 return 0;
342 __setup("notscsync", notscsync_setup);
344 static atomic_t init_deasserted __cpuinitdata;
347 * Report back to the Boot Processor.
348 * Running on AP.
350 void __cpuinit smp_callin(void)
352 int cpuid, phys_id;
353 unsigned long timeout;
356 * If waken up by an INIT in an 82489DX configuration
357 * we may get here before an INIT-deassert IPI reaches
358 * our local APIC. We have to wait for the IPI or we'll
359 * lock up on an APIC access.
361 while (!atomic_read(&init_deasserted))
362 cpu_relax();
365 * (This works even if the APIC is not enabled.)
367 phys_id = GET_APIC_ID(apic_read(APIC_ID));
368 cpuid = smp_processor_id();
369 if (cpu_isset(cpuid, cpu_callin_map)) {
370 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
371 phys_id, cpuid);
373 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
376 * STARTUP IPIs are fragile beasts as they might sometimes
377 * trigger some glue motherboard logic. Complete APIC bus
378 * silence for 1 second, this overestimates the time the
379 * boot CPU is spending to send the up to 2 STARTUP IPIs
380 * by a factor of two. This should be enough.
384 * Waiting 2s total for startup (udelay is not yet working)
386 timeout = jiffies + 2*HZ;
387 while (time_before(jiffies, timeout)) {
389 * Has the boot CPU finished it's STARTUP sequence?
391 if (cpu_isset(cpuid, cpu_callout_map))
392 break;
393 cpu_relax();
396 if (!time_before(jiffies, timeout)) {
397 panic("smp_callin: CPU%d started up but did not get a callout!\n",
398 cpuid);
402 * the boot CPU has finished the init stage and is spinning
403 * on callin_map until we finish. We are free to set up this
404 * CPU, first the APIC. (this is probably redundant on most
405 * boards)
408 Dprintk("CALLIN, before setup_local_APIC().\n");
409 setup_local_APIC();
412 * Get our bogomips.
414 calibrate_delay();
415 Dprintk("Stack at about %p\n",&cpuid);
417 disable_APIC_timer();
420 * Save our processor parameters
422 smp_store_cpu_info(cpuid);
425 * Allow the master to continue.
427 cpu_set(cpuid, cpu_callin_map);
430 static inline void set_cpu_sibling_map(int cpu)
432 int i;
434 if (smp_num_siblings > 1) {
435 for_each_cpu(i) {
436 if (cpu_core_id[cpu] == cpu_core_id[i]) {
437 cpu_set(i, cpu_sibling_map[cpu]);
438 cpu_set(cpu, cpu_sibling_map[i]);
441 } else {
442 cpu_set(cpu, cpu_sibling_map[cpu]);
445 if (current_cpu_data.x86_num_cores > 1) {
446 for_each_cpu(i) {
447 if (phys_proc_id[cpu] == phys_proc_id[i]) {
448 cpu_set(i, cpu_core_map[cpu]);
449 cpu_set(cpu, cpu_core_map[i]);
452 } else {
453 cpu_core_map[cpu] = cpu_sibling_map[cpu];
458 * Setup code on secondary processor (after comming out of the trampoline)
460 void __cpuinit start_secondary(void)
463 * Dont put anything before smp_callin(), SMP
464 * booting is too fragile that we want to limit the
465 * things done here to the most necessary things.
467 cpu_init();
468 smp_callin();
470 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
471 barrier();
473 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
474 setup_secondary_APIC_clock();
476 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
478 if (nmi_watchdog == NMI_IO_APIC) {
479 disable_8259A_irq(0);
480 enable_NMI_through_LVT0(NULL);
481 enable_8259A_irq(0);
484 enable_APIC_timer();
487 * The sibling maps must be set before turing the online map on for
488 * this cpu
490 set_cpu_sibling_map(smp_processor_id());
493 * We need to hold call_lock, so there is no inconsistency
494 * between the time smp_call_function() determines number of
495 * IPI receipients, and the time when the determination is made
496 * for which cpus receive the IPI in genapic_flat.c. Holding this
497 * lock helps us to not include this cpu in a currently in progress
498 * smp_call_function().
500 lock_ipi_call_lock();
503 * Allow the master to continue.
505 cpu_set(smp_processor_id(), cpu_online_map);
506 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
507 unlock_ipi_call_lock();
509 mb();
511 /* Wait for TSC sync to not schedule things before.
512 We still process interrupts, which could see an inconsistent
513 time in that window unfortunately. */
514 tsc_sync_wait();
516 cpu_idle();
519 extern volatile unsigned long init_rsp;
520 extern void (*initial_code)(void);
522 #ifdef APIC_DEBUG
523 static void inquire_remote_apic(int apicid)
525 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
526 char *names[] = { "ID", "VERSION", "SPIV" };
527 int timeout, status;
529 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
531 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
532 printk("... APIC #%d %s: ", apicid, names[i]);
535 * Wait for idle.
537 apic_wait_icr_idle();
539 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
540 apic_write_around(APIC_ICR, APIC_DM_REMRD | regs[i]);
542 timeout = 0;
543 do {
544 udelay(100);
545 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
546 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
548 switch (status) {
549 case APIC_ICR_RR_VALID:
550 status = apic_read(APIC_RRR);
551 printk("%08x\n", status);
552 break;
553 default:
554 printk("failed\n");
558 #endif
561 * Kick the secondary to wake up.
563 static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
565 unsigned long send_status = 0, accept_status = 0;
566 int maxlvt, timeout, num_starts, j;
568 Dprintk("Asserting INIT.\n");
571 * Turn INIT on target chip
573 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
576 * Send IPI
578 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
579 | APIC_DM_INIT);
581 Dprintk("Waiting for send to finish...\n");
582 timeout = 0;
583 do {
584 Dprintk("+");
585 udelay(100);
586 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
587 } while (send_status && (timeout++ < 1000));
589 mdelay(10);
591 Dprintk("Deasserting INIT.\n");
593 /* Target chip */
594 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
596 /* Send IPI */
597 apic_write_around(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
599 Dprintk("Waiting for send to finish...\n");
600 timeout = 0;
601 do {
602 Dprintk("+");
603 udelay(100);
604 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
605 } while (send_status && (timeout++ < 1000));
607 atomic_set(&init_deasserted, 1);
610 * Should we send STARTUP IPIs ?
612 * Determine this based on the APIC version.
613 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
615 if (APIC_INTEGRATED(apic_version[phys_apicid]))
616 num_starts = 2;
617 else
618 num_starts = 0;
621 * Run STARTUP IPI loop.
623 Dprintk("#startup loops: %d.\n", num_starts);
625 maxlvt = get_maxlvt();
627 for (j = 1; j <= num_starts; j++) {
628 Dprintk("Sending STARTUP #%d.\n",j);
629 apic_read_around(APIC_SPIV);
630 apic_write(APIC_ESR, 0);
631 apic_read(APIC_ESR);
632 Dprintk("After apic_write.\n");
635 * STARTUP IPI
638 /* Target chip */
639 apic_write_around(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
641 /* Boot on the stack */
642 /* Kick the second */
643 apic_write_around(APIC_ICR, APIC_DM_STARTUP
644 | (start_rip >> 12));
647 * Give the other CPU some time to accept the IPI.
649 udelay(300);
651 Dprintk("Startup point 1.\n");
653 Dprintk("Waiting for send to finish...\n");
654 timeout = 0;
655 do {
656 Dprintk("+");
657 udelay(100);
658 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
659 } while (send_status && (timeout++ < 1000));
662 * Give the other CPU some time to accept the IPI.
664 udelay(200);
666 * Due to the Pentium erratum 3AP.
668 if (maxlvt > 3) {
669 apic_read_around(APIC_SPIV);
670 apic_write(APIC_ESR, 0);
672 accept_status = (apic_read(APIC_ESR) & 0xEF);
673 if (send_status || accept_status)
674 break;
676 Dprintk("After Startup.\n");
678 if (send_status)
679 printk(KERN_ERR "APIC never delivered???\n");
680 if (accept_status)
681 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
683 return (send_status | accept_status);
686 struct create_idle {
687 struct task_struct *idle;
688 struct completion done;
689 int cpu;
692 void do_fork_idle(void *_c_idle)
694 struct create_idle *c_idle = _c_idle;
696 c_idle->idle = fork_idle(c_idle->cpu);
697 complete(&c_idle->done);
701 * Boot one CPU.
703 static int __cpuinit do_boot_cpu(int cpu, int apicid)
705 unsigned long boot_error;
706 int timeout;
707 unsigned long start_rip;
708 struct create_idle c_idle = {
709 .cpu = cpu,
710 .done = COMPLETION_INITIALIZER(c_idle.done),
712 DECLARE_WORK(work, do_fork_idle, &c_idle);
714 c_idle.idle = get_idle_for_cpu(cpu);
716 if (c_idle.idle) {
717 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
718 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
719 init_idle(c_idle.idle, cpu);
720 goto do_rest;
724 * During cold boot process, keventd thread is not spun up yet.
725 * When we do cpu hot-add, we create idle threads on the fly, we should
726 * not acquire any attributes from the calling context. Hence the clean
727 * way to create kernel_threads() is to do that from keventd().
728 * We do the current_is_keventd() due to the fact that ACPI notifier
729 * was also queuing to keventd() and when the caller is already running
730 * in context of keventd(), we would end up with locking up the keventd
731 * thread.
733 if (!keventd_up() || current_is_keventd())
734 work.func(work.data);
735 else {
736 schedule_work(&work);
737 wait_for_completion(&c_idle.done);
740 if (IS_ERR(c_idle.idle)) {
741 printk("failed fork for CPU %d\n", cpu);
742 return PTR_ERR(c_idle.idle);
745 set_idle_for_cpu(cpu, c_idle.idle);
747 do_rest:
749 cpu_pda[cpu].pcurrent = c_idle.idle;
751 start_rip = setup_trampoline();
753 init_rsp = c_idle.idle->thread.rsp;
754 per_cpu(init_tss,cpu).rsp0 = init_rsp;
755 initial_code = start_secondary;
756 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
758 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
759 cpus_weight(cpu_present_map),
760 apicid);
763 * This grunge runs the startup process for
764 * the targeted processor.
767 atomic_set(&init_deasserted, 0);
769 Dprintk("Setting warm reset code and vector.\n");
771 CMOS_WRITE(0xa, 0xf);
772 local_flush_tlb();
773 Dprintk("1.\n");
774 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
775 Dprintk("2.\n");
776 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
777 Dprintk("3.\n");
780 * Be paranoid about clearing APIC errors.
782 if (APIC_INTEGRATED(apic_version[apicid])) {
783 apic_read_around(APIC_SPIV);
784 apic_write(APIC_ESR, 0);
785 apic_read(APIC_ESR);
789 * Status is now clean
791 boot_error = 0;
794 * Starting actual IPI sequence...
796 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
798 if (!boot_error) {
800 * allow APs to start initializing.
802 Dprintk("Before Callout %d.\n", cpu);
803 cpu_set(cpu, cpu_callout_map);
804 Dprintk("After Callout %d.\n", cpu);
807 * Wait 5s total for a response
809 for (timeout = 0; timeout < 50000; timeout++) {
810 if (cpu_isset(cpu, cpu_callin_map))
811 break; /* It has booted */
812 udelay(100);
815 if (cpu_isset(cpu, cpu_callin_map)) {
816 /* number CPUs logically, starting from 1 (BSP is 0) */
817 Dprintk("CPU has booted.\n");
818 } else {
819 boot_error = 1;
820 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
821 == 0xA5)
822 /* trampoline started but...? */
823 printk("Stuck ??\n");
824 else
825 /* trampoline code not run */
826 printk("Not responding.\n");
827 #ifdef APIC_DEBUG
828 inquire_remote_apic(apicid);
829 #endif
832 if (boot_error) {
833 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
834 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
835 cpu_clear(cpu, cpu_present_map);
836 cpu_clear(cpu, cpu_possible_map);
837 x86_cpu_to_apicid[cpu] = BAD_APICID;
838 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
839 return -EIO;
842 return 0;
845 cycles_t cacheflush_time;
846 unsigned long cache_decay_ticks;
849 * Cleanup possible dangling ends...
851 static __cpuinit void smp_cleanup_boot(void)
854 * Paranoid: Set warm reset code and vector here back
855 * to default values.
857 CMOS_WRITE(0, 0xf);
860 * Reset trampoline flag
862 *((volatile int *) phys_to_virt(0x467)) = 0;
864 #ifndef CONFIG_HOTPLUG_CPU
866 * Free pages reserved for SMP bootup.
867 * When you add hotplug CPU support later remove this
868 * Note there is more work to be done for later CPU bootup.
871 free_page((unsigned long) __va(PAGE_SIZE));
872 free_page((unsigned long) __va(SMP_TRAMPOLINE_BASE));
873 #endif
877 * Fall back to non SMP mode after errors.
879 * RED-PEN audit/test this more. I bet there is more state messed up here.
881 static __init void disable_smp(void)
883 cpu_present_map = cpumask_of_cpu(0);
884 cpu_possible_map = cpumask_of_cpu(0);
885 if (smp_found_config)
886 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
887 else
888 phys_cpu_present_map = physid_mask_of_physid(0);
889 cpu_set(0, cpu_sibling_map[0]);
890 cpu_set(0, cpu_core_map[0]);
894 * Handle user cpus=... parameter.
896 static __init void enforce_max_cpus(unsigned max_cpus)
898 int i, k;
899 k = 0;
900 for (i = 0; i < NR_CPUS; i++) {
901 if (!cpu_possible(i))
902 continue;
903 if (++k > max_cpus) {
904 cpu_clear(i, cpu_possible_map);
905 cpu_clear(i, cpu_present_map);
910 #ifdef CONFIG_HOTPLUG_CPU
912 * cpu_possible_map should be static, it cannot change as cpu's
913 * are onlined, or offlined. The reason is per-cpu data-structures
914 * are allocated by some modules at init time, and dont expect to
915 * do this dynamically on cpu arrival/departure.
916 * cpu_present_map on the other hand can change dynamically.
917 * In case when cpu_hotplug is not compiled, then we resort to current
918 * behaviour, which is cpu_possible == cpu_present.
919 * If cpu-hotplug is supported, then we need to preallocate for all
920 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
921 * - Ashok Raj
923 static void prefill_possible_map(void)
925 int i;
926 for (i = 0; i < NR_CPUS; i++)
927 cpu_set(i, cpu_possible_map);
929 #endif
932 * Various sanity checks.
934 static int __init smp_sanity_check(unsigned max_cpus)
936 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
937 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
938 hard_smp_processor_id());
939 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
943 * If we couldn't find an SMP configuration at boot time,
944 * get out of here now!
946 if (!smp_found_config) {
947 printk(KERN_NOTICE "SMP motherboard not detected.\n");
948 disable_smp();
949 if (APIC_init_uniprocessor())
950 printk(KERN_NOTICE "Local APIC not detected."
951 " Using dummy APIC emulation.\n");
952 return -1;
956 * Should not be necessary because the MP table should list the boot
957 * CPU too, but we do it for the sake of robustness anyway.
959 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
960 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
961 boot_cpu_id);
962 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
966 * If we couldn't find a local APIC, then get out of here now!
968 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
969 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
970 boot_cpu_id);
971 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
972 nr_ioapics = 0;
973 return -1;
977 * If SMP should be disabled, then really disable it!
979 if (!max_cpus) {
980 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
981 nr_ioapics = 0;
982 return -1;
985 return 0;
989 * Prepare for SMP bootup. The MP table or ACPI has been read
990 * earlier. Just do some sanity checking here and enable APIC mode.
992 void __init smp_prepare_cpus(unsigned int max_cpus)
994 nmi_watchdog_default();
995 current_cpu_data = boot_cpu_data;
996 current_thread_info()->cpu = 0; /* needed? */
998 enforce_max_cpus(max_cpus);
1000 #ifdef CONFIG_HOTPLUG_CPU
1001 prefill_possible_map();
1002 #endif
1004 if (smp_sanity_check(max_cpus) < 0) {
1005 printk(KERN_INFO "SMP disabled\n");
1006 disable_smp();
1007 return;
1012 * Switch from PIC to APIC mode.
1014 connect_bsp_APIC();
1015 setup_local_APIC();
1017 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1018 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1019 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1020 /* Or can we switch back to PIC here? */
1024 * Now start the IO-APICs
1026 if (!skip_ioapic_setup && nr_ioapics)
1027 setup_IO_APIC();
1028 else
1029 nr_ioapics = 0;
1032 * Set up local APIC timer on boot CPU.
1035 setup_boot_APIC_clock();
1039 * Early setup to make printk work.
1041 void __init smp_prepare_boot_cpu(void)
1043 int me = smp_processor_id();
1044 cpu_set(me, cpu_online_map);
1045 cpu_set(me, cpu_callout_map);
1046 cpu_set(0, cpu_sibling_map[0]);
1047 cpu_set(0, cpu_core_map[0]);
1048 per_cpu(cpu_state, me) = CPU_ONLINE;
1052 * Entry point to boot a CPU.
1054 int __cpuinit __cpu_up(unsigned int cpu)
1056 int err;
1057 int apicid = cpu_present_to_apicid(cpu);
1059 WARN_ON(irqs_disabled());
1061 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1063 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1064 !physid_isset(apicid, phys_cpu_present_map)) {
1065 printk("__cpu_up: bad cpu %d\n", cpu);
1066 return -EINVAL;
1070 * Already booted CPU?
1072 if (cpu_isset(cpu, cpu_callin_map)) {
1073 Dprintk("do_boot_cpu %d Already started\n", cpu);
1074 return -ENOSYS;
1077 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
1078 /* Boot it! */
1079 err = do_boot_cpu(cpu, apicid);
1080 if (err < 0) {
1081 Dprintk("do_boot_cpu failed %d\n", err);
1082 return err;
1085 /* Unleash the CPU! */
1086 Dprintk("waiting for cpu %d\n", cpu);
1088 while (!cpu_isset(cpu, cpu_online_map))
1089 cpu_relax();
1090 err = 0;
1092 return err;
1096 * Finish the SMP boot.
1098 void __init smp_cpus_done(unsigned int max_cpus)
1100 #ifndef CONFIG_HOTPLUG_CPU
1101 zap_low_mappings();
1102 #endif
1103 smp_cleanup_boot();
1105 #ifdef CONFIG_X86_IO_APIC
1106 setup_ioapic_dest();
1107 #endif
1109 time_init_gtod();
1111 check_nmi_watchdog();
1114 #ifdef CONFIG_HOTPLUG_CPU
1116 static void remove_siblinginfo(int cpu)
1118 int sibling;
1120 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1121 cpu_clear(cpu, cpu_sibling_map[sibling]);
1122 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1123 cpu_clear(cpu, cpu_core_map[sibling]);
1124 cpus_clear(cpu_sibling_map[cpu]);
1125 cpus_clear(cpu_core_map[cpu]);
1126 phys_proc_id[cpu] = BAD_APICID;
1127 cpu_core_id[cpu] = BAD_APICID;
1130 void remove_cpu_from_maps(void)
1132 int cpu = smp_processor_id();
1134 cpu_clear(cpu, cpu_callout_map);
1135 cpu_clear(cpu, cpu_callin_map);
1136 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1139 int __cpu_disable(void)
1141 int cpu = smp_processor_id();
1144 * Perhaps use cpufreq to drop frequency, but that could go
1145 * into generic code.
1147 * We won't take down the boot processor on i386 due to some
1148 * interrupts only being able to be serviced by the BSP.
1149 * Especially so if we're not using an IOAPIC -zwane
1151 if (cpu == 0)
1152 return -EBUSY;
1154 disable_APIC_timer();
1157 * HACK:
1158 * Allow any queued timer interrupts to get serviced
1159 * This is only a temporary solution until we cleanup
1160 * fixup_irqs as we do for IA64.
1162 local_irq_enable();
1163 mdelay(1);
1165 local_irq_disable();
1166 remove_siblinginfo(cpu);
1168 /* It's now safe to remove this processor from the online map */
1169 cpu_clear(cpu, cpu_online_map);
1170 remove_cpu_from_maps();
1171 fixup_irqs(cpu_online_map);
1172 return 0;
1175 void __cpu_die(unsigned int cpu)
1177 /* We don't do anything here: idle task is faking death itself. */
1178 unsigned int i;
1180 for (i = 0; i < 10; i++) {
1181 /* They ack this in play_dead by setting CPU_DEAD */
1182 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1183 printk ("CPU %d is now offline\n", cpu);
1184 return;
1186 current->state = TASK_UNINTERRUPTIBLE;
1187 schedule_timeout(HZ/10);
1189 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1192 #else /* ... !CONFIG_HOTPLUG_CPU */
1194 int __cpu_disable(void)
1196 return -ENOSYS;
1199 void __cpu_die(unsigned int cpu)
1201 /* We said "no" in __cpu_disable */
1202 BUG();
1204 #endif /* CONFIG_HOTPLUG_CPU */