[PATCH] Move valid_dma_direction() from x86_64 to generic code
[usb.git] / sound / oss / gus_wave.c
blob942d5186580dce0d4ba52ec281bef7f7345a2cd6
1 /*
2 * sound/gus_wave.c
4 * Driver for the Gravis UltraSound wave table synth.
7 * Copyright (C) by Hannu Savolainen 1993-1997
9 * OSS/Free for Linux is distributed under the GNU GENERAL PUBLIC LICENSE (GPL)
10 * Version 2 (June 1991). See the "COPYING" file distributed with this software
11 * for more info.
14 * Thomas Sailer : ioctl code reworked (vmalloc/vfree removed)
15 * Frank van de Pol : Fixed GUS MAX interrupt handling. Enabled simultanious
16 * usage of CS4231A codec, GUS wave and MIDI for GUS MAX.
17 * Bartlomiej Zolnierkiewicz : added some __init/__exit
20 #include <linux/init.h>
21 #include <linux/config.h>
22 #include <linux/spinlock.h>
24 #define GUSPNP_AUTODETECT
26 #include "sound_config.h"
27 #include <linux/ultrasound.h>
29 #include "gus.h"
30 #include "gus_hw.h"
32 #define GUS_BANK_SIZE (((iw_mode) ? 256*1024*1024 : 256*1024))
34 #define MAX_SAMPLE 150
35 #define MAX_PATCH 256
37 #define NOT_SAMPLE 0xffff
39 struct voice_info
41 unsigned long orig_freq;
42 unsigned long current_freq;
43 unsigned long mode;
44 int fixed_pitch;
45 int bender;
46 int bender_range;
47 int panning;
48 int midi_volume;
49 unsigned int initial_volume;
50 unsigned int current_volume;
51 int loop_irq_mode, loop_irq_parm;
52 #define LMODE_FINISH 1
53 #define LMODE_PCM 2
54 #define LMODE_PCM_STOP 3
55 int volume_irq_mode, volume_irq_parm;
56 #define VMODE_HALT 1
57 #define VMODE_ENVELOPE 2
58 #define VMODE_START_NOTE 3
60 int env_phase;
61 unsigned char env_rate[6];
62 unsigned char env_offset[6];
65 * Volume computation parameters for gus_adagio_vol()
67 int main_vol, expression_vol, patch_vol;
69 /* Variables for "Ultraclick" removal */
70 int dev_pending, note_pending, volume_pending,
71 sample_pending;
72 char kill_pending;
73 long offset_pending;
77 static struct voice_alloc_info *voice_alloc;
78 static struct address_info *gus_hw_config;
79 extern int gus_base;
80 extern int gus_irq, gus_dma;
81 extern int gus_pnp_flag;
82 extern int gus_no_wave_dma;
83 static int gus_dma2 = -1;
84 static int dual_dma_mode;
85 static long gus_mem_size;
86 static long free_mem_ptr;
87 static int gus_busy;
88 static int gus_no_dma;
89 static int nr_voices;
90 static int gus_devnum;
91 static int volume_base, volume_scale, volume_method;
92 static int gus_recmask = SOUND_MASK_MIC;
93 static int recording_active;
94 static int only_read_access;
95 static int only_8_bits;
97 static int iw_mode = 0;
98 int gus_wave_volume = 60;
99 int gus_pcm_volume = 80;
100 int have_gus_max = 0;
101 static int gus_line_vol = 100, gus_mic_vol;
102 static unsigned char mix_image = 0x00;
104 int gus_timer_enabled = 0;
107 * Current version of this driver doesn't allow synth and PCM functions
108 * at the same time. The active_device specifies the active driver
111 static int active_device;
113 #define GUS_DEV_WAVE 1 /* Wave table synth */
114 #define GUS_DEV_PCM_DONE 2 /* PCM device, transfer done */
115 #define GUS_DEV_PCM_CONTINUE 3 /* PCM device, transfer done ch. 1/2 */
117 static int gus_audio_speed;
118 static int gus_audio_channels;
119 static int gus_audio_bits;
120 static int gus_audio_bsize;
121 static char bounce_buf[8 * 1024]; /* Must match value set to max_fragment */
123 static DECLARE_WAIT_QUEUE_HEAD(dram_sleeper);
126 * Variables and buffers for PCM output
129 #define MAX_PCM_BUFFERS (128*MAX_REALTIME_FACTOR) /* Don't change */
131 static int pcm_bsize, pcm_nblk, pcm_banksize;
132 static int pcm_datasize[MAX_PCM_BUFFERS];
133 static volatile int pcm_head, pcm_tail, pcm_qlen;
134 static volatile int pcm_active;
135 static volatile int dma_active;
136 static int pcm_opened;
137 static int pcm_current_dev;
138 static int pcm_current_block;
139 static unsigned long pcm_current_buf;
140 static int pcm_current_count;
141 static int pcm_current_intrflag;
142 DEFINE_SPINLOCK(gus_lock);
144 extern int *gus_osp;
146 static struct voice_info voices[32];
148 static int freq_div_table[] =
150 44100, /* 14 */
151 41160, /* 15 */
152 38587, /* 16 */
153 36317, /* 17 */
154 34300, /* 18 */
155 32494, /* 19 */
156 30870, /* 20 */
157 29400, /* 21 */
158 28063, /* 22 */
159 26843, /* 23 */
160 25725, /* 24 */
161 24696, /* 25 */
162 23746, /* 26 */
163 22866, /* 27 */
164 22050, /* 28 */
165 21289, /* 29 */
166 20580, /* 30 */
167 19916, /* 31 */
168 19293 /* 32 */
171 static struct patch_info *samples;
172 static long sample_ptrs[MAX_SAMPLE + 1];
173 static int sample_map[32];
174 static int free_sample;
175 static int mixer_type;
178 static int patch_table[MAX_PATCH];
179 static int patch_map[32];
181 static struct synth_info gus_info = {
182 "Gravis UltraSound", 0, SYNTH_TYPE_SAMPLE, SAMPLE_TYPE_GUS,
183 0, 16, 0, MAX_PATCH
186 static void gus_poke(long addr, unsigned char data);
187 static void compute_and_set_volume(int voice, int volume, int ramp_time);
188 extern unsigned short gus_adagio_vol(int vel, int mainv, int xpn, int voicev);
189 extern unsigned short gus_linear_vol(int vol, int mainvol);
190 static void compute_volume(int voice, int volume);
191 static void do_volume_irq(int voice);
192 static void set_input_volumes(void);
193 static void gus_tmr_install(int io_base);
195 #define INSTANT_RAMP -1 /* Instant change. No ramping */
196 #define FAST_RAMP 0 /* Fastest possible ramp */
198 static void reset_sample_memory(void)
200 int i;
202 for (i = 0; i <= MAX_SAMPLE; i++)
203 sample_ptrs[i] = -1;
204 for (i = 0; i < 32; i++)
205 sample_map[i] = -1;
206 for (i = 0; i < 32; i++)
207 patch_map[i] = -1;
209 gus_poke(0, 0); /* Put a silent sample to the beginning */
210 gus_poke(1, 0);
211 free_mem_ptr = 2;
213 free_sample = 0;
215 for (i = 0; i < MAX_PATCH; i++)
216 patch_table[i] = NOT_SAMPLE;
219 void gus_delay(void)
221 int i;
223 for (i = 0; i < 7; i++)
224 inb(u_DRAMIO);
227 static void gus_poke(long addr, unsigned char data)
228 { /* Writes a byte to the DRAM */
229 outb((0x43), u_Command);
230 outb((addr & 0xff), u_DataLo);
231 outb(((addr >> 8) & 0xff), u_DataHi);
233 outb((0x44), u_Command);
234 outb(((addr >> 16) & 0xff), u_DataHi);
235 outb((data), u_DRAMIO);
238 static unsigned char gus_peek(long addr)
239 { /* Reads a byte from the DRAM */
240 unsigned char tmp;
242 outb((0x43), u_Command);
243 outb((addr & 0xff), u_DataLo);
244 outb(((addr >> 8) & 0xff), u_DataHi);
246 outb((0x44), u_Command);
247 outb(((addr >> 16) & 0xff), u_DataHi);
248 tmp = inb(u_DRAMIO);
250 return tmp;
253 void gus_write8(int reg, unsigned int data)
254 { /* Writes to an indirect register (8 bit) */
255 outb((reg), u_Command);
256 outb(((unsigned char) (data & 0xff)), u_DataHi);
259 static unsigned char gus_read8(int reg)
261 /* Reads from an indirect register (8 bit). Offset 0x80. */
262 unsigned char val;
264 outb((reg | 0x80), u_Command);
265 val = inb(u_DataHi);
267 return val;
270 static unsigned char gus_look8(int reg)
272 /* Reads from an indirect register (8 bit). No additional offset. */
273 unsigned char val;
275 outb((reg), u_Command);
276 val = inb(u_DataHi);
278 return val;
281 static void gus_write16(int reg, unsigned int data)
283 /* Writes to an indirect register (16 bit) */
284 outb((reg), u_Command);
286 outb(((unsigned char) (data & 0xff)), u_DataLo);
287 outb(((unsigned char) ((data >> 8) & 0xff)), u_DataHi);
290 static unsigned short gus_read16(int reg)
292 /* Reads from an indirect register (16 bit). Offset 0x80. */
293 unsigned char hi, lo;
295 outb((reg | 0x80), u_Command);
297 lo = inb(u_DataLo);
298 hi = inb(u_DataHi);
300 return ((hi << 8) & 0xff00) | lo;
303 static unsigned short gus_look16(int reg)
305 /* Reads from an indirect register (16 bit). No additional offset. */
306 unsigned char hi, lo;
308 outb((reg), u_Command);
310 lo = inb(u_DataLo);
311 hi = inb(u_DataHi);
313 return ((hi << 8) & 0xff00) | lo;
316 static void gus_write_addr(int reg, unsigned long address, int frac, int is16bit)
318 /* Writes an 24 bit memory address */
319 unsigned long hold_address;
321 if (is16bit)
323 if (iw_mode)
325 /* Interwave spesific address translations */
326 address >>= 1;
328 else
331 * Special processing required for 16 bit patches
334 hold_address = address;
335 address = address >> 1;
336 address &= 0x0001ffffL;
337 address |= (hold_address & 0x000c0000L);
340 gus_write16(reg, (unsigned short) ((address >> 7) & 0xffff));
341 gus_write16(reg + 1, (unsigned short) ((address << 9) & 0xffff)
342 + (frac << 5));
343 /* Could writing twice fix problems with GUS_VOICE_POS()? Let's try. */
344 gus_delay();
345 gus_write16(reg, (unsigned short) ((address >> 7) & 0xffff));
346 gus_write16(reg + 1, (unsigned short) ((address << 9) & 0xffff)
347 + (frac << 5));
350 static void gus_select_voice(int voice)
352 if (voice < 0 || voice > 31)
353 return;
354 outb((voice), u_Voice);
357 static void gus_select_max_voices(int nvoices)
359 if (iw_mode)
360 nvoices = 32;
361 if (nvoices < 14)
362 nvoices = 14;
363 if (nvoices > 32)
364 nvoices = 32;
366 voice_alloc->max_voice = nr_voices = nvoices;
367 gus_write8(0x0e, (nvoices - 1) | 0xc0);
370 static void gus_voice_on(unsigned int mode)
372 gus_write8(0x00, (unsigned char) (mode & 0xfc));
373 gus_delay();
374 gus_write8(0x00, (unsigned char) (mode & 0xfc));
377 static void gus_voice_off(void)
379 gus_write8(0x00, gus_read8(0x00) | 0x03);
382 static void gus_voice_mode(unsigned int m)
384 unsigned char mode = (unsigned char) (m & 0xff);
386 gus_write8(0x00, (gus_read8(0x00) & 0x03) |
387 (mode & 0xfc)); /* Don't touch last two bits */
388 gus_delay();
389 gus_write8(0x00, (gus_read8(0x00) & 0x03) | (mode & 0xfc));
392 static void gus_voice_freq(unsigned long freq)
394 unsigned long divisor = freq_div_table[nr_voices - 14];
395 unsigned short fc;
397 /* Interwave plays at 44100 Hz with any number of voices */
398 if (iw_mode)
399 fc = (unsigned short) (((freq << 9) + (44100 >> 1)) / 44100);
400 else
401 fc = (unsigned short) (((freq << 9) + (divisor >> 1)) / divisor);
402 fc = fc << 1;
404 gus_write16(0x01, fc);
407 static void gus_voice_volume(unsigned int vol)
409 gus_write8(0x0d, 0x03); /* Stop ramp before setting volume */
410 gus_write16(0x09, (unsigned short) (vol << 4));
413 static void gus_voice_balance(unsigned int balance)
415 gus_write8(0x0c, (unsigned char) (balance & 0xff));
418 static void gus_ramp_range(unsigned int low, unsigned int high)
420 gus_write8(0x07, (unsigned char) ((low >> 4) & 0xff));
421 gus_write8(0x08, (unsigned char) ((high >> 4) & 0xff));
424 static void gus_ramp_rate(unsigned int scale, unsigned int rate)
426 gus_write8(0x06, (unsigned char) (((scale & 0x03) << 6) | (rate & 0x3f)));
429 static void gus_rampon(unsigned int m)
431 unsigned char mode = (unsigned char) (m & 0xff);
433 gus_write8(0x0d, mode & 0xfc);
434 gus_delay();
435 gus_write8(0x0d, mode & 0xfc);
438 static void gus_ramp_mode(unsigned int m)
440 unsigned char mode = (unsigned char) (m & 0xff);
442 gus_write8(0x0d, (gus_read8(0x0d) & 0x03) |
443 (mode & 0xfc)); /* Leave the last 2 bits alone */
444 gus_delay();
445 gus_write8(0x0d, (gus_read8(0x0d) & 0x03) | (mode & 0xfc));
448 static void gus_rampoff(void)
450 gus_write8(0x0d, 0x03);
453 static void gus_set_voice_pos(int voice, long position)
455 int sample_no;
457 if ((sample_no = sample_map[voice]) != -1) {
458 if (position < samples[sample_no].len) {
459 if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
460 voices[voice].offset_pending = position;
461 else
462 gus_write_addr(0x0a, sample_ptrs[sample_no] + position, 0,
463 samples[sample_no].mode & WAVE_16_BITS);
468 static void gus_voice_init(int voice)
470 unsigned long flags;
472 spin_lock_irqsave(&gus_lock,flags);
473 gus_select_voice(voice);
474 gus_voice_volume(0);
475 gus_voice_off();
476 gus_write_addr(0x0a, 0, 0, 0); /* Set current position to 0 */
477 gus_write8(0x00, 0x03); /* Voice off */
478 gus_write8(0x0d, 0x03); /* Ramping off */
479 voice_alloc->map[voice] = 0;
480 voice_alloc->alloc_times[voice] = 0;
481 spin_unlock_irqrestore(&gus_lock,flags);
485 static void gus_voice_init2(int voice)
487 voices[voice].panning = 0;
488 voices[voice].mode = 0;
489 voices[voice].orig_freq = 20000;
490 voices[voice].current_freq = 20000;
491 voices[voice].bender = 0;
492 voices[voice].bender_range = 200;
493 voices[voice].initial_volume = 0;
494 voices[voice].current_volume = 0;
495 voices[voice].loop_irq_mode = 0;
496 voices[voice].loop_irq_parm = 0;
497 voices[voice].volume_irq_mode = 0;
498 voices[voice].volume_irq_parm = 0;
499 voices[voice].env_phase = 0;
500 voices[voice].main_vol = 127;
501 voices[voice].patch_vol = 127;
502 voices[voice].expression_vol = 127;
503 voices[voice].sample_pending = -1;
504 voices[voice].fixed_pitch = 0;
507 static void step_envelope(int voice)
509 unsigned vol, prev_vol, phase;
510 unsigned char rate;
511 unsigned long flags;
513 if (voices[voice].mode & WAVE_SUSTAIN_ON && voices[voice].env_phase == 2)
515 spin_lock_irqsave(&gus_lock,flags);
516 gus_select_voice(voice);
517 gus_rampoff();
518 spin_unlock_irqrestore(&gus_lock,flags);
519 return;
521 * Sustain phase begins. Continue envelope after receiving note off.
524 if (voices[voice].env_phase >= 5)
526 /* Envelope finished. Shoot the voice down */
527 gus_voice_init(voice);
528 return;
530 prev_vol = voices[voice].current_volume;
531 phase = ++voices[voice].env_phase;
532 compute_volume(voice, voices[voice].midi_volume);
533 vol = voices[voice].initial_volume * voices[voice].env_offset[phase] / 255;
534 rate = voices[voice].env_rate[phase];
536 spin_lock_irqsave(&gus_lock,flags);
537 gus_select_voice(voice);
539 gus_voice_volume(prev_vol);
542 gus_write8(0x06, rate); /* Ramping rate */
544 voices[voice].volume_irq_mode = VMODE_ENVELOPE;
546 if (((vol - prev_vol) / 64) == 0) /* No significant volume change */
548 spin_unlock_irqrestore(&gus_lock,flags);
549 step_envelope(voice); /* Continue the envelope on the next step */
550 return;
552 if (vol > prev_vol)
554 if (vol >= (4096 - 64))
555 vol = 4096 - 65;
556 gus_ramp_range(0, vol);
557 gus_rampon(0x20); /* Increasing volume, with IRQ */
559 else
561 if (vol <= 64)
562 vol = 65;
563 gus_ramp_range(vol, 4030);
564 gus_rampon(0x60); /* Decreasing volume, with IRQ */
566 voices[voice].current_volume = vol;
567 spin_unlock_irqrestore(&gus_lock,flags);
570 static void init_envelope(int voice)
572 voices[voice].env_phase = -1;
573 voices[voice].current_volume = 64;
575 step_envelope(voice);
578 static void start_release(int voice)
580 if (gus_read8(0x00) & 0x03)
581 return; /* Voice already stopped */
583 voices[voice].env_phase = 2; /* Will be incremented by step_envelope */
585 voices[voice].current_volume = voices[voice].initial_volume =
586 gus_read16(0x09) >> 4; /* Get current volume */
588 voices[voice].mode &= ~WAVE_SUSTAIN_ON;
589 gus_rampoff();
590 step_envelope(voice);
593 static void gus_voice_fade(int voice)
595 int instr_no = sample_map[voice], is16bits;
596 unsigned long flags;
598 spin_lock_irqsave(&gus_lock,flags);
599 gus_select_voice(voice);
601 if (instr_no < 0 || instr_no > MAX_SAMPLE)
603 gus_write8(0x00, 0x03); /* Hard stop */
604 voice_alloc->map[voice] = 0;
605 spin_unlock_irqrestore(&gus_lock,flags);
606 return;
608 is16bits = (samples[instr_no].mode & WAVE_16_BITS) ? 1 : 0; /* 8 or 16 bits */
610 if (voices[voice].mode & WAVE_ENVELOPES)
612 start_release(voice);
613 spin_unlock_irqrestore(&gus_lock,flags);
614 return;
617 * Ramp the volume down but not too quickly.
619 if ((int) (gus_read16(0x09) >> 4) < 100) /* Get current volume */
621 gus_voice_off();
622 gus_rampoff();
623 gus_voice_init(voice);
624 spin_unlock_irqrestore(&gus_lock,flags);
625 return;
627 gus_ramp_range(65, 4030);
628 gus_ramp_rate(2, 4);
629 gus_rampon(0x40 | 0x20); /* Down, once, with IRQ */
630 voices[voice].volume_irq_mode = VMODE_HALT;
631 spin_unlock_irqrestore(&gus_lock,flags);
634 static void gus_reset(void)
636 int i;
638 gus_select_max_voices(24);
639 volume_base = 3071;
640 volume_scale = 4;
641 volume_method = VOL_METHOD_ADAGIO;
643 for (i = 0; i < 32; i++)
645 gus_voice_init(i); /* Turn voice off */
646 gus_voice_init2(i);
650 static void gus_initialize(void)
652 unsigned long flags;
653 unsigned char dma_image, irq_image, tmp;
655 static unsigned char gus_irq_map[16] = {
656 0, 0, 0, 3, 0, 2, 0, 4, 0, 1, 0, 5, 6, 0, 0, 7
659 static unsigned char gus_dma_map[8] = {
660 0, 1, 0, 2, 0, 3, 4, 5
663 spin_lock_irqsave(&gus_lock,flags);
664 gus_write8(0x4c, 0); /* Reset GF1 */
665 gus_delay();
666 gus_delay();
668 gus_write8(0x4c, 1); /* Release Reset */
669 gus_delay();
670 gus_delay();
673 * Clear all interrupts
676 gus_write8(0x41, 0); /* DMA control */
677 gus_write8(0x45, 0); /* Timer control */
678 gus_write8(0x49, 0); /* Sample control */
680 gus_select_max_voices(24);
682 inb(u_Status); /* Touch the status register */
684 gus_look8(0x41); /* Clear any pending DMA IRQs */
685 gus_look8(0x49); /* Clear any pending sample IRQs */
686 gus_read8(0x0f); /* Clear pending IRQs */
688 gus_reset(); /* Resets all voices */
690 gus_look8(0x41); /* Clear any pending DMA IRQs */
691 gus_look8(0x49); /* Clear any pending sample IRQs */
692 gus_read8(0x0f); /* Clear pending IRQs */
694 gus_write8(0x4c, 7); /* Master reset | DAC enable | IRQ enable */
697 * Set up for Digital ASIC
700 outb((0x05), gus_base + 0x0f);
702 mix_image |= 0x02; /* Disable line out (for a moment) */
703 outb((mix_image), u_Mixer);
705 outb((0x00), u_IRQDMAControl);
707 outb((0x00), gus_base + 0x0f);
710 * Now set up the DMA and IRQ interface
712 * The GUS supports two IRQs and two DMAs.
714 * Just one DMA channel is used. This prevents simultaneous ADC and DAC.
715 * Adding this support requires significant changes to the dmabuf.c, dsp.c
716 * and audio.c also.
719 irq_image = 0;
720 tmp = gus_irq_map[gus_irq];
721 if (!gus_pnp_flag && !tmp)
722 printk(KERN_WARNING "Warning! GUS IRQ not selected\n");
723 irq_image |= tmp;
724 irq_image |= 0x40; /* Combine IRQ1 (GF1) and IRQ2 (Midi) */
726 dual_dma_mode = 1;
727 if (gus_dma2 == gus_dma || gus_dma2 == -1)
729 dual_dma_mode = 0;
730 dma_image = 0x40; /* Combine DMA1 (DRAM) and IRQ2 (ADC) */
732 tmp = gus_dma_map[gus_dma];
733 if (!tmp)
734 printk(KERN_WARNING "Warning! GUS DMA not selected\n");
736 dma_image |= tmp;
738 else
740 /* Setup dual DMA channel mode for GUS MAX */
742 dma_image = gus_dma_map[gus_dma];
743 if (!dma_image)
744 printk(KERN_WARNING "Warning! GUS DMA not selected\n");
746 tmp = gus_dma_map[gus_dma2] << 3;
747 if (!tmp)
749 printk(KERN_WARNING "Warning! Invalid GUS MAX DMA\n");
750 tmp = 0x40; /* Combine DMA channels */
751 dual_dma_mode = 0;
753 dma_image |= tmp;
757 * For some reason the IRQ and DMA addresses must be written twice
761 * Doing it first time
764 outb((mix_image), u_Mixer); /* Select DMA control */
765 outb((dma_image | 0x80), u_IRQDMAControl); /* Set DMA address */
767 outb((mix_image | 0x40), u_Mixer); /* Select IRQ control */
768 outb((irq_image), u_IRQDMAControl); /* Set IRQ address */
771 * Doing it second time
774 outb((mix_image), u_Mixer); /* Select DMA control */
775 outb((dma_image), u_IRQDMAControl); /* Set DMA address */
777 outb((mix_image | 0x40), u_Mixer); /* Select IRQ control */
778 outb((irq_image), u_IRQDMAControl); /* Set IRQ address */
780 gus_select_voice(0); /* This disables writes to IRQ/DMA reg */
782 mix_image &= ~0x02; /* Enable line out */
783 mix_image |= 0x08; /* Enable IRQ */
784 outb((mix_image), u_Mixer); /*
785 * Turn mixer channels on
786 * Note! Mic in is left off.
789 gus_select_voice(0); /* This disables writes to IRQ/DMA reg */
791 gusintr(gus_irq, (void *)gus_hw_config, NULL); /* Serve pending interrupts */
793 inb(u_Status); /* Touch the status register */
795 gus_look8(0x41); /* Clear any pending DMA IRQs */
796 gus_look8(0x49); /* Clear any pending sample IRQs */
798 gus_read8(0x0f); /* Clear pending IRQs */
800 if (iw_mode)
801 gus_write8(0x19, gus_read8(0x19) | 0x01);
802 spin_unlock_irqrestore(&gus_lock,flags);
806 static void __init pnp_mem_init(void)
808 #include "iwmem.h"
809 #define CHUNK_SIZE (256*1024)
810 #define BANK_SIZE (4*1024*1024)
811 #define CHUNKS_PER_BANK (BANK_SIZE/CHUNK_SIZE)
813 int bank, chunk, addr, total = 0;
814 int bank_sizes[4];
815 int i, j, bits = -1, testbits = -1, nbanks = 0;
818 * This routine determines what kind of RAM is installed in each of the four
819 * SIMM banks and configures the DRAM address decode logic accordingly.
823 * Place the chip into enhanced mode
825 gus_write8(0x19, gus_read8(0x19) | 0x01);
826 gus_write8(0x53, gus_look8(0x53) & ~0x02); /* Select DRAM I/O access */
829 * Set memory configuration to 4 DRAM banks of 4M in each (16M total).
832 gus_write16(0x52, (gus_look16(0x52) & 0xfff0) | 0x000c);
835 * Perform the DRAM size detection for each bank individually.
837 for (bank = 0; bank < 4; bank++)
839 int size = 0;
841 addr = bank * BANK_SIZE;
843 /* Clean check points of each chunk */
844 for (chunk = 0; chunk < CHUNKS_PER_BANK; chunk++)
846 gus_poke(addr + chunk * CHUNK_SIZE + 0L, 0x00);
847 gus_poke(addr + chunk * CHUNK_SIZE + 1L, 0x00);
850 /* Write a value to each chunk point and verify the result */
851 for (chunk = 0; chunk < CHUNKS_PER_BANK; chunk++)
853 gus_poke(addr + chunk * CHUNK_SIZE + 0L, 0x55);
854 gus_poke(addr + chunk * CHUNK_SIZE + 1L, 0xAA);
856 if (gus_peek(addr + chunk * CHUNK_SIZE + 0L) == 0x55 &&
857 gus_peek(addr + chunk * CHUNK_SIZE + 1L) == 0xAA)
859 /* OK. There is RAM. Now check for possible shadows */
860 int ok = 1, chunk2;
862 for (chunk2 = 0; ok && chunk2 < chunk; chunk2++)
863 if (gus_peek(addr + chunk2 * CHUNK_SIZE + 0L) ||
864 gus_peek(addr + chunk2 * CHUNK_SIZE + 1L))
865 ok = 0; /* Addressing wraps */
867 if (ok)
868 size = (chunk + 1) * CHUNK_SIZE;
870 gus_poke(addr + chunk * CHUNK_SIZE + 0L, 0x00);
871 gus_poke(addr + chunk * CHUNK_SIZE + 1L, 0x00);
873 bank_sizes[bank] = size;
874 if (size)
875 nbanks = bank + 1;
876 DDB(printk("Interwave: Bank %d, size=%dk\n", bank, size / 1024));
879 if (nbanks == 0) /* No RAM - Give up */
881 printk(KERN_ERR "Sound: An Interwave audio chip detected but no DRAM\n");
882 printk(KERN_ERR "Sound: Unable to work with this card.\n");
883 gus_write8(0x19, gus_read8(0x19) & ~0x01);
884 gus_mem_size = 0;
885 return;
889 * Now we know how much DRAM there is in each bank. The next step is
890 * to find a DRAM size encoding (0 to 12) which is best for the combination
891 * we have.
893 * First try if any of the possible alternatives matches exactly the amount
894 * of memory we have.
897 for (i = 0; bits == -1 && i < 13; i++)
899 bits = i;
901 for (j = 0; bits != -1 && j < 4; j++)
902 if (mem_decode[i][j] != bank_sizes[j])
903 bits = -1; /* No hit */
907 * If necessary, try to find a combination where other than the last
908 * bank matches our configuration and the last bank is left oversized.
909 * In this way we don't leave holes in the middle of memory.
912 if (bits == -1) /* No luck yet */
914 for (i = 0; bits == -1 && i < 13; i++)
916 bits = i;
918 for (j = 0; bits != -1 && j < nbanks - 1; j++)
919 if (mem_decode[i][j] != bank_sizes[j])
920 bits = -1; /* No hit */
921 if (mem_decode[i][nbanks - 1] < bank_sizes[nbanks - 1])
922 bits = -1; /* The last bank is too small */
926 * The last resort is to search for a combination where the banks are
927 * smaller than the actual SIMMs. This leaves some memory in the banks
928 * unused but doesn't leave holes in the DRAM address space.
930 if (bits == -1) /* No luck yet */
932 for (i = 0; i < 13; i++)
934 testbits = i;
935 for (j = 0; testbits != -1 && j < nbanks - 1; j++)
936 if (mem_decode[i][j] > bank_sizes[j]) {
937 testbits = -1;
939 if(testbits > bits) bits = testbits;
941 if (bits != -1)
943 printk(KERN_INFO "Interwave: Can't use all installed RAM.\n");
944 printk(KERN_INFO "Interwave: Try reordering SIMMS.\n");
946 printk(KERN_INFO "Interwave: Can't find working DRAM encoding.\n");
947 printk(KERN_INFO "Interwave: Defaulting to 256k. Try reordering SIMMS.\n");
948 bits = 0;
950 DDB(printk("Interwave: Selecting DRAM addressing mode %d\n", bits));
952 for (bank = 0; bank < 4; bank++)
954 DDB(printk(" Bank %d, mem=%dk (limit %dk)\n", bank, bank_sizes[bank] / 1024, mem_decode[bits][bank] / 1024));
956 if (bank_sizes[bank] > mem_decode[bits][bank])
957 total += mem_decode[bits][bank];
958 else
959 total += bank_sizes[bank];
962 DDB(printk("Total %dk of DRAM (enhanced mode)\n", total / 1024));
965 * Set the memory addressing mode.
967 gus_write16(0x52, (gus_look16(0x52) & 0xfff0) | bits);
969 /* Leave the chip into enhanced mode. Disable LFO */
970 gus_mem_size = total;
971 iw_mode = 1;
972 gus_write8(0x19, (gus_read8(0x19) | 0x01) & ~0x02);
975 int __init gus_wave_detect(int baseaddr)
977 unsigned long i, max_mem = 1024L;
978 unsigned long loc;
979 unsigned char val;
981 if (!request_region(baseaddr, 16, "GUS"))
982 return 0;
983 if (!request_region(baseaddr + 0x100, 12, "GUS")) { /* 0x10c-> is MAX */
984 release_region(baseaddr, 16);
985 return 0;
988 gus_base = baseaddr;
990 gus_write8(0x4c, 0); /* Reset GF1 */
991 gus_delay();
992 gus_delay();
994 gus_write8(0x4c, 1); /* Release Reset */
995 gus_delay();
996 gus_delay();
998 #ifdef GUSPNP_AUTODETECT
999 val = gus_look8(0x5b); /* Version number register */
1000 gus_write8(0x5b, ~val); /* Invert all bits */
1002 if ((gus_look8(0x5b) & 0xf0) == (val & 0xf0)) /* No change */
1004 if ((gus_look8(0x5b) & 0x0f) == ((~val) & 0x0f)) /* Change */
1006 DDB(printk("Interwave chip version %d detected\n", (val & 0xf0) >> 4));
1007 gus_pnp_flag = 1;
1009 else
1011 DDB(printk("Not an Interwave chip (%x)\n", gus_look8(0x5b)));
1012 gus_pnp_flag = 0;
1015 gus_write8(0x5b, val); /* Restore all bits */
1016 #endif
1018 if (gus_pnp_flag)
1019 pnp_mem_init();
1020 if (iw_mode)
1021 return 1;
1023 /* See if there is first block there.... */
1024 gus_poke(0L, 0xaa);
1025 if (gus_peek(0L) != 0xaa) {
1026 release_region(baseaddr + 0x100, 12);
1027 release_region(baseaddr, 16);
1028 return 0;
1031 /* Now zero it out so that I can check for mirroring .. */
1032 gus_poke(0L, 0x00);
1033 for (i = 1L; i < max_mem; i++)
1035 int n, failed;
1037 /* check for mirroring ... */
1038 if (gus_peek(0L) != 0)
1039 break;
1040 loc = i << 10;
1042 for (n = loc - 1, failed = 0; n <= loc; n++)
1044 gus_poke(loc, 0xaa);
1045 if (gus_peek(loc) != 0xaa)
1046 failed = 1;
1047 gus_poke(loc, 0x55);
1048 if (gus_peek(loc) != 0x55)
1049 failed = 1;
1051 if (failed)
1052 break;
1054 gus_mem_size = i << 10;
1055 return 1;
1058 static int guswave_ioctl(int dev, unsigned int cmd, void __user *arg)
1061 switch (cmd)
1063 case SNDCTL_SYNTH_INFO:
1064 gus_info.nr_voices = nr_voices;
1065 if (copy_to_user(arg, &gus_info, sizeof(gus_info)))
1066 return -EFAULT;
1067 return 0;
1069 case SNDCTL_SEQ_RESETSAMPLES:
1070 reset_sample_memory();
1071 return 0;
1073 case SNDCTL_SEQ_PERCMODE:
1074 return 0;
1076 case SNDCTL_SYNTH_MEMAVL:
1077 return (gus_mem_size == 0) ? 0 : gus_mem_size - free_mem_ptr - 32;
1079 default:
1080 return -EINVAL;
1084 static int guswave_set_instr(int dev, int voice, int instr_no)
1086 int sample_no;
1088 if (instr_no < 0 || instr_no > MAX_PATCH)
1089 instr_no = 0; /* Default to acoustic piano */
1091 if (voice < 0 || voice > 31)
1092 return -EINVAL;
1094 if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
1096 voices[voice].sample_pending = instr_no;
1097 return 0;
1099 sample_no = patch_table[instr_no];
1100 patch_map[voice] = -1;
1102 if (sample_no == NOT_SAMPLE)
1104 /* printk("GUS: Undefined patch %d for voice %d\n", instr_no, voice);*/
1105 return -EINVAL; /* Patch not defined */
1107 if (sample_ptrs[sample_no] == -1) /* Sample not loaded */
1109 /* printk("GUS: Sample #%d not loaded for patch %d (voice %d)\n", sample_no, instr_no, voice);*/
1110 return -EINVAL;
1112 sample_map[voice] = sample_no;
1113 patch_map[voice] = instr_no;
1114 return 0;
1117 static int guswave_kill_note(int dev, int voice, int note, int velocity)
1119 unsigned long flags;
1121 spin_lock_irqsave(&gus_lock,flags);
1122 /* voice_alloc->map[voice] = 0xffff; */
1123 if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
1125 voices[voice].kill_pending = 1;
1126 spin_unlock_irqrestore(&gus_lock,flags);
1128 else
1130 spin_unlock_irqrestore(&gus_lock,flags);
1131 gus_voice_fade(voice);
1134 return 0;
1137 static void guswave_aftertouch(int dev, int voice, int pressure)
1141 static void guswave_panning(int dev, int voice, int value)
1143 if (voice >= 0 || voice < 32)
1144 voices[voice].panning = value;
1147 static void guswave_volume_method(int dev, int mode)
1149 if (mode == VOL_METHOD_LINEAR || mode == VOL_METHOD_ADAGIO)
1150 volume_method = mode;
1153 static void compute_volume(int voice, int volume)
1155 if (volume < 128)
1156 voices[voice].midi_volume = volume;
1158 switch (volume_method)
1160 case VOL_METHOD_ADAGIO:
1161 voices[voice].initial_volume =
1162 gus_adagio_vol(voices[voice].midi_volume, voices[voice].main_vol,
1163 voices[voice].expression_vol,
1164 voices[voice].patch_vol);
1165 break;
1167 case VOL_METHOD_LINEAR: /* Totally ignores patch-volume and expression */
1168 voices[voice].initial_volume = gus_linear_vol(volume, voices[voice].main_vol);
1169 break;
1171 default:
1172 voices[voice].initial_volume = volume_base +
1173 (voices[voice].midi_volume * volume_scale);
1176 if (voices[voice].initial_volume > 4030)
1177 voices[voice].initial_volume = 4030;
1180 static void compute_and_set_volume(int voice, int volume, int ramp_time)
1182 int curr, target, rate;
1183 unsigned long flags;
1185 compute_volume(voice, volume);
1186 voices[voice].current_volume = voices[voice].initial_volume;
1188 spin_lock_irqsave(&gus_lock,flags);
1190 * CAUTION! Interrupts disabled. Enable them before returning
1193 gus_select_voice(voice);
1195 curr = gus_read16(0x09) >> 4;
1196 target = voices[voice].initial_volume;
1198 if (ramp_time == INSTANT_RAMP)
1200 gus_rampoff();
1201 gus_voice_volume(target);
1202 spin_unlock_irqrestore(&gus_lock,flags);
1203 return;
1205 if (ramp_time == FAST_RAMP)
1206 rate = 63;
1207 else
1208 rate = 16;
1209 gus_ramp_rate(0, rate);
1211 if ((target - curr) / 64 == 0) /* Close enough to target. */
1213 gus_rampoff();
1214 gus_voice_volume(target);
1215 spin_unlock_irqrestore(&gus_lock,flags);
1216 return;
1218 if (target > curr)
1220 if (target > (4095 - 65))
1221 target = 4095 - 65;
1222 gus_ramp_range(curr, target);
1223 gus_rampon(0x00); /* Ramp up, once, no IRQ */
1225 else
1227 if (target < 65)
1228 target = 65;
1230 gus_ramp_range(target, curr);
1231 gus_rampon(0x40); /* Ramp down, once, no irq */
1233 spin_unlock_irqrestore(&gus_lock,flags);
1236 static void dynamic_volume_change(int voice)
1238 unsigned char status;
1239 unsigned long flags;
1241 spin_lock_irqsave(&gus_lock,flags);
1242 gus_select_voice(voice);
1243 status = gus_read8(0x00); /* Get voice status */
1244 spin_unlock_irqrestore(&gus_lock,flags);
1246 if (status & 0x03)
1247 return; /* Voice was not running */
1249 if (!(voices[voice].mode & WAVE_ENVELOPES))
1251 compute_and_set_volume(voice, voices[voice].midi_volume, 1);
1252 return;
1256 * Voice is running and has envelopes.
1259 spin_lock_irqsave(&gus_lock,flags);
1260 gus_select_voice(voice);
1261 status = gus_read8(0x0d); /* Ramping status */
1262 spin_unlock_irqrestore(&gus_lock,flags);
1264 if (status & 0x03) /* Sustain phase? */
1266 compute_and_set_volume(voice, voices[voice].midi_volume, 1);
1267 return;
1269 if (voices[voice].env_phase < 0)
1270 return;
1272 compute_volume(voice, voices[voice].midi_volume);
1276 static void guswave_controller(int dev, int voice, int ctrl_num, int value)
1278 unsigned long flags;
1279 unsigned long freq;
1281 if (voice < 0 || voice > 31)
1282 return;
1284 switch (ctrl_num)
1286 case CTRL_PITCH_BENDER:
1287 voices[voice].bender = value;
1289 if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
1291 freq = compute_finetune(voices[voice].orig_freq, value, voices[voice].bender_range, 0);
1292 voices[voice].current_freq = freq;
1294 spin_lock_irqsave(&gus_lock,flags);
1295 gus_select_voice(voice);
1296 gus_voice_freq(freq);
1297 spin_unlock_irqrestore(&gus_lock,flags);
1299 break;
1301 case CTRL_PITCH_BENDER_RANGE:
1302 voices[voice].bender_range = value;
1303 break;
1304 case CTL_EXPRESSION:
1305 value /= 128;
1306 case CTRL_EXPRESSION:
1307 if (volume_method == VOL_METHOD_ADAGIO)
1309 voices[voice].expression_vol = value;
1310 if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
1311 dynamic_volume_change(voice);
1313 break;
1315 case CTL_PAN:
1316 voices[voice].panning = (value * 2) - 128;
1317 break;
1319 case CTL_MAIN_VOLUME:
1320 value = (value * 100) / 16383;
1322 case CTRL_MAIN_VOLUME:
1323 voices[voice].main_vol = value;
1324 if (voices[voice].volume_irq_mode != VMODE_START_NOTE)
1325 dynamic_volume_change(voice);
1326 break;
1328 default:
1329 break;
1333 static int guswave_start_note2(int dev, int voice, int note_num, int volume)
1335 int sample, best_sample, best_delta, delta_freq;
1336 int is16bits, samplep, patch, pan;
1337 unsigned long note_freq, base_note, freq, flags;
1338 unsigned char mode = 0;
1340 if (voice < 0 || voice > 31)
1342 /* printk("GUS: Invalid voice\n");*/
1343 return -EINVAL;
1345 if (note_num == 255)
1347 if (voices[voice].mode & WAVE_ENVELOPES)
1349 voices[voice].midi_volume = volume;
1350 dynamic_volume_change(voice);
1351 return 0;
1353 compute_and_set_volume(voice, volume, 1);
1354 return 0;
1356 if ((patch = patch_map[voice]) == -1)
1357 return -EINVAL;
1358 if ((samplep = patch_table[patch]) == NOT_SAMPLE)
1360 return -EINVAL;
1362 note_freq = note_to_freq(note_num);
1365 * Find a sample within a patch so that the note_freq is between low_note
1366 * and high_note.
1368 sample = -1;
1370 best_sample = samplep;
1371 best_delta = 1000000;
1372 while (samplep != 0 && samplep != NOT_SAMPLE && sample == -1)
1374 delta_freq = note_freq - samples[samplep].base_note;
1375 if (delta_freq < 0)
1376 delta_freq = -delta_freq;
1377 if (delta_freq < best_delta)
1379 best_sample = samplep;
1380 best_delta = delta_freq;
1382 if (samples[samplep].low_note <= note_freq &&
1383 note_freq <= samples[samplep].high_note)
1385 sample = samplep;
1387 else
1388 samplep = samples[samplep].key; /* Link to next sample */
1390 if (sample == -1)
1391 sample = best_sample;
1393 if (sample == -1)
1395 /* printk("GUS: Patch %d not defined for note %d\n", patch, note_num);*/
1396 return 0; /* Should play default patch ??? */
1398 is16bits = (samples[sample].mode & WAVE_16_BITS) ? 1 : 0;
1399 voices[voice].mode = samples[sample].mode;
1400 voices[voice].patch_vol = samples[sample].volume;
1402 if (iw_mode)
1403 gus_write8(0x15, 0x00); /* RAM, Reset voice deactivate bit of SMSI */
1405 if (voices[voice].mode & WAVE_ENVELOPES)
1407 int i;
1409 for (i = 0; i < 6; i++)
1411 voices[voice].env_rate[i] = samples[sample].env_rate[i];
1412 voices[voice].env_offset[i] = samples[sample].env_offset[i];
1415 sample_map[voice] = sample;
1417 if (voices[voice].fixed_pitch) /* Fixed pitch */
1419 freq = samples[sample].base_freq;
1421 else
1423 base_note = samples[sample].base_note / 100;
1424 note_freq /= 100;
1426 freq = samples[sample].base_freq * note_freq / base_note;
1429 voices[voice].orig_freq = freq;
1432 * Since the pitch bender may have been set before playing the note, we
1433 * have to calculate the bending now.
1436 freq = compute_finetune(voices[voice].orig_freq, voices[voice].bender,
1437 voices[voice].bender_range, 0);
1438 voices[voice].current_freq = freq;
1440 pan = (samples[sample].panning + voices[voice].panning) / 32;
1441 pan += 7;
1442 if (pan < 0)
1443 pan = 0;
1444 if (pan > 15)
1445 pan = 15;
1447 if (samples[sample].mode & WAVE_16_BITS)
1449 mode |= 0x04; /* 16 bits */
1450 if ((sample_ptrs[sample] / GUS_BANK_SIZE) !=
1451 ((sample_ptrs[sample] + samples[sample].len) / GUS_BANK_SIZE))
1452 printk(KERN_ERR "GUS: Sample address error\n");
1454 spin_lock_irqsave(&gus_lock,flags);
1455 gus_select_voice(voice);
1456 gus_voice_off();
1457 gus_rampoff();
1459 spin_unlock_irqrestore(&gus_lock,flags);
1461 if (voices[voice].mode & WAVE_ENVELOPES)
1463 compute_volume(voice, volume);
1464 init_envelope(voice);
1466 else
1468 compute_and_set_volume(voice, volume, 0);
1471 spin_lock_irqsave(&gus_lock,flags);
1472 gus_select_voice(voice);
1474 if (samples[sample].mode & WAVE_LOOP_BACK)
1475 gus_write_addr(0x0a, sample_ptrs[sample] + samples[sample].len -
1476 voices[voice].offset_pending, 0, is16bits); /* start=end */
1477 else
1478 gus_write_addr(0x0a, sample_ptrs[sample] + voices[voice].offset_pending, 0, is16bits); /* Sample start=begin */
1480 if (samples[sample].mode & WAVE_LOOPING)
1482 mode |= 0x08;
1484 if (samples[sample].mode & WAVE_BIDIR_LOOP)
1485 mode |= 0x10;
1487 if (samples[sample].mode & WAVE_LOOP_BACK)
1489 gus_write_addr(0x0a, sample_ptrs[sample] + samples[sample].loop_end -
1490 voices[voice].offset_pending,
1491 (samples[sample].fractions >> 4) & 0x0f, is16bits);
1492 mode |= 0x40;
1494 gus_write_addr(0x02, sample_ptrs[sample] + samples[sample].loop_start,
1495 samples[sample].fractions & 0x0f, is16bits); /* Loop start location */
1496 gus_write_addr(0x04, sample_ptrs[sample] + samples[sample].loop_end,
1497 (samples[sample].fractions >> 4) & 0x0f, is16bits); /* Loop end location */
1499 else
1501 mode |= 0x20; /* Loop IRQ at the end */
1502 voices[voice].loop_irq_mode = LMODE_FINISH; /* Ramp down at the end */
1503 voices[voice].loop_irq_parm = 1;
1504 gus_write_addr(0x02, sample_ptrs[sample], 0, is16bits); /* Loop start location */
1505 gus_write_addr(0x04, sample_ptrs[sample] + samples[sample].len - 1,
1506 (samples[sample].fractions >> 4) & 0x0f, is16bits); /* Loop end location */
1508 gus_voice_freq(freq);
1509 gus_voice_balance(pan);
1510 gus_voice_on(mode);
1511 spin_unlock_irqrestore(&gus_lock,flags);
1513 return 0;
1517 * New guswave_start_note by Andrew J. Robinson attempts to minimize clicking
1518 * when the note playing on the voice is changed. It uses volume
1519 * ramping.
1522 static int guswave_start_note(int dev, int voice, int note_num, int volume)
1524 unsigned long flags;
1525 int mode;
1526 int ret_val = 0;
1528 spin_lock_irqsave(&gus_lock,flags);
1529 if (note_num == 255)
1531 if (voices[voice].volume_irq_mode == VMODE_START_NOTE)
1533 voices[voice].volume_pending = volume;
1535 else
1537 ret_val = guswave_start_note2(dev, voice, note_num, volume);
1540 else
1542 gus_select_voice(voice);
1543 mode = gus_read8(0x00);
1544 if (mode & 0x20)
1545 gus_write8(0x00, mode & 0xdf); /* No interrupt! */
1547 voices[voice].offset_pending = 0;
1548 voices[voice].kill_pending = 0;
1549 voices[voice].volume_irq_mode = 0;
1550 voices[voice].loop_irq_mode = 0;
1552 if (voices[voice].sample_pending >= 0)
1554 spin_unlock_irqrestore(&gus_lock,flags); /* Run temporarily with interrupts enabled */
1555 guswave_set_instr(voices[voice].dev_pending, voice, voices[voice].sample_pending);
1556 voices[voice].sample_pending = -1;
1557 spin_lock_irqsave(&gus_lock,flags);
1558 gus_select_voice(voice); /* Reselect the voice (just to be sure) */
1560 if ((mode & 0x01) || (int) ((gus_read16(0x09) >> 4) < (unsigned) 2065))
1562 ret_val = guswave_start_note2(dev, voice, note_num, volume);
1564 else
1566 voices[voice].dev_pending = dev;
1567 voices[voice].note_pending = note_num;
1568 voices[voice].volume_pending = volume;
1569 voices[voice].volume_irq_mode = VMODE_START_NOTE;
1571 gus_rampoff();
1572 gus_ramp_range(2000, 4065);
1573 gus_ramp_rate(0, 63); /* Fastest possible rate */
1574 gus_rampon(0x20 | 0x40); /* Ramp down, once, irq */
1577 spin_unlock_irqrestore(&gus_lock,flags);
1578 return ret_val;
1581 static void guswave_reset(int dev)
1583 int i;
1585 for (i = 0; i < 32; i++)
1587 gus_voice_init(i);
1588 gus_voice_init2(i);
1592 static int guswave_open(int dev, int mode)
1594 int err;
1596 if (gus_busy)
1597 return -EBUSY;
1599 voice_alloc->timestamp = 0;
1601 if (gus_no_wave_dma) {
1602 gus_no_dma = 1;
1603 } else {
1604 if ((err = DMAbuf_open_dma(gus_devnum)) < 0)
1606 /* printk( "GUS: Loading samples without DMA\n"); */
1607 gus_no_dma = 1; /* Upload samples using PIO */
1609 else
1610 gus_no_dma = 0;
1613 init_waitqueue_head(&dram_sleeper);
1614 gus_busy = 1;
1615 active_device = GUS_DEV_WAVE;
1617 gusintr(gus_irq, (void *)gus_hw_config, NULL); /* Serve pending interrupts */
1618 gus_initialize();
1619 gus_reset();
1620 gusintr(gus_irq, (void *)gus_hw_config, NULL); /* Serve pending interrupts */
1622 return 0;
1625 static void guswave_close(int dev)
1627 gus_busy = 0;
1628 active_device = 0;
1629 gus_reset();
1631 if (!gus_no_dma)
1632 DMAbuf_close_dma(gus_devnum);
1635 static int guswave_load_patch(int dev, int format, const char __user *addr,
1636 int offs, int count, int pmgr_flag)
1638 struct patch_info patch;
1639 int instr;
1640 long sizeof_patch;
1642 unsigned long blk_sz, blk_end, left, src_offs, target;
1644 sizeof_patch = (long) &patch.data[0] - (long) &patch; /* Header size */
1646 if (format != GUS_PATCH)
1648 /* printk("GUS Error: Invalid patch format (key) 0x%x\n", format);*/
1649 return -EINVAL;
1651 if (count < sizeof_patch)
1653 /* printk("GUS Error: Patch header too short\n");*/
1654 return -EINVAL;
1656 count -= sizeof_patch;
1658 if (free_sample >= MAX_SAMPLE)
1660 /* printk("GUS: Sample table full\n");*/
1661 return -ENOSPC;
1664 * Copy the header from user space but ignore the first bytes which have
1665 * been transferred already.
1668 if (copy_from_user(&((char *) &patch)[offs], &(addr)[offs],
1669 sizeof_patch - offs))
1670 return -EFAULT;
1672 if (patch.mode & WAVE_ROM)
1673 return -EINVAL;
1674 if (gus_mem_size == 0)
1675 return -ENOSPC;
1677 instr = patch.instr_no;
1679 if (instr < 0 || instr > MAX_PATCH)
1681 /* printk(KERN_ERR "GUS: Invalid patch number %d\n", instr);*/
1682 return -EINVAL;
1684 if (count < patch.len)
1686 /* printk(KERN_ERR "GUS Warning: Patch record too short (%d<%d)\n", count, (int) patch.len);*/
1687 patch.len = count;
1689 if (patch.len <= 0 || patch.len > gus_mem_size)
1691 /* printk(KERN_ERR "GUS: Invalid sample length %d\n", (int) patch.len);*/
1692 return -EINVAL;
1694 if (patch.mode & WAVE_LOOPING)
1696 if (patch.loop_start < 0 || patch.loop_start >= patch.len)
1698 /* printk(KERN_ERR "GUS: Invalid loop start\n");*/
1699 return -EINVAL;
1701 if (patch.loop_end < patch.loop_start || patch.loop_end > patch.len)
1703 /* printk(KERN_ERR "GUS: Invalid loop end\n");*/
1704 return -EINVAL;
1707 free_mem_ptr = (free_mem_ptr + 31) & ~31; /* 32 byte alignment */
1709 if (patch.mode & WAVE_16_BITS)
1712 * 16 bit samples must fit one 256k bank.
1714 if (patch.len >= GUS_BANK_SIZE)
1716 /* printk("GUS: Sample (16 bit) too long %d\n", (int) patch.len);*/
1717 return -ENOSPC;
1719 if ((free_mem_ptr / GUS_BANK_SIZE) !=
1720 ((free_mem_ptr + patch.len) / GUS_BANK_SIZE))
1722 unsigned long tmp_mem =
1723 /* Align to 256K */
1724 ((free_mem_ptr / GUS_BANK_SIZE) + 1) * GUS_BANK_SIZE;
1726 if ((tmp_mem + patch.len) > gus_mem_size)
1727 return -ENOSPC;
1729 free_mem_ptr = tmp_mem; /* This leaves unusable memory */
1732 if ((free_mem_ptr + patch.len) > gus_mem_size)
1733 return -ENOSPC;
1735 sample_ptrs[free_sample] = free_mem_ptr;
1738 * Tremolo is not possible with envelopes
1741 if (patch.mode & WAVE_ENVELOPES)
1742 patch.mode &= ~WAVE_TREMOLO;
1744 if (!(patch.mode & WAVE_FRACTIONS))
1746 patch.fractions = 0;
1748 memcpy((char *) &samples[free_sample], &patch, sizeof_patch);
1751 * Link this_one sample to the list of samples for patch 'instr'.
1754 samples[free_sample].key = patch_table[instr];
1755 patch_table[instr] = free_sample;
1758 * Use DMA to transfer the wave data to the DRAM
1761 left = patch.len;
1762 src_offs = 0;
1763 target = free_mem_ptr;
1765 while (left) /* Not completely transferred yet */
1767 blk_sz = audio_devs[gus_devnum]->dmap_out->bytes_in_use;
1768 if (blk_sz > left)
1769 blk_sz = left;
1772 * DMA cannot cross bank (256k) boundaries. Check for that.
1775 blk_end = target + blk_sz;
1777 if ((target / GUS_BANK_SIZE) != (blk_end / GUS_BANK_SIZE))
1779 /* Split the block */
1780 blk_end &= ~(GUS_BANK_SIZE - 1);
1781 blk_sz = blk_end - target;
1783 if (gus_no_dma)
1786 * For some reason the DMA is not possible. We have to use PIO.
1788 long i;
1789 unsigned char data;
1791 for (i = 0; i < blk_sz; i++)
1793 get_user(*(unsigned char *) &data, (unsigned char __user *) &((addr)[sizeof_patch + i]));
1794 if (patch.mode & WAVE_UNSIGNED)
1795 if (!(patch.mode & WAVE_16_BITS) || (i & 0x01))
1796 data ^= 0x80; /* Convert to signed */
1797 gus_poke(target + i, data);
1800 else
1802 unsigned long address, hold_address;
1803 unsigned char dma_command;
1804 unsigned long flags;
1806 if (audio_devs[gus_devnum]->dmap_out->raw_buf == NULL)
1808 printk(KERN_ERR "GUS: DMA buffer == NULL\n");
1809 return -ENOSPC;
1812 * OK, move now. First in and then out.
1815 if (copy_from_user(audio_devs[gus_devnum]->dmap_out->raw_buf,
1816 &(addr)[sizeof_patch + src_offs],
1817 blk_sz))
1818 return -EFAULT;
1820 spin_lock_irqsave(&gus_lock,flags);
1821 gus_write8(0x41, 0); /* Disable GF1 DMA */
1822 DMAbuf_start_dma(gus_devnum, audio_devs[gus_devnum]->dmap_out->raw_buf_phys,
1823 blk_sz, DMA_MODE_WRITE);
1826 * Set the DRAM address for the wave data
1829 if (iw_mode)
1831 /* Different address translation in enhanced mode */
1833 unsigned char hi;
1835 if (gus_dma > 4)
1836 address = target >> 1; /* Convert to 16 bit word address */
1837 else
1838 address = target;
1840 hi = (unsigned char) ((address >> 16) & 0xf0);
1841 hi += (unsigned char) (address & 0x0f);
1843 gus_write16(0x42, (address >> 4) & 0xffff); /* DMA address (low) */
1844 gus_write8(0x50, hi);
1846 else
1848 address = target;
1849 if (audio_devs[gus_devnum]->dmap_out->dma > 3)
1851 hold_address = address;
1852 address = address >> 1;
1853 address &= 0x0001ffffL;
1854 address |= (hold_address & 0x000c0000L);
1856 gus_write16(0x42, (address >> 4) & 0xffff); /* DRAM DMA address */
1860 * Start the DMA transfer
1863 dma_command = 0x21; /* IRQ enable, DMA start */
1864 if (patch.mode & WAVE_UNSIGNED)
1865 dma_command |= 0x80; /* Invert MSB */
1866 if (patch.mode & WAVE_16_BITS)
1867 dma_command |= 0x40; /* 16 bit _DATA_ */
1868 if (audio_devs[gus_devnum]->dmap_out->dma > 3)
1869 dma_command |= 0x04; /* 16 bit DMA _channel_ */
1872 * Sleep here until the DRAM DMA done interrupt is served
1874 active_device = GUS_DEV_WAVE;
1875 gus_write8(0x41, dma_command); /* Lets go luteet (=bugs) */
1877 spin_unlock_irqrestore(&gus_lock,flags); /* opens a race */
1878 if (!interruptible_sleep_on_timeout(&dram_sleeper, HZ))
1879 printk("GUS: DMA Transfer timed out\n");
1883 * Now the next part
1886 left -= blk_sz;
1887 src_offs += blk_sz;
1888 target += blk_sz;
1890 gus_write8(0x41, 0); /* Stop DMA */
1893 free_mem_ptr += patch.len;
1894 free_sample++;
1895 return 0;
1898 static void guswave_hw_control(int dev, unsigned char *event_rec)
1900 int voice, cmd;
1901 unsigned short p1, p2;
1902 unsigned int plong;
1903 unsigned long flags;
1905 cmd = event_rec[2];
1906 voice = event_rec[3];
1907 p1 = *(unsigned short *) &event_rec[4];
1908 p2 = *(unsigned short *) &event_rec[6];
1909 plong = *(unsigned int *) &event_rec[4];
1911 if ((voices[voice].volume_irq_mode == VMODE_START_NOTE) &&
1912 (cmd != _GUS_VOICESAMPLE) && (cmd != _GUS_VOICE_POS))
1913 do_volume_irq(voice);
1915 switch (cmd)
1917 case _GUS_NUMVOICES:
1918 spin_lock_irqsave(&gus_lock,flags);
1919 gus_select_voice(voice);
1920 gus_select_max_voices(p1);
1921 spin_unlock_irqrestore(&gus_lock,flags);
1922 break;
1924 case _GUS_VOICESAMPLE:
1925 guswave_set_instr(dev, voice, p1);
1926 break;
1928 case _GUS_VOICEON:
1929 spin_lock_irqsave(&gus_lock,flags);
1930 gus_select_voice(voice);
1931 p1 &= ~0x20; /* Don't allow interrupts */
1932 gus_voice_on(p1);
1933 spin_unlock_irqrestore(&gus_lock,flags);
1934 break;
1936 case _GUS_VOICEOFF:
1937 spin_lock_irqsave(&gus_lock,flags);
1938 gus_select_voice(voice);
1939 gus_voice_off();
1940 spin_unlock_irqrestore(&gus_lock,flags);
1941 break;
1943 case _GUS_VOICEFADE:
1944 gus_voice_fade(voice);
1945 break;
1947 case _GUS_VOICEMODE:
1948 spin_lock_irqsave(&gus_lock,flags);
1949 gus_select_voice(voice);
1950 p1 &= ~0x20; /* Don't allow interrupts */
1951 gus_voice_mode(p1);
1952 spin_unlock_irqrestore(&gus_lock,flags);
1953 break;
1955 case _GUS_VOICEBALA:
1956 spin_lock_irqsave(&gus_lock,flags);
1957 gus_select_voice(voice);
1958 gus_voice_balance(p1);
1959 spin_unlock_irqrestore(&gus_lock,flags);
1960 break;
1962 case _GUS_VOICEFREQ:
1963 spin_lock_irqsave(&gus_lock,flags);
1964 gus_select_voice(voice);
1965 gus_voice_freq(plong);
1966 spin_unlock_irqrestore(&gus_lock,flags);
1967 break;
1969 case _GUS_VOICEVOL:
1970 spin_lock_irqsave(&gus_lock,flags);
1971 gus_select_voice(voice);
1972 gus_voice_volume(p1);
1973 spin_unlock_irqrestore(&gus_lock,flags);
1974 break;
1976 case _GUS_VOICEVOL2: /* Just update the software voice level */
1977 voices[voice].initial_volume = voices[voice].current_volume = p1;
1978 break;
1980 case _GUS_RAMPRANGE:
1981 if (voices[voice].mode & WAVE_ENVELOPES)
1982 break; /* NO-NO */
1983 spin_lock_irqsave(&gus_lock,flags);
1984 gus_select_voice(voice);
1985 gus_ramp_range(p1, p2);
1986 spin_unlock_irqrestore(&gus_lock,flags);
1987 break;
1989 case _GUS_RAMPRATE:
1990 if (voices[voice].mode & WAVE_ENVELOPES)
1991 break; /* NJET-NJET */
1992 spin_lock_irqsave(&gus_lock,flags);
1993 gus_select_voice(voice);
1994 gus_ramp_rate(p1, p2);
1995 spin_unlock_irqrestore(&gus_lock,flags);
1996 break;
1998 case _GUS_RAMPMODE:
1999 if (voices[voice].mode & WAVE_ENVELOPES)
2000 break; /* NO-NO */
2001 spin_lock_irqsave(&gus_lock,flags);
2002 gus_select_voice(voice);
2003 p1 &= ~0x20; /* Don't allow interrupts */
2004 gus_ramp_mode(p1);
2005 spin_unlock_irqrestore(&gus_lock,flags);
2006 break;
2008 case _GUS_RAMPON:
2009 if (voices[voice].mode & WAVE_ENVELOPES)
2010 break; /* EI-EI */
2011 spin_lock_irqsave(&gus_lock,flags);
2012 gus_select_voice(voice);
2013 p1 &= ~0x20; /* Don't allow interrupts */
2014 gus_rampon(p1);
2015 spin_unlock_irqrestore(&gus_lock,flags);
2016 break;
2018 case _GUS_RAMPOFF:
2019 if (voices[voice].mode & WAVE_ENVELOPES)
2020 break; /* NEJ-NEJ */
2021 spin_lock_irqsave(&gus_lock,flags);
2022 gus_select_voice(voice);
2023 gus_rampoff();
2024 spin_unlock_irqrestore(&gus_lock,flags);
2025 break;
2027 case _GUS_VOLUME_SCALE:
2028 volume_base = p1;
2029 volume_scale = p2;
2030 break;
2032 case _GUS_VOICE_POS:
2033 spin_lock_irqsave(&gus_lock,flags);
2034 gus_select_voice(voice);
2035 gus_set_voice_pos(voice, plong);
2036 spin_unlock_irqrestore(&gus_lock,flags);
2037 break;
2039 default:
2040 break;
2044 static int gus_audio_set_speed(int speed)
2046 if (speed <= 0)
2047 speed = gus_audio_speed;
2049 if (speed < 4000)
2050 speed = 4000;
2052 if (speed > 44100)
2053 speed = 44100;
2055 gus_audio_speed = speed;
2057 if (only_read_access)
2059 /* Compute nearest valid recording speed and return it */
2061 /* speed = (9878400 / (gus_audio_speed + 2)) / 16; */
2062 speed = (((9878400 + gus_audio_speed / 2) / (gus_audio_speed + 2)) + 8) / 16;
2063 speed = (9878400 / (speed * 16)) - 2;
2065 return speed;
2068 static int gus_audio_set_channels(int channels)
2070 if (!channels)
2071 return gus_audio_channels;
2072 if (channels > 2)
2073 channels = 2;
2074 if (channels < 1)
2075 channels = 1;
2076 gus_audio_channels = channels;
2077 return channels;
2080 static int gus_audio_set_bits(int bits)
2082 if (!bits)
2083 return gus_audio_bits;
2085 if (bits != 8 && bits != 16)
2086 bits = 8;
2088 if (only_8_bits)
2089 bits = 8;
2091 gus_audio_bits = bits;
2092 return bits;
2095 static int gus_audio_ioctl(int dev, unsigned int cmd, void __user *arg)
2097 int val;
2099 switch (cmd)
2101 case SOUND_PCM_WRITE_RATE:
2102 if (get_user(val, (int __user*)arg))
2103 return -EFAULT;
2104 val = gus_audio_set_speed(val);
2105 break;
2107 case SOUND_PCM_READ_RATE:
2108 val = gus_audio_speed;
2109 break;
2111 case SNDCTL_DSP_STEREO:
2112 if (get_user(val, (int __user *)arg))
2113 return -EFAULT;
2114 val = gus_audio_set_channels(val + 1) - 1;
2115 break;
2117 case SOUND_PCM_WRITE_CHANNELS:
2118 if (get_user(val, (int __user *)arg))
2119 return -EFAULT;
2120 val = gus_audio_set_channels(val);
2121 break;
2123 case SOUND_PCM_READ_CHANNELS:
2124 val = gus_audio_channels;
2125 break;
2127 case SNDCTL_DSP_SETFMT:
2128 if (get_user(val, (int __user *)arg))
2129 return -EFAULT;
2130 val = gus_audio_set_bits(val);
2131 break;
2133 case SOUND_PCM_READ_BITS:
2134 val = gus_audio_bits;
2135 break;
2137 case SOUND_PCM_WRITE_FILTER: /* NOT POSSIBLE */
2138 case SOUND_PCM_READ_FILTER:
2139 val = -EINVAL;
2140 break;
2141 default:
2142 return -EINVAL;
2144 return put_user(val, (int __user *)arg);
2147 static void gus_audio_reset(int dev)
2149 if (recording_active)
2151 gus_write8(0x49, 0x00); /* Halt recording */
2152 set_input_volumes();
2156 static int saved_iw_mode; /* A hack hack hack */
2158 static int gus_audio_open(int dev, int mode)
2160 if (gus_busy)
2161 return -EBUSY;
2163 if (gus_pnp_flag && mode & OPEN_READ)
2165 /* printk(KERN_ERR "GUS: Audio device #%d is playback only.\n", dev);*/
2166 return -EIO;
2168 gus_initialize();
2170 gus_busy = 1;
2171 active_device = 0;
2173 saved_iw_mode = iw_mode;
2174 if (iw_mode)
2176 /* There are some problems with audio in enhanced mode so disable it */
2177 gus_write8(0x19, gus_read8(0x19) & ~0x01); /* Disable enhanced mode */
2178 iw_mode = 0;
2181 gus_reset();
2182 reset_sample_memory();
2183 gus_select_max_voices(14);
2185 pcm_active = 0;
2186 dma_active = 0;
2187 pcm_opened = 1;
2188 if (mode & OPEN_READ)
2190 recording_active = 1;
2191 set_input_volumes();
2193 only_read_access = !(mode & OPEN_WRITE);
2194 only_8_bits = mode & OPEN_READ;
2195 if (only_8_bits)
2196 audio_devs[dev]->format_mask = AFMT_U8;
2197 else
2198 audio_devs[dev]->format_mask = AFMT_U8 | AFMT_S16_LE;
2200 return 0;
2203 static void gus_audio_close(int dev)
2205 iw_mode = saved_iw_mode;
2206 gus_reset();
2207 gus_busy = 0;
2208 pcm_opened = 0;
2209 active_device = 0;
2211 if (recording_active)
2213 gus_write8(0x49, 0x00); /* Halt recording */
2214 set_input_volumes();
2216 recording_active = 0;
2219 static void gus_audio_update_volume(void)
2221 unsigned long flags;
2222 int voice;
2224 if (pcm_active && pcm_opened)
2225 for (voice = 0; voice < gus_audio_channels; voice++)
2227 spin_lock_irqsave(&gus_lock,flags);
2228 gus_select_voice(voice);
2229 gus_rampoff();
2230 gus_voice_volume(1530 + (25 * gus_pcm_volume));
2231 gus_ramp_range(65, 1530 + (25 * gus_pcm_volume));
2232 spin_unlock_irqrestore(&gus_lock,flags);
2236 static void play_next_pcm_block(void)
2238 unsigned long flags;
2239 int speed = gus_audio_speed;
2240 int this_one, is16bits, chn;
2241 unsigned long dram_loc;
2242 unsigned char mode[2], ramp_mode[2];
2244 if (!pcm_qlen)
2245 return;
2247 this_one = pcm_head;
2249 for (chn = 0; chn < gus_audio_channels; chn++)
2251 mode[chn] = 0x00;
2252 ramp_mode[chn] = 0x03; /* Ramping and rollover off */
2254 if (chn == 0)
2256 mode[chn] |= 0x20; /* Loop IRQ */
2257 voices[chn].loop_irq_mode = LMODE_PCM;
2259 if (gus_audio_bits != 8)
2261 is16bits = 1;
2262 mode[chn] |= 0x04; /* 16 bit data */
2264 else
2265 is16bits = 0;
2267 dram_loc = this_one * pcm_bsize;
2268 dram_loc += chn * pcm_banksize;
2270 if (this_one == (pcm_nblk - 1)) /* Last fragment of the DRAM buffer */
2272 mode[chn] |= 0x08; /* Enable loop */
2273 ramp_mode[chn] = 0x03; /* Disable rollover bit */
2275 else
2277 if (chn == 0)
2278 ramp_mode[chn] = 0x04; /* Enable rollover bit */
2280 spin_lock_irqsave(&gus_lock,flags);
2281 gus_select_voice(chn);
2282 gus_voice_freq(speed);
2284 if (gus_audio_channels == 1)
2285 gus_voice_balance(7); /* mono */
2286 else if (chn == 0)
2287 gus_voice_balance(0); /* left */
2288 else
2289 gus_voice_balance(15); /* right */
2291 if (!pcm_active) /* Playback not already active */
2294 * The playback was not started yet (or there has been a pause).
2295 * Start the voice (again) and ask for a rollover irq at the end of
2296 * this_one block. If this_one one is last of the buffers, use just
2297 * the normal loop with irq.
2300 gus_voice_off();
2301 gus_rampoff();
2302 gus_voice_volume(1530 + (25 * gus_pcm_volume));
2303 gus_ramp_range(65, 1530 + (25 * gus_pcm_volume));
2305 gus_write_addr(0x0a, chn * pcm_banksize, 0, is16bits); /* Starting position */
2306 gus_write_addr(0x02, chn * pcm_banksize, 0, is16bits); /* Loop start */
2308 if (chn != 0)
2309 gus_write_addr(0x04, pcm_banksize + (pcm_bsize * pcm_nblk) - 1,
2310 0, is16bits); /* Loop end location */
2312 if (chn == 0)
2313 gus_write_addr(0x04, dram_loc + pcm_bsize - 1,
2314 0, is16bits); /* Loop end location */
2315 else
2316 mode[chn] |= 0x08; /* Enable looping */
2317 spin_unlock_irqrestore(&gus_lock,flags);
2319 for (chn = 0; chn < gus_audio_channels; chn++)
2321 spin_lock_irqsave(&gus_lock,flags);
2322 gus_select_voice(chn);
2323 gus_write8(0x0d, ramp_mode[chn]);
2324 if (iw_mode)
2325 gus_write8(0x15, 0x00); /* Reset voice deactivate bit of SMSI */
2326 gus_voice_on(mode[chn]);
2327 spin_unlock_irqrestore(&gus_lock,flags);
2329 pcm_active = 1;
2332 static void gus_transfer_output_block(int dev, unsigned long buf,
2333 int total_count, int intrflag, int chn)
2336 * This routine transfers one block of audio data to the DRAM. In mono mode
2337 * it's called just once. When in stereo mode, this_one routine is called
2338 * once for both channels.
2340 * The left/mono channel data is transferred to the beginning of dram and the
2341 * right data to the area pointed by gus_page_size.
2344 int this_one, count;
2345 unsigned long flags;
2346 unsigned char dma_command;
2347 unsigned long address, hold_address;
2349 spin_lock_irqsave(&gus_lock,flags);
2351 count = total_count / gus_audio_channels;
2353 if (chn == 0)
2355 if (pcm_qlen >= pcm_nblk)
2356 printk(KERN_WARNING "GUS Warning: PCM buffers out of sync\n");
2358 this_one = pcm_current_block = pcm_tail;
2359 pcm_qlen++;
2360 pcm_tail = (pcm_tail + 1) % pcm_nblk;
2361 pcm_datasize[this_one] = count;
2363 else
2364 this_one = pcm_current_block;
2366 gus_write8(0x41, 0); /* Disable GF1 DMA */
2367 DMAbuf_start_dma(dev, buf + (chn * count), count, DMA_MODE_WRITE);
2369 address = this_one * pcm_bsize;
2370 address += chn * pcm_banksize;
2372 if (audio_devs[dev]->dmap_out->dma > 3)
2374 hold_address = address;
2375 address = address >> 1;
2376 address &= 0x0001ffffL;
2377 address |= (hold_address & 0x000c0000L);
2379 gus_write16(0x42, (address >> 4) & 0xffff); /* DRAM DMA address */
2381 dma_command = 0x21; /* IRQ enable, DMA start */
2383 if (gus_audio_bits != 8)
2384 dma_command |= 0x40; /* 16 bit _DATA_ */
2385 else
2386 dma_command |= 0x80; /* Invert MSB */
2388 if (audio_devs[dev]->dmap_out->dma > 3)
2389 dma_command |= 0x04; /* 16 bit DMA channel */
2391 gus_write8(0x41, dma_command); /* Kick start */
2393 if (chn == (gus_audio_channels - 1)) /* Last channel */
2396 * Last (right or mono) channel data
2398 dma_active = 1; /* DMA started. There is a unacknowledged buffer */
2399 active_device = GUS_DEV_PCM_DONE;
2400 if (!pcm_active && (pcm_qlen > 1 || count < pcm_bsize))
2402 play_next_pcm_block();
2405 else
2408 * Left channel data. The right channel
2409 * is transferred after DMA interrupt
2411 active_device = GUS_DEV_PCM_CONTINUE;
2414 spin_unlock_irqrestore(&gus_lock,flags);
2417 static void gus_uninterleave8(char *buf, int l)
2419 /* This routine uninterleaves 8 bit stereo output (LRLRLR->LLLRRR) */
2420 int i, p = 0, halfsize = l / 2;
2421 char *buf2 = buf + halfsize, *src = bounce_buf;
2423 memcpy(bounce_buf, buf, l);
2425 for (i = 0; i < halfsize; i++)
2427 buf[i] = src[p++]; /* Left channel */
2428 buf2[i] = src[p++]; /* Right channel */
2432 static void gus_uninterleave16(short *buf, int l)
2434 /* This routine uninterleaves 16 bit stereo output (LRLRLR->LLLRRR) */
2435 int i, p = 0, halfsize = l / 2;
2436 short *buf2 = buf + halfsize, *src = (short *) bounce_buf;
2438 memcpy(bounce_buf, (char *) buf, l * 2);
2440 for (i = 0; i < halfsize; i++)
2442 buf[i] = src[p++]; /* Left channel */
2443 buf2[i] = src[p++]; /* Right channel */
2447 static void gus_audio_output_block(int dev, unsigned long buf, int total_count,
2448 int intrflag)
2450 struct dma_buffparms *dmap = audio_devs[dev]->dmap_out;
2452 dmap->flags |= DMA_NODMA | DMA_NOTIMEOUT;
2454 pcm_current_buf = buf;
2455 pcm_current_count = total_count;
2456 pcm_current_intrflag = intrflag;
2457 pcm_current_dev = dev;
2458 if (gus_audio_channels == 2)
2460 char *b = dmap->raw_buf + (buf - dmap->raw_buf_phys);
2462 if (gus_audio_bits == 8)
2463 gus_uninterleave8(b, total_count);
2464 else
2465 gus_uninterleave16((short *) b, total_count / 2);
2467 gus_transfer_output_block(dev, buf, total_count, intrflag, 0);
2470 static void gus_audio_start_input(int dev, unsigned long buf, int count,
2471 int intrflag)
2473 unsigned long flags;
2474 unsigned char mode;
2476 spin_lock_irqsave(&gus_lock,flags);
2478 DMAbuf_start_dma(dev, buf, count, DMA_MODE_READ);
2479 mode = 0xa0; /* DMA IRQ enabled, invert MSB */
2481 if (audio_devs[dev]->dmap_in->dma > 3)
2482 mode |= 0x04; /* 16 bit DMA channel */
2483 if (gus_audio_channels > 1)
2484 mode |= 0x02; /* Stereo */
2485 mode |= 0x01; /* DMA enable */
2487 gus_write8(0x49, mode);
2488 spin_unlock_irqrestore(&gus_lock,flags);
2491 static int gus_audio_prepare_for_input(int dev, int bsize, int bcount)
2493 unsigned int rate;
2495 gus_audio_bsize = bsize;
2496 audio_devs[dev]->dmap_in->flags |= DMA_NODMA;
2497 rate = (((9878400 + gus_audio_speed / 2) / (gus_audio_speed + 2)) + 8) / 16;
2499 gus_write8(0x48, rate & 0xff); /* Set sampling rate */
2501 if (gus_audio_bits != 8)
2503 /* printk("GUS Error: 16 bit recording not supported\n");*/
2504 return -EINVAL;
2506 return 0;
2509 static int gus_audio_prepare_for_output(int dev, int bsize, int bcount)
2511 int i;
2513 long mem_ptr, mem_size;
2515 audio_devs[dev]->dmap_out->flags |= DMA_NODMA | DMA_NOTIMEOUT;
2516 mem_ptr = 0;
2517 mem_size = gus_mem_size / gus_audio_channels;
2519 if (mem_size > (256 * 1024))
2520 mem_size = 256 * 1024;
2522 pcm_bsize = bsize / gus_audio_channels;
2523 pcm_head = pcm_tail = pcm_qlen = 0;
2525 pcm_nblk = 2; /* MAX_PCM_BUFFERS; */
2526 if ((pcm_bsize * pcm_nblk) > mem_size)
2527 pcm_nblk = mem_size / pcm_bsize;
2529 for (i = 0; i < pcm_nblk; i++)
2530 pcm_datasize[i] = 0;
2532 pcm_banksize = pcm_nblk * pcm_bsize;
2534 if (gus_audio_bits != 8 && pcm_banksize == (256 * 1024))
2535 pcm_nblk--;
2536 gus_write8(0x41, 0); /* Disable GF1 DMA */
2537 return 0;
2540 static int gus_local_qlen(int dev)
2542 return pcm_qlen;
2546 static struct audio_driver gus_audio_driver =
2548 .owner = THIS_MODULE,
2549 .open = gus_audio_open,
2550 .close = gus_audio_close,
2551 .output_block = gus_audio_output_block,
2552 .start_input = gus_audio_start_input,
2553 .ioctl = gus_audio_ioctl,
2554 .prepare_for_input = gus_audio_prepare_for_input,
2555 .prepare_for_output = gus_audio_prepare_for_output,
2556 .halt_io = gus_audio_reset,
2557 .local_qlen = gus_local_qlen,
2560 static void guswave_setup_voice(int dev, int voice, int chn)
2562 struct channel_info *info = &synth_devs[dev]->chn_info[chn];
2564 guswave_set_instr(dev, voice, info->pgm_num);
2565 voices[voice].expression_vol = info->controllers[CTL_EXPRESSION]; /* Just MSB */
2566 voices[voice].main_vol = (info->controllers[CTL_MAIN_VOLUME] * 100) / (unsigned) 128;
2567 voices[voice].panning = (info->controllers[CTL_PAN] * 2) - 128;
2568 voices[voice].bender = 0;
2569 voices[voice].bender_range = info->bender_range;
2571 if (chn == 9)
2572 voices[voice].fixed_pitch = 1;
2575 static void guswave_bender(int dev, int voice, int value)
2577 int freq;
2578 unsigned long flags;
2580 voices[voice].bender = value - 8192;
2581 freq = compute_finetune(voices[voice].orig_freq, value - 8192, voices[voice].bender_range, 0);
2582 voices[voice].current_freq = freq;
2584 spin_lock_irqsave(&gus_lock,flags);
2585 gus_select_voice(voice);
2586 gus_voice_freq(freq);
2587 spin_unlock_irqrestore(&gus_lock,flags);
2590 static int guswave_alloc(int dev, int chn, int note, struct voice_alloc_info *alloc)
2592 int i, p, best = -1, best_time = 0x7fffffff;
2594 p = alloc->ptr;
2596 * First look for a completely stopped voice
2599 for (i = 0; i < alloc->max_voice; i++)
2601 if (alloc->map[p] == 0)
2603 alloc->ptr = p;
2604 return p;
2606 if (alloc->alloc_times[p] < best_time)
2608 best = p;
2609 best_time = alloc->alloc_times[p];
2611 p = (p + 1) % alloc->max_voice;
2615 * Then look for a releasing voice
2618 for (i = 0; i < alloc->max_voice; i++)
2620 if (alloc->map[p] == 0xffff)
2622 alloc->ptr = p;
2623 return p;
2625 p = (p + 1) % alloc->max_voice;
2627 if (best >= 0)
2628 p = best;
2630 alloc->ptr = p;
2631 return p;
2634 static struct synth_operations guswave_operations =
2636 .owner = THIS_MODULE,
2637 .id = "GUS",
2638 .info = &gus_info,
2639 .midi_dev = 0,
2640 .synth_type = SYNTH_TYPE_SAMPLE,
2641 .synth_subtype = SAMPLE_TYPE_GUS,
2642 .open = guswave_open,
2643 .close = guswave_close,
2644 .ioctl = guswave_ioctl,
2645 .kill_note = guswave_kill_note,
2646 .start_note = guswave_start_note,
2647 .set_instr = guswave_set_instr,
2648 .reset = guswave_reset,
2649 .hw_control = guswave_hw_control,
2650 .load_patch = guswave_load_patch,
2651 .aftertouch = guswave_aftertouch,
2652 .controller = guswave_controller,
2653 .panning = guswave_panning,
2654 .volume_method = guswave_volume_method,
2655 .bender = guswave_bender,
2656 .alloc_voice = guswave_alloc,
2657 .setup_voice = guswave_setup_voice
2660 static void set_input_volumes(void)
2662 unsigned long flags;
2663 unsigned char mask = 0xff & ~0x06; /* Just line out enabled */
2665 if (have_gus_max) /* Don't disturb GUS MAX */
2666 return;
2668 spin_lock_irqsave(&gus_lock,flags);
2671 * Enable channels having vol > 10%
2672 * Note! bit 0x01 means the line in DISABLED while 0x04 means
2673 * the mic in ENABLED.
2675 if (gus_line_vol > 10)
2676 mask &= ~0x01;
2677 if (gus_mic_vol > 10)
2678 mask |= 0x04;
2680 if (recording_active)
2683 * Disable channel, if not selected for recording
2685 if (!(gus_recmask & SOUND_MASK_LINE))
2686 mask |= 0x01;
2687 if (!(gus_recmask & SOUND_MASK_MIC))
2688 mask &= ~0x04;
2690 mix_image &= ~0x07;
2691 mix_image |= mask & 0x07;
2692 outb((mix_image), u_Mixer);
2694 spin_unlock_irqrestore(&gus_lock,flags);
2697 #define MIX_DEVS (SOUND_MASK_MIC|SOUND_MASK_LINE| \
2698 SOUND_MASK_SYNTH|SOUND_MASK_PCM)
2700 int gus_default_mixer_ioctl(int dev, unsigned int cmd, void __user *arg)
2702 int vol, val;
2704 if (((cmd >> 8) & 0xff) != 'M')
2705 return -EINVAL;
2707 if (!access_ok(VERIFY_WRITE, arg, sizeof(int)))
2708 return -EFAULT;
2710 if (_SIOC_DIR(cmd) & _SIOC_WRITE)
2712 if (__get_user(val, (int __user *) arg))
2713 return -EFAULT;
2715 switch (cmd & 0xff)
2717 case SOUND_MIXER_RECSRC:
2718 gus_recmask = val & MIX_DEVS;
2719 if (!(gus_recmask & (SOUND_MASK_MIC | SOUND_MASK_LINE)))
2720 gus_recmask = SOUND_MASK_MIC;
2721 /* Note! Input volumes are updated during next open for recording */
2722 val = gus_recmask;
2723 break;
2725 case SOUND_MIXER_MIC:
2726 vol = val & 0xff;
2727 if (vol < 0)
2728 vol = 0;
2729 if (vol > 100)
2730 vol = 100;
2731 gus_mic_vol = vol;
2732 set_input_volumes();
2733 val = vol | (vol << 8);
2734 break;
2736 case SOUND_MIXER_LINE:
2737 vol = val & 0xff;
2738 if (vol < 0)
2739 vol = 0;
2740 if (vol > 100)
2741 vol = 100;
2742 gus_line_vol = vol;
2743 set_input_volumes();
2744 val = vol | (vol << 8);
2745 break;
2747 case SOUND_MIXER_PCM:
2748 gus_pcm_volume = val & 0xff;
2749 if (gus_pcm_volume < 0)
2750 gus_pcm_volume = 0;
2751 if (gus_pcm_volume > 100)
2752 gus_pcm_volume = 100;
2753 gus_audio_update_volume();
2754 val = gus_pcm_volume | (gus_pcm_volume << 8);
2755 break;
2757 case SOUND_MIXER_SYNTH:
2758 gus_wave_volume = val & 0xff;
2759 if (gus_wave_volume < 0)
2760 gus_wave_volume = 0;
2761 if (gus_wave_volume > 100)
2762 gus_wave_volume = 100;
2763 if (active_device == GUS_DEV_WAVE)
2765 int voice;
2766 for (voice = 0; voice < nr_voices; voice++)
2767 dynamic_volume_change(voice); /* Apply the new vol */
2769 val = gus_wave_volume | (gus_wave_volume << 8);
2770 break;
2772 default:
2773 return -EINVAL;
2776 else
2778 switch (cmd & 0xff)
2781 * Return parameters
2783 case SOUND_MIXER_RECSRC:
2784 val = gus_recmask;
2785 break;
2787 case SOUND_MIXER_DEVMASK:
2788 val = MIX_DEVS;
2789 break;
2791 case SOUND_MIXER_STEREODEVS:
2792 val = 0;
2793 break;
2795 case SOUND_MIXER_RECMASK:
2796 val = SOUND_MASK_MIC | SOUND_MASK_LINE;
2797 break;
2799 case SOUND_MIXER_CAPS:
2800 val = 0;
2801 break;
2803 case SOUND_MIXER_MIC:
2804 val = gus_mic_vol | (gus_mic_vol << 8);
2805 break;
2807 case SOUND_MIXER_LINE:
2808 val = gus_line_vol | (gus_line_vol << 8);
2809 break;
2811 case SOUND_MIXER_PCM:
2812 val = gus_pcm_volume | (gus_pcm_volume << 8);
2813 break;
2815 case SOUND_MIXER_SYNTH:
2816 val = gus_wave_volume | (gus_wave_volume << 8);
2817 break;
2819 default:
2820 return -EINVAL;
2823 return __put_user(val, (int __user *)arg);
2826 static struct mixer_operations gus_mixer_operations =
2828 .owner = THIS_MODULE,
2829 .id = "GUS",
2830 .name = "Gravis Ultrasound",
2831 .ioctl = gus_default_mixer_ioctl
2834 static int __init gus_default_mixer_init(void)
2836 int n;
2838 if ((n = sound_alloc_mixerdev()) != -1)
2841 * Don't install if there is another
2842 * mixer
2844 mixer_devs[n] = &gus_mixer_operations;
2846 if (have_gus_max)
2849 * Enable all mixer channels on the GF1 side. Otherwise recording will
2850 * not be possible using GUS MAX.
2852 mix_image &= ~0x07;
2853 mix_image |= 0x04; /* All channels enabled */
2854 outb((mix_image), u_Mixer);
2856 return n;
2859 void __init gus_wave_init(struct address_info *hw_config)
2861 unsigned long flags;
2862 unsigned char val;
2863 char *model_num = "2.4";
2864 char tmp[64];
2865 int gus_type = 0x24; /* 2.4 */
2867 int irq = hw_config->irq, dma = hw_config->dma, dma2 = hw_config->dma2;
2868 int sdev;
2870 hw_config->slots[0] = -1; /* No wave */
2871 hw_config->slots[1] = -1; /* No ad1848 */
2872 hw_config->slots[4] = -1; /* No audio */
2873 hw_config->slots[5] = -1; /* No mixer */
2875 if (!gus_pnp_flag)
2877 if (irq < 0 || irq > 15)
2879 printk(KERN_ERR "ERROR! Invalid IRQ#%d. GUS Disabled", irq);
2880 return;
2884 if (dma < 0 || dma > 7 || dma == 4)
2886 printk(KERN_ERR "ERROR! Invalid DMA#%d. GUS Disabled", dma);
2887 return;
2889 gus_irq = irq;
2890 gus_dma = dma;
2891 gus_dma2 = dma2;
2892 gus_hw_config = hw_config;
2894 if (gus_dma2 == -1)
2895 gus_dma2 = dma;
2898 * Try to identify the GUS model.
2900 * Versions < 3.6 don't have the digital ASIC. Try to probe it first.
2903 spin_lock_irqsave(&gus_lock,flags);
2904 outb((0x20), gus_base + 0x0f);
2905 val = inb(gus_base + 0x0f);
2906 spin_unlock_irqrestore(&gus_lock,flags);
2908 if (gus_pnp_flag || (val != 0xff && (val & 0x06))) /* Should be 0x02?? */
2910 int ad_flags = 0;
2912 if (gus_pnp_flag)
2913 ad_flags = 0x12345678; /* Interwave "magic" */
2915 * It has the digital ASIC so the card is at least v3.4.
2916 * Next try to detect the true model.
2919 if (gus_pnp_flag) /* Hack hack hack */
2920 val = 10;
2921 else
2922 val = inb(u_MixSelect);
2925 * Value 255 means pre-3.7 which don't have mixer.
2926 * Values 5 thru 9 mean v3.7 which has a ICS2101 mixer.
2927 * 10 and above is GUS MAX which has the CS4231 codec/mixer.
2931 if (val == 255 || val < 5)
2933 model_num = "3.4";
2934 gus_type = 0x34;
2936 else if (val < 10)
2938 model_num = "3.7";
2939 gus_type = 0x37;
2940 mixer_type = ICS2101;
2941 request_region(u_MixSelect, 1, "GUS mixer");
2943 else
2945 struct resource *ports;
2946 ports = request_region(gus_base + 0x10c, 4, "ad1848");
2947 model_num = "MAX";
2948 gus_type = 0x40;
2949 mixer_type = CS4231;
2950 #ifdef CONFIG_SOUND_GUSMAX
2952 unsigned char max_config = 0x40; /* Codec enable */
2954 if (gus_dma2 == -1)
2955 gus_dma2 = gus_dma;
2957 if (gus_dma > 3)
2958 max_config |= 0x10; /* 16 bit capture DMA */
2960 if (gus_dma2 > 3)
2961 max_config |= 0x20; /* 16 bit playback DMA */
2963 max_config |= (gus_base >> 4) & 0x0f; /* Extract the X from 2X0 */
2965 outb((max_config), gus_base + 0x106); /* UltraMax control */
2968 if (!ports)
2969 goto no_cs4231;
2971 if (ad1848_detect(ports, &ad_flags, hw_config->osp))
2973 char *name = "GUS MAX";
2974 int old_num_mixers = num_mixers;
2976 if (gus_pnp_flag)
2977 name = "GUS PnP";
2979 gus_mic_vol = gus_line_vol = gus_pcm_volume = 100;
2980 gus_wave_volume = 90;
2981 have_gus_max = 1;
2982 if (hw_config->name)
2983 name = hw_config->name;
2985 hw_config->slots[1] = ad1848_init(name, ports,
2986 -irq, gus_dma2, /* Playback DMA */
2987 gus_dma, /* Capture DMA */
2988 1, /* Share DMA channels with GF1 */
2989 hw_config->osp,
2990 THIS_MODULE);
2992 if (num_mixers > old_num_mixers)
2994 /* GUS has it's own mixer map */
2995 AD1848_REROUTE(SOUND_MIXER_LINE1, SOUND_MIXER_SYNTH);
2996 AD1848_REROUTE(SOUND_MIXER_LINE2, SOUND_MIXER_CD);
2997 AD1848_REROUTE(SOUND_MIXER_LINE3, SOUND_MIXER_LINE);
3000 else {
3001 release_region(gus_base + 0x10c, 4);
3002 no_cs4231:
3003 printk(KERN_WARNING "GUS: No CS4231 ??");
3005 #else
3006 printk(KERN_ERR "GUS MAX found, but not compiled in\n");
3007 #endif
3010 else
3013 * ASIC not detected so the card must be 2.2 or 2.4.
3014 * There could still be the 16-bit/mixer daughter card.
3018 if (hw_config->name)
3019 snprintf(tmp, sizeof(tmp), "%s (%dk)", hw_config->name,
3020 (int) gus_mem_size / 1024);
3021 else if (gus_pnp_flag)
3022 snprintf(tmp, sizeof(tmp), "Gravis UltraSound PnP (%dk)",
3023 (int) gus_mem_size / 1024);
3024 else
3025 snprintf(tmp, sizeof(tmp), "Gravis UltraSound %s (%dk)", model_num,
3026 (int) gus_mem_size / 1024);
3029 samples = (struct patch_info *)vmalloc((MAX_SAMPLE + 1) * sizeof(*samples));
3030 if (samples == NULL)
3032 printk(KERN_WARNING "gus_init: Cant allocate memory for instrument tables\n");
3033 return;
3035 conf_printf(tmp, hw_config);
3036 strlcpy(gus_info.name, tmp, sizeof(gus_info.name));
3038 if ((sdev = sound_alloc_synthdev()) == -1)
3039 printk(KERN_WARNING "gus_init: Too many synthesizers\n");
3040 else
3042 voice_alloc = &guswave_operations.alloc;
3043 if (iw_mode)
3044 guswave_operations.id = "IWAVE";
3045 hw_config->slots[0] = sdev;
3046 synth_devs[sdev] = &guswave_operations;
3047 sequencer_init();
3048 gus_tmr_install(gus_base + 8);
3051 reset_sample_memory();
3053 gus_initialize();
3055 if ((gus_mem_size > 0) && !gus_no_wave_dma)
3057 hw_config->slots[4] = -1;
3058 if ((gus_devnum = sound_install_audiodrv(AUDIO_DRIVER_VERSION,
3059 "Ultrasound",
3060 &gus_audio_driver,
3061 sizeof(struct audio_driver),
3062 NEEDS_RESTART |
3063 ((!iw_mode && dma2 != dma && dma2 != -1) ?
3064 DMA_DUPLEX : 0),
3065 AFMT_U8 | AFMT_S16_LE,
3066 NULL, dma, dma2)) < 0)
3068 return;
3071 hw_config->slots[4] = gus_devnum;
3072 audio_devs[gus_devnum]->min_fragment = 9; /* 512k */
3073 audio_devs[gus_devnum]->max_fragment = 11; /* 8k (must match size of bounce_buf */
3074 audio_devs[gus_devnum]->mixer_dev = -1; /* Next mixer# */
3075 audio_devs[gus_devnum]->flags |= DMA_HARDSTOP;
3079 * Mixer dependent initialization.
3082 switch (mixer_type)
3084 case ICS2101:
3085 gus_mic_vol = gus_line_vol = gus_pcm_volume = 100;
3086 gus_wave_volume = 90;
3087 request_region(u_MixSelect, 1, "GUS mixer");
3088 hw_config->slots[5] = ics2101_mixer_init();
3089 audio_devs[gus_devnum]->mixer_dev = hw_config->slots[5]; /* Next mixer# */
3090 return;
3092 case CS4231:
3093 /* Initialized elsewhere (ad1848.c) */
3094 default:
3095 hw_config->slots[5] = gus_default_mixer_init();
3096 audio_devs[gus_devnum]->mixer_dev = hw_config->slots[5]; /* Next mixer# */
3097 return;
3101 void __exit gus_wave_unload(struct address_info *hw_config)
3103 #ifdef CONFIG_SOUND_GUSMAX
3104 if (have_gus_max)
3106 ad1848_unload(gus_base + 0x10c,
3107 -gus_irq,
3108 gus_dma2, /* Playback DMA */
3109 gus_dma, /* Capture DMA */
3110 1); /* Share DMA channels with GF1 */
3112 #endif
3114 if (mixer_type == ICS2101)
3116 release_region(u_MixSelect, 1);
3118 if (hw_config->slots[0] != -1)
3119 sound_unload_synthdev(hw_config->slots[0]);
3120 if (hw_config->slots[1] != -1)
3121 sound_unload_audiodev(hw_config->slots[1]);
3122 if (hw_config->slots[2] != -1)
3123 sound_unload_mididev(hw_config->slots[2]);
3124 if (hw_config->slots[4] != -1)
3125 sound_unload_audiodev(hw_config->slots[4]);
3126 if (hw_config->slots[5] != -1)
3127 sound_unload_mixerdev(hw_config->slots[5]);
3129 vfree(samples);
3130 samples=NULL;
3132 /* called in interrupt context */
3133 static void do_loop_irq(int voice)
3135 unsigned char tmp;
3136 int mode, parm;
3138 spin_lock(&gus_lock);
3139 gus_select_voice(voice);
3141 tmp = gus_read8(0x00);
3142 tmp &= ~0x20; /*
3143 * Disable wave IRQ for this_one voice
3145 gus_write8(0x00, tmp);
3147 if (tmp & 0x03) /* Voice stopped */
3148 voice_alloc->map[voice] = 0;
3150 mode = voices[voice].loop_irq_mode;
3151 voices[voice].loop_irq_mode = 0;
3152 parm = voices[voice].loop_irq_parm;
3154 switch (mode)
3156 case LMODE_FINISH: /*
3157 * Final loop finished, shoot volume down
3160 if ((int) (gus_read16(0x09) >> 4) < 100) /*
3161 * Get current volume
3164 gus_voice_off();
3165 gus_rampoff();
3166 gus_voice_init(voice);
3167 break;
3169 gus_ramp_range(65, 4065);
3170 gus_ramp_rate(0, 63); /*
3171 * Fastest possible rate
3173 gus_rampon(0x20 | 0x40); /*
3174 * Ramp down, once, irq
3176 voices[voice].volume_irq_mode = VMODE_HALT;
3177 break;
3179 case LMODE_PCM_STOP:
3180 pcm_active = 0; /* Signal to the play_next_pcm_block routine */
3181 case LMODE_PCM:
3183 pcm_qlen--;
3184 pcm_head = (pcm_head + 1) % pcm_nblk;
3185 if (pcm_qlen && pcm_active)
3187 play_next_pcm_block();
3189 else
3191 /* Underrun. Just stop the voice */
3192 gus_select_voice(0); /* Left channel */
3193 gus_voice_off();
3194 gus_rampoff();
3195 gus_select_voice(1); /* Right channel */
3196 gus_voice_off();
3197 gus_rampoff();
3198 pcm_active = 0;
3202 * If the queue was full before this interrupt, the DMA transfer was
3203 * suspended. Let it continue now.
3206 if (audio_devs[gus_devnum]->dmap_out->qlen > 0)
3207 DMAbuf_outputintr(gus_devnum, 0);
3209 break;
3211 default:
3212 break;
3214 spin_unlock(&gus_lock);
3217 static void do_volume_irq(int voice)
3219 unsigned char tmp;
3220 int mode, parm;
3221 unsigned long flags;
3223 spin_lock_irqsave(&gus_lock,flags);
3225 gus_select_voice(voice);
3226 tmp = gus_read8(0x0d);
3227 tmp &= ~0x20; /*
3228 * Disable volume ramp IRQ
3230 gus_write8(0x0d, tmp);
3232 mode = voices[voice].volume_irq_mode;
3233 voices[voice].volume_irq_mode = 0;
3234 parm = voices[voice].volume_irq_parm;
3236 switch (mode)
3238 case VMODE_HALT: /* Decay phase finished */
3239 if (iw_mode)
3240 gus_write8(0x15, 0x02); /* Set voice deactivate bit of SMSI */
3241 spin_unlock_irqrestore(&gus_lock,flags);
3242 gus_voice_init(voice);
3243 break;
3245 case VMODE_ENVELOPE:
3246 gus_rampoff();
3247 spin_unlock_irqrestore(&gus_lock,flags);
3248 step_envelope(voice);
3249 break;
3251 case VMODE_START_NOTE:
3252 spin_unlock_irqrestore(&gus_lock,flags);
3253 guswave_start_note2(voices[voice].dev_pending, voice,
3254 voices[voice].note_pending, voices[voice].volume_pending);
3255 if (voices[voice].kill_pending)
3256 guswave_kill_note(voices[voice].dev_pending, voice,
3257 voices[voice].note_pending, 0);
3259 if (voices[voice].sample_pending >= 0)
3261 guswave_set_instr(voices[voice].dev_pending, voice,
3262 voices[voice].sample_pending);
3263 voices[voice].sample_pending = -1;
3265 break;
3267 default:
3268 spin_unlock_irqrestore(&gus_lock,flags);
3271 /* called in irq context */
3272 void gus_voice_irq(void)
3274 unsigned long wave_ignore = 0, volume_ignore = 0;
3275 unsigned long voice_bit;
3277 unsigned char src, voice;
3279 while (1)
3281 src = gus_read8(0x0f); /*
3282 * Get source info
3284 voice = src & 0x1f;
3285 src &= 0xc0;
3287 if (src == (0x80 | 0x40))
3288 return; /*
3289 * No interrupt
3292 voice_bit = 1 << voice;
3294 if (!(src & 0x80)) /*
3295 * Wave IRQ pending
3297 if (!(wave_ignore & voice_bit) && (int) voice < nr_voices) /*
3298 * Not done
3299 * yet
3302 wave_ignore |= voice_bit;
3303 do_loop_irq(voice);
3305 if (!(src & 0x40)) /*
3306 * Volume IRQ pending
3308 if (!(volume_ignore & voice_bit) && (int) voice < nr_voices) /*
3309 * Not done
3310 * yet
3313 volume_ignore |= voice_bit;
3314 do_volume_irq(voice);
3319 void guswave_dma_irq(void)
3321 unsigned char status;
3323 status = gus_look8(0x41); /* Get DMA IRQ Status */
3324 if (status & 0x40) /* DMA interrupt pending */
3325 switch (active_device)
3327 case GUS_DEV_WAVE:
3328 wake_up(&dram_sleeper);
3329 break;
3331 case GUS_DEV_PCM_CONTINUE: /* Left channel data transferred */
3332 gus_write8(0x41, 0); /* Disable GF1 DMA */
3333 gus_transfer_output_block(pcm_current_dev, pcm_current_buf,
3334 pcm_current_count,
3335 pcm_current_intrflag, 1);
3336 break;
3338 case GUS_DEV_PCM_DONE: /* Right or mono channel data transferred */
3339 gus_write8(0x41, 0); /* Disable GF1 DMA */
3340 if (pcm_qlen < pcm_nblk)
3342 dma_active = 0;
3343 if (gus_busy)
3345 if (audio_devs[gus_devnum]->dmap_out->qlen > 0)
3346 DMAbuf_outputintr(gus_devnum, 0);
3349 break;
3351 default:
3352 break;
3354 status = gus_look8(0x49); /*
3355 * Get Sampling IRQ Status
3357 if (status & 0x40) /*
3358 * Sampling Irq pending
3361 DMAbuf_inputintr(gus_devnum);
3366 * Timer stuff
3369 static volatile int select_addr, data_addr;
3370 static volatile int curr_timer;
3372 void gus_timer_command(unsigned int addr, unsigned int val)
3374 int i;
3376 outb(((unsigned char) (addr & 0xff)), select_addr);
3378 for (i = 0; i < 2; i++)
3379 inb(select_addr);
3381 outb(((unsigned char) (val & 0xff)), data_addr);
3383 for (i = 0; i < 2; i++)
3384 inb(select_addr);
3387 static void arm_timer(int timer, unsigned int interval)
3389 curr_timer = timer;
3391 if (timer == 1)
3393 gus_write8(0x46, 256 - interval); /* Set counter for timer 1 */
3394 gus_write8(0x45, 0x04); /* Enable timer 1 IRQ */
3395 gus_timer_command(0x04, 0x01); /* Start timer 1 */
3397 else
3399 gus_write8(0x47, 256 - interval); /* Set counter for timer 2 */
3400 gus_write8(0x45, 0x08); /* Enable timer 2 IRQ */
3401 gus_timer_command(0x04, 0x02); /* Start timer 2 */
3404 gus_timer_enabled = 1;
3407 static unsigned int gus_tmr_start(int dev, unsigned int usecs_per_tick)
3409 int timer_no, resolution;
3410 int divisor;
3412 if (usecs_per_tick > (256 * 80))
3414 timer_no = 2;
3415 resolution = 320; /* usec */
3417 else
3419 timer_no = 1;
3420 resolution = 80; /* usec */
3422 divisor = (usecs_per_tick + (resolution / 2)) / resolution;
3423 arm_timer(timer_no, divisor);
3425 return divisor * resolution;
3428 static void gus_tmr_disable(int dev)
3430 gus_write8(0x45, 0); /* Disable both timers */
3431 gus_timer_enabled = 0;
3434 static void gus_tmr_restart(int dev)
3436 if (curr_timer == 1)
3437 gus_write8(0x45, 0x04); /* Start timer 1 again */
3438 else
3439 gus_write8(0x45, 0x08); /* Start timer 2 again */
3440 gus_timer_enabled = 1;
3443 static struct sound_lowlev_timer gus_tmr =
3447 gus_tmr_start,
3448 gus_tmr_disable,
3449 gus_tmr_restart
3452 static void gus_tmr_install(int io_base)
3454 struct sound_lowlev_timer *tmr;
3456 select_addr = io_base;
3457 data_addr = io_base + 1;
3459 tmr = &gus_tmr;
3461 #ifdef THIS_GETS_FIXED
3462 sound_timer_init(&gus_tmr, "GUS");
3463 #endif