4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
32 * FIXME: remove all knowledge of the buffer layer from the core VM
34 #include <linux/buffer_head.h> /* for generic_osync_inode */
36 #include <asm/uaccess.h>
40 * Shared mappings implemented 30.11.1994. It's not fully working yet,
43 * Shared mappings now work. 15.8.1995 Bruno.
45 * finished 'unifying' the page and buffer cache and SMP-threaded the
46 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
48 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54 * ->i_mmap_lock (vmtruncate)
55 * ->private_lock (__free_pte->__set_page_dirty_buffers)
57 * ->swap_device_lock (exclusive_swap_page, others)
58 * ->mapping->tree_lock
61 * ->i_mmap_lock (truncate->unmap_mapping_range)
65 * ->page_table_lock (various places, mainly in mmap.c)
66 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
69 * ->lock_page (access_process_vm)
75 * ->i_alloc_sem (various)
78 * ->sb_lock (fs/fs-writeback.c)
79 * ->mapping->tree_lock (__sync_single_inode)
82 * ->anon_vma.lock (vma_adjust)
85 * ->page_table_lock (anon_vma_prepare and various)
88 * ->swap_device_lock (try_to_unmap_one)
89 * ->private_lock (try_to_unmap_one)
90 * ->tree_lock (try_to_unmap_one)
91 * ->zone.lru_lock (follow_page->mark_page_accessed)
92 * ->private_lock (page_remove_rmap->set_page_dirty)
93 * ->tree_lock (page_remove_rmap->set_page_dirty)
94 * ->inode_lock (page_remove_rmap->set_page_dirty)
95 * ->inode_lock (zap_pte_range->set_page_dirty)
96 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
99 * ->dcache_lock (proc_pid_lookup)
103 * Remove a page from the page cache and free it. Caller has to make
104 * sure the page is locked and that nobody else uses it - or that usage
105 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
107 void __remove_from_page_cache(struct page
*page
)
109 struct address_space
*mapping
= page
->mapping
;
111 radix_tree_delete(&mapping
->page_tree
, page
->index
);
112 page
->mapping
= NULL
;
117 void remove_from_page_cache(struct page
*page
)
119 struct address_space
*mapping
= page
->mapping
;
121 BUG_ON(!PageLocked(page
));
123 write_lock_irq(&mapping
->tree_lock
);
124 __remove_from_page_cache(page
);
125 write_unlock_irq(&mapping
->tree_lock
);
128 static int sync_page(void *word
)
130 struct address_space
*mapping
;
133 page
= container_of((page_flags_t
*)word
, struct page
, flags
);
136 * page_mapping() is being called without PG_locked held.
137 * Some knowledge of the state and use of the page is used to
138 * reduce the requirements down to a memory barrier.
139 * The danger here is of a stale page_mapping() return value
140 * indicating a struct address_space different from the one it's
141 * associated with when it is associated with one.
142 * After smp_mb(), it's either the correct page_mapping() for
143 * the page, or an old page_mapping() and the page's own
144 * page_mapping() has gone NULL.
145 * The ->sync_page() address_space operation must tolerate
146 * page_mapping() going NULL. By an amazing coincidence,
147 * this comes about because none of the users of the page
148 * in the ->sync_page() methods make essential use of the
149 * page_mapping(), merely passing the page down to the backing
150 * device's unplug functions when it's non-NULL, which in turn
151 * ignore it for all cases but swap, where only page->private is
152 * of interest. When page_mapping() does go NULL, the entire
153 * call stack gracefully ignores the page and returns.
157 mapping
= page_mapping(page
);
158 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->sync_page
)
159 mapping
->a_ops
->sync_page(page
);
165 * filemap_fdatawrite_range - start writeback against all of a mapping's
166 * dirty pages that lie within the byte offsets <start, end>
167 * @mapping: address space structure to write
168 * @start: offset in bytes where the range starts
169 * @end: offset in bytes where the range ends
170 * @sync_mode: enable synchronous operation
172 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
173 * opposed to a regular memory * cleansing writeback. The difference between
174 * these two operations is that if a dirty page/buffer is encountered, it must
175 * be waited upon, and not just skipped over.
177 static int __filemap_fdatawrite_range(struct address_space
*mapping
,
178 loff_t start
, loff_t end
, int sync_mode
)
181 struct writeback_control wbc
= {
182 .sync_mode
= sync_mode
,
183 .nr_to_write
= mapping
->nrpages
* 2,
188 if (!mapping_cap_writeback_dirty(mapping
))
191 ret
= do_writepages(mapping
, &wbc
);
195 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
198 return __filemap_fdatawrite_range(mapping
, 0, 0, sync_mode
);
201 int filemap_fdatawrite(struct address_space
*mapping
)
203 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
205 EXPORT_SYMBOL(filemap_fdatawrite
);
207 static int filemap_fdatawrite_range(struct address_space
*mapping
,
208 loff_t start
, loff_t end
)
210 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
214 * This is a mostly non-blocking flush. Not suitable for data-integrity
215 * purposes - I/O may not be started against all dirty pages.
217 int filemap_flush(struct address_space
*mapping
)
219 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
221 EXPORT_SYMBOL(filemap_flush
);
224 * Wait for writeback to complete against pages indexed by start->end
227 static int wait_on_page_writeback_range(struct address_space
*mapping
,
228 pgoff_t start
, pgoff_t end
)
238 pagevec_init(&pvec
, 0);
240 while ((index
<= end
) &&
241 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
242 PAGECACHE_TAG_WRITEBACK
,
243 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
246 for (i
= 0; i
< nr_pages
; i
++) {
247 struct page
*page
= pvec
.pages
[i
];
249 /* until radix tree lookup accepts end_index */
250 if (page
->index
> end
)
253 wait_on_page_writeback(page
);
257 pagevec_release(&pvec
);
261 /* Check for outstanding write errors */
262 if (test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
264 if (test_and_clear_bit(AS_EIO
, &mapping
->flags
))
271 * Write and wait upon all the pages in the passed range. This is a "data
272 * integrity" operation. It waits upon in-flight writeout before starting and
273 * waiting upon new writeout. If there was an IO error, return it.
275 * We need to re-take i_sem during the generic_osync_inode list walk because
276 * it is otherwise livelockable.
278 int sync_page_range(struct inode
*inode
, struct address_space
*mapping
,
279 loff_t pos
, size_t count
)
281 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
282 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
285 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
287 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
290 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
294 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
297 EXPORT_SYMBOL(sync_page_range
);
300 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
301 * as it forces O_SYNC writers to different parts of the same file
302 * to be serialised right until io completion.
304 int sync_page_range_nolock(struct inode
*inode
, struct address_space
*mapping
,
305 loff_t pos
, size_t count
)
307 pgoff_t start
= pos
>> PAGE_CACHE_SHIFT
;
308 pgoff_t end
= (pos
+ count
- 1) >> PAGE_CACHE_SHIFT
;
311 if (!mapping_cap_writeback_dirty(mapping
) || !count
)
313 ret
= filemap_fdatawrite_range(mapping
, pos
, pos
+ count
- 1);
315 ret
= generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
317 ret
= wait_on_page_writeback_range(mapping
, start
, end
);
320 EXPORT_SYMBOL(sync_page_range_nolock
);
323 * filemap_fdatawait - walk the list of under-writeback pages of the given
324 * address space and wait for all of them.
326 * @mapping: address space structure to wait for
328 int filemap_fdatawait(struct address_space
*mapping
)
330 loff_t i_size
= i_size_read(mapping
->host
);
335 return wait_on_page_writeback_range(mapping
, 0,
336 (i_size
- 1) >> PAGE_CACHE_SHIFT
);
338 EXPORT_SYMBOL(filemap_fdatawait
);
340 int filemap_write_and_wait(struct address_space
*mapping
)
344 if (mapping
->nrpages
) {
345 retval
= filemap_fdatawrite(mapping
);
347 retval
= filemap_fdatawait(mapping
);
352 int filemap_write_and_wait_range(struct address_space
*mapping
,
353 loff_t lstart
, loff_t lend
)
357 if (mapping
->nrpages
) {
358 retval
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
361 retval
= wait_on_page_writeback_range(mapping
,
362 lstart
>> PAGE_CACHE_SHIFT
,
363 lend
>> PAGE_CACHE_SHIFT
);
369 * This function is used to add newly allocated pagecache pages:
370 * the page is new, so we can just run SetPageLocked() against it.
371 * The other page state flags were set by rmqueue().
373 * This function does not add the page to the LRU. The caller must do that.
375 int add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
376 pgoff_t offset
, int gfp_mask
)
378 int error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
381 write_lock_irq(&mapping
->tree_lock
);
382 error
= radix_tree_insert(&mapping
->page_tree
, offset
, page
);
384 page_cache_get(page
);
386 page
->mapping
= mapping
;
387 page
->index
= offset
;
391 write_unlock_irq(&mapping
->tree_lock
);
392 radix_tree_preload_end();
397 EXPORT_SYMBOL(add_to_page_cache
);
399 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
400 pgoff_t offset
, int gfp_mask
)
402 int ret
= add_to_page_cache(page
, mapping
, offset
, gfp_mask
);
409 * In order to wait for pages to become available there must be
410 * waitqueues associated with pages. By using a hash table of
411 * waitqueues where the bucket discipline is to maintain all
412 * waiters on the same queue and wake all when any of the pages
413 * become available, and for the woken contexts to check to be
414 * sure the appropriate page became available, this saves space
415 * at a cost of "thundering herd" phenomena during rare hash
418 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
420 const struct zone
*zone
= page_zone(page
);
422 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
425 static inline void wake_up_page(struct page
*page
, int bit
)
427 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
430 void fastcall
wait_on_page_bit(struct page
*page
, int bit_nr
)
432 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
434 if (test_bit(bit_nr
, &page
->flags
))
435 __wait_on_bit(page_waitqueue(page
), &wait
, sync_page
,
436 TASK_UNINTERRUPTIBLE
);
438 EXPORT_SYMBOL(wait_on_page_bit
);
441 * unlock_page() - unlock a locked page
445 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
446 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
447 * mechananism between PageLocked pages and PageWriteback pages is shared.
448 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
450 * The first mb is necessary to safely close the critical section opened by the
451 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
452 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
453 * parallel wait_on_page_locked()).
455 void fastcall
unlock_page(struct page
*page
)
457 smp_mb__before_clear_bit();
458 if (!TestClearPageLocked(page
))
460 smp_mb__after_clear_bit();
461 wake_up_page(page
, PG_locked
);
463 EXPORT_SYMBOL(unlock_page
);
466 * End writeback against a page.
468 void end_page_writeback(struct page
*page
)
470 if (!TestClearPageReclaim(page
) || rotate_reclaimable_page(page
)) {
471 if (!test_clear_page_writeback(page
))
474 smp_mb__after_clear_bit();
475 wake_up_page(page
, PG_writeback
);
477 EXPORT_SYMBOL(end_page_writeback
);
480 * Get a lock on the page, assuming we need to sleep to get it.
482 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
483 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
484 * chances are that on the second loop, the block layer's plug list is empty,
485 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
487 void fastcall
__lock_page(struct page
*page
)
489 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
491 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sync_page
,
492 TASK_UNINTERRUPTIBLE
);
494 EXPORT_SYMBOL(__lock_page
);
497 * a rather lightweight function, finding and getting a reference to a
498 * hashed page atomically.
500 struct page
* find_get_page(struct address_space
*mapping
, unsigned long offset
)
504 read_lock_irq(&mapping
->tree_lock
);
505 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
507 page_cache_get(page
);
508 read_unlock_irq(&mapping
->tree_lock
);
512 EXPORT_SYMBOL(find_get_page
);
515 * Same as above, but trylock it instead of incrementing the count.
517 struct page
*find_trylock_page(struct address_space
*mapping
, unsigned long offset
)
521 read_lock_irq(&mapping
->tree_lock
);
522 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
523 if (page
&& TestSetPageLocked(page
))
525 read_unlock_irq(&mapping
->tree_lock
);
529 EXPORT_SYMBOL(find_trylock_page
);
532 * find_lock_page - locate, pin and lock a pagecache page
534 * @mapping: the address_space to search
535 * @offset: the page index
537 * Locates the desired pagecache page, locks it, increments its reference
538 * count and returns its address.
540 * Returns zero if the page was not present. find_lock_page() may sleep.
542 struct page
*find_lock_page(struct address_space
*mapping
,
543 unsigned long offset
)
547 read_lock_irq(&mapping
->tree_lock
);
549 page
= radix_tree_lookup(&mapping
->page_tree
, offset
);
551 page_cache_get(page
);
552 if (TestSetPageLocked(page
)) {
553 read_unlock_irq(&mapping
->tree_lock
);
555 read_lock_irq(&mapping
->tree_lock
);
557 /* Has the page been truncated while we slept? */
558 if (page
->mapping
!= mapping
|| page
->index
!= offset
) {
560 page_cache_release(page
);
565 read_unlock_irq(&mapping
->tree_lock
);
569 EXPORT_SYMBOL(find_lock_page
);
572 * find_or_create_page - locate or add a pagecache page
574 * @mapping: the page's address_space
575 * @index: the page's index into the mapping
576 * @gfp_mask: page allocation mode
578 * Locates a page in the pagecache. If the page is not present, a new page
579 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
580 * LRU list. The returned page is locked and has its reference count
583 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
586 * find_or_create_page() returns the desired page's address, or zero on
589 struct page
*find_or_create_page(struct address_space
*mapping
,
590 unsigned long index
, unsigned int gfp_mask
)
592 struct page
*page
, *cached_page
= NULL
;
595 page
= find_lock_page(mapping
, index
);
598 cached_page
= alloc_page(gfp_mask
);
602 err
= add_to_page_cache_lru(cached_page
, mapping
,
607 } else if (err
== -EEXIST
)
611 page_cache_release(cached_page
);
615 EXPORT_SYMBOL(find_or_create_page
);
618 * find_get_pages - gang pagecache lookup
619 * @mapping: The address_space to search
620 * @start: The starting page index
621 * @nr_pages: The maximum number of pages
622 * @pages: Where the resulting pages are placed
624 * find_get_pages() will search for and return a group of up to
625 * @nr_pages pages in the mapping. The pages are placed at @pages.
626 * find_get_pages() takes a reference against the returned pages.
628 * The search returns a group of mapping-contiguous pages with ascending
629 * indexes. There may be holes in the indices due to not-present pages.
631 * find_get_pages() returns the number of pages which were found.
633 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
634 unsigned int nr_pages
, struct page
**pages
)
639 read_lock_irq(&mapping
->tree_lock
);
640 ret
= radix_tree_gang_lookup(&mapping
->page_tree
,
641 (void **)pages
, start
, nr_pages
);
642 for (i
= 0; i
< ret
; i
++)
643 page_cache_get(pages
[i
]);
644 read_unlock_irq(&mapping
->tree_lock
);
649 * Like find_get_pages, except we only return pages which are tagged with
650 * `tag'. We update *index to index the next page for the traversal.
652 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
653 int tag
, unsigned int nr_pages
, struct page
**pages
)
658 read_lock_irq(&mapping
->tree_lock
);
659 ret
= radix_tree_gang_lookup_tag(&mapping
->page_tree
,
660 (void **)pages
, *index
, nr_pages
, tag
);
661 for (i
= 0; i
< ret
; i
++)
662 page_cache_get(pages
[i
]);
664 *index
= pages
[ret
- 1]->index
+ 1;
665 read_unlock_irq(&mapping
->tree_lock
);
670 * Same as grab_cache_page, but do not wait if the page is unavailable.
671 * This is intended for speculative data generators, where the data can
672 * be regenerated if the page couldn't be grabbed. This routine should
673 * be safe to call while holding the lock for another page.
675 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
676 * and deadlock against the caller's locked page.
679 grab_cache_page_nowait(struct address_space
*mapping
, unsigned long index
)
681 struct page
*page
= find_get_page(mapping
, index
);
682 unsigned int gfp_mask
;
685 if (!TestSetPageLocked(page
))
687 page_cache_release(page
);
690 gfp_mask
= mapping_gfp_mask(mapping
) & ~__GFP_FS
;
691 page
= alloc_pages(gfp_mask
, 0);
692 if (page
&& add_to_page_cache_lru(page
, mapping
, index
, gfp_mask
)) {
693 page_cache_release(page
);
699 EXPORT_SYMBOL(grab_cache_page_nowait
);
702 * This is a generic file read routine, and uses the
703 * mapping->a_ops->readpage() function for the actual low-level
706 * This is really ugly. But the goto's actually try to clarify some
707 * of the logic when it comes to error handling etc.
709 * Note the struct file* is only passed for the use of readpage. It may be
712 void do_generic_mapping_read(struct address_space
*mapping
,
713 struct file_ra_state
*_ra
,
716 read_descriptor_t
*desc
,
719 struct inode
*inode
= mapping
->host
;
721 unsigned long end_index
;
722 unsigned long offset
;
723 unsigned long last_index
;
724 unsigned long next_index
;
725 unsigned long prev_index
;
727 struct page
*cached_page
;
729 struct file_ra_state ra
= *_ra
;
732 index
= *ppos
>> PAGE_CACHE_SHIFT
;
734 prev_index
= ra
.prev_page
;
735 last_index
= (*ppos
+ desc
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
736 offset
= *ppos
& ~PAGE_CACHE_MASK
;
738 isize
= i_size_read(inode
);
742 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
745 unsigned long nr
, ret
;
747 /* nr is the maximum number of bytes to copy from this page */
748 nr
= PAGE_CACHE_SIZE
;
749 if (index
>= end_index
) {
750 if (index
> end_index
)
752 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
760 if (index
== next_index
)
761 next_index
= page_cache_readahead(mapping
, &ra
, filp
,
762 index
, last_index
- index
);
765 page
= find_get_page(mapping
, index
);
766 if (unlikely(page
== NULL
)) {
767 handle_ra_miss(mapping
, &ra
, index
);
770 if (!PageUptodate(page
))
771 goto page_not_up_to_date
;
774 /* If users can be writing to this page using arbitrary
775 * virtual addresses, take care about potential aliasing
776 * before reading the page on the kernel side.
778 if (mapping_writably_mapped(mapping
))
779 flush_dcache_page(page
);
782 * When (part of) the same page is read multiple times
783 * in succession, only mark it as accessed the first time.
785 if (prev_index
!= index
)
786 mark_page_accessed(page
);
790 * Ok, we have the page, and it's up-to-date, so
791 * now we can copy it to user space...
793 * The actor routine returns how many bytes were actually used..
794 * NOTE! This may not be the same as how much of a user buffer
795 * we filled up (we may be padding etc), so we can only update
796 * "pos" here (the actor routine has to update the user buffer
797 * pointers and the remaining count).
799 ret
= actor(desc
, page
, offset
, nr
);
801 index
+= offset
>> PAGE_CACHE_SHIFT
;
802 offset
&= ~PAGE_CACHE_MASK
;
804 page_cache_release(page
);
805 if (ret
== nr
&& desc
->count
)
810 /* Get exclusive access to the page ... */
813 /* Did it get unhashed before we got the lock? */
814 if (!page
->mapping
) {
816 page_cache_release(page
);
820 /* Did somebody else fill it already? */
821 if (PageUptodate(page
)) {
827 /* Start the actual read. The read will unlock the page. */
828 error
= mapping
->a_ops
->readpage(filp
, page
);
833 if (!PageUptodate(page
)) {
835 if (!PageUptodate(page
)) {
836 if (page
->mapping
== NULL
) {
838 * invalidate_inode_pages got it
841 page_cache_release(page
);
852 * i_size must be checked after we have done ->readpage.
854 * Checking i_size after the readpage allows us to calculate
855 * the correct value for "nr", which means the zero-filled
856 * part of the page is not copied back to userspace (unless
857 * another truncate extends the file - this is desired though).
859 isize
= i_size_read(inode
);
860 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
861 if (unlikely(!isize
|| index
> end_index
)) {
862 page_cache_release(page
);
866 /* nr is the maximum number of bytes to copy from this page */
867 nr
= PAGE_CACHE_SIZE
;
868 if (index
== end_index
) {
869 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
871 page_cache_release(page
);
879 /* UHHUH! A synchronous read error occurred. Report it */
881 page_cache_release(page
);
886 * Ok, it wasn't cached, so we need to create a new
890 cached_page
= page_cache_alloc_cold(mapping
);
892 desc
->error
= -ENOMEM
;
896 error
= add_to_page_cache_lru(cached_page
, mapping
,
899 if (error
== -EEXIST
)
912 *ppos
= ((loff_t
) index
<< PAGE_CACHE_SHIFT
) + offset
;
914 page_cache_release(cached_page
);
919 EXPORT_SYMBOL(do_generic_mapping_read
);
921 int file_read_actor(read_descriptor_t
*desc
, struct page
*page
,
922 unsigned long offset
, unsigned long size
)
925 unsigned long left
, count
= desc
->count
;
931 * Faults on the destination of a read are common, so do it before
934 if (!fault_in_pages_writeable(desc
->arg
.buf
, size
)) {
935 kaddr
= kmap_atomic(page
, KM_USER0
);
936 left
= __copy_to_user_inatomic(desc
->arg
.buf
,
937 kaddr
+ offset
, size
);
938 kunmap_atomic(kaddr
, KM_USER0
);
943 /* Do it the slow way */
945 left
= __copy_to_user(desc
->arg
.buf
, kaddr
+ offset
, size
);
950 desc
->error
= -EFAULT
;
953 desc
->count
= count
- size
;
954 desc
->written
+= size
;
955 desc
->arg
.buf
+= size
;
960 * This is the "read()" routine for all filesystems
961 * that can use the page cache directly.
964 __generic_file_aio_read(struct kiocb
*iocb
, const struct iovec
*iov
,
965 unsigned long nr_segs
, loff_t
*ppos
)
967 struct file
*filp
= iocb
->ki_filp
;
973 for (seg
= 0; seg
< nr_segs
; seg
++) {
974 const struct iovec
*iv
= &iov
[seg
];
977 * If any segment has a negative length, or the cumulative
978 * length ever wraps negative then return -EINVAL.
980 count
+= iv
->iov_len
;
981 if (unlikely((ssize_t
)(count
|iv
->iov_len
) < 0))
983 if (access_ok(VERIFY_WRITE
, iv
->iov_base
, iv
->iov_len
))
988 count
-= iv
->iov_len
; /* This segment is no good */
992 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
993 if (filp
->f_flags
& O_DIRECT
) {
994 loff_t pos
= *ppos
, size
;
995 struct address_space
*mapping
;
998 mapping
= filp
->f_mapping
;
999 inode
= mapping
->host
;
1002 goto out
; /* skip atime */
1003 size
= i_size_read(inode
);
1005 retval
= generic_file_direct_IO(READ
, iocb
,
1007 if (retval
> 0 && !is_sync_kiocb(iocb
))
1008 retval
= -EIOCBQUEUED
;
1010 *ppos
= pos
+ retval
;
1012 file_accessed(filp
);
1018 for (seg
= 0; seg
< nr_segs
; seg
++) {
1019 read_descriptor_t desc
;
1022 desc
.arg
.buf
= iov
[seg
].iov_base
;
1023 desc
.count
= iov
[seg
].iov_len
;
1024 if (desc
.count
== 0)
1027 do_generic_file_read(filp
,ppos
,&desc
,file_read_actor
);
1028 retval
+= desc
.written
;
1030 retval
= desc
.error
;
1039 EXPORT_SYMBOL(__generic_file_aio_read
);
1042 generic_file_aio_read(struct kiocb
*iocb
, char __user
*buf
, size_t count
, loff_t pos
)
1044 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1046 BUG_ON(iocb
->ki_pos
!= pos
);
1047 return __generic_file_aio_read(iocb
, &local_iov
, 1, &iocb
->ki_pos
);
1050 EXPORT_SYMBOL(generic_file_aio_read
);
1053 generic_file_read(struct file
*filp
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1055 struct iovec local_iov
= { .iov_base
= buf
, .iov_len
= count
};
1059 init_sync_kiocb(&kiocb
, filp
);
1060 ret
= __generic_file_aio_read(&kiocb
, &local_iov
, 1, ppos
);
1061 if (-EIOCBQUEUED
== ret
)
1062 ret
= wait_on_sync_kiocb(&kiocb
);
1066 EXPORT_SYMBOL(generic_file_read
);
1068 int file_send_actor(read_descriptor_t
* desc
, struct page
*page
, unsigned long offset
, unsigned long size
)
1071 unsigned long count
= desc
->count
;
1072 struct file
*file
= desc
->arg
.data
;
1077 written
= file
->f_op
->sendpage(file
, page
, offset
,
1078 size
, &file
->f_pos
, size
<count
);
1080 desc
->error
= written
;
1083 desc
->count
= count
- written
;
1084 desc
->written
+= written
;
1088 ssize_t
generic_file_sendfile(struct file
*in_file
, loff_t
*ppos
,
1089 size_t count
, read_actor_t actor
, void *target
)
1091 read_descriptor_t desc
;
1098 desc
.arg
.data
= target
;
1101 do_generic_file_read(in_file
, ppos
, &desc
, actor
);
1103 return desc
.written
;
1107 EXPORT_SYMBOL(generic_file_sendfile
);
1110 do_readahead(struct address_space
*mapping
, struct file
*filp
,
1111 unsigned long index
, unsigned long nr
)
1113 if (!mapping
|| !mapping
->a_ops
|| !mapping
->a_ops
->readpage
)
1116 force_page_cache_readahead(mapping
, filp
, index
,
1117 max_sane_readahead(nr
));
1121 asmlinkage ssize_t
sys_readahead(int fd
, loff_t offset
, size_t count
)
1129 if (file
->f_mode
& FMODE_READ
) {
1130 struct address_space
*mapping
= file
->f_mapping
;
1131 unsigned long start
= offset
>> PAGE_CACHE_SHIFT
;
1132 unsigned long end
= (offset
+ count
- 1) >> PAGE_CACHE_SHIFT
;
1133 unsigned long len
= end
- start
+ 1;
1134 ret
= do_readahead(mapping
, file
, start
, len
);
1143 * This adds the requested page to the page cache if it isn't already there,
1144 * and schedules an I/O to read in its contents from disk.
1146 static int FASTCALL(page_cache_read(struct file
* file
, unsigned long offset
));
1147 static int fastcall
page_cache_read(struct file
* file
, unsigned long offset
)
1149 struct address_space
*mapping
= file
->f_mapping
;
1153 page
= page_cache_alloc_cold(mapping
);
1157 error
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1159 error
= mapping
->a_ops
->readpage(file
, page
);
1160 page_cache_release(page
);
1165 * We arrive here in the unlikely event that someone
1166 * raced with us and added our page to the cache first
1167 * or we are out of memory for radix-tree nodes.
1169 page_cache_release(page
);
1170 return error
== -EEXIST
? 0 : error
;
1173 #define MMAP_LOTSAMISS (100)
1176 * filemap_nopage() is invoked via the vma operations vector for a
1177 * mapped memory region to read in file data during a page fault.
1179 * The goto's are kind of ugly, but this streamlines the normal case of having
1180 * it in the page cache, and handles the special cases reasonably without
1181 * having a lot of duplicated code.
1183 struct page
*filemap_nopage(struct vm_area_struct
*area
,
1184 unsigned long address
, int *type
)
1187 struct file
*file
= area
->vm_file
;
1188 struct address_space
*mapping
= file
->f_mapping
;
1189 struct file_ra_state
*ra
= &file
->f_ra
;
1190 struct inode
*inode
= mapping
->host
;
1192 unsigned long size
, pgoff
;
1193 int did_readaround
= 0, majmin
= VM_FAULT_MINOR
;
1195 pgoff
= ((address
-area
->vm_start
) >> PAGE_CACHE_SHIFT
) + area
->vm_pgoff
;
1198 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1200 goto outside_data_content
;
1202 /* If we don't want any read-ahead, don't bother */
1203 if (VM_RandomReadHint(area
))
1204 goto no_cached_page
;
1207 * The readahead code wants to be told about each and every page
1208 * so it can build and shrink its windows appropriately
1210 * For sequential accesses, we use the generic readahead logic.
1212 if (VM_SequentialReadHint(area
))
1213 page_cache_readahead(mapping
, ra
, file
, pgoff
, 1);
1216 * Do we have something in the page cache already?
1219 page
= find_get_page(mapping
, pgoff
);
1221 unsigned long ra_pages
;
1223 if (VM_SequentialReadHint(area
)) {
1224 handle_ra_miss(mapping
, ra
, pgoff
);
1225 goto no_cached_page
;
1230 * Do we miss much more than hit in this file? If so,
1231 * stop bothering with read-ahead. It will only hurt.
1233 if (ra
->mmap_miss
> ra
->mmap_hit
+ MMAP_LOTSAMISS
)
1234 goto no_cached_page
;
1237 * To keep the pgmajfault counter straight, we need to
1238 * check did_readaround, as this is an inner loop.
1240 if (!did_readaround
) {
1241 majmin
= VM_FAULT_MAJOR
;
1242 inc_page_state(pgmajfault
);
1245 ra_pages
= max_sane_readahead(file
->f_ra
.ra_pages
);
1249 if (pgoff
> ra_pages
/ 2)
1250 start
= pgoff
- ra_pages
/ 2;
1251 do_page_cache_readahead(mapping
, file
, start
, ra_pages
);
1253 page
= find_get_page(mapping
, pgoff
);
1255 goto no_cached_page
;
1258 if (!did_readaround
)
1262 * Ok, found a page in the page cache, now we need to check
1263 * that it's up-to-date.
1265 if (!PageUptodate(page
))
1266 goto page_not_uptodate
;
1270 * Found the page and have a reference on it.
1272 mark_page_accessed(page
);
1277 outside_data_content
:
1279 * An external ptracer can access pages that normally aren't
1282 if (area
->vm_mm
== current
->mm
)
1284 /* Fall through to the non-read-ahead case */
1287 * We're only likely to ever get here if MADV_RANDOM is in
1290 error
= page_cache_read(file
, pgoff
);
1294 * The page we want has now been added to the page cache.
1295 * In the unlikely event that someone removed it in the
1296 * meantime, we'll just come back here and read it again.
1302 * An error return from page_cache_read can result if the
1303 * system is low on memory, or a problem occurs while trying
1306 if (error
== -ENOMEM
)
1311 if (!did_readaround
) {
1312 majmin
= VM_FAULT_MAJOR
;
1313 inc_page_state(pgmajfault
);
1317 /* Did it get unhashed while we waited for it? */
1318 if (!page
->mapping
) {
1320 page_cache_release(page
);
1324 /* Did somebody else get it up-to-date? */
1325 if (PageUptodate(page
)) {
1330 if (!mapping
->a_ops
->readpage(file
, page
)) {
1331 wait_on_page_locked(page
);
1332 if (PageUptodate(page
))
1337 * Umm, take care of errors if the page isn't up-to-date.
1338 * Try to re-read it _once_. We do this synchronously,
1339 * because there really aren't any performance issues here
1340 * and we need to check for errors.
1344 /* Somebody truncated the page on us? */
1345 if (!page
->mapping
) {
1347 page_cache_release(page
);
1351 /* Somebody else successfully read it in? */
1352 if (PageUptodate(page
)) {
1356 ClearPageError(page
);
1357 if (!mapping
->a_ops
->readpage(file
, page
)) {
1358 wait_on_page_locked(page
);
1359 if (PageUptodate(page
))
1364 * Things didn't work out. Return zero to tell the
1365 * mm layer so, possibly freeing the page cache page first.
1367 page_cache_release(page
);
1371 EXPORT_SYMBOL(filemap_nopage
);
1373 static struct page
* filemap_getpage(struct file
*file
, unsigned long pgoff
,
1376 struct address_space
*mapping
= file
->f_mapping
;
1381 * Do we have something in the page cache already?
1384 page
= find_get_page(mapping
, pgoff
);
1388 goto no_cached_page
;
1392 * Ok, found a page in the page cache, now we need to check
1393 * that it's up-to-date.
1395 if (!PageUptodate(page
)) {
1397 page_cache_release(page
);
1400 goto page_not_uptodate
;
1405 * Found the page and have a reference on it.
1407 mark_page_accessed(page
);
1411 error
= page_cache_read(file
, pgoff
);
1414 * The page we want has now been added to the page cache.
1415 * In the unlikely event that someone removed it in the
1416 * meantime, we'll just come back here and read it again.
1422 * An error return from page_cache_read can result if the
1423 * system is low on memory, or a problem occurs while trying
1431 /* Did it get unhashed while we waited for it? */
1432 if (!page
->mapping
) {
1437 /* Did somebody else get it up-to-date? */
1438 if (PageUptodate(page
)) {
1443 if (!mapping
->a_ops
->readpage(file
, page
)) {
1444 wait_on_page_locked(page
);
1445 if (PageUptodate(page
))
1450 * Umm, take care of errors if the page isn't up-to-date.
1451 * Try to re-read it _once_. We do this synchronously,
1452 * because there really aren't any performance issues here
1453 * and we need to check for errors.
1457 /* Somebody truncated the page on us? */
1458 if (!page
->mapping
) {
1462 /* Somebody else successfully read it in? */
1463 if (PageUptodate(page
)) {
1468 ClearPageError(page
);
1469 if (!mapping
->a_ops
->readpage(file
, page
)) {
1470 wait_on_page_locked(page
);
1471 if (PageUptodate(page
))
1476 * Things didn't work out. Return zero to tell the
1477 * mm layer so, possibly freeing the page cache page first.
1480 page_cache_release(page
);
1485 int filemap_populate(struct vm_area_struct
*vma
, unsigned long addr
,
1486 unsigned long len
, pgprot_t prot
, unsigned long pgoff
,
1489 struct file
*file
= vma
->vm_file
;
1490 struct address_space
*mapping
= file
->f_mapping
;
1491 struct inode
*inode
= mapping
->host
;
1493 struct mm_struct
*mm
= vma
->vm_mm
;
1498 force_page_cache_readahead(mapping
, vma
->vm_file
,
1499 pgoff
, len
>> PAGE_CACHE_SHIFT
);
1502 size
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
1503 if (pgoff
+ (len
>> PAGE_CACHE_SHIFT
) > size
)
1506 page
= filemap_getpage(file
, pgoff
, nonblock
);
1507 if (!page
&& !nonblock
)
1510 err
= install_page(mm
, vma
, addr
, page
, prot
);
1512 page_cache_release(page
);
1516 err
= install_file_pte(mm
, vma
, addr
, pgoff
, prot
);
1530 struct vm_operations_struct generic_file_vm_ops
= {
1531 .nopage
= filemap_nopage
,
1532 .populate
= filemap_populate
,
1535 /* This is used for a general mmap of a disk file */
1537 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1539 struct address_space
*mapping
= file
->f_mapping
;
1541 if (!mapping
->a_ops
->readpage
)
1543 file_accessed(file
);
1544 vma
->vm_ops
= &generic_file_vm_ops
;
1547 EXPORT_SYMBOL(filemap_populate
);
1550 * This is for filesystems which do not implement ->writepage.
1552 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1554 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
1556 return generic_file_mmap(file
, vma
);
1559 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1563 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
1567 #endif /* CONFIG_MMU */
1569 EXPORT_SYMBOL(generic_file_mmap
);
1570 EXPORT_SYMBOL(generic_file_readonly_mmap
);
1572 static inline struct page
*__read_cache_page(struct address_space
*mapping
,
1573 unsigned long index
,
1574 int (*filler
)(void *,struct page
*),
1577 struct page
*page
, *cached_page
= NULL
;
1580 page
= find_get_page(mapping
, index
);
1583 cached_page
= page_cache_alloc_cold(mapping
);
1585 return ERR_PTR(-ENOMEM
);
1587 err
= add_to_page_cache_lru(cached_page
, mapping
,
1592 /* Presumably ENOMEM for radix tree node */
1593 page_cache_release(cached_page
);
1594 return ERR_PTR(err
);
1598 err
= filler(data
, page
);
1600 page_cache_release(page
);
1601 page
= ERR_PTR(err
);
1605 page_cache_release(cached_page
);
1610 * Read into the page cache. If a page already exists,
1611 * and PageUptodate() is not set, try to fill the page.
1613 struct page
*read_cache_page(struct address_space
*mapping
,
1614 unsigned long index
,
1615 int (*filler
)(void *,struct page
*),
1622 page
= __read_cache_page(mapping
, index
, filler
, data
);
1625 mark_page_accessed(page
);
1626 if (PageUptodate(page
))
1630 if (!page
->mapping
) {
1632 page_cache_release(page
);
1635 if (PageUptodate(page
)) {
1639 err
= filler(data
, page
);
1641 page_cache_release(page
);
1642 page
= ERR_PTR(err
);
1648 EXPORT_SYMBOL(read_cache_page
);
1651 * If the page was newly created, increment its refcount and add it to the
1652 * caller's lru-buffering pagevec. This function is specifically for
1653 * generic_file_write().
1655 static inline struct page
*
1656 __grab_cache_page(struct address_space
*mapping
, unsigned long index
,
1657 struct page
**cached_page
, struct pagevec
*lru_pvec
)
1662 page
= find_lock_page(mapping
, index
);
1664 if (!*cached_page
) {
1665 *cached_page
= page_cache_alloc(mapping
);
1669 err
= add_to_page_cache(*cached_page
, mapping
,
1674 page
= *cached_page
;
1675 page_cache_get(page
);
1676 if (!pagevec_add(lru_pvec
, page
))
1677 __pagevec_lru_add(lru_pvec
);
1678 *cached_page
= NULL
;
1685 * The logic we want is
1687 * if suid or (sgid and xgrp)
1690 int remove_suid(struct dentry
*dentry
)
1692 mode_t mode
= dentry
->d_inode
->i_mode
;
1696 /* suid always must be killed */
1697 if (unlikely(mode
& S_ISUID
))
1698 kill
= ATTR_KILL_SUID
;
1701 * sgid without any exec bits is just a mandatory locking mark; leave
1702 * it alone. If some exec bits are set, it's a real sgid; kill it.
1704 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1705 kill
|= ATTR_KILL_SGID
;
1707 if (unlikely(kill
&& !capable(CAP_FSETID
))) {
1708 struct iattr newattrs
;
1710 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1711 result
= notify_change(dentry
, &newattrs
);
1715 EXPORT_SYMBOL(remove_suid
);
1718 * Copy as much as we can into the page and return the number of bytes which
1719 * were sucessfully copied. If a fault is encountered then clear the page
1720 * out to (offset+bytes) and return the number of bytes which were copied.
1722 static inline size_t
1723 filemap_copy_from_user(struct page
*page
, unsigned long offset
,
1724 const char __user
*buf
, unsigned bytes
)
1729 kaddr
= kmap_atomic(page
, KM_USER0
);
1730 left
= __copy_from_user_inatomic(kaddr
+ offset
, buf
, bytes
);
1731 kunmap_atomic(kaddr
, KM_USER0
);
1734 /* Do it the slow way */
1736 left
= __copy_from_user(kaddr
+ offset
, buf
, bytes
);
1739 return bytes
- left
;
1743 __filemap_copy_from_user_iovec(char *vaddr
,
1744 const struct iovec
*iov
, size_t base
, size_t bytes
)
1746 size_t copied
= 0, left
= 0;
1749 char __user
*buf
= iov
->iov_base
+ base
;
1750 int copy
= min(bytes
, iov
->iov_len
- base
);
1753 left
= __copy_from_user_inatomic(vaddr
, buf
, copy
);
1759 if (unlikely(left
)) {
1760 /* zero the rest of the target like __copy_from_user */
1762 memset(vaddr
, 0, bytes
);
1766 return copied
- left
;
1770 * This has the same sideeffects and return value as filemap_copy_from_user().
1771 * The difference is that on a fault we need to memset the remainder of the
1772 * page (out to offset+bytes), to emulate filemap_copy_from_user()'s
1773 * single-segment behaviour.
1775 static inline size_t
1776 filemap_copy_from_user_iovec(struct page
*page
, unsigned long offset
,
1777 const struct iovec
*iov
, size_t base
, size_t bytes
)
1782 kaddr
= kmap_atomic(page
, KM_USER0
);
1783 copied
= __filemap_copy_from_user_iovec(kaddr
+ offset
, iov
,
1785 kunmap_atomic(kaddr
, KM_USER0
);
1786 if (copied
!= bytes
) {
1788 copied
= __filemap_copy_from_user_iovec(kaddr
+ offset
, iov
,
1796 filemap_set_next_iovec(const struct iovec
**iovp
, size_t *basep
, size_t bytes
)
1798 const struct iovec
*iov
= *iovp
;
1799 size_t base
= *basep
;
1802 int copy
= min(bytes
, iov
->iov_len
- base
);
1806 if (iov
->iov_len
== base
) {
1816 * Performs necessary checks before doing a write
1818 * Can adjust writing position aor amount of bytes to write.
1819 * Returns appropriate error code that caller should return or
1820 * zero in case that write should be allowed.
1822 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
1824 struct inode
*inode
= file
->f_mapping
->host
;
1825 unsigned long limit
= current
->signal
->rlim
[RLIMIT_FSIZE
].rlim_cur
;
1827 if (unlikely(*pos
< 0))
1830 if (unlikely(file
->f_error
)) {
1831 int err
= file
->f_error
;
1837 /* FIXME: this is for backwards compatibility with 2.4 */
1838 if (file
->f_flags
& O_APPEND
)
1839 *pos
= i_size_read(inode
);
1841 if (limit
!= RLIM_INFINITY
) {
1842 if (*pos
>= limit
) {
1843 send_sig(SIGXFSZ
, current
, 0);
1846 if (*count
> limit
- (typeof(limit
))*pos
) {
1847 *count
= limit
- (typeof(limit
))*pos
;
1855 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
1856 !(file
->f_flags
& O_LARGEFILE
))) {
1857 if (*pos
>= MAX_NON_LFS
) {
1858 send_sig(SIGXFSZ
, current
, 0);
1861 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
1862 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
1867 * Are we about to exceed the fs block limit ?
1869 * If we have written data it becomes a short write. If we have
1870 * exceeded without writing data we send a signal and return EFBIG.
1871 * Linus frestrict idea will clean these up nicely..
1873 if (likely(!isblk
)) {
1874 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
1875 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
1876 send_sig(SIGXFSZ
, current
, 0);
1879 /* zero-length writes at ->s_maxbytes are OK */
1882 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
1883 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
1886 if (bdev_read_only(I_BDEV(inode
)))
1888 isize
= i_size_read(inode
);
1889 if (*pos
>= isize
) {
1890 if (*count
|| *pos
> isize
)
1894 if (*pos
+ *count
> isize
)
1895 *count
= isize
- *pos
;
1899 EXPORT_SYMBOL(generic_write_checks
);
1902 generic_file_direct_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1903 unsigned long *nr_segs
, loff_t pos
, loff_t
*ppos
,
1904 size_t count
, size_t ocount
)
1906 struct file
*file
= iocb
->ki_filp
;
1907 struct address_space
*mapping
= file
->f_mapping
;
1908 struct inode
*inode
= mapping
->host
;
1911 if (count
!= ocount
)
1912 *nr_segs
= iov_shorten((struct iovec
*)iov
, *nr_segs
, count
);
1914 written
= generic_file_direct_IO(WRITE
, iocb
, iov
, pos
, *nr_segs
);
1916 loff_t end
= pos
+ written
;
1917 if (end
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
1918 i_size_write(inode
, end
);
1919 mark_inode_dirty(inode
);
1925 * Sync the fs metadata but not the minor inode changes and
1926 * of course not the data as we did direct DMA for the IO.
1927 * i_sem is held, which protects generic_osync_inode() from
1930 if (written
>= 0 && file
->f_flags
& O_SYNC
)
1931 generic_osync_inode(inode
, mapping
, OSYNC_METADATA
);
1932 if (written
== count
&& !is_sync_kiocb(iocb
))
1933 written
= -EIOCBQUEUED
;
1936 EXPORT_SYMBOL(generic_file_direct_write
);
1939 generic_file_buffered_write(struct kiocb
*iocb
, const struct iovec
*iov
,
1940 unsigned long nr_segs
, loff_t pos
, loff_t
*ppos
,
1941 size_t count
, ssize_t written
)
1943 struct file
*file
= iocb
->ki_filp
;
1944 struct address_space
* mapping
= file
->f_mapping
;
1945 struct address_space_operations
*a_ops
= mapping
->a_ops
;
1946 struct inode
*inode
= mapping
->host
;
1949 struct page
*cached_page
= NULL
;
1951 struct pagevec lru_pvec
;
1952 const struct iovec
*cur_iov
= iov
; /* current iovec */
1953 size_t iov_base
= 0; /* offset in the current iovec */
1956 pagevec_init(&lru_pvec
, 0);
1959 * handle partial DIO write. Adjust cur_iov if needed.
1961 if (likely(nr_segs
== 1))
1962 buf
= iov
->iov_base
+ written
;
1964 filemap_set_next_iovec(&cur_iov
, &iov_base
, written
);
1965 buf
= cur_iov
->iov_base
+ iov_base
;
1969 unsigned long index
;
1970 unsigned long offset
;
1971 unsigned long maxlen
;
1974 offset
= (pos
& (PAGE_CACHE_SIZE
-1)); /* Within page */
1975 index
= pos
>> PAGE_CACHE_SHIFT
;
1976 bytes
= PAGE_CACHE_SIZE
- offset
;
1981 * Bring in the user page that we will copy from _first_.
1982 * Otherwise there's a nasty deadlock on copying from the
1983 * same page as we're writing to, without it being marked
1986 maxlen
= cur_iov
->iov_len
- iov_base
;
1989 fault_in_pages_readable(buf
, maxlen
);
1991 page
= __grab_cache_page(mapping
,index
,&cached_page
,&lru_pvec
);
1997 status
= a_ops
->prepare_write(file
, page
, offset
, offset
+bytes
);
1998 if (unlikely(status
)) {
1999 loff_t isize
= i_size_read(inode
);
2001 * prepare_write() may have instantiated a few blocks
2002 * outside i_size. Trim these off again.
2005 page_cache_release(page
);
2006 if (pos
+ bytes
> isize
)
2007 vmtruncate(inode
, isize
);
2010 if (likely(nr_segs
== 1))
2011 copied
= filemap_copy_from_user(page
, offset
,
2014 copied
= filemap_copy_from_user_iovec(page
, offset
,
2015 cur_iov
, iov_base
, bytes
);
2016 flush_dcache_page(page
);
2017 status
= a_ops
->commit_write(file
, page
, offset
, offset
+bytes
);
2018 if (likely(copied
> 0)) {
2027 if (unlikely(nr_segs
> 1)) {
2028 filemap_set_next_iovec(&cur_iov
,
2030 buf
= cur_iov
->iov_base
+ iov_base
;
2036 if (unlikely(copied
!= bytes
))
2040 mark_page_accessed(page
);
2041 page_cache_release(page
);
2044 balance_dirty_pages_ratelimited(mapping
);
2050 page_cache_release(cached_page
);
2053 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2055 if (likely(status
>= 0)) {
2056 if (unlikely((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2057 if (!a_ops
->writepage
|| !is_sync_kiocb(iocb
))
2058 status
= generic_osync_inode(inode
, mapping
,
2059 OSYNC_METADATA
|OSYNC_DATA
);
2064 * If we get here for O_DIRECT writes then we must have fallen through
2065 * to buffered writes (block instantiation inside i_size). So we sync
2066 * the file data here, to try to honour O_DIRECT expectations.
2068 if (unlikely(file
->f_flags
& O_DIRECT
) && written
)
2069 status
= filemap_write_and_wait(mapping
);
2071 pagevec_lru_add(&lru_pvec
);
2072 return written
? written
: status
;
2074 EXPORT_SYMBOL(generic_file_buffered_write
);
2077 __generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2078 unsigned long nr_segs
, loff_t
*ppos
)
2080 struct file
*file
= iocb
->ki_filp
;
2081 struct address_space
* mapping
= file
->f_mapping
;
2082 size_t ocount
; /* original count */
2083 size_t count
; /* after file limit checks */
2084 struct inode
*inode
= mapping
->host
;
2091 for (seg
= 0; seg
< nr_segs
; seg
++) {
2092 const struct iovec
*iv
= &iov
[seg
];
2095 * If any segment has a negative length, or the cumulative
2096 * length ever wraps negative then return -EINVAL.
2098 ocount
+= iv
->iov_len
;
2099 if (unlikely((ssize_t
)(ocount
|iv
->iov_len
) < 0))
2101 if (access_ok(VERIFY_READ
, iv
->iov_base
, iv
->iov_len
))
2106 ocount
-= iv
->iov_len
; /* This segment is no good */
2113 vfs_check_frozen(inode
->i_sb
, SB_FREEZE_WRITE
);
2115 /* We can write back this queue in page reclaim */
2116 current
->backing_dev_info
= mapping
->backing_dev_info
;
2119 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2126 err
= remove_suid(file
->f_dentry
);
2130 inode_update_time(inode
, 1);
2132 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2133 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2134 written
= generic_file_direct_write(iocb
, iov
,
2135 &nr_segs
, pos
, ppos
, count
, ocount
);
2136 if (written
< 0 || written
== count
)
2139 * direct-io write to a hole: fall through to buffered I/O
2140 * for completing the rest of the request.
2146 written
= generic_file_buffered_write(iocb
, iov
, nr_segs
,
2147 pos
, ppos
, count
, written
);
2149 current
->backing_dev_info
= NULL
;
2150 return written
? written
: err
;
2152 EXPORT_SYMBOL(generic_file_aio_write_nolock
);
2155 generic_file_aio_write_nolock(struct kiocb
*iocb
, const struct iovec
*iov
,
2156 unsigned long nr_segs
, loff_t
*ppos
)
2158 struct file
*file
= iocb
->ki_filp
;
2159 struct address_space
*mapping
= file
->f_mapping
;
2160 struct inode
*inode
= mapping
->host
;
2164 ret
= __generic_file_aio_write_nolock(iocb
, iov
, nr_segs
, ppos
);
2166 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2169 err
= sync_page_range_nolock(inode
, mapping
, pos
, ret
);
2177 __generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2178 unsigned long nr_segs
, loff_t
*ppos
)
2183 init_sync_kiocb(&kiocb
, file
);
2184 ret
= __generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2185 if (ret
== -EIOCBQUEUED
)
2186 ret
= wait_on_sync_kiocb(&kiocb
);
2191 generic_file_write_nolock(struct file
*file
, const struct iovec
*iov
,
2192 unsigned long nr_segs
, loff_t
*ppos
)
2197 init_sync_kiocb(&kiocb
, file
);
2198 ret
= generic_file_aio_write_nolock(&kiocb
, iov
, nr_segs
, ppos
);
2199 if (-EIOCBQUEUED
== ret
)
2200 ret
= wait_on_sync_kiocb(&kiocb
);
2203 EXPORT_SYMBOL(generic_file_write_nolock
);
2205 ssize_t
generic_file_aio_write(struct kiocb
*iocb
, const char __user
*buf
,
2206 size_t count
, loff_t pos
)
2208 struct file
*file
= iocb
->ki_filp
;
2209 struct address_space
*mapping
= file
->f_mapping
;
2210 struct inode
*inode
= mapping
->host
;
2212 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2215 BUG_ON(iocb
->ki_pos
!= pos
);
2217 down(&inode
->i_sem
);
2218 ret
= __generic_file_aio_write_nolock(iocb
, &local_iov
, 1,
2222 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2225 err
= sync_page_range(inode
, mapping
, pos
, ret
);
2231 EXPORT_SYMBOL(generic_file_aio_write
);
2233 ssize_t
generic_file_write(struct file
*file
, const char __user
*buf
,
2234 size_t count
, loff_t
*ppos
)
2236 struct address_space
*mapping
= file
->f_mapping
;
2237 struct inode
*inode
= mapping
->host
;
2239 struct iovec local_iov
= { .iov_base
= (void __user
*)buf
,
2242 down(&inode
->i_sem
);
2243 ret
= __generic_file_write_nolock(file
, &local_iov
, 1, ppos
);
2246 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2249 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2255 EXPORT_SYMBOL(generic_file_write
);
2257 ssize_t
generic_file_readv(struct file
*filp
, const struct iovec
*iov
,
2258 unsigned long nr_segs
, loff_t
*ppos
)
2263 init_sync_kiocb(&kiocb
, filp
);
2264 ret
= __generic_file_aio_read(&kiocb
, iov
, nr_segs
, ppos
);
2265 if (-EIOCBQUEUED
== ret
)
2266 ret
= wait_on_sync_kiocb(&kiocb
);
2269 EXPORT_SYMBOL(generic_file_readv
);
2271 ssize_t
generic_file_writev(struct file
*file
, const struct iovec
*iov
,
2272 unsigned long nr_segs
, loff_t
*ppos
)
2274 struct address_space
*mapping
= file
->f_mapping
;
2275 struct inode
*inode
= mapping
->host
;
2278 down(&inode
->i_sem
);
2279 ret
= __generic_file_write_nolock(file
, iov
, nr_segs
, ppos
);
2282 if (ret
> 0 && ((file
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
2285 err
= sync_page_range(inode
, mapping
, *ppos
- ret
, ret
);
2291 EXPORT_SYMBOL(generic_file_writev
);
2294 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2295 * went wrong during pagecache shootdown.
2298 generic_file_direct_IO(int rw
, struct kiocb
*iocb
, const struct iovec
*iov
,
2299 loff_t offset
, unsigned long nr_segs
)
2301 struct file
*file
= iocb
->ki_filp
;
2302 struct address_space
*mapping
= file
->f_mapping
;
2304 size_t write_len
= 0;
2307 * If it's a write, unmap all mmappings of the file up-front. This
2308 * will cause any pte dirty bits to be propagated into the pageframes
2309 * for the subsequent filemap_write_and_wait().
2312 write_len
= iov_length(iov
, nr_segs
);
2313 if (mapping_mapped(mapping
))
2314 unmap_mapping_range(mapping
, offset
, write_len
, 0);
2317 retval
= filemap_write_and_wait(mapping
);
2319 retval
= mapping
->a_ops
->direct_IO(rw
, iocb
, iov
,
2321 if (rw
== WRITE
&& mapping
->nrpages
) {
2322 pgoff_t end
= (offset
+ write_len
- 1)
2323 >> PAGE_CACHE_SHIFT
;
2324 int err
= invalidate_inode_pages2_range(mapping
,
2325 offset
>> PAGE_CACHE_SHIFT
, end
);
2332 EXPORT_SYMBOL_GPL(generic_file_direct_IO
);