[PATCH] md: Allow raid 'layout' to be read and set via sysfs
[usb.git] / drivers / md / md.c
blobe3261c438a65645c0e25ee408fb0bd5a2eca284e
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/module.h>
36 #include <linux/config.h>
37 #include <linux/kthread.h>
38 #include <linux/linkage.h>
39 #include <linux/raid/md.h>
40 #include <linux/raid/bitmap.h>
41 #include <linux/sysctl.h>
42 #include <linux/devfs_fs_kernel.h>
43 #include <linux/buffer_head.h> /* for invalidate_bdev */
44 #include <linux/suspend.h>
45 #include <linux/poll.h>
46 #include <linux/mutex.h>
47 #include <linux/ctype.h>
49 #include <linux/init.h>
51 #include <linux/file.h>
53 #ifdef CONFIG_KMOD
54 #include <linux/kmod.h>
55 #endif
57 #include <asm/unaligned.h>
59 #define MAJOR_NR MD_MAJOR
60 #define MD_DRIVER
62 /* 63 partitions with the alternate major number (mdp) */
63 #define MdpMinorShift 6
65 #define DEBUG 0
66 #define dprintk(x...) ((void)(DEBUG && printk(x)))
69 #ifndef MODULE
70 static void autostart_arrays (int part);
71 #endif
73 static LIST_HEAD(pers_list);
74 static DEFINE_SPINLOCK(pers_lock);
76 static void md_print_devices(void);
78 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
81 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
82 * is 1000 KB/sec, so the extra system load does not show up that much.
83 * Increase it if you want to have more _guaranteed_ speed. Note that
84 * the RAID driver will use the maximum available bandwidth if the IO
85 * subsystem is idle. There is also an 'absolute maximum' reconstruction
86 * speed limit - in case reconstruction slows down your system despite
87 * idle IO detection.
89 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
90 * or /sys/block/mdX/md/sync_speed_{min,max}
93 static int sysctl_speed_limit_min = 1000;
94 static int sysctl_speed_limit_max = 200000;
95 static inline int speed_min(mddev_t *mddev)
97 return mddev->sync_speed_min ?
98 mddev->sync_speed_min : sysctl_speed_limit_min;
101 static inline int speed_max(mddev_t *mddev)
103 return mddev->sync_speed_max ?
104 mddev->sync_speed_max : sysctl_speed_limit_max;
107 static struct ctl_table_header *raid_table_header;
109 static ctl_table raid_table[] = {
111 .ctl_name = DEV_RAID_SPEED_LIMIT_MIN,
112 .procname = "speed_limit_min",
113 .data = &sysctl_speed_limit_min,
114 .maxlen = sizeof(int),
115 .mode = 0644,
116 .proc_handler = &proc_dointvec,
119 .ctl_name = DEV_RAID_SPEED_LIMIT_MAX,
120 .procname = "speed_limit_max",
121 .data = &sysctl_speed_limit_max,
122 .maxlen = sizeof(int),
123 .mode = 0644,
124 .proc_handler = &proc_dointvec,
126 { .ctl_name = 0 }
129 static ctl_table raid_dir_table[] = {
131 .ctl_name = DEV_RAID,
132 .procname = "raid",
133 .maxlen = 0,
134 .mode = 0555,
135 .child = raid_table,
137 { .ctl_name = 0 }
140 static ctl_table raid_root_table[] = {
142 .ctl_name = CTL_DEV,
143 .procname = "dev",
144 .maxlen = 0,
145 .mode = 0555,
146 .child = raid_dir_table,
148 { .ctl_name = 0 }
151 static struct block_device_operations md_fops;
153 static int start_readonly;
156 * We have a system wide 'event count' that is incremented
157 * on any 'interesting' event, and readers of /proc/mdstat
158 * can use 'poll' or 'select' to find out when the event
159 * count increases.
161 * Events are:
162 * start array, stop array, error, add device, remove device,
163 * start build, activate spare
165 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
166 static atomic_t md_event_count;
167 void md_new_event(mddev_t *mddev)
169 atomic_inc(&md_event_count);
170 wake_up(&md_event_waiters);
171 sysfs_notify(&mddev->kobj, NULL, "sync_action");
173 EXPORT_SYMBOL_GPL(md_new_event);
175 /* Alternate version that can be called from interrupts
176 * when calling sysfs_notify isn't needed.
178 void md_new_event_inintr(mddev_t *mddev)
180 atomic_inc(&md_event_count);
181 wake_up(&md_event_waiters);
185 * Enables to iterate over all existing md arrays
186 * all_mddevs_lock protects this list.
188 static LIST_HEAD(all_mddevs);
189 static DEFINE_SPINLOCK(all_mddevs_lock);
193 * iterates through all used mddevs in the system.
194 * We take care to grab the all_mddevs_lock whenever navigating
195 * the list, and to always hold a refcount when unlocked.
196 * Any code which breaks out of this loop while own
197 * a reference to the current mddev and must mddev_put it.
199 #define ITERATE_MDDEV(mddev,tmp) \
201 for (({ spin_lock(&all_mddevs_lock); \
202 tmp = all_mddevs.next; \
203 mddev = NULL;}); \
204 ({ if (tmp != &all_mddevs) \
205 mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
206 spin_unlock(&all_mddevs_lock); \
207 if (mddev) mddev_put(mddev); \
208 mddev = list_entry(tmp, mddev_t, all_mddevs); \
209 tmp != &all_mddevs;}); \
210 ({ spin_lock(&all_mddevs_lock); \
211 tmp = tmp->next;}) \
215 static int md_fail_request (request_queue_t *q, struct bio *bio)
217 bio_io_error(bio, bio->bi_size);
218 return 0;
221 static inline mddev_t *mddev_get(mddev_t *mddev)
223 atomic_inc(&mddev->active);
224 return mddev;
227 static void mddev_put(mddev_t *mddev)
229 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
230 return;
231 if (!mddev->raid_disks && list_empty(&mddev->disks)) {
232 list_del(&mddev->all_mddevs);
233 spin_unlock(&all_mddevs_lock);
234 blk_cleanup_queue(mddev->queue);
235 kobject_unregister(&mddev->kobj);
236 } else
237 spin_unlock(&all_mddevs_lock);
240 static mddev_t * mddev_find(dev_t unit)
242 mddev_t *mddev, *new = NULL;
244 retry:
245 spin_lock(&all_mddevs_lock);
246 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
247 if (mddev->unit == unit) {
248 mddev_get(mddev);
249 spin_unlock(&all_mddevs_lock);
250 kfree(new);
251 return mddev;
254 if (new) {
255 list_add(&new->all_mddevs, &all_mddevs);
256 spin_unlock(&all_mddevs_lock);
257 return new;
259 spin_unlock(&all_mddevs_lock);
261 new = kzalloc(sizeof(*new), GFP_KERNEL);
262 if (!new)
263 return NULL;
265 new->unit = unit;
266 if (MAJOR(unit) == MD_MAJOR)
267 new->md_minor = MINOR(unit);
268 else
269 new->md_minor = MINOR(unit) >> MdpMinorShift;
271 mutex_init(&new->reconfig_mutex);
272 INIT_LIST_HEAD(&new->disks);
273 INIT_LIST_HEAD(&new->all_mddevs);
274 init_timer(&new->safemode_timer);
275 atomic_set(&new->active, 1);
276 spin_lock_init(&new->write_lock);
277 init_waitqueue_head(&new->sb_wait);
279 new->queue = blk_alloc_queue(GFP_KERNEL);
280 if (!new->queue) {
281 kfree(new);
282 return NULL;
284 set_bit(QUEUE_FLAG_CLUSTER, &new->queue->queue_flags);
286 blk_queue_make_request(new->queue, md_fail_request);
288 goto retry;
291 static inline int mddev_lock(mddev_t * mddev)
293 return mutex_lock_interruptible(&mddev->reconfig_mutex);
296 static inline int mddev_trylock(mddev_t * mddev)
298 return mutex_trylock(&mddev->reconfig_mutex);
301 static inline void mddev_unlock(mddev_t * mddev)
303 mutex_unlock(&mddev->reconfig_mutex);
305 md_wakeup_thread(mddev->thread);
308 static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
310 mdk_rdev_t * rdev;
311 struct list_head *tmp;
313 ITERATE_RDEV(mddev,rdev,tmp) {
314 if (rdev->desc_nr == nr)
315 return rdev;
317 return NULL;
320 static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
322 struct list_head *tmp;
323 mdk_rdev_t *rdev;
325 ITERATE_RDEV(mddev,rdev,tmp) {
326 if (rdev->bdev->bd_dev == dev)
327 return rdev;
329 return NULL;
332 static struct mdk_personality *find_pers(int level, char *clevel)
334 struct mdk_personality *pers;
335 list_for_each_entry(pers, &pers_list, list) {
336 if (level != LEVEL_NONE && pers->level == level)
337 return pers;
338 if (strcmp(pers->name, clevel)==0)
339 return pers;
341 return NULL;
344 static inline sector_t calc_dev_sboffset(struct block_device *bdev)
346 sector_t size = bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
347 return MD_NEW_SIZE_BLOCKS(size);
350 static sector_t calc_dev_size(mdk_rdev_t *rdev, unsigned chunk_size)
352 sector_t size;
354 size = rdev->sb_offset;
356 if (chunk_size)
357 size &= ~((sector_t)chunk_size/1024 - 1);
358 return size;
361 static int alloc_disk_sb(mdk_rdev_t * rdev)
363 if (rdev->sb_page)
364 MD_BUG();
366 rdev->sb_page = alloc_page(GFP_KERNEL);
367 if (!rdev->sb_page) {
368 printk(KERN_ALERT "md: out of memory.\n");
369 return -EINVAL;
372 return 0;
375 static void free_disk_sb(mdk_rdev_t * rdev)
377 if (rdev->sb_page) {
378 put_page(rdev->sb_page);
379 rdev->sb_loaded = 0;
380 rdev->sb_page = NULL;
381 rdev->sb_offset = 0;
382 rdev->size = 0;
387 static int super_written(struct bio *bio, unsigned int bytes_done, int error)
389 mdk_rdev_t *rdev = bio->bi_private;
390 mddev_t *mddev = rdev->mddev;
391 if (bio->bi_size)
392 return 1;
394 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags))
395 md_error(mddev, rdev);
397 if (atomic_dec_and_test(&mddev->pending_writes))
398 wake_up(&mddev->sb_wait);
399 bio_put(bio);
400 return 0;
403 static int super_written_barrier(struct bio *bio, unsigned int bytes_done, int error)
405 struct bio *bio2 = bio->bi_private;
406 mdk_rdev_t *rdev = bio2->bi_private;
407 mddev_t *mddev = rdev->mddev;
408 if (bio->bi_size)
409 return 1;
411 if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
412 error == -EOPNOTSUPP) {
413 unsigned long flags;
414 /* barriers don't appear to be supported :-( */
415 set_bit(BarriersNotsupp, &rdev->flags);
416 mddev->barriers_work = 0;
417 spin_lock_irqsave(&mddev->write_lock, flags);
418 bio2->bi_next = mddev->biolist;
419 mddev->biolist = bio2;
420 spin_unlock_irqrestore(&mddev->write_lock, flags);
421 wake_up(&mddev->sb_wait);
422 bio_put(bio);
423 return 0;
425 bio_put(bio2);
426 bio->bi_private = rdev;
427 return super_written(bio, bytes_done, error);
430 void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
431 sector_t sector, int size, struct page *page)
433 /* write first size bytes of page to sector of rdev
434 * Increment mddev->pending_writes before returning
435 * and decrement it on completion, waking up sb_wait
436 * if zero is reached.
437 * If an error occurred, call md_error
439 * As we might need to resubmit the request if BIO_RW_BARRIER
440 * causes ENOTSUPP, we allocate a spare bio...
442 struct bio *bio = bio_alloc(GFP_NOIO, 1);
443 int rw = (1<<BIO_RW) | (1<<BIO_RW_SYNC);
445 bio->bi_bdev = rdev->bdev;
446 bio->bi_sector = sector;
447 bio_add_page(bio, page, size, 0);
448 bio->bi_private = rdev;
449 bio->bi_end_io = super_written;
450 bio->bi_rw = rw;
452 atomic_inc(&mddev->pending_writes);
453 if (!test_bit(BarriersNotsupp, &rdev->flags)) {
454 struct bio *rbio;
455 rw |= (1<<BIO_RW_BARRIER);
456 rbio = bio_clone(bio, GFP_NOIO);
457 rbio->bi_private = bio;
458 rbio->bi_end_io = super_written_barrier;
459 submit_bio(rw, rbio);
460 } else
461 submit_bio(rw, bio);
464 void md_super_wait(mddev_t *mddev)
466 /* wait for all superblock writes that were scheduled to complete.
467 * if any had to be retried (due to BARRIER problems), retry them
469 DEFINE_WAIT(wq);
470 for(;;) {
471 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
472 if (atomic_read(&mddev->pending_writes)==0)
473 break;
474 while (mddev->biolist) {
475 struct bio *bio;
476 spin_lock_irq(&mddev->write_lock);
477 bio = mddev->biolist;
478 mddev->biolist = bio->bi_next ;
479 bio->bi_next = NULL;
480 spin_unlock_irq(&mddev->write_lock);
481 submit_bio(bio->bi_rw, bio);
483 schedule();
485 finish_wait(&mddev->sb_wait, &wq);
488 static int bi_complete(struct bio *bio, unsigned int bytes_done, int error)
490 if (bio->bi_size)
491 return 1;
493 complete((struct completion*)bio->bi_private);
494 return 0;
497 int sync_page_io(struct block_device *bdev, sector_t sector, int size,
498 struct page *page, int rw)
500 struct bio *bio = bio_alloc(GFP_NOIO, 1);
501 struct completion event;
502 int ret;
504 rw |= (1 << BIO_RW_SYNC);
506 bio->bi_bdev = bdev;
507 bio->bi_sector = sector;
508 bio_add_page(bio, page, size, 0);
509 init_completion(&event);
510 bio->bi_private = &event;
511 bio->bi_end_io = bi_complete;
512 submit_bio(rw, bio);
513 wait_for_completion(&event);
515 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
516 bio_put(bio);
517 return ret;
519 EXPORT_SYMBOL_GPL(sync_page_io);
521 static int read_disk_sb(mdk_rdev_t * rdev, int size)
523 char b[BDEVNAME_SIZE];
524 if (!rdev->sb_page) {
525 MD_BUG();
526 return -EINVAL;
528 if (rdev->sb_loaded)
529 return 0;
532 if (!sync_page_io(rdev->bdev, rdev->sb_offset<<1, size, rdev->sb_page, READ))
533 goto fail;
534 rdev->sb_loaded = 1;
535 return 0;
537 fail:
538 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
539 bdevname(rdev->bdev,b));
540 return -EINVAL;
543 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
545 if ( (sb1->set_uuid0 == sb2->set_uuid0) &&
546 (sb1->set_uuid1 == sb2->set_uuid1) &&
547 (sb1->set_uuid2 == sb2->set_uuid2) &&
548 (sb1->set_uuid3 == sb2->set_uuid3))
550 return 1;
552 return 0;
556 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
558 int ret;
559 mdp_super_t *tmp1, *tmp2;
561 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
562 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
564 if (!tmp1 || !tmp2) {
565 ret = 0;
566 printk(KERN_INFO "md.c: sb1 is not equal to sb2!\n");
567 goto abort;
570 *tmp1 = *sb1;
571 *tmp2 = *sb2;
574 * nr_disks is not constant
576 tmp1->nr_disks = 0;
577 tmp2->nr_disks = 0;
579 if (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4))
580 ret = 0;
581 else
582 ret = 1;
584 abort:
585 kfree(tmp1);
586 kfree(tmp2);
587 return ret;
590 static unsigned int calc_sb_csum(mdp_super_t * sb)
592 unsigned int disk_csum, csum;
594 disk_csum = sb->sb_csum;
595 sb->sb_csum = 0;
596 csum = csum_partial((void *)sb, MD_SB_BYTES, 0);
597 sb->sb_csum = disk_csum;
598 return csum;
603 * Handle superblock details.
604 * We want to be able to handle multiple superblock formats
605 * so we have a common interface to them all, and an array of
606 * different handlers.
607 * We rely on user-space to write the initial superblock, and support
608 * reading and updating of superblocks.
609 * Interface methods are:
610 * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
611 * loads and validates a superblock on dev.
612 * if refdev != NULL, compare superblocks on both devices
613 * Return:
614 * 0 - dev has a superblock that is compatible with refdev
615 * 1 - dev has a superblock that is compatible and newer than refdev
616 * so dev should be used as the refdev in future
617 * -EINVAL superblock incompatible or invalid
618 * -othererror e.g. -EIO
620 * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
621 * Verify that dev is acceptable into mddev.
622 * The first time, mddev->raid_disks will be 0, and data from
623 * dev should be merged in. Subsequent calls check that dev
624 * is new enough. Return 0 or -EINVAL
626 * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
627 * Update the superblock for rdev with data in mddev
628 * This does not write to disc.
632 struct super_type {
633 char *name;
634 struct module *owner;
635 int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version);
636 int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
637 void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
641 * load_super for 0.90.0
643 static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
645 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
646 mdp_super_t *sb;
647 int ret;
648 sector_t sb_offset;
651 * Calculate the position of the superblock,
652 * it's at the end of the disk.
654 * It also happens to be a multiple of 4Kb.
656 sb_offset = calc_dev_sboffset(rdev->bdev);
657 rdev->sb_offset = sb_offset;
659 ret = read_disk_sb(rdev, MD_SB_BYTES);
660 if (ret) return ret;
662 ret = -EINVAL;
664 bdevname(rdev->bdev, b);
665 sb = (mdp_super_t*)page_address(rdev->sb_page);
667 if (sb->md_magic != MD_SB_MAGIC) {
668 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
670 goto abort;
673 if (sb->major_version != 0 ||
674 sb->minor_version < 90 ||
675 sb->minor_version > 91) {
676 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
677 sb->major_version, sb->minor_version,
679 goto abort;
682 if (sb->raid_disks <= 0)
683 goto abort;
685 if (csum_fold(calc_sb_csum(sb)) != csum_fold(sb->sb_csum)) {
686 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
688 goto abort;
691 rdev->preferred_minor = sb->md_minor;
692 rdev->data_offset = 0;
693 rdev->sb_size = MD_SB_BYTES;
695 if (sb->level == LEVEL_MULTIPATH)
696 rdev->desc_nr = -1;
697 else
698 rdev->desc_nr = sb->this_disk.number;
700 if (refdev == 0)
701 ret = 1;
702 else {
703 __u64 ev1, ev2;
704 mdp_super_t *refsb = (mdp_super_t*)page_address(refdev->sb_page);
705 if (!uuid_equal(refsb, sb)) {
706 printk(KERN_WARNING "md: %s has different UUID to %s\n",
707 b, bdevname(refdev->bdev,b2));
708 goto abort;
710 if (!sb_equal(refsb, sb)) {
711 printk(KERN_WARNING "md: %s has same UUID"
712 " but different superblock to %s\n",
713 b, bdevname(refdev->bdev, b2));
714 goto abort;
716 ev1 = md_event(sb);
717 ev2 = md_event(refsb);
718 if (ev1 > ev2)
719 ret = 1;
720 else
721 ret = 0;
723 rdev->size = calc_dev_size(rdev, sb->chunk_size);
725 if (rdev->size < sb->size && sb->level > 1)
726 /* "this cannot possibly happen" ... */
727 ret = -EINVAL;
729 abort:
730 return ret;
734 * validate_super for 0.90.0
736 static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
738 mdp_disk_t *desc;
739 mdp_super_t *sb = (mdp_super_t *)page_address(rdev->sb_page);
740 __u64 ev1 = md_event(sb);
742 rdev->raid_disk = -1;
743 rdev->flags = 0;
744 if (mddev->raid_disks == 0) {
745 mddev->major_version = 0;
746 mddev->minor_version = sb->minor_version;
747 mddev->patch_version = sb->patch_version;
748 mddev->persistent = ! sb->not_persistent;
749 mddev->chunk_size = sb->chunk_size;
750 mddev->ctime = sb->ctime;
751 mddev->utime = sb->utime;
752 mddev->level = sb->level;
753 mddev->clevel[0] = 0;
754 mddev->layout = sb->layout;
755 mddev->raid_disks = sb->raid_disks;
756 mddev->size = sb->size;
757 mddev->events = ev1;
758 mddev->bitmap_offset = 0;
759 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
761 if (mddev->minor_version >= 91) {
762 mddev->reshape_position = sb->reshape_position;
763 mddev->delta_disks = sb->delta_disks;
764 mddev->new_level = sb->new_level;
765 mddev->new_layout = sb->new_layout;
766 mddev->new_chunk = sb->new_chunk;
767 } else {
768 mddev->reshape_position = MaxSector;
769 mddev->delta_disks = 0;
770 mddev->new_level = mddev->level;
771 mddev->new_layout = mddev->layout;
772 mddev->new_chunk = mddev->chunk_size;
775 if (sb->state & (1<<MD_SB_CLEAN))
776 mddev->recovery_cp = MaxSector;
777 else {
778 if (sb->events_hi == sb->cp_events_hi &&
779 sb->events_lo == sb->cp_events_lo) {
780 mddev->recovery_cp = sb->recovery_cp;
781 } else
782 mddev->recovery_cp = 0;
785 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
786 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
787 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
788 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
790 mddev->max_disks = MD_SB_DISKS;
792 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
793 mddev->bitmap_file == NULL) {
794 if (mddev->level != 1 && mddev->level != 4
795 && mddev->level != 5 && mddev->level != 6
796 && mddev->level != 10) {
797 /* FIXME use a better test */
798 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
799 return -EINVAL;
801 mddev->bitmap_offset = mddev->default_bitmap_offset;
804 } else if (mddev->pers == NULL) {
805 /* Insist on good event counter while assembling */
806 ++ev1;
807 if (ev1 < mddev->events)
808 return -EINVAL;
809 } else if (mddev->bitmap) {
810 /* if adding to array with a bitmap, then we can accept an
811 * older device ... but not too old.
813 if (ev1 < mddev->bitmap->events_cleared)
814 return 0;
815 } else {
816 if (ev1 < mddev->events)
817 /* just a hot-add of a new device, leave raid_disk at -1 */
818 return 0;
821 if (mddev->level != LEVEL_MULTIPATH) {
822 desc = sb->disks + rdev->desc_nr;
824 if (desc->state & (1<<MD_DISK_FAULTY))
825 set_bit(Faulty, &rdev->flags);
826 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
827 desc->raid_disk < mddev->raid_disks */) {
828 set_bit(In_sync, &rdev->flags);
829 rdev->raid_disk = desc->raid_disk;
831 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
832 set_bit(WriteMostly, &rdev->flags);
833 } else /* MULTIPATH are always insync */
834 set_bit(In_sync, &rdev->flags);
835 return 0;
839 * sync_super for 0.90.0
841 static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
843 mdp_super_t *sb;
844 struct list_head *tmp;
845 mdk_rdev_t *rdev2;
846 int next_spare = mddev->raid_disks;
849 /* make rdev->sb match mddev data..
851 * 1/ zero out disks
852 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
853 * 3/ any empty disks < next_spare become removed
855 * disks[0] gets initialised to REMOVED because
856 * we cannot be sure from other fields if it has
857 * been initialised or not.
859 int i;
860 int active=0, working=0,failed=0,spare=0,nr_disks=0;
862 rdev->sb_size = MD_SB_BYTES;
864 sb = (mdp_super_t*)page_address(rdev->sb_page);
866 memset(sb, 0, sizeof(*sb));
868 sb->md_magic = MD_SB_MAGIC;
869 sb->major_version = mddev->major_version;
870 sb->patch_version = mddev->patch_version;
871 sb->gvalid_words = 0; /* ignored */
872 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
873 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
874 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
875 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
877 sb->ctime = mddev->ctime;
878 sb->level = mddev->level;
879 sb->size = mddev->size;
880 sb->raid_disks = mddev->raid_disks;
881 sb->md_minor = mddev->md_minor;
882 sb->not_persistent = !mddev->persistent;
883 sb->utime = mddev->utime;
884 sb->state = 0;
885 sb->events_hi = (mddev->events>>32);
886 sb->events_lo = (u32)mddev->events;
888 if (mddev->reshape_position == MaxSector)
889 sb->minor_version = 90;
890 else {
891 sb->minor_version = 91;
892 sb->reshape_position = mddev->reshape_position;
893 sb->new_level = mddev->new_level;
894 sb->delta_disks = mddev->delta_disks;
895 sb->new_layout = mddev->new_layout;
896 sb->new_chunk = mddev->new_chunk;
898 mddev->minor_version = sb->minor_version;
899 if (mddev->in_sync)
901 sb->recovery_cp = mddev->recovery_cp;
902 sb->cp_events_hi = (mddev->events>>32);
903 sb->cp_events_lo = (u32)mddev->events;
904 if (mddev->recovery_cp == MaxSector)
905 sb->state = (1<< MD_SB_CLEAN);
906 } else
907 sb->recovery_cp = 0;
909 sb->layout = mddev->layout;
910 sb->chunk_size = mddev->chunk_size;
912 if (mddev->bitmap && mddev->bitmap_file == NULL)
913 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
915 sb->disks[0].state = (1<<MD_DISK_REMOVED);
916 ITERATE_RDEV(mddev,rdev2,tmp) {
917 mdp_disk_t *d;
918 int desc_nr;
919 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
920 && !test_bit(Faulty, &rdev2->flags))
921 desc_nr = rdev2->raid_disk;
922 else
923 desc_nr = next_spare++;
924 rdev2->desc_nr = desc_nr;
925 d = &sb->disks[rdev2->desc_nr];
926 nr_disks++;
927 d->number = rdev2->desc_nr;
928 d->major = MAJOR(rdev2->bdev->bd_dev);
929 d->minor = MINOR(rdev2->bdev->bd_dev);
930 if (rdev2->raid_disk >= 0 && test_bit(In_sync, &rdev2->flags)
931 && !test_bit(Faulty, &rdev2->flags))
932 d->raid_disk = rdev2->raid_disk;
933 else
934 d->raid_disk = rdev2->desc_nr; /* compatibility */
935 if (test_bit(Faulty, &rdev2->flags))
936 d->state = (1<<MD_DISK_FAULTY);
937 else if (test_bit(In_sync, &rdev2->flags)) {
938 d->state = (1<<MD_DISK_ACTIVE);
939 d->state |= (1<<MD_DISK_SYNC);
940 active++;
941 working++;
942 } else {
943 d->state = 0;
944 spare++;
945 working++;
947 if (test_bit(WriteMostly, &rdev2->flags))
948 d->state |= (1<<MD_DISK_WRITEMOSTLY);
950 /* now set the "removed" and "faulty" bits on any missing devices */
951 for (i=0 ; i < mddev->raid_disks ; i++) {
952 mdp_disk_t *d = &sb->disks[i];
953 if (d->state == 0 && d->number == 0) {
954 d->number = i;
955 d->raid_disk = i;
956 d->state = (1<<MD_DISK_REMOVED);
957 d->state |= (1<<MD_DISK_FAULTY);
958 failed++;
961 sb->nr_disks = nr_disks;
962 sb->active_disks = active;
963 sb->working_disks = working;
964 sb->failed_disks = failed;
965 sb->spare_disks = spare;
967 sb->this_disk = sb->disks[rdev->desc_nr];
968 sb->sb_csum = calc_sb_csum(sb);
972 * version 1 superblock
975 static unsigned int calc_sb_1_csum(struct mdp_superblock_1 * sb)
977 unsigned int disk_csum, csum;
978 unsigned long long newcsum;
979 int size = 256 + le32_to_cpu(sb->max_dev)*2;
980 unsigned int *isuper = (unsigned int*)sb;
981 int i;
983 disk_csum = sb->sb_csum;
984 sb->sb_csum = 0;
985 newcsum = 0;
986 for (i=0; size>=4; size -= 4 )
987 newcsum += le32_to_cpu(*isuper++);
989 if (size == 2)
990 newcsum += le16_to_cpu(*(unsigned short*) isuper);
992 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
993 sb->sb_csum = disk_csum;
994 return cpu_to_le32(csum);
997 static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
999 struct mdp_superblock_1 *sb;
1000 int ret;
1001 sector_t sb_offset;
1002 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1003 int bmask;
1006 * Calculate the position of the superblock.
1007 * It is always aligned to a 4K boundary and
1008 * depeding on minor_version, it can be:
1009 * 0: At least 8K, but less than 12K, from end of device
1010 * 1: At start of device
1011 * 2: 4K from start of device.
1013 switch(minor_version) {
1014 case 0:
1015 sb_offset = rdev->bdev->bd_inode->i_size >> 9;
1016 sb_offset -= 8*2;
1017 sb_offset &= ~(sector_t)(4*2-1);
1018 /* convert from sectors to K */
1019 sb_offset /= 2;
1020 break;
1021 case 1:
1022 sb_offset = 0;
1023 break;
1024 case 2:
1025 sb_offset = 4;
1026 break;
1027 default:
1028 return -EINVAL;
1030 rdev->sb_offset = sb_offset;
1032 /* superblock is rarely larger than 1K, but it can be larger,
1033 * and it is safe to read 4k, so we do that
1035 ret = read_disk_sb(rdev, 4096);
1036 if (ret) return ret;
1039 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1041 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1042 sb->major_version != cpu_to_le32(1) ||
1043 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1044 le64_to_cpu(sb->super_offset) != (rdev->sb_offset<<1) ||
1045 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1046 return -EINVAL;
1048 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1049 printk("md: invalid superblock checksum on %s\n",
1050 bdevname(rdev->bdev,b));
1051 return -EINVAL;
1053 if (le64_to_cpu(sb->data_size) < 10) {
1054 printk("md: data_size too small on %s\n",
1055 bdevname(rdev->bdev,b));
1056 return -EINVAL;
1058 rdev->preferred_minor = 0xffff;
1059 rdev->data_offset = le64_to_cpu(sb->data_offset);
1060 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1062 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1063 bmask = queue_hardsect_size(rdev->bdev->bd_disk->queue)-1;
1064 if (rdev->sb_size & bmask)
1065 rdev-> sb_size = (rdev->sb_size | bmask)+1;
1067 if (refdev == 0)
1068 ret = 1;
1069 else {
1070 __u64 ev1, ev2;
1071 struct mdp_superblock_1 *refsb =
1072 (struct mdp_superblock_1*)page_address(refdev->sb_page);
1074 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1075 sb->level != refsb->level ||
1076 sb->layout != refsb->layout ||
1077 sb->chunksize != refsb->chunksize) {
1078 printk(KERN_WARNING "md: %s has strangely different"
1079 " superblock to %s\n",
1080 bdevname(rdev->bdev,b),
1081 bdevname(refdev->bdev,b2));
1082 return -EINVAL;
1084 ev1 = le64_to_cpu(sb->events);
1085 ev2 = le64_to_cpu(refsb->events);
1087 if (ev1 > ev2)
1088 ret = 1;
1089 else
1090 ret = 0;
1092 if (minor_version)
1093 rdev->size = ((rdev->bdev->bd_inode->i_size>>9) - le64_to_cpu(sb->data_offset)) / 2;
1094 else
1095 rdev->size = rdev->sb_offset;
1096 if (rdev->size < le64_to_cpu(sb->data_size)/2)
1097 return -EINVAL;
1098 rdev->size = le64_to_cpu(sb->data_size)/2;
1099 if (le32_to_cpu(sb->chunksize))
1100 rdev->size &= ~((sector_t)le32_to_cpu(sb->chunksize)/2 - 1);
1102 if (le32_to_cpu(sb->size) > rdev->size*2)
1103 return -EINVAL;
1104 return ret;
1107 static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
1109 struct mdp_superblock_1 *sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1110 __u64 ev1 = le64_to_cpu(sb->events);
1112 rdev->raid_disk = -1;
1113 rdev->flags = 0;
1114 if (mddev->raid_disks == 0) {
1115 mddev->major_version = 1;
1116 mddev->patch_version = 0;
1117 mddev->persistent = 1;
1118 mddev->chunk_size = le32_to_cpu(sb->chunksize) << 9;
1119 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1120 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1121 mddev->level = le32_to_cpu(sb->level);
1122 mddev->clevel[0] = 0;
1123 mddev->layout = le32_to_cpu(sb->layout);
1124 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1125 mddev->size = le64_to_cpu(sb->size)/2;
1126 mddev->events = ev1;
1127 mddev->bitmap_offset = 0;
1128 mddev->default_bitmap_offset = 1024 >> 9;
1130 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1131 memcpy(mddev->uuid, sb->set_uuid, 16);
1133 mddev->max_disks = (4096-256)/2;
1135 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1136 mddev->bitmap_file == NULL ) {
1137 if (mddev->level != 1 && mddev->level != 5 && mddev->level != 6
1138 && mddev->level != 10) {
1139 printk(KERN_WARNING "md: bitmaps not supported for this level.\n");
1140 return -EINVAL;
1142 mddev->bitmap_offset = (__s32)le32_to_cpu(sb->bitmap_offset);
1144 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1145 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1146 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1147 mddev->new_level = le32_to_cpu(sb->new_level);
1148 mddev->new_layout = le32_to_cpu(sb->new_layout);
1149 mddev->new_chunk = le32_to_cpu(sb->new_chunk)<<9;
1150 } else {
1151 mddev->reshape_position = MaxSector;
1152 mddev->delta_disks = 0;
1153 mddev->new_level = mddev->level;
1154 mddev->new_layout = mddev->layout;
1155 mddev->new_chunk = mddev->chunk_size;
1158 } else if (mddev->pers == NULL) {
1159 /* Insist of good event counter while assembling */
1160 ++ev1;
1161 if (ev1 < mddev->events)
1162 return -EINVAL;
1163 } else if (mddev->bitmap) {
1164 /* If adding to array with a bitmap, then we can accept an
1165 * older device, but not too old.
1167 if (ev1 < mddev->bitmap->events_cleared)
1168 return 0;
1169 } else {
1170 if (ev1 < mddev->events)
1171 /* just a hot-add of a new device, leave raid_disk at -1 */
1172 return 0;
1174 if (mddev->level != LEVEL_MULTIPATH) {
1175 int role;
1176 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1177 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1178 switch(role) {
1179 case 0xffff: /* spare */
1180 break;
1181 case 0xfffe: /* faulty */
1182 set_bit(Faulty, &rdev->flags);
1183 break;
1184 default:
1185 if ((le32_to_cpu(sb->feature_map) &
1186 MD_FEATURE_RECOVERY_OFFSET))
1187 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1188 else
1189 set_bit(In_sync, &rdev->flags);
1190 rdev->raid_disk = role;
1191 break;
1193 if (sb->devflags & WriteMostly1)
1194 set_bit(WriteMostly, &rdev->flags);
1195 } else /* MULTIPATH are always insync */
1196 set_bit(In_sync, &rdev->flags);
1198 return 0;
1201 static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
1203 struct mdp_superblock_1 *sb;
1204 struct list_head *tmp;
1205 mdk_rdev_t *rdev2;
1206 int max_dev, i;
1207 /* make rdev->sb match mddev and rdev data. */
1209 sb = (struct mdp_superblock_1*)page_address(rdev->sb_page);
1211 sb->feature_map = 0;
1212 sb->pad0 = 0;
1213 sb->recovery_offset = cpu_to_le64(0);
1214 memset(sb->pad1, 0, sizeof(sb->pad1));
1215 memset(sb->pad2, 0, sizeof(sb->pad2));
1216 memset(sb->pad3, 0, sizeof(sb->pad3));
1218 sb->utime = cpu_to_le64((__u64)mddev->utime);
1219 sb->events = cpu_to_le64(mddev->events);
1220 if (mddev->in_sync)
1221 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1222 else
1223 sb->resync_offset = cpu_to_le64(0);
1225 sb->cnt_corrected_read = atomic_read(&rdev->corrected_errors);
1227 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1228 sb->size = cpu_to_le64(mddev->size<<1);
1230 if (mddev->bitmap && mddev->bitmap_file == NULL) {
1231 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_offset);
1232 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1235 if (rdev->raid_disk >= 0 &&
1236 !test_bit(In_sync, &rdev->flags) &&
1237 rdev->recovery_offset > 0) {
1238 sb->feature_map |= cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1239 sb->recovery_offset = cpu_to_le64(rdev->recovery_offset);
1242 if (mddev->reshape_position != MaxSector) {
1243 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1244 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1245 sb->new_layout = cpu_to_le32(mddev->new_layout);
1246 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1247 sb->new_level = cpu_to_le32(mddev->new_level);
1248 sb->new_chunk = cpu_to_le32(mddev->new_chunk>>9);
1251 max_dev = 0;
1252 ITERATE_RDEV(mddev,rdev2,tmp)
1253 if (rdev2->desc_nr+1 > max_dev)
1254 max_dev = rdev2->desc_nr+1;
1256 sb->max_dev = cpu_to_le32(max_dev);
1257 for (i=0; i<max_dev;i++)
1258 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1260 ITERATE_RDEV(mddev,rdev2,tmp) {
1261 i = rdev2->desc_nr;
1262 if (test_bit(Faulty, &rdev2->flags))
1263 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1264 else if (test_bit(In_sync, &rdev2->flags))
1265 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1266 else if (rdev2->raid_disk >= 0 && rdev2->recovery_offset > 0)
1267 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1268 else
1269 sb->dev_roles[i] = cpu_to_le16(0xffff);
1272 sb->sb_csum = calc_sb_1_csum(sb);
1276 static struct super_type super_types[] = {
1277 [0] = {
1278 .name = "0.90.0",
1279 .owner = THIS_MODULE,
1280 .load_super = super_90_load,
1281 .validate_super = super_90_validate,
1282 .sync_super = super_90_sync,
1284 [1] = {
1285 .name = "md-1",
1286 .owner = THIS_MODULE,
1287 .load_super = super_1_load,
1288 .validate_super = super_1_validate,
1289 .sync_super = super_1_sync,
1293 static mdk_rdev_t * match_dev_unit(mddev_t *mddev, mdk_rdev_t *dev)
1295 struct list_head *tmp;
1296 mdk_rdev_t *rdev;
1298 ITERATE_RDEV(mddev,rdev,tmp)
1299 if (rdev->bdev->bd_contains == dev->bdev->bd_contains)
1300 return rdev;
1302 return NULL;
1305 static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
1307 struct list_head *tmp;
1308 mdk_rdev_t *rdev;
1310 ITERATE_RDEV(mddev1,rdev,tmp)
1311 if (match_dev_unit(mddev2, rdev))
1312 return 1;
1314 return 0;
1317 static LIST_HEAD(pending_raid_disks);
1319 static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
1321 mdk_rdev_t *same_pdev;
1322 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1323 struct kobject *ko;
1324 char *s;
1326 if (rdev->mddev) {
1327 MD_BUG();
1328 return -EINVAL;
1330 /* make sure rdev->size exceeds mddev->size */
1331 if (rdev->size && (mddev->size == 0 || rdev->size < mddev->size)) {
1332 if (mddev->pers)
1333 /* Cannot change size, so fail */
1334 return -ENOSPC;
1335 else
1336 mddev->size = rdev->size;
1338 same_pdev = match_dev_unit(mddev, rdev);
1339 if (same_pdev)
1340 printk(KERN_WARNING
1341 "%s: WARNING: %s appears to be on the same physical"
1342 " disk as %s. True\n protection against single-disk"
1343 " failure might be compromised.\n",
1344 mdname(mddev), bdevname(rdev->bdev,b),
1345 bdevname(same_pdev->bdev,b2));
1347 /* Verify rdev->desc_nr is unique.
1348 * If it is -1, assign a free number, else
1349 * check number is not in use
1351 if (rdev->desc_nr < 0) {
1352 int choice = 0;
1353 if (mddev->pers) choice = mddev->raid_disks;
1354 while (find_rdev_nr(mddev, choice))
1355 choice++;
1356 rdev->desc_nr = choice;
1357 } else {
1358 if (find_rdev_nr(mddev, rdev->desc_nr))
1359 return -EBUSY;
1361 bdevname(rdev->bdev,b);
1362 if (kobject_set_name(&rdev->kobj, "dev-%s", b) < 0)
1363 return -ENOMEM;
1364 while ( (s=strchr(rdev->kobj.k_name, '/')) != NULL)
1365 *s = '!';
1367 list_add(&rdev->same_set, &mddev->disks);
1368 rdev->mddev = mddev;
1369 printk(KERN_INFO "md: bind<%s>\n", b);
1371 rdev->kobj.parent = &mddev->kobj;
1372 kobject_add(&rdev->kobj);
1374 if (rdev->bdev->bd_part)
1375 ko = &rdev->bdev->bd_part->kobj;
1376 else
1377 ko = &rdev->bdev->bd_disk->kobj;
1378 sysfs_create_link(&rdev->kobj, ko, "block");
1379 bd_claim_by_disk(rdev->bdev, rdev, mddev->gendisk);
1380 return 0;
1383 static void unbind_rdev_from_array(mdk_rdev_t * rdev)
1385 char b[BDEVNAME_SIZE];
1386 if (!rdev->mddev) {
1387 MD_BUG();
1388 return;
1390 bd_release_from_disk(rdev->bdev, rdev->mddev->gendisk);
1391 list_del_init(&rdev->same_set);
1392 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
1393 rdev->mddev = NULL;
1394 sysfs_remove_link(&rdev->kobj, "block");
1395 kobject_del(&rdev->kobj);
1399 * prevent the device from being mounted, repartitioned or
1400 * otherwise reused by a RAID array (or any other kernel
1401 * subsystem), by bd_claiming the device.
1403 static int lock_rdev(mdk_rdev_t *rdev, dev_t dev)
1405 int err = 0;
1406 struct block_device *bdev;
1407 char b[BDEVNAME_SIZE];
1409 bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
1410 if (IS_ERR(bdev)) {
1411 printk(KERN_ERR "md: could not open %s.\n",
1412 __bdevname(dev, b));
1413 return PTR_ERR(bdev);
1415 err = bd_claim(bdev, rdev);
1416 if (err) {
1417 printk(KERN_ERR "md: could not bd_claim %s.\n",
1418 bdevname(bdev, b));
1419 blkdev_put(bdev);
1420 return err;
1422 rdev->bdev = bdev;
1423 return err;
1426 static void unlock_rdev(mdk_rdev_t *rdev)
1428 struct block_device *bdev = rdev->bdev;
1429 rdev->bdev = NULL;
1430 if (!bdev)
1431 MD_BUG();
1432 bd_release(bdev);
1433 blkdev_put(bdev);
1436 void md_autodetect_dev(dev_t dev);
1438 static void export_rdev(mdk_rdev_t * rdev)
1440 char b[BDEVNAME_SIZE];
1441 printk(KERN_INFO "md: export_rdev(%s)\n",
1442 bdevname(rdev->bdev,b));
1443 if (rdev->mddev)
1444 MD_BUG();
1445 free_disk_sb(rdev);
1446 list_del_init(&rdev->same_set);
1447 #ifndef MODULE
1448 md_autodetect_dev(rdev->bdev->bd_dev);
1449 #endif
1450 unlock_rdev(rdev);
1451 kobject_put(&rdev->kobj);
1454 static void kick_rdev_from_array(mdk_rdev_t * rdev)
1456 unbind_rdev_from_array(rdev);
1457 export_rdev(rdev);
1460 static void export_array(mddev_t *mddev)
1462 struct list_head *tmp;
1463 mdk_rdev_t *rdev;
1465 ITERATE_RDEV(mddev,rdev,tmp) {
1466 if (!rdev->mddev) {
1467 MD_BUG();
1468 continue;
1470 kick_rdev_from_array(rdev);
1472 if (!list_empty(&mddev->disks))
1473 MD_BUG();
1474 mddev->raid_disks = 0;
1475 mddev->major_version = 0;
1478 static void print_desc(mdp_disk_t *desc)
1480 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
1481 desc->major,desc->minor,desc->raid_disk,desc->state);
1484 static void print_sb(mdp_super_t *sb)
1486 int i;
1488 printk(KERN_INFO
1489 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
1490 sb->major_version, sb->minor_version, sb->patch_version,
1491 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
1492 sb->ctime);
1493 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
1494 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
1495 sb->md_minor, sb->layout, sb->chunk_size);
1496 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
1497 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
1498 sb->utime, sb->state, sb->active_disks, sb->working_disks,
1499 sb->failed_disks, sb->spare_disks,
1500 sb->sb_csum, (unsigned long)sb->events_lo);
1502 printk(KERN_INFO);
1503 for (i = 0; i < MD_SB_DISKS; i++) {
1504 mdp_disk_t *desc;
1506 desc = sb->disks + i;
1507 if (desc->number || desc->major || desc->minor ||
1508 desc->raid_disk || (desc->state && (desc->state != 4))) {
1509 printk(" D %2d: ", i);
1510 print_desc(desc);
1513 printk(KERN_INFO "md: THIS: ");
1514 print_desc(&sb->this_disk);
1518 static void print_rdev(mdk_rdev_t *rdev)
1520 char b[BDEVNAME_SIZE];
1521 printk(KERN_INFO "md: rdev %s, SZ:%08llu F:%d S:%d DN:%u\n",
1522 bdevname(rdev->bdev,b), (unsigned long long)rdev->size,
1523 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
1524 rdev->desc_nr);
1525 if (rdev->sb_loaded) {
1526 printk(KERN_INFO "md: rdev superblock:\n");
1527 print_sb((mdp_super_t*)page_address(rdev->sb_page));
1528 } else
1529 printk(KERN_INFO "md: no rdev superblock!\n");
1532 static void md_print_devices(void)
1534 struct list_head *tmp, *tmp2;
1535 mdk_rdev_t *rdev;
1536 mddev_t *mddev;
1537 char b[BDEVNAME_SIZE];
1539 printk("\n");
1540 printk("md: **********************************\n");
1541 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
1542 printk("md: **********************************\n");
1543 ITERATE_MDDEV(mddev,tmp) {
1545 if (mddev->bitmap)
1546 bitmap_print_sb(mddev->bitmap);
1547 else
1548 printk("%s: ", mdname(mddev));
1549 ITERATE_RDEV(mddev,rdev,tmp2)
1550 printk("<%s>", bdevname(rdev->bdev,b));
1551 printk("\n");
1553 ITERATE_RDEV(mddev,rdev,tmp2)
1554 print_rdev(rdev);
1556 printk("md: **********************************\n");
1557 printk("\n");
1561 static void sync_sbs(mddev_t * mddev, int nospares)
1563 /* Update each superblock (in-memory image), but
1564 * if we are allowed to, skip spares which already
1565 * have the right event counter, or have one earlier
1566 * (which would mean they aren't being marked as dirty
1567 * with the rest of the array)
1569 mdk_rdev_t *rdev;
1570 struct list_head *tmp;
1572 ITERATE_RDEV(mddev,rdev,tmp) {
1573 if (rdev->sb_events == mddev->events ||
1574 (nospares &&
1575 rdev->raid_disk < 0 &&
1576 (rdev->sb_events&1)==0 &&
1577 rdev->sb_events+1 == mddev->events)) {
1578 /* Don't update this superblock */
1579 rdev->sb_loaded = 2;
1580 } else {
1581 super_types[mddev->major_version].
1582 sync_super(mddev, rdev);
1583 rdev->sb_loaded = 1;
1588 void md_update_sb(mddev_t * mddev)
1590 int err;
1591 struct list_head *tmp;
1592 mdk_rdev_t *rdev;
1593 int sync_req;
1594 int nospares = 0;
1596 repeat:
1597 spin_lock_irq(&mddev->write_lock);
1598 sync_req = mddev->in_sync;
1599 mddev->utime = get_seconds();
1600 if (mddev->sb_dirty == 3)
1601 /* just a clean<-> dirty transition, possibly leave spares alone,
1602 * though if events isn't the right even/odd, we will have to do
1603 * spares after all
1605 nospares = 1;
1607 /* If this is just a dirty<->clean transition, and the array is clean
1608 * and 'events' is odd, we can roll back to the previous clean state */
1609 if (mddev->sb_dirty == 3
1610 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
1611 && (mddev->events & 1))
1612 mddev->events--;
1613 else {
1614 /* otherwise we have to go forward and ... */
1615 mddev->events ++;
1616 if (!mddev->in_sync || mddev->recovery_cp != MaxSector) { /* not clean */
1617 /* .. if the array isn't clean, insist on an odd 'events' */
1618 if ((mddev->events&1)==0) {
1619 mddev->events++;
1620 nospares = 0;
1622 } else {
1623 /* otherwise insist on an even 'events' (for clean states) */
1624 if ((mddev->events&1)) {
1625 mddev->events++;
1626 nospares = 0;
1631 if (!mddev->events) {
1633 * oops, this 64-bit counter should never wrap.
1634 * Either we are in around ~1 trillion A.C., assuming
1635 * 1 reboot per second, or we have a bug:
1637 MD_BUG();
1638 mddev->events --;
1640 mddev->sb_dirty = 2;
1641 sync_sbs(mddev, nospares);
1644 * do not write anything to disk if using
1645 * nonpersistent superblocks
1647 if (!mddev->persistent) {
1648 mddev->sb_dirty = 0;
1649 spin_unlock_irq(&mddev->write_lock);
1650 wake_up(&mddev->sb_wait);
1651 return;
1653 spin_unlock_irq(&mddev->write_lock);
1655 dprintk(KERN_INFO
1656 "md: updating %s RAID superblock on device (in sync %d)\n",
1657 mdname(mddev),mddev->in_sync);
1659 err = bitmap_update_sb(mddev->bitmap);
1660 ITERATE_RDEV(mddev,rdev,tmp) {
1661 char b[BDEVNAME_SIZE];
1662 dprintk(KERN_INFO "md: ");
1663 if (rdev->sb_loaded != 1)
1664 continue; /* no noise on spare devices */
1665 if (test_bit(Faulty, &rdev->flags))
1666 dprintk("(skipping faulty ");
1668 dprintk("%s ", bdevname(rdev->bdev,b));
1669 if (!test_bit(Faulty, &rdev->flags)) {
1670 md_super_write(mddev,rdev,
1671 rdev->sb_offset<<1, rdev->sb_size,
1672 rdev->sb_page);
1673 dprintk(KERN_INFO "(write) %s's sb offset: %llu\n",
1674 bdevname(rdev->bdev,b),
1675 (unsigned long long)rdev->sb_offset);
1676 rdev->sb_events = mddev->events;
1678 } else
1679 dprintk(")\n");
1680 if (mddev->level == LEVEL_MULTIPATH)
1681 /* only need to write one superblock... */
1682 break;
1684 md_super_wait(mddev);
1685 /* if there was a failure, sb_dirty was set to 1, and we re-write super */
1687 spin_lock_irq(&mddev->write_lock);
1688 if (mddev->in_sync != sync_req|| mddev->sb_dirty == 1) {
1689 /* have to write it out again */
1690 spin_unlock_irq(&mddev->write_lock);
1691 goto repeat;
1693 mddev->sb_dirty = 0;
1694 spin_unlock_irq(&mddev->write_lock);
1695 wake_up(&mddev->sb_wait);
1698 EXPORT_SYMBOL_GPL(md_update_sb);
1700 /* words written to sysfs files may, or my not, be \n terminated.
1701 * We want to accept with case. For this we use cmd_match.
1703 static int cmd_match(const char *cmd, const char *str)
1705 /* See if cmd, written into a sysfs file, matches
1706 * str. They must either be the same, or cmd can
1707 * have a trailing newline
1709 while (*cmd && *str && *cmd == *str) {
1710 cmd++;
1711 str++;
1713 if (*cmd == '\n')
1714 cmd++;
1715 if (*str || *cmd)
1716 return 0;
1717 return 1;
1720 struct rdev_sysfs_entry {
1721 struct attribute attr;
1722 ssize_t (*show)(mdk_rdev_t *, char *);
1723 ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
1726 static ssize_t
1727 state_show(mdk_rdev_t *rdev, char *page)
1729 char *sep = "";
1730 int len=0;
1732 if (test_bit(Faulty, &rdev->flags)) {
1733 len+= sprintf(page+len, "%sfaulty",sep);
1734 sep = ",";
1736 if (test_bit(In_sync, &rdev->flags)) {
1737 len += sprintf(page+len, "%sin_sync",sep);
1738 sep = ",";
1740 if (!test_bit(Faulty, &rdev->flags) &&
1741 !test_bit(In_sync, &rdev->flags)) {
1742 len += sprintf(page+len, "%sspare", sep);
1743 sep = ",";
1745 return len+sprintf(page+len, "\n");
1748 static ssize_t
1749 state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1751 /* can write
1752 * faulty - simulates and error
1753 * remove - disconnects the device
1755 int err = -EINVAL;
1756 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
1757 md_error(rdev->mddev, rdev);
1758 err = 0;
1759 } else if (cmd_match(buf, "remove")) {
1760 if (rdev->raid_disk >= 0)
1761 err = -EBUSY;
1762 else {
1763 mddev_t *mddev = rdev->mddev;
1764 kick_rdev_from_array(rdev);
1765 md_update_sb(mddev);
1766 md_new_event(mddev);
1767 err = 0;
1770 return err ? err : len;
1772 static struct rdev_sysfs_entry
1773 rdev_state = __ATTR(state, 0644, state_show, state_store);
1775 static ssize_t
1776 super_show(mdk_rdev_t *rdev, char *page)
1778 if (rdev->sb_loaded && rdev->sb_size) {
1779 memcpy(page, page_address(rdev->sb_page), rdev->sb_size);
1780 return rdev->sb_size;
1781 } else
1782 return 0;
1784 static struct rdev_sysfs_entry rdev_super = __ATTR_RO(super);
1786 static ssize_t
1787 errors_show(mdk_rdev_t *rdev, char *page)
1789 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
1792 static ssize_t
1793 errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1795 char *e;
1796 unsigned long n = simple_strtoul(buf, &e, 10);
1797 if (*buf && (*e == 0 || *e == '\n')) {
1798 atomic_set(&rdev->corrected_errors, n);
1799 return len;
1801 return -EINVAL;
1803 static struct rdev_sysfs_entry rdev_errors =
1804 __ATTR(errors, 0644, errors_show, errors_store);
1806 static ssize_t
1807 slot_show(mdk_rdev_t *rdev, char *page)
1809 if (rdev->raid_disk < 0)
1810 return sprintf(page, "none\n");
1811 else
1812 return sprintf(page, "%d\n", rdev->raid_disk);
1815 static ssize_t
1816 slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1818 char *e;
1819 int slot = simple_strtoul(buf, &e, 10);
1820 if (strncmp(buf, "none", 4)==0)
1821 slot = -1;
1822 else if (e==buf || (*e && *e!= '\n'))
1823 return -EINVAL;
1824 if (rdev->mddev->pers)
1825 /* Cannot set slot in active array (yet) */
1826 return -EBUSY;
1827 if (slot >= rdev->mddev->raid_disks)
1828 return -ENOSPC;
1829 rdev->raid_disk = slot;
1830 /* assume it is working */
1831 rdev->flags = 0;
1832 set_bit(In_sync, &rdev->flags);
1833 return len;
1837 static struct rdev_sysfs_entry rdev_slot =
1838 __ATTR(slot, 0644, slot_show, slot_store);
1840 static ssize_t
1841 offset_show(mdk_rdev_t *rdev, char *page)
1843 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
1846 static ssize_t
1847 offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1849 char *e;
1850 unsigned long long offset = simple_strtoull(buf, &e, 10);
1851 if (e==buf || (*e && *e != '\n'))
1852 return -EINVAL;
1853 if (rdev->mddev->pers)
1854 return -EBUSY;
1855 rdev->data_offset = offset;
1856 return len;
1859 static struct rdev_sysfs_entry rdev_offset =
1860 __ATTR(offset, 0644, offset_show, offset_store);
1862 static ssize_t
1863 rdev_size_show(mdk_rdev_t *rdev, char *page)
1865 return sprintf(page, "%llu\n", (unsigned long long)rdev->size);
1868 static ssize_t
1869 rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
1871 char *e;
1872 unsigned long long size = simple_strtoull(buf, &e, 10);
1873 if (e==buf || (*e && *e != '\n'))
1874 return -EINVAL;
1875 if (rdev->mddev->pers)
1876 return -EBUSY;
1877 rdev->size = size;
1878 if (size < rdev->mddev->size || rdev->mddev->size == 0)
1879 rdev->mddev->size = size;
1880 return len;
1883 static struct rdev_sysfs_entry rdev_size =
1884 __ATTR(size, 0644, rdev_size_show, rdev_size_store);
1886 static struct attribute *rdev_default_attrs[] = {
1887 &rdev_state.attr,
1888 &rdev_super.attr,
1889 &rdev_errors.attr,
1890 &rdev_slot.attr,
1891 &rdev_offset.attr,
1892 &rdev_size.attr,
1893 NULL,
1895 static ssize_t
1896 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
1898 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1899 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1901 if (!entry->show)
1902 return -EIO;
1903 return entry->show(rdev, page);
1906 static ssize_t
1907 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
1908 const char *page, size_t length)
1910 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
1911 mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
1913 if (!entry->store)
1914 return -EIO;
1915 return entry->store(rdev, page, length);
1918 static void rdev_free(struct kobject *ko)
1920 mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
1921 kfree(rdev);
1923 static struct sysfs_ops rdev_sysfs_ops = {
1924 .show = rdev_attr_show,
1925 .store = rdev_attr_store,
1927 static struct kobj_type rdev_ktype = {
1928 .release = rdev_free,
1929 .sysfs_ops = &rdev_sysfs_ops,
1930 .default_attrs = rdev_default_attrs,
1934 * Import a device. If 'super_format' >= 0, then sanity check the superblock
1936 * mark the device faulty if:
1938 * - the device is nonexistent (zero size)
1939 * - the device has no valid superblock
1941 * a faulty rdev _never_ has rdev->sb set.
1943 static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
1945 char b[BDEVNAME_SIZE];
1946 int err;
1947 mdk_rdev_t *rdev;
1948 sector_t size;
1950 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
1951 if (!rdev) {
1952 printk(KERN_ERR "md: could not alloc mem for new device!\n");
1953 return ERR_PTR(-ENOMEM);
1956 if ((err = alloc_disk_sb(rdev)))
1957 goto abort_free;
1959 err = lock_rdev(rdev, newdev);
1960 if (err)
1961 goto abort_free;
1963 rdev->kobj.parent = NULL;
1964 rdev->kobj.ktype = &rdev_ktype;
1965 kobject_init(&rdev->kobj);
1967 rdev->desc_nr = -1;
1968 rdev->flags = 0;
1969 rdev->data_offset = 0;
1970 rdev->sb_events = 0;
1971 atomic_set(&rdev->nr_pending, 0);
1972 atomic_set(&rdev->read_errors, 0);
1973 atomic_set(&rdev->corrected_errors, 0);
1975 size = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
1976 if (!size) {
1977 printk(KERN_WARNING
1978 "md: %s has zero or unknown size, marking faulty!\n",
1979 bdevname(rdev->bdev,b));
1980 err = -EINVAL;
1981 goto abort_free;
1984 if (super_format >= 0) {
1985 err = super_types[super_format].
1986 load_super(rdev, NULL, super_minor);
1987 if (err == -EINVAL) {
1988 printk(KERN_WARNING
1989 "md: %s has invalid sb, not importing!\n",
1990 bdevname(rdev->bdev,b));
1991 goto abort_free;
1993 if (err < 0) {
1994 printk(KERN_WARNING
1995 "md: could not read %s's sb, not importing!\n",
1996 bdevname(rdev->bdev,b));
1997 goto abort_free;
2000 INIT_LIST_HEAD(&rdev->same_set);
2002 return rdev;
2004 abort_free:
2005 if (rdev->sb_page) {
2006 if (rdev->bdev)
2007 unlock_rdev(rdev);
2008 free_disk_sb(rdev);
2010 kfree(rdev);
2011 return ERR_PTR(err);
2015 * Check a full RAID array for plausibility
2019 static void analyze_sbs(mddev_t * mddev)
2021 int i;
2022 struct list_head *tmp;
2023 mdk_rdev_t *rdev, *freshest;
2024 char b[BDEVNAME_SIZE];
2026 freshest = NULL;
2027 ITERATE_RDEV(mddev,rdev,tmp)
2028 switch (super_types[mddev->major_version].
2029 load_super(rdev, freshest, mddev->minor_version)) {
2030 case 1:
2031 freshest = rdev;
2032 break;
2033 case 0:
2034 break;
2035 default:
2036 printk( KERN_ERR \
2037 "md: fatal superblock inconsistency in %s"
2038 " -- removing from array\n",
2039 bdevname(rdev->bdev,b));
2040 kick_rdev_from_array(rdev);
2044 super_types[mddev->major_version].
2045 validate_super(mddev, freshest);
2047 i = 0;
2048 ITERATE_RDEV(mddev,rdev,tmp) {
2049 if (rdev != freshest)
2050 if (super_types[mddev->major_version].
2051 validate_super(mddev, rdev)) {
2052 printk(KERN_WARNING "md: kicking non-fresh %s"
2053 " from array!\n",
2054 bdevname(rdev->bdev,b));
2055 kick_rdev_from_array(rdev);
2056 continue;
2058 if (mddev->level == LEVEL_MULTIPATH) {
2059 rdev->desc_nr = i++;
2060 rdev->raid_disk = rdev->desc_nr;
2061 set_bit(In_sync, &rdev->flags);
2067 if (mddev->recovery_cp != MaxSector &&
2068 mddev->level >= 1)
2069 printk(KERN_ERR "md: %s: raid array is not clean"
2070 " -- starting background reconstruction\n",
2071 mdname(mddev));
2075 static ssize_t
2076 safe_delay_show(mddev_t *mddev, char *page)
2078 int msec = (mddev->safemode_delay*1000)/HZ;
2079 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
2081 static ssize_t
2082 safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
2084 int scale=1;
2085 int dot=0;
2086 int i;
2087 unsigned long msec;
2088 char buf[30];
2089 char *e;
2090 /* remove a period, and count digits after it */
2091 if (len >= sizeof(buf))
2092 return -EINVAL;
2093 strlcpy(buf, cbuf, len);
2094 buf[len] = 0;
2095 for (i=0; i<len; i++) {
2096 if (dot) {
2097 if (isdigit(buf[i])) {
2098 buf[i-1] = buf[i];
2099 scale *= 10;
2101 buf[i] = 0;
2102 } else if (buf[i] == '.') {
2103 dot=1;
2104 buf[i] = 0;
2107 msec = simple_strtoul(buf, &e, 10);
2108 if (e == buf || (*e && *e != '\n'))
2109 return -EINVAL;
2110 msec = (msec * 1000) / scale;
2111 if (msec == 0)
2112 mddev->safemode_delay = 0;
2113 else {
2114 mddev->safemode_delay = (msec*HZ)/1000;
2115 if (mddev->safemode_delay == 0)
2116 mddev->safemode_delay = 1;
2118 return len;
2120 static struct md_sysfs_entry md_safe_delay =
2121 __ATTR(safe_mode_delay, 0644,safe_delay_show, safe_delay_store);
2123 static ssize_t
2124 level_show(mddev_t *mddev, char *page)
2126 struct mdk_personality *p = mddev->pers;
2127 if (p)
2128 return sprintf(page, "%s\n", p->name);
2129 else if (mddev->clevel[0])
2130 return sprintf(page, "%s\n", mddev->clevel);
2131 else if (mddev->level != LEVEL_NONE)
2132 return sprintf(page, "%d\n", mddev->level);
2133 else
2134 return 0;
2137 static ssize_t
2138 level_store(mddev_t *mddev, const char *buf, size_t len)
2140 int rv = len;
2141 if (mddev->pers)
2142 return -EBUSY;
2143 if (len == 0)
2144 return 0;
2145 if (len >= sizeof(mddev->clevel))
2146 return -ENOSPC;
2147 strncpy(mddev->clevel, buf, len);
2148 if (mddev->clevel[len-1] == '\n')
2149 len--;
2150 mddev->clevel[len] = 0;
2151 mddev->level = LEVEL_NONE;
2152 return rv;
2155 static struct md_sysfs_entry md_level =
2156 __ATTR(level, 0644, level_show, level_store);
2159 static ssize_t
2160 layout_show(mddev_t *mddev, char *page)
2162 /* just a number, not meaningful for all levels */
2163 return sprintf(page, "%d\n", mddev->layout);
2166 static ssize_t
2167 layout_store(mddev_t *mddev, const char *buf, size_t len)
2169 char *e;
2170 unsigned long n = simple_strtoul(buf, &e, 10);
2171 if (mddev->pers)
2172 return -EBUSY;
2174 if (!*buf || (*e && *e != '\n'))
2175 return -EINVAL;
2177 mddev->layout = n;
2178 return len;
2180 static struct md_sysfs_entry md_layout =
2181 __ATTR(layout, 0655, layout_show, layout_store);
2184 static ssize_t
2185 raid_disks_show(mddev_t *mddev, char *page)
2187 if (mddev->raid_disks == 0)
2188 return 0;
2189 return sprintf(page, "%d\n", mddev->raid_disks);
2192 static int update_raid_disks(mddev_t *mddev, int raid_disks);
2194 static ssize_t
2195 raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
2197 /* can only set raid_disks if array is not yet active */
2198 char *e;
2199 int rv = 0;
2200 unsigned long n = simple_strtoul(buf, &e, 10);
2202 if (!*buf || (*e && *e != '\n'))
2203 return -EINVAL;
2205 if (mddev->pers)
2206 rv = update_raid_disks(mddev, n);
2207 else
2208 mddev->raid_disks = n;
2209 return rv ? rv : len;
2211 static struct md_sysfs_entry md_raid_disks =
2212 __ATTR(raid_disks, 0644, raid_disks_show, raid_disks_store);
2214 static ssize_t
2215 chunk_size_show(mddev_t *mddev, char *page)
2217 return sprintf(page, "%d\n", mddev->chunk_size);
2220 static ssize_t
2221 chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
2223 /* can only set chunk_size if array is not yet active */
2224 char *e;
2225 unsigned long n = simple_strtoul(buf, &e, 10);
2227 if (mddev->pers)
2228 return -EBUSY;
2229 if (!*buf || (*e && *e != '\n'))
2230 return -EINVAL;
2232 mddev->chunk_size = n;
2233 return len;
2235 static struct md_sysfs_entry md_chunk_size =
2236 __ATTR(chunk_size, 0644, chunk_size_show, chunk_size_store);
2239 * The array state can be:
2241 * clear
2242 * No devices, no size, no level
2243 * Equivalent to STOP_ARRAY ioctl
2244 * inactive
2245 * May have some settings, but array is not active
2246 * all IO results in error
2247 * When written, doesn't tear down array, but just stops it
2248 * suspended (not supported yet)
2249 * All IO requests will block. The array can be reconfigured.
2250 * Writing this, if accepted, will block until array is quiessent
2251 * readonly
2252 * no resync can happen. no superblocks get written.
2253 * write requests fail
2254 * read-auto
2255 * like readonly, but behaves like 'clean' on a write request.
2257 * clean - no pending writes, but otherwise active.
2258 * When written to inactive array, starts without resync
2259 * If a write request arrives then
2260 * if metadata is known, mark 'dirty' and switch to 'active'.
2261 * if not known, block and switch to write-pending
2262 * If written to an active array that has pending writes, then fails.
2263 * active
2264 * fully active: IO and resync can be happening.
2265 * When written to inactive array, starts with resync
2267 * write-pending
2268 * clean, but writes are blocked waiting for 'active' to be written.
2270 * active-idle
2271 * like active, but no writes have been seen for a while (100msec).
2274 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
2275 write_pending, active_idle, bad_word};
2276 char *array_states[] = {
2277 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
2278 "write-pending", "active-idle", NULL };
2280 static int match_word(const char *word, char **list)
2282 int n;
2283 for (n=0; list[n]; n++)
2284 if (cmd_match(word, list[n]))
2285 break;
2286 return n;
2289 static ssize_t
2290 array_state_show(mddev_t *mddev, char *page)
2292 enum array_state st = inactive;
2294 if (mddev->pers)
2295 switch(mddev->ro) {
2296 case 1:
2297 st = readonly;
2298 break;
2299 case 2:
2300 st = read_auto;
2301 break;
2302 case 0:
2303 if (mddev->in_sync)
2304 st = clean;
2305 else if (mddev->safemode)
2306 st = active_idle;
2307 else
2308 st = active;
2310 else {
2311 if (list_empty(&mddev->disks) &&
2312 mddev->raid_disks == 0 &&
2313 mddev->size == 0)
2314 st = clear;
2315 else
2316 st = inactive;
2318 return sprintf(page, "%s\n", array_states[st]);
2321 static int do_md_stop(mddev_t * mddev, int ro);
2322 static int do_md_run(mddev_t * mddev);
2323 static int restart_array(mddev_t *mddev);
2325 static ssize_t
2326 array_state_store(mddev_t *mddev, const char *buf, size_t len)
2328 int err = -EINVAL;
2329 enum array_state st = match_word(buf, array_states);
2330 switch(st) {
2331 case bad_word:
2332 break;
2333 case clear:
2334 /* stopping an active array */
2335 if (mddev->pers) {
2336 if (atomic_read(&mddev->active) > 1)
2337 return -EBUSY;
2338 err = do_md_stop(mddev, 0);
2340 break;
2341 case inactive:
2342 /* stopping an active array */
2343 if (mddev->pers) {
2344 if (atomic_read(&mddev->active) > 1)
2345 return -EBUSY;
2346 err = do_md_stop(mddev, 2);
2348 break;
2349 case suspended:
2350 break; /* not supported yet */
2351 case readonly:
2352 if (mddev->pers)
2353 err = do_md_stop(mddev, 1);
2354 else {
2355 mddev->ro = 1;
2356 err = do_md_run(mddev);
2358 break;
2359 case read_auto:
2360 /* stopping an active array */
2361 if (mddev->pers) {
2362 err = do_md_stop(mddev, 1);
2363 if (err == 0)
2364 mddev->ro = 2; /* FIXME mark devices writable */
2365 } else {
2366 mddev->ro = 2;
2367 err = do_md_run(mddev);
2369 break;
2370 case clean:
2371 if (mddev->pers) {
2372 restart_array(mddev);
2373 spin_lock_irq(&mddev->write_lock);
2374 if (atomic_read(&mddev->writes_pending) == 0) {
2375 mddev->in_sync = 1;
2376 mddev->sb_dirty = 1;
2378 spin_unlock_irq(&mddev->write_lock);
2379 } else {
2380 mddev->ro = 0;
2381 mddev->recovery_cp = MaxSector;
2382 err = do_md_run(mddev);
2384 break;
2385 case active:
2386 if (mddev->pers) {
2387 restart_array(mddev);
2388 mddev->sb_dirty = 0;
2389 wake_up(&mddev->sb_wait);
2390 err = 0;
2391 } else {
2392 mddev->ro = 0;
2393 err = do_md_run(mddev);
2395 break;
2396 case write_pending:
2397 case active_idle:
2398 /* these cannot be set */
2399 break;
2401 if (err)
2402 return err;
2403 else
2404 return len;
2406 static struct md_sysfs_entry md_array_state = __ATTR(array_state, 0644, array_state_show, array_state_store);
2408 static ssize_t
2409 null_show(mddev_t *mddev, char *page)
2411 return -EINVAL;
2414 static ssize_t
2415 new_dev_store(mddev_t *mddev, const char *buf, size_t len)
2417 /* buf must be %d:%d\n? giving major and minor numbers */
2418 /* The new device is added to the array.
2419 * If the array has a persistent superblock, we read the
2420 * superblock to initialise info and check validity.
2421 * Otherwise, only checking done is that in bind_rdev_to_array,
2422 * which mainly checks size.
2424 char *e;
2425 int major = simple_strtoul(buf, &e, 10);
2426 int minor;
2427 dev_t dev;
2428 mdk_rdev_t *rdev;
2429 int err;
2431 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
2432 return -EINVAL;
2433 minor = simple_strtoul(e+1, &e, 10);
2434 if (*e && *e != '\n')
2435 return -EINVAL;
2436 dev = MKDEV(major, minor);
2437 if (major != MAJOR(dev) ||
2438 minor != MINOR(dev))
2439 return -EOVERFLOW;
2442 if (mddev->persistent) {
2443 rdev = md_import_device(dev, mddev->major_version,
2444 mddev->minor_version);
2445 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
2446 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
2447 mdk_rdev_t, same_set);
2448 err = super_types[mddev->major_version]
2449 .load_super(rdev, rdev0, mddev->minor_version);
2450 if (err < 0)
2451 goto out;
2453 } else
2454 rdev = md_import_device(dev, -1, -1);
2456 if (IS_ERR(rdev))
2457 return PTR_ERR(rdev);
2458 err = bind_rdev_to_array(rdev, mddev);
2459 out:
2460 if (err)
2461 export_rdev(rdev);
2462 return err ? err : len;
2465 static struct md_sysfs_entry md_new_device =
2466 __ATTR(new_dev, 0200, null_show, new_dev_store);
2468 static ssize_t
2469 size_show(mddev_t *mddev, char *page)
2471 return sprintf(page, "%llu\n", (unsigned long long)mddev->size);
2474 static int update_size(mddev_t *mddev, unsigned long size);
2476 static ssize_t
2477 size_store(mddev_t *mddev, const char *buf, size_t len)
2479 /* If array is inactive, we can reduce the component size, but
2480 * not increase it (except from 0).
2481 * If array is active, we can try an on-line resize
2483 char *e;
2484 int err = 0;
2485 unsigned long long size = simple_strtoull(buf, &e, 10);
2486 if (!*buf || *buf == '\n' ||
2487 (*e && *e != '\n'))
2488 return -EINVAL;
2490 if (mddev->pers) {
2491 err = update_size(mddev, size);
2492 md_update_sb(mddev);
2493 } else {
2494 if (mddev->size == 0 ||
2495 mddev->size > size)
2496 mddev->size = size;
2497 else
2498 err = -ENOSPC;
2500 return err ? err : len;
2503 static struct md_sysfs_entry md_size =
2504 __ATTR(component_size, 0644, size_show, size_store);
2507 /* Metdata version.
2508 * This is either 'none' for arrays with externally managed metadata,
2509 * or N.M for internally known formats
2511 static ssize_t
2512 metadata_show(mddev_t *mddev, char *page)
2514 if (mddev->persistent)
2515 return sprintf(page, "%d.%d\n",
2516 mddev->major_version, mddev->minor_version);
2517 else
2518 return sprintf(page, "none\n");
2521 static ssize_t
2522 metadata_store(mddev_t *mddev, const char *buf, size_t len)
2524 int major, minor;
2525 char *e;
2526 if (!list_empty(&mddev->disks))
2527 return -EBUSY;
2529 if (cmd_match(buf, "none")) {
2530 mddev->persistent = 0;
2531 mddev->major_version = 0;
2532 mddev->minor_version = 90;
2533 return len;
2535 major = simple_strtoul(buf, &e, 10);
2536 if (e==buf || *e != '.')
2537 return -EINVAL;
2538 buf = e+1;
2539 minor = simple_strtoul(buf, &e, 10);
2540 if (e==buf || *e != '\n')
2541 return -EINVAL;
2542 if (major >= sizeof(super_types)/sizeof(super_types[0]) ||
2543 super_types[major].name == NULL)
2544 return -ENOENT;
2545 mddev->major_version = major;
2546 mddev->minor_version = minor;
2547 mddev->persistent = 1;
2548 return len;
2551 static struct md_sysfs_entry md_metadata =
2552 __ATTR(metadata_version, 0644, metadata_show, metadata_store);
2554 static ssize_t
2555 action_show(mddev_t *mddev, char *page)
2557 char *type = "idle";
2558 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2559 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) {
2560 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2561 type = "reshape";
2562 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2563 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2564 type = "resync";
2565 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2566 type = "check";
2567 else
2568 type = "repair";
2569 } else
2570 type = "recover";
2572 return sprintf(page, "%s\n", type);
2575 static ssize_t
2576 action_store(mddev_t *mddev, const char *page, size_t len)
2578 if (!mddev->pers || !mddev->pers->sync_request)
2579 return -EINVAL;
2581 if (cmd_match(page, "idle")) {
2582 if (mddev->sync_thread) {
2583 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2584 md_unregister_thread(mddev->sync_thread);
2585 mddev->sync_thread = NULL;
2586 mddev->recovery = 0;
2588 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
2589 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
2590 return -EBUSY;
2591 else if (cmd_match(page, "resync") || cmd_match(page, "recover"))
2592 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2593 else if (cmd_match(page, "reshape")) {
2594 int err;
2595 if (mddev->pers->start_reshape == NULL)
2596 return -EINVAL;
2597 err = mddev->pers->start_reshape(mddev);
2598 if (err)
2599 return err;
2600 } else {
2601 if (cmd_match(page, "check"))
2602 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
2603 else if (!cmd_match(page, "repair"))
2604 return -EINVAL;
2605 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
2606 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
2608 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2609 md_wakeup_thread(mddev->thread);
2610 return len;
2613 static ssize_t
2614 mismatch_cnt_show(mddev_t *mddev, char *page)
2616 return sprintf(page, "%llu\n",
2617 (unsigned long long) mddev->resync_mismatches);
2620 static struct md_sysfs_entry
2621 md_scan_mode = __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
2624 static struct md_sysfs_entry
2625 md_mismatches = __ATTR_RO(mismatch_cnt);
2627 static ssize_t
2628 sync_min_show(mddev_t *mddev, char *page)
2630 return sprintf(page, "%d (%s)\n", speed_min(mddev),
2631 mddev->sync_speed_min ? "local": "system");
2634 static ssize_t
2635 sync_min_store(mddev_t *mddev, const char *buf, size_t len)
2637 int min;
2638 char *e;
2639 if (strncmp(buf, "system", 6)==0) {
2640 mddev->sync_speed_min = 0;
2641 return len;
2643 min = simple_strtoul(buf, &e, 10);
2644 if (buf == e || (*e && *e != '\n') || min <= 0)
2645 return -EINVAL;
2646 mddev->sync_speed_min = min;
2647 return len;
2650 static struct md_sysfs_entry md_sync_min =
2651 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
2653 static ssize_t
2654 sync_max_show(mddev_t *mddev, char *page)
2656 return sprintf(page, "%d (%s)\n", speed_max(mddev),
2657 mddev->sync_speed_max ? "local": "system");
2660 static ssize_t
2661 sync_max_store(mddev_t *mddev, const char *buf, size_t len)
2663 int max;
2664 char *e;
2665 if (strncmp(buf, "system", 6)==0) {
2666 mddev->sync_speed_max = 0;
2667 return len;
2669 max = simple_strtoul(buf, &e, 10);
2670 if (buf == e || (*e && *e != '\n') || max <= 0)
2671 return -EINVAL;
2672 mddev->sync_speed_max = max;
2673 return len;
2676 static struct md_sysfs_entry md_sync_max =
2677 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
2680 static ssize_t
2681 sync_speed_show(mddev_t *mddev, char *page)
2683 unsigned long resync, dt, db;
2684 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2685 dt = ((jiffies - mddev->resync_mark) / HZ);
2686 if (!dt) dt++;
2687 db = resync - (mddev->resync_mark_cnt);
2688 return sprintf(page, "%ld\n", db/dt/2); /* K/sec */
2691 static struct md_sysfs_entry
2692 md_sync_speed = __ATTR_RO(sync_speed);
2694 static ssize_t
2695 sync_completed_show(mddev_t *mddev, char *page)
2697 unsigned long max_blocks, resync;
2699 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2700 max_blocks = mddev->resync_max_sectors;
2701 else
2702 max_blocks = mddev->size << 1;
2704 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active));
2705 return sprintf(page, "%lu / %lu\n", resync, max_blocks);
2708 static struct md_sysfs_entry
2709 md_sync_completed = __ATTR_RO(sync_completed);
2711 static ssize_t
2712 suspend_lo_show(mddev_t *mddev, char *page)
2714 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
2717 static ssize_t
2718 suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
2720 char *e;
2721 unsigned long long new = simple_strtoull(buf, &e, 10);
2723 if (mddev->pers->quiesce == NULL)
2724 return -EINVAL;
2725 if (buf == e || (*e && *e != '\n'))
2726 return -EINVAL;
2727 if (new >= mddev->suspend_hi ||
2728 (new > mddev->suspend_lo && new < mddev->suspend_hi)) {
2729 mddev->suspend_lo = new;
2730 mddev->pers->quiesce(mddev, 2);
2731 return len;
2732 } else
2733 return -EINVAL;
2735 static struct md_sysfs_entry md_suspend_lo =
2736 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
2739 static ssize_t
2740 suspend_hi_show(mddev_t *mddev, char *page)
2742 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
2745 static ssize_t
2746 suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
2748 char *e;
2749 unsigned long long new = simple_strtoull(buf, &e, 10);
2751 if (mddev->pers->quiesce == NULL)
2752 return -EINVAL;
2753 if (buf == e || (*e && *e != '\n'))
2754 return -EINVAL;
2755 if ((new <= mddev->suspend_lo && mddev->suspend_lo >= mddev->suspend_hi) ||
2756 (new > mddev->suspend_lo && new > mddev->suspend_hi)) {
2757 mddev->suspend_hi = new;
2758 mddev->pers->quiesce(mddev, 1);
2759 mddev->pers->quiesce(mddev, 0);
2760 return len;
2761 } else
2762 return -EINVAL;
2764 static struct md_sysfs_entry md_suspend_hi =
2765 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
2768 static struct attribute *md_default_attrs[] = {
2769 &md_level.attr,
2770 &md_layout.attr,
2771 &md_raid_disks.attr,
2772 &md_chunk_size.attr,
2773 &md_size.attr,
2774 &md_metadata.attr,
2775 &md_new_device.attr,
2776 &md_safe_delay.attr,
2777 &md_array_state.attr,
2778 NULL,
2781 static struct attribute *md_redundancy_attrs[] = {
2782 &md_scan_mode.attr,
2783 &md_mismatches.attr,
2784 &md_sync_min.attr,
2785 &md_sync_max.attr,
2786 &md_sync_speed.attr,
2787 &md_sync_completed.attr,
2788 &md_suspend_lo.attr,
2789 &md_suspend_hi.attr,
2790 NULL,
2792 static struct attribute_group md_redundancy_group = {
2793 .name = NULL,
2794 .attrs = md_redundancy_attrs,
2798 static ssize_t
2799 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2801 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2802 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2803 ssize_t rv;
2805 if (!entry->show)
2806 return -EIO;
2807 rv = mddev_lock(mddev);
2808 if (!rv) {
2809 rv = entry->show(mddev, page);
2810 mddev_unlock(mddev);
2812 return rv;
2815 static ssize_t
2816 md_attr_store(struct kobject *kobj, struct attribute *attr,
2817 const char *page, size_t length)
2819 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
2820 mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
2821 ssize_t rv;
2823 if (!entry->store)
2824 return -EIO;
2825 rv = mddev_lock(mddev);
2826 if (!rv) {
2827 rv = entry->store(mddev, page, length);
2828 mddev_unlock(mddev);
2830 return rv;
2833 static void md_free(struct kobject *ko)
2835 mddev_t *mddev = container_of(ko, mddev_t, kobj);
2836 kfree(mddev);
2839 static struct sysfs_ops md_sysfs_ops = {
2840 .show = md_attr_show,
2841 .store = md_attr_store,
2843 static struct kobj_type md_ktype = {
2844 .release = md_free,
2845 .sysfs_ops = &md_sysfs_ops,
2846 .default_attrs = md_default_attrs,
2849 int mdp_major = 0;
2851 static struct kobject *md_probe(dev_t dev, int *part, void *data)
2853 static DEFINE_MUTEX(disks_mutex);
2854 mddev_t *mddev = mddev_find(dev);
2855 struct gendisk *disk;
2856 int partitioned = (MAJOR(dev) != MD_MAJOR);
2857 int shift = partitioned ? MdpMinorShift : 0;
2858 int unit = MINOR(dev) >> shift;
2860 if (!mddev)
2861 return NULL;
2863 mutex_lock(&disks_mutex);
2864 if (mddev->gendisk) {
2865 mutex_unlock(&disks_mutex);
2866 mddev_put(mddev);
2867 return NULL;
2869 disk = alloc_disk(1 << shift);
2870 if (!disk) {
2871 mutex_unlock(&disks_mutex);
2872 mddev_put(mddev);
2873 return NULL;
2875 disk->major = MAJOR(dev);
2876 disk->first_minor = unit << shift;
2877 if (partitioned) {
2878 sprintf(disk->disk_name, "md_d%d", unit);
2879 sprintf(disk->devfs_name, "md/d%d", unit);
2880 } else {
2881 sprintf(disk->disk_name, "md%d", unit);
2882 sprintf(disk->devfs_name, "md/%d", unit);
2884 disk->fops = &md_fops;
2885 disk->private_data = mddev;
2886 disk->queue = mddev->queue;
2887 add_disk(disk);
2888 mddev->gendisk = disk;
2889 mutex_unlock(&disks_mutex);
2890 mddev->kobj.parent = &disk->kobj;
2891 mddev->kobj.k_name = NULL;
2892 snprintf(mddev->kobj.name, KOBJ_NAME_LEN, "%s", "md");
2893 mddev->kobj.ktype = &md_ktype;
2894 kobject_register(&mddev->kobj);
2895 return NULL;
2898 static void md_safemode_timeout(unsigned long data)
2900 mddev_t *mddev = (mddev_t *) data;
2902 mddev->safemode = 1;
2903 md_wakeup_thread(mddev->thread);
2906 static int start_dirty_degraded;
2908 static int do_md_run(mddev_t * mddev)
2910 int err;
2911 int chunk_size;
2912 struct list_head *tmp;
2913 mdk_rdev_t *rdev;
2914 struct gendisk *disk;
2915 struct mdk_personality *pers;
2916 char b[BDEVNAME_SIZE];
2918 if (list_empty(&mddev->disks))
2919 /* cannot run an array with no devices.. */
2920 return -EINVAL;
2922 if (mddev->pers)
2923 return -EBUSY;
2926 * Analyze all RAID superblock(s)
2928 if (!mddev->raid_disks)
2929 analyze_sbs(mddev);
2931 chunk_size = mddev->chunk_size;
2933 if (chunk_size) {
2934 if (chunk_size > MAX_CHUNK_SIZE) {
2935 printk(KERN_ERR "too big chunk_size: %d > %d\n",
2936 chunk_size, MAX_CHUNK_SIZE);
2937 return -EINVAL;
2940 * chunk-size has to be a power of 2 and multiples of PAGE_SIZE
2942 if ( (1 << ffz(~chunk_size)) != chunk_size) {
2943 printk(KERN_ERR "chunk_size of %d not valid\n", chunk_size);
2944 return -EINVAL;
2946 if (chunk_size < PAGE_SIZE) {
2947 printk(KERN_ERR "too small chunk_size: %d < %ld\n",
2948 chunk_size, PAGE_SIZE);
2949 return -EINVAL;
2952 /* devices must have minimum size of one chunk */
2953 ITERATE_RDEV(mddev,rdev,tmp) {
2954 if (test_bit(Faulty, &rdev->flags))
2955 continue;
2956 if (rdev->size < chunk_size / 1024) {
2957 printk(KERN_WARNING
2958 "md: Dev %s smaller than chunk_size:"
2959 " %lluk < %dk\n",
2960 bdevname(rdev->bdev,b),
2961 (unsigned long long)rdev->size,
2962 chunk_size / 1024);
2963 return -EINVAL;
2968 #ifdef CONFIG_KMOD
2969 if (mddev->level != LEVEL_NONE)
2970 request_module("md-level-%d", mddev->level);
2971 else if (mddev->clevel[0])
2972 request_module("md-%s", mddev->clevel);
2973 #endif
2976 * Drop all container device buffers, from now on
2977 * the only valid external interface is through the md
2978 * device.
2979 * Also find largest hardsector size
2981 ITERATE_RDEV(mddev,rdev,tmp) {
2982 if (test_bit(Faulty, &rdev->flags))
2983 continue;
2984 sync_blockdev(rdev->bdev);
2985 invalidate_bdev(rdev->bdev, 0);
2988 md_probe(mddev->unit, NULL, NULL);
2989 disk = mddev->gendisk;
2990 if (!disk)
2991 return -ENOMEM;
2993 spin_lock(&pers_lock);
2994 pers = find_pers(mddev->level, mddev->clevel);
2995 if (!pers || !try_module_get(pers->owner)) {
2996 spin_unlock(&pers_lock);
2997 if (mddev->level != LEVEL_NONE)
2998 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
2999 mddev->level);
3000 else
3001 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
3002 mddev->clevel);
3003 return -EINVAL;
3005 mddev->pers = pers;
3006 spin_unlock(&pers_lock);
3007 mddev->level = pers->level;
3008 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3010 if (mddev->reshape_position != MaxSector &&
3011 pers->start_reshape == NULL) {
3012 /* This personality cannot handle reshaping... */
3013 mddev->pers = NULL;
3014 module_put(pers->owner);
3015 return -EINVAL;
3018 mddev->recovery = 0;
3019 mddev->resync_max_sectors = mddev->size << 1; /* may be over-ridden by personality */
3020 mddev->barriers_work = 1;
3021 mddev->ok_start_degraded = start_dirty_degraded;
3023 if (start_readonly)
3024 mddev->ro = 2; /* read-only, but switch on first write */
3026 err = mddev->pers->run(mddev);
3027 if (!err && mddev->pers->sync_request) {
3028 err = bitmap_create(mddev);
3029 if (err) {
3030 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
3031 mdname(mddev), err);
3032 mddev->pers->stop(mddev);
3035 if (err) {
3036 printk(KERN_ERR "md: pers->run() failed ...\n");
3037 module_put(mddev->pers->owner);
3038 mddev->pers = NULL;
3039 bitmap_destroy(mddev);
3040 return err;
3042 if (mddev->pers->sync_request)
3043 sysfs_create_group(&mddev->kobj, &md_redundancy_group);
3044 else if (mddev->ro == 2) /* auto-readonly not meaningful */
3045 mddev->ro = 0;
3047 atomic_set(&mddev->writes_pending,0);
3048 mddev->safemode = 0;
3049 mddev->safemode_timer.function = md_safemode_timeout;
3050 mddev->safemode_timer.data = (unsigned long) mddev;
3051 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
3052 mddev->in_sync = 1;
3054 ITERATE_RDEV(mddev,rdev,tmp)
3055 if (rdev->raid_disk >= 0) {
3056 char nm[20];
3057 sprintf(nm, "rd%d", rdev->raid_disk);
3058 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
3061 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3062 md_wakeup_thread(mddev->thread);
3064 if (mddev->sb_dirty)
3065 md_update_sb(mddev);
3067 set_capacity(disk, mddev->array_size<<1);
3069 /* If we call blk_queue_make_request here, it will
3070 * re-initialise max_sectors etc which may have been
3071 * refined inside -> run. So just set the bits we need to set.
3072 * Most initialisation happended when we called
3073 * blk_queue_make_request(..., md_fail_request)
3074 * earlier.
3076 mddev->queue->queuedata = mddev;
3077 mddev->queue->make_request_fn = mddev->pers->make_request;
3079 /* If there is a partially-recovered drive we need to
3080 * start recovery here. If we leave it to md_check_recovery,
3081 * it will remove the drives and not do the right thing
3083 if (mddev->degraded) {
3084 struct list_head *rtmp;
3085 int spares = 0;
3086 ITERATE_RDEV(mddev,rdev,rtmp)
3087 if (rdev->raid_disk >= 0 &&
3088 !test_bit(In_sync, &rdev->flags) &&
3089 !test_bit(Faulty, &rdev->flags))
3090 /* complete an interrupted recovery */
3091 spares++;
3092 if (spares && mddev->pers->sync_request) {
3093 mddev->recovery = 0;
3094 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3095 mddev->sync_thread = md_register_thread(md_do_sync,
3096 mddev,
3097 "%s_resync");
3098 if (!mddev->sync_thread) {
3099 printk(KERN_ERR "%s: could not start resync"
3100 " thread...\n",
3101 mdname(mddev));
3102 /* leave the spares where they are, it shouldn't hurt */
3103 mddev->recovery = 0;
3104 } else
3105 md_wakeup_thread(mddev->sync_thread);
3109 mddev->changed = 1;
3110 md_new_event(mddev);
3111 return 0;
3114 static int restart_array(mddev_t *mddev)
3116 struct gendisk *disk = mddev->gendisk;
3117 int err;
3120 * Complain if it has no devices
3122 err = -ENXIO;
3123 if (list_empty(&mddev->disks))
3124 goto out;
3126 if (mddev->pers) {
3127 err = -EBUSY;
3128 if (!mddev->ro)
3129 goto out;
3131 mddev->safemode = 0;
3132 mddev->ro = 0;
3133 set_disk_ro(disk, 0);
3135 printk(KERN_INFO "md: %s switched to read-write mode.\n",
3136 mdname(mddev));
3138 * Kick recovery or resync if necessary
3140 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3141 md_wakeup_thread(mddev->thread);
3142 md_wakeup_thread(mddev->sync_thread);
3143 err = 0;
3144 } else
3145 err = -EINVAL;
3147 out:
3148 return err;
3151 /* similar to deny_write_access, but accounts for our holding a reference
3152 * to the file ourselves */
3153 static int deny_bitmap_write_access(struct file * file)
3155 struct inode *inode = file->f_mapping->host;
3157 spin_lock(&inode->i_lock);
3158 if (atomic_read(&inode->i_writecount) > 1) {
3159 spin_unlock(&inode->i_lock);
3160 return -ETXTBSY;
3162 atomic_set(&inode->i_writecount, -1);
3163 spin_unlock(&inode->i_lock);
3165 return 0;
3168 static void restore_bitmap_write_access(struct file *file)
3170 struct inode *inode = file->f_mapping->host;
3172 spin_lock(&inode->i_lock);
3173 atomic_set(&inode->i_writecount, 1);
3174 spin_unlock(&inode->i_lock);
3177 /* mode:
3178 * 0 - completely stop and dis-assemble array
3179 * 1 - switch to readonly
3180 * 2 - stop but do not disassemble array
3182 static int do_md_stop(mddev_t * mddev, int mode)
3184 int err = 0;
3185 struct gendisk *disk = mddev->gendisk;
3187 if (mddev->pers) {
3188 if (atomic_read(&mddev->active)>2) {
3189 printk("md: %s still in use.\n",mdname(mddev));
3190 return -EBUSY;
3193 if (mddev->sync_thread) {
3194 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3195 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
3196 md_unregister_thread(mddev->sync_thread);
3197 mddev->sync_thread = NULL;
3200 del_timer_sync(&mddev->safemode_timer);
3202 invalidate_partition(disk, 0);
3204 switch(mode) {
3205 case 1: /* readonly */
3206 err = -ENXIO;
3207 if (mddev->ro==1)
3208 goto out;
3209 mddev->ro = 1;
3210 break;
3211 case 0: /* disassemble */
3212 case 2: /* stop */
3213 bitmap_flush(mddev);
3214 md_super_wait(mddev);
3215 if (mddev->ro)
3216 set_disk_ro(disk, 0);
3217 blk_queue_make_request(mddev->queue, md_fail_request);
3218 mddev->pers->stop(mddev);
3219 if (mddev->pers->sync_request)
3220 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
3222 module_put(mddev->pers->owner);
3223 mddev->pers = NULL;
3224 if (mddev->ro)
3225 mddev->ro = 0;
3227 if (!mddev->in_sync || mddev->sb_dirty) {
3228 /* mark array as shutdown cleanly */
3229 mddev->in_sync = 1;
3230 md_update_sb(mddev);
3232 if (mode == 1)
3233 set_disk_ro(disk, 1);
3234 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
3238 * Free resources if final stop
3240 if (mode == 0) {
3241 mdk_rdev_t *rdev;
3242 struct list_head *tmp;
3243 struct gendisk *disk;
3244 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
3246 bitmap_destroy(mddev);
3247 if (mddev->bitmap_file) {
3248 restore_bitmap_write_access(mddev->bitmap_file);
3249 fput(mddev->bitmap_file);
3250 mddev->bitmap_file = NULL;
3252 mddev->bitmap_offset = 0;
3254 ITERATE_RDEV(mddev,rdev,tmp)
3255 if (rdev->raid_disk >= 0) {
3256 char nm[20];
3257 sprintf(nm, "rd%d", rdev->raid_disk);
3258 sysfs_remove_link(&mddev->kobj, nm);
3261 export_array(mddev);
3263 mddev->array_size = 0;
3264 mddev->size = 0;
3265 mddev->raid_disks = 0;
3267 disk = mddev->gendisk;
3268 if (disk)
3269 set_capacity(disk, 0);
3270 mddev->changed = 1;
3271 } else if (mddev->pers)
3272 printk(KERN_INFO "md: %s switched to read-only mode.\n",
3273 mdname(mddev));
3274 err = 0;
3275 md_new_event(mddev);
3276 out:
3277 return err;
3280 static void autorun_array(mddev_t *mddev)
3282 mdk_rdev_t *rdev;
3283 struct list_head *tmp;
3284 int err;
3286 if (list_empty(&mddev->disks))
3287 return;
3289 printk(KERN_INFO "md: running: ");
3291 ITERATE_RDEV(mddev,rdev,tmp) {
3292 char b[BDEVNAME_SIZE];
3293 printk("<%s>", bdevname(rdev->bdev,b));
3295 printk("\n");
3297 err = do_md_run (mddev);
3298 if (err) {
3299 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
3300 do_md_stop (mddev, 0);
3305 * lets try to run arrays based on all disks that have arrived
3306 * until now. (those are in pending_raid_disks)
3308 * the method: pick the first pending disk, collect all disks with
3309 * the same UUID, remove all from the pending list and put them into
3310 * the 'same_array' list. Then order this list based on superblock
3311 * update time (freshest comes first), kick out 'old' disks and
3312 * compare superblocks. If everything's fine then run it.
3314 * If "unit" is allocated, then bump its reference count
3316 static void autorun_devices(int part)
3318 struct list_head *tmp;
3319 mdk_rdev_t *rdev0, *rdev;
3320 mddev_t *mddev;
3321 char b[BDEVNAME_SIZE];
3323 printk(KERN_INFO "md: autorun ...\n");
3324 while (!list_empty(&pending_raid_disks)) {
3325 dev_t dev;
3326 LIST_HEAD(candidates);
3327 rdev0 = list_entry(pending_raid_disks.next,
3328 mdk_rdev_t, same_set);
3330 printk(KERN_INFO "md: considering %s ...\n",
3331 bdevname(rdev0->bdev,b));
3332 INIT_LIST_HEAD(&candidates);
3333 ITERATE_RDEV_PENDING(rdev,tmp)
3334 if (super_90_load(rdev, rdev0, 0) >= 0) {
3335 printk(KERN_INFO "md: adding %s ...\n",
3336 bdevname(rdev->bdev,b));
3337 list_move(&rdev->same_set, &candidates);
3340 * now we have a set of devices, with all of them having
3341 * mostly sane superblocks. It's time to allocate the
3342 * mddev.
3344 if (rdev0->preferred_minor < 0 || rdev0->preferred_minor >= MAX_MD_DEVS) {
3345 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
3346 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
3347 break;
3349 if (part)
3350 dev = MKDEV(mdp_major,
3351 rdev0->preferred_minor << MdpMinorShift);
3352 else
3353 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
3355 md_probe(dev, NULL, NULL);
3356 mddev = mddev_find(dev);
3357 if (!mddev) {
3358 printk(KERN_ERR
3359 "md: cannot allocate memory for md drive.\n");
3360 break;
3362 if (mddev_lock(mddev))
3363 printk(KERN_WARNING "md: %s locked, cannot run\n",
3364 mdname(mddev));
3365 else if (mddev->raid_disks || mddev->major_version
3366 || !list_empty(&mddev->disks)) {
3367 printk(KERN_WARNING
3368 "md: %s already running, cannot run %s\n",
3369 mdname(mddev), bdevname(rdev0->bdev,b));
3370 mddev_unlock(mddev);
3371 } else {
3372 printk(KERN_INFO "md: created %s\n", mdname(mddev));
3373 ITERATE_RDEV_GENERIC(candidates,rdev,tmp) {
3374 list_del_init(&rdev->same_set);
3375 if (bind_rdev_to_array(rdev, mddev))
3376 export_rdev(rdev);
3378 autorun_array(mddev);
3379 mddev_unlock(mddev);
3381 /* on success, candidates will be empty, on error
3382 * it won't...
3384 ITERATE_RDEV_GENERIC(candidates,rdev,tmp)
3385 export_rdev(rdev);
3386 mddev_put(mddev);
3388 printk(KERN_INFO "md: ... autorun DONE.\n");
3392 * import RAID devices based on one partition
3393 * if possible, the array gets run as well.
3396 static int autostart_array(dev_t startdev)
3398 char b[BDEVNAME_SIZE];
3399 int err = -EINVAL, i;
3400 mdp_super_t *sb = NULL;
3401 mdk_rdev_t *start_rdev = NULL, *rdev;
3403 start_rdev = md_import_device(startdev, 0, 0);
3404 if (IS_ERR(start_rdev))
3405 return err;
3408 /* NOTE: this can only work for 0.90.0 superblocks */
3409 sb = (mdp_super_t*)page_address(start_rdev->sb_page);
3410 if (sb->major_version != 0 ||
3411 sb->minor_version != 90 ) {
3412 printk(KERN_WARNING "md: can only autostart 0.90.0 arrays\n");
3413 export_rdev(start_rdev);
3414 return err;
3417 if (test_bit(Faulty, &start_rdev->flags)) {
3418 printk(KERN_WARNING
3419 "md: can not autostart based on faulty %s!\n",
3420 bdevname(start_rdev->bdev,b));
3421 export_rdev(start_rdev);
3422 return err;
3424 list_add(&start_rdev->same_set, &pending_raid_disks);
3426 for (i = 0; i < MD_SB_DISKS; i++) {
3427 mdp_disk_t *desc = sb->disks + i;
3428 dev_t dev = MKDEV(desc->major, desc->minor);
3430 if (!dev)
3431 continue;
3432 if (dev == startdev)
3433 continue;
3434 if (MAJOR(dev) != desc->major || MINOR(dev) != desc->minor)
3435 continue;
3436 rdev = md_import_device(dev, 0, 0);
3437 if (IS_ERR(rdev))
3438 continue;
3440 list_add(&rdev->same_set, &pending_raid_disks);
3444 * possibly return codes
3446 autorun_devices(0);
3447 return 0;
3452 static int get_version(void __user * arg)
3454 mdu_version_t ver;
3456 ver.major = MD_MAJOR_VERSION;
3457 ver.minor = MD_MINOR_VERSION;
3458 ver.patchlevel = MD_PATCHLEVEL_VERSION;
3460 if (copy_to_user(arg, &ver, sizeof(ver)))
3461 return -EFAULT;
3463 return 0;
3466 static int get_array_info(mddev_t * mddev, void __user * arg)
3468 mdu_array_info_t info;
3469 int nr,working,active,failed,spare;
3470 mdk_rdev_t *rdev;
3471 struct list_head *tmp;
3473 nr=working=active=failed=spare=0;
3474 ITERATE_RDEV(mddev,rdev,tmp) {
3475 nr++;
3476 if (test_bit(Faulty, &rdev->flags))
3477 failed++;
3478 else {
3479 working++;
3480 if (test_bit(In_sync, &rdev->flags))
3481 active++;
3482 else
3483 spare++;
3487 info.major_version = mddev->major_version;
3488 info.minor_version = mddev->minor_version;
3489 info.patch_version = MD_PATCHLEVEL_VERSION;
3490 info.ctime = mddev->ctime;
3491 info.level = mddev->level;
3492 info.size = mddev->size;
3493 if (info.size != mddev->size) /* overflow */
3494 info.size = -1;
3495 info.nr_disks = nr;
3496 info.raid_disks = mddev->raid_disks;
3497 info.md_minor = mddev->md_minor;
3498 info.not_persistent= !mddev->persistent;
3500 info.utime = mddev->utime;
3501 info.state = 0;
3502 if (mddev->in_sync)
3503 info.state = (1<<MD_SB_CLEAN);
3504 if (mddev->bitmap && mddev->bitmap_offset)
3505 info.state = (1<<MD_SB_BITMAP_PRESENT);
3506 info.active_disks = active;
3507 info.working_disks = working;
3508 info.failed_disks = failed;
3509 info.spare_disks = spare;
3511 info.layout = mddev->layout;
3512 info.chunk_size = mddev->chunk_size;
3514 if (copy_to_user(arg, &info, sizeof(info)))
3515 return -EFAULT;
3517 return 0;
3520 static int get_bitmap_file(mddev_t * mddev, void __user * arg)
3522 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
3523 char *ptr, *buf = NULL;
3524 int err = -ENOMEM;
3526 file = kmalloc(sizeof(*file), GFP_KERNEL);
3527 if (!file)
3528 goto out;
3530 /* bitmap disabled, zero the first byte and copy out */
3531 if (!mddev->bitmap || !mddev->bitmap->file) {
3532 file->pathname[0] = '\0';
3533 goto copy_out;
3536 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
3537 if (!buf)
3538 goto out;
3540 ptr = file_path(mddev->bitmap->file, buf, sizeof(file->pathname));
3541 if (!ptr)
3542 goto out;
3544 strcpy(file->pathname, ptr);
3546 copy_out:
3547 err = 0;
3548 if (copy_to_user(arg, file, sizeof(*file)))
3549 err = -EFAULT;
3550 out:
3551 kfree(buf);
3552 kfree(file);
3553 return err;
3556 static int get_disk_info(mddev_t * mddev, void __user * arg)
3558 mdu_disk_info_t info;
3559 unsigned int nr;
3560 mdk_rdev_t *rdev;
3562 if (copy_from_user(&info, arg, sizeof(info)))
3563 return -EFAULT;
3565 nr = info.number;
3567 rdev = find_rdev_nr(mddev, nr);
3568 if (rdev) {
3569 info.major = MAJOR(rdev->bdev->bd_dev);
3570 info.minor = MINOR(rdev->bdev->bd_dev);
3571 info.raid_disk = rdev->raid_disk;
3572 info.state = 0;
3573 if (test_bit(Faulty, &rdev->flags))
3574 info.state |= (1<<MD_DISK_FAULTY);
3575 else if (test_bit(In_sync, &rdev->flags)) {
3576 info.state |= (1<<MD_DISK_ACTIVE);
3577 info.state |= (1<<MD_DISK_SYNC);
3579 if (test_bit(WriteMostly, &rdev->flags))
3580 info.state |= (1<<MD_DISK_WRITEMOSTLY);
3581 } else {
3582 info.major = info.minor = 0;
3583 info.raid_disk = -1;
3584 info.state = (1<<MD_DISK_REMOVED);
3587 if (copy_to_user(arg, &info, sizeof(info)))
3588 return -EFAULT;
3590 return 0;
3593 static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
3595 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
3596 mdk_rdev_t *rdev;
3597 dev_t dev = MKDEV(info->major,info->minor);
3599 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
3600 return -EOVERFLOW;
3602 if (!mddev->raid_disks) {
3603 int err;
3604 /* expecting a device which has a superblock */
3605 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
3606 if (IS_ERR(rdev)) {
3607 printk(KERN_WARNING
3608 "md: md_import_device returned %ld\n",
3609 PTR_ERR(rdev));
3610 return PTR_ERR(rdev);
3612 if (!list_empty(&mddev->disks)) {
3613 mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
3614 mdk_rdev_t, same_set);
3615 int err = super_types[mddev->major_version]
3616 .load_super(rdev, rdev0, mddev->minor_version);
3617 if (err < 0) {
3618 printk(KERN_WARNING
3619 "md: %s has different UUID to %s\n",
3620 bdevname(rdev->bdev,b),
3621 bdevname(rdev0->bdev,b2));
3622 export_rdev(rdev);
3623 return -EINVAL;
3626 err = bind_rdev_to_array(rdev, mddev);
3627 if (err)
3628 export_rdev(rdev);
3629 return err;
3633 * add_new_disk can be used once the array is assembled
3634 * to add "hot spares". They must already have a superblock
3635 * written
3637 if (mddev->pers) {
3638 int err;
3639 if (!mddev->pers->hot_add_disk) {
3640 printk(KERN_WARNING
3641 "%s: personality does not support diskops!\n",
3642 mdname(mddev));
3643 return -EINVAL;
3645 if (mddev->persistent)
3646 rdev = md_import_device(dev, mddev->major_version,
3647 mddev->minor_version);
3648 else
3649 rdev = md_import_device(dev, -1, -1);
3650 if (IS_ERR(rdev)) {
3651 printk(KERN_WARNING
3652 "md: md_import_device returned %ld\n",
3653 PTR_ERR(rdev));
3654 return PTR_ERR(rdev);
3656 /* set save_raid_disk if appropriate */
3657 if (!mddev->persistent) {
3658 if (info->state & (1<<MD_DISK_SYNC) &&
3659 info->raid_disk < mddev->raid_disks)
3660 rdev->raid_disk = info->raid_disk;
3661 else
3662 rdev->raid_disk = -1;
3663 } else
3664 super_types[mddev->major_version].
3665 validate_super(mddev, rdev);
3666 rdev->saved_raid_disk = rdev->raid_disk;
3668 clear_bit(In_sync, &rdev->flags); /* just to be sure */
3669 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3670 set_bit(WriteMostly, &rdev->flags);
3672 rdev->raid_disk = -1;
3673 err = bind_rdev_to_array(rdev, mddev);
3674 if (!err && !mddev->pers->hot_remove_disk) {
3675 /* If there is hot_add_disk but no hot_remove_disk
3676 * then added disks for geometry changes,
3677 * and should be added immediately.
3679 super_types[mddev->major_version].
3680 validate_super(mddev, rdev);
3681 err = mddev->pers->hot_add_disk(mddev, rdev);
3682 if (err)
3683 unbind_rdev_from_array(rdev);
3685 if (err)
3686 export_rdev(rdev);
3688 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3689 md_wakeup_thread(mddev->thread);
3690 return err;
3693 /* otherwise, add_new_disk is only allowed
3694 * for major_version==0 superblocks
3696 if (mddev->major_version != 0) {
3697 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
3698 mdname(mddev));
3699 return -EINVAL;
3702 if (!(info->state & (1<<MD_DISK_FAULTY))) {
3703 int err;
3704 rdev = md_import_device (dev, -1, 0);
3705 if (IS_ERR(rdev)) {
3706 printk(KERN_WARNING
3707 "md: error, md_import_device() returned %ld\n",
3708 PTR_ERR(rdev));
3709 return PTR_ERR(rdev);
3711 rdev->desc_nr = info->number;
3712 if (info->raid_disk < mddev->raid_disks)
3713 rdev->raid_disk = info->raid_disk;
3714 else
3715 rdev->raid_disk = -1;
3717 rdev->flags = 0;
3719 if (rdev->raid_disk < mddev->raid_disks)
3720 if (info->state & (1<<MD_DISK_SYNC))
3721 set_bit(In_sync, &rdev->flags);
3723 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
3724 set_bit(WriteMostly, &rdev->flags);
3726 if (!mddev->persistent) {
3727 printk(KERN_INFO "md: nonpersistent superblock ...\n");
3728 rdev->sb_offset = rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3729 } else
3730 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3731 rdev->size = calc_dev_size(rdev, mddev->chunk_size);
3733 err = bind_rdev_to_array(rdev, mddev);
3734 if (err) {
3735 export_rdev(rdev);
3736 return err;
3740 return 0;
3743 static int hot_remove_disk(mddev_t * mddev, dev_t dev)
3745 char b[BDEVNAME_SIZE];
3746 mdk_rdev_t *rdev;
3748 if (!mddev->pers)
3749 return -ENODEV;
3751 rdev = find_rdev(mddev, dev);
3752 if (!rdev)
3753 return -ENXIO;
3755 if (rdev->raid_disk >= 0)
3756 goto busy;
3758 kick_rdev_from_array(rdev);
3759 md_update_sb(mddev);
3760 md_new_event(mddev);
3762 return 0;
3763 busy:
3764 printk(KERN_WARNING "md: cannot remove active disk %s from %s ... \n",
3765 bdevname(rdev->bdev,b), mdname(mddev));
3766 return -EBUSY;
3769 static int hot_add_disk(mddev_t * mddev, dev_t dev)
3771 char b[BDEVNAME_SIZE];
3772 int err;
3773 unsigned int size;
3774 mdk_rdev_t *rdev;
3776 if (!mddev->pers)
3777 return -ENODEV;
3779 if (mddev->major_version != 0) {
3780 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
3781 " version-0 superblocks.\n",
3782 mdname(mddev));
3783 return -EINVAL;
3785 if (!mddev->pers->hot_add_disk) {
3786 printk(KERN_WARNING
3787 "%s: personality does not support diskops!\n",
3788 mdname(mddev));
3789 return -EINVAL;
3792 rdev = md_import_device (dev, -1, 0);
3793 if (IS_ERR(rdev)) {
3794 printk(KERN_WARNING
3795 "md: error, md_import_device() returned %ld\n",
3796 PTR_ERR(rdev));
3797 return -EINVAL;
3800 if (mddev->persistent)
3801 rdev->sb_offset = calc_dev_sboffset(rdev->bdev);
3802 else
3803 rdev->sb_offset =
3804 rdev->bdev->bd_inode->i_size >> BLOCK_SIZE_BITS;
3806 size = calc_dev_size(rdev, mddev->chunk_size);
3807 rdev->size = size;
3809 if (test_bit(Faulty, &rdev->flags)) {
3810 printk(KERN_WARNING
3811 "md: can not hot-add faulty %s disk to %s!\n",
3812 bdevname(rdev->bdev,b), mdname(mddev));
3813 err = -EINVAL;
3814 goto abort_export;
3816 clear_bit(In_sync, &rdev->flags);
3817 rdev->desc_nr = -1;
3818 err = bind_rdev_to_array(rdev, mddev);
3819 if (err)
3820 goto abort_export;
3823 * The rest should better be atomic, we can have disk failures
3824 * noticed in interrupt contexts ...
3827 if (rdev->desc_nr == mddev->max_disks) {
3828 printk(KERN_WARNING "%s: can not hot-add to full array!\n",
3829 mdname(mddev));
3830 err = -EBUSY;
3831 goto abort_unbind_export;
3834 rdev->raid_disk = -1;
3836 md_update_sb(mddev);
3839 * Kick recovery, maybe this spare has to be added to the
3840 * array immediately.
3842 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3843 md_wakeup_thread(mddev->thread);
3844 md_new_event(mddev);
3845 return 0;
3847 abort_unbind_export:
3848 unbind_rdev_from_array(rdev);
3850 abort_export:
3851 export_rdev(rdev);
3852 return err;
3855 static int set_bitmap_file(mddev_t *mddev, int fd)
3857 int err;
3859 if (mddev->pers) {
3860 if (!mddev->pers->quiesce)
3861 return -EBUSY;
3862 if (mddev->recovery || mddev->sync_thread)
3863 return -EBUSY;
3864 /* we should be able to change the bitmap.. */
3868 if (fd >= 0) {
3869 if (mddev->bitmap)
3870 return -EEXIST; /* cannot add when bitmap is present */
3871 mddev->bitmap_file = fget(fd);
3873 if (mddev->bitmap_file == NULL) {
3874 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
3875 mdname(mddev));
3876 return -EBADF;
3879 err = deny_bitmap_write_access(mddev->bitmap_file);
3880 if (err) {
3881 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
3882 mdname(mddev));
3883 fput(mddev->bitmap_file);
3884 mddev->bitmap_file = NULL;
3885 return err;
3887 mddev->bitmap_offset = 0; /* file overrides offset */
3888 } else if (mddev->bitmap == NULL)
3889 return -ENOENT; /* cannot remove what isn't there */
3890 err = 0;
3891 if (mddev->pers) {
3892 mddev->pers->quiesce(mddev, 1);
3893 if (fd >= 0)
3894 err = bitmap_create(mddev);
3895 if (fd < 0 || err) {
3896 bitmap_destroy(mddev);
3897 fd = -1; /* make sure to put the file */
3899 mddev->pers->quiesce(mddev, 0);
3901 if (fd < 0) {
3902 if (mddev->bitmap_file) {
3903 restore_bitmap_write_access(mddev->bitmap_file);
3904 fput(mddev->bitmap_file);
3906 mddev->bitmap_file = NULL;
3909 return err;
3913 * set_array_info is used two different ways
3914 * The original usage is when creating a new array.
3915 * In this usage, raid_disks is > 0 and it together with
3916 * level, size, not_persistent,layout,chunksize determine the
3917 * shape of the array.
3918 * This will always create an array with a type-0.90.0 superblock.
3919 * The newer usage is when assembling an array.
3920 * In this case raid_disks will be 0, and the major_version field is
3921 * use to determine which style super-blocks are to be found on the devices.
3922 * The minor and patch _version numbers are also kept incase the
3923 * super_block handler wishes to interpret them.
3925 static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
3928 if (info->raid_disks == 0) {
3929 /* just setting version number for superblock loading */
3930 if (info->major_version < 0 ||
3931 info->major_version >= sizeof(super_types)/sizeof(super_types[0]) ||
3932 super_types[info->major_version].name == NULL) {
3933 /* maybe try to auto-load a module? */
3934 printk(KERN_INFO
3935 "md: superblock version %d not known\n",
3936 info->major_version);
3937 return -EINVAL;
3939 mddev->major_version = info->major_version;
3940 mddev->minor_version = info->minor_version;
3941 mddev->patch_version = info->patch_version;
3942 return 0;
3944 mddev->major_version = MD_MAJOR_VERSION;
3945 mddev->minor_version = MD_MINOR_VERSION;
3946 mddev->patch_version = MD_PATCHLEVEL_VERSION;
3947 mddev->ctime = get_seconds();
3949 mddev->level = info->level;
3950 mddev->clevel[0] = 0;
3951 mddev->size = info->size;
3952 mddev->raid_disks = info->raid_disks;
3953 /* don't set md_minor, it is determined by which /dev/md* was
3954 * openned
3956 if (info->state & (1<<MD_SB_CLEAN))
3957 mddev->recovery_cp = MaxSector;
3958 else
3959 mddev->recovery_cp = 0;
3960 mddev->persistent = ! info->not_persistent;
3962 mddev->layout = info->layout;
3963 mddev->chunk_size = info->chunk_size;
3965 mddev->max_disks = MD_SB_DISKS;
3967 mddev->sb_dirty = 1;
3969 mddev->default_bitmap_offset = MD_SB_BYTES >> 9;
3970 mddev->bitmap_offset = 0;
3972 mddev->reshape_position = MaxSector;
3975 * Generate a 128 bit UUID
3977 get_random_bytes(mddev->uuid, 16);
3979 mddev->new_level = mddev->level;
3980 mddev->new_chunk = mddev->chunk_size;
3981 mddev->new_layout = mddev->layout;
3982 mddev->delta_disks = 0;
3984 return 0;
3987 static int update_size(mddev_t *mddev, unsigned long size)
3989 mdk_rdev_t * rdev;
3990 int rv;
3991 struct list_head *tmp;
3992 int fit = (size == 0);
3994 if (mddev->pers->resize == NULL)
3995 return -EINVAL;
3996 /* The "size" is the amount of each device that is used.
3997 * This can only make sense for arrays with redundancy.
3998 * linear and raid0 always use whatever space is available
3999 * We can only consider changing the size if no resync
4000 * or reconstruction is happening, and if the new size
4001 * is acceptable. It must fit before the sb_offset or,
4002 * if that is <data_offset, it must fit before the
4003 * size of each device.
4004 * If size is zero, we find the largest size that fits.
4006 if (mddev->sync_thread)
4007 return -EBUSY;
4008 ITERATE_RDEV(mddev,rdev,tmp) {
4009 sector_t avail;
4010 if (rdev->sb_offset > rdev->data_offset)
4011 avail = (rdev->sb_offset*2) - rdev->data_offset;
4012 else
4013 avail = get_capacity(rdev->bdev->bd_disk)
4014 - rdev->data_offset;
4015 if (fit && (size == 0 || size > avail/2))
4016 size = avail/2;
4017 if (avail < ((sector_t)size << 1))
4018 return -ENOSPC;
4020 rv = mddev->pers->resize(mddev, (sector_t)size *2);
4021 if (!rv) {
4022 struct block_device *bdev;
4024 bdev = bdget_disk(mddev->gendisk, 0);
4025 if (bdev) {
4026 mutex_lock(&bdev->bd_inode->i_mutex);
4027 i_size_write(bdev->bd_inode, (loff_t)mddev->array_size << 10);
4028 mutex_unlock(&bdev->bd_inode->i_mutex);
4029 bdput(bdev);
4032 return rv;
4035 static int update_raid_disks(mddev_t *mddev, int raid_disks)
4037 int rv;
4038 /* change the number of raid disks */
4039 if (mddev->pers->check_reshape == NULL)
4040 return -EINVAL;
4041 if (raid_disks <= 0 ||
4042 raid_disks >= mddev->max_disks)
4043 return -EINVAL;
4044 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
4045 return -EBUSY;
4046 mddev->delta_disks = raid_disks - mddev->raid_disks;
4048 rv = mddev->pers->check_reshape(mddev);
4049 return rv;
4054 * update_array_info is used to change the configuration of an
4055 * on-line array.
4056 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
4057 * fields in the info are checked against the array.
4058 * Any differences that cannot be handled will cause an error.
4059 * Normally, only one change can be managed at a time.
4061 static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
4063 int rv = 0;
4064 int cnt = 0;
4065 int state = 0;
4067 /* calculate expected state,ignoring low bits */
4068 if (mddev->bitmap && mddev->bitmap_offset)
4069 state |= (1 << MD_SB_BITMAP_PRESENT);
4071 if (mddev->major_version != info->major_version ||
4072 mddev->minor_version != info->minor_version ||
4073 /* mddev->patch_version != info->patch_version || */
4074 mddev->ctime != info->ctime ||
4075 mddev->level != info->level ||
4076 /* mddev->layout != info->layout || */
4077 !mddev->persistent != info->not_persistent||
4078 mddev->chunk_size != info->chunk_size ||
4079 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
4080 ((state^info->state) & 0xfffffe00)
4082 return -EINVAL;
4083 /* Check there is only one change */
4084 if (info->size >= 0 && mddev->size != info->size) cnt++;
4085 if (mddev->raid_disks != info->raid_disks) cnt++;
4086 if (mddev->layout != info->layout) cnt++;
4087 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) cnt++;
4088 if (cnt == 0) return 0;
4089 if (cnt > 1) return -EINVAL;
4091 if (mddev->layout != info->layout) {
4092 /* Change layout
4093 * we don't need to do anything at the md level, the
4094 * personality will take care of it all.
4096 if (mddev->pers->reconfig == NULL)
4097 return -EINVAL;
4098 else
4099 return mddev->pers->reconfig(mddev, info->layout, -1);
4101 if (info->size >= 0 && mddev->size != info->size)
4102 rv = update_size(mddev, info->size);
4104 if (mddev->raid_disks != info->raid_disks)
4105 rv = update_raid_disks(mddev, info->raid_disks);
4107 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
4108 if (mddev->pers->quiesce == NULL)
4109 return -EINVAL;
4110 if (mddev->recovery || mddev->sync_thread)
4111 return -EBUSY;
4112 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
4113 /* add the bitmap */
4114 if (mddev->bitmap)
4115 return -EEXIST;
4116 if (mddev->default_bitmap_offset == 0)
4117 return -EINVAL;
4118 mddev->bitmap_offset = mddev->default_bitmap_offset;
4119 mddev->pers->quiesce(mddev, 1);
4120 rv = bitmap_create(mddev);
4121 if (rv)
4122 bitmap_destroy(mddev);
4123 mddev->pers->quiesce(mddev, 0);
4124 } else {
4125 /* remove the bitmap */
4126 if (!mddev->bitmap)
4127 return -ENOENT;
4128 if (mddev->bitmap->file)
4129 return -EINVAL;
4130 mddev->pers->quiesce(mddev, 1);
4131 bitmap_destroy(mddev);
4132 mddev->pers->quiesce(mddev, 0);
4133 mddev->bitmap_offset = 0;
4136 md_update_sb(mddev);
4137 return rv;
4140 static int set_disk_faulty(mddev_t *mddev, dev_t dev)
4142 mdk_rdev_t *rdev;
4144 if (mddev->pers == NULL)
4145 return -ENODEV;
4147 rdev = find_rdev(mddev, dev);
4148 if (!rdev)
4149 return -ENODEV;
4151 md_error(mddev, rdev);
4152 return 0;
4155 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
4157 mddev_t *mddev = bdev->bd_disk->private_data;
4159 geo->heads = 2;
4160 geo->sectors = 4;
4161 geo->cylinders = get_capacity(mddev->gendisk) / 8;
4162 return 0;
4165 static int md_ioctl(struct inode *inode, struct file *file,
4166 unsigned int cmd, unsigned long arg)
4168 int err = 0;
4169 void __user *argp = (void __user *)arg;
4170 mddev_t *mddev = NULL;
4172 if (!capable(CAP_SYS_ADMIN))
4173 return -EACCES;
4176 * Commands dealing with the RAID driver but not any
4177 * particular array:
4179 switch (cmd)
4181 case RAID_VERSION:
4182 err = get_version(argp);
4183 goto done;
4185 case PRINT_RAID_DEBUG:
4186 err = 0;
4187 md_print_devices();
4188 goto done;
4190 #ifndef MODULE
4191 case RAID_AUTORUN:
4192 err = 0;
4193 autostart_arrays(arg);
4194 goto done;
4195 #endif
4196 default:;
4200 * Commands creating/starting a new array:
4203 mddev = inode->i_bdev->bd_disk->private_data;
4205 if (!mddev) {
4206 BUG();
4207 goto abort;
4211 if (cmd == START_ARRAY) {
4212 /* START_ARRAY doesn't need to lock the array as autostart_array
4213 * does the locking, and it could even be a different array
4215 static int cnt = 3;
4216 if (cnt > 0 ) {
4217 printk(KERN_WARNING
4218 "md: %s(pid %d) used deprecated START_ARRAY ioctl. "
4219 "This will not be supported beyond July 2006\n",
4220 current->comm, current->pid);
4221 cnt--;
4223 err = autostart_array(new_decode_dev(arg));
4224 if (err) {
4225 printk(KERN_WARNING "md: autostart failed!\n");
4226 goto abort;
4228 goto done;
4231 err = mddev_lock(mddev);
4232 if (err) {
4233 printk(KERN_INFO
4234 "md: ioctl lock interrupted, reason %d, cmd %d\n",
4235 err, cmd);
4236 goto abort;
4239 switch (cmd)
4241 case SET_ARRAY_INFO:
4243 mdu_array_info_t info;
4244 if (!arg)
4245 memset(&info, 0, sizeof(info));
4246 else if (copy_from_user(&info, argp, sizeof(info))) {
4247 err = -EFAULT;
4248 goto abort_unlock;
4250 if (mddev->pers) {
4251 err = update_array_info(mddev, &info);
4252 if (err) {
4253 printk(KERN_WARNING "md: couldn't update"
4254 " array info. %d\n", err);
4255 goto abort_unlock;
4257 goto done_unlock;
4259 if (!list_empty(&mddev->disks)) {
4260 printk(KERN_WARNING
4261 "md: array %s already has disks!\n",
4262 mdname(mddev));
4263 err = -EBUSY;
4264 goto abort_unlock;
4266 if (mddev->raid_disks) {
4267 printk(KERN_WARNING
4268 "md: array %s already initialised!\n",
4269 mdname(mddev));
4270 err = -EBUSY;
4271 goto abort_unlock;
4273 err = set_array_info(mddev, &info);
4274 if (err) {
4275 printk(KERN_WARNING "md: couldn't set"
4276 " array info. %d\n", err);
4277 goto abort_unlock;
4280 goto done_unlock;
4282 default:;
4286 * Commands querying/configuring an existing array:
4288 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
4289 * RUN_ARRAY, and SET_BITMAP_FILE are allowed */
4290 if (!mddev->raid_disks && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
4291 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE) {
4292 err = -ENODEV;
4293 goto abort_unlock;
4297 * Commands even a read-only array can execute:
4299 switch (cmd)
4301 case GET_ARRAY_INFO:
4302 err = get_array_info(mddev, argp);
4303 goto done_unlock;
4305 case GET_BITMAP_FILE:
4306 err = get_bitmap_file(mddev, argp);
4307 goto done_unlock;
4309 case GET_DISK_INFO:
4310 err = get_disk_info(mddev, argp);
4311 goto done_unlock;
4313 case RESTART_ARRAY_RW:
4314 err = restart_array(mddev);
4315 goto done_unlock;
4317 case STOP_ARRAY:
4318 err = do_md_stop (mddev, 0);
4319 goto done_unlock;
4321 case STOP_ARRAY_RO:
4322 err = do_md_stop (mddev, 1);
4323 goto done_unlock;
4326 * We have a problem here : there is no easy way to give a CHS
4327 * virtual geometry. We currently pretend that we have a 2 heads
4328 * 4 sectors (with a BIG number of cylinders...). This drives
4329 * dosfs just mad... ;-)
4334 * The remaining ioctls are changing the state of the
4335 * superblock, so we do not allow them on read-only arrays.
4336 * However non-MD ioctls (e.g. get-size) will still come through
4337 * here and hit the 'default' below, so only disallow
4338 * 'md' ioctls, and switch to rw mode if started auto-readonly.
4340 if (_IOC_TYPE(cmd) == MD_MAJOR &&
4341 mddev->ro && mddev->pers) {
4342 if (mddev->ro == 2) {
4343 mddev->ro = 0;
4344 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4345 md_wakeup_thread(mddev->thread);
4347 } else {
4348 err = -EROFS;
4349 goto abort_unlock;
4353 switch (cmd)
4355 case ADD_NEW_DISK:
4357 mdu_disk_info_t info;
4358 if (copy_from_user(&info, argp, sizeof(info)))
4359 err = -EFAULT;
4360 else
4361 err = add_new_disk(mddev, &info);
4362 goto done_unlock;
4365 case HOT_REMOVE_DISK:
4366 err = hot_remove_disk(mddev, new_decode_dev(arg));
4367 goto done_unlock;
4369 case HOT_ADD_DISK:
4370 err = hot_add_disk(mddev, new_decode_dev(arg));
4371 goto done_unlock;
4373 case SET_DISK_FAULTY:
4374 err = set_disk_faulty(mddev, new_decode_dev(arg));
4375 goto done_unlock;
4377 case RUN_ARRAY:
4378 err = do_md_run (mddev);
4379 goto done_unlock;
4381 case SET_BITMAP_FILE:
4382 err = set_bitmap_file(mddev, (int)arg);
4383 goto done_unlock;
4385 default:
4386 err = -EINVAL;
4387 goto abort_unlock;
4390 done_unlock:
4391 abort_unlock:
4392 mddev_unlock(mddev);
4394 return err;
4395 done:
4396 if (err)
4397 MD_BUG();
4398 abort:
4399 return err;
4402 static int md_open(struct inode *inode, struct file *file)
4405 * Succeed if we can lock the mddev, which confirms that
4406 * it isn't being stopped right now.
4408 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4409 int err;
4411 if ((err = mddev_lock(mddev)))
4412 goto out;
4414 err = 0;
4415 mddev_get(mddev);
4416 mddev_unlock(mddev);
4418 check_disk_change(inode->i_bdev);
4419 out:
4420 return err;
4423 static int md_release(struct inode *inode, struct file * file)
4425 mddev_t *mddev = inode->i_bdev->bd_disk->private_data;
4427 if (!mddev)
4428 BUG();
4429 mddev_put(mddev);
4431 return 0;
4434 static int md_media_changed(struct gendisk *disk)
4436 mddev_t *mddev = disk->private_data;
4438 return mddev->changed;
4441 static int md_revalidate(struct gendisk *disk)
4443 mddev_t *mddev = disk->private_data;
4445 mddev->changed = 0;
4446 return 0;
4448 static struct block_device_operations md_fops =
4450 .owner = THIS_MODULE,
4451 .open = md_open,
4452 .release = md_release,
4453 .ioctl = md_ioctl,
4454 .getgeo = md_getgeo,
4455 .media_changed = md_media_changed,
4456 .revalidate_disk= md_revalidate,
4459 static int md_thread(void * arg)
4461 mdk_thread_t *thread = arg;
4464 * md_thread is a 'system-thread', it's priority should be very
4465 * high. We avoid resource deadlocks individually in each
4466 * raid personality. (RAID5 does preallocation) We also use RR and
4467 * the very same RT priority as kswapd, thus we will never get
4468 * into a priority inversion deadlock.
4470 * we definitely have to have equal or higher priority than
4471 * bdflush, otherwise bdflush will deadlock if there are too
4472 * many dirty RAID5 blocks.
4475 allow_signal(SIGKILL);
4476 while (!kthread_should_stop()) {
4478 /* We need to wait INTERRUPTIBLE so that
4479 * we don't add to the load-average.
4480 * That means we need to be sure no signals are
4481 * pending
4483 if (signal_pending(current))
4484 flush_signals(current);
4486 wait_event_interruptible_timeout
4487 (thread->wqueue,
4488 test_bit(THREAD_WAKEUP, &thread->flags)
4489 || kthread_should_stop(),
4490 thread->timeout);
4491 try_to_freeze();
4493 clear_bit(THREAD_WAKEUP, &thread->flags);
4495 thread->run(thread->mddev);
4498 return 0;
4501 void md_wakeup_thread(mdk_thread_t *thread)
4503 if (thread) {
4504 dprintk("md: waking up MD thread %s.\n", thread->tsk->comm);
4505 set_bit(THREAD_WAKEUP, &thread->flags);
4506 wake_up(&thread->wqueue);
4510 mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
4511 const char *name)
4513 mdk_thread_t *thread;
4515 thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
4516 if (!thread)
4517 return NULL;
4519 init_waitqueue_head(&thread->wqueue);
4521 thread->run = run;
4522 thread->mddev = mddev;
4523 thread->timeout = MAX_SCHEDULE_TIMEOUT;
4524 thread->tsk = kthread_run(md_thread, thread, name, mdname(thread->mddev));
4525 if (IS_ERR(thread->tsk)) {
4526 kfree(thread);
4527 return NULL;
4529 return thread;
4532 void md_unregister_thread(mdk_thread_t *thread)
4534 dprintk("interrupting MD-thread pid %d\n", thread->tsk->pid);
4536 kthread_stop(thread->tsk);
4537 kfree(thread);
4540 void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
4542 if (!mddev) {
4543 MD_BUG();
4544 return;
4547 if (!rdev || test_bit(Faulty, &rdev->flags))
4548 return;
4550 dprintk("md_error dev:%s, rdev:(%d:%d), (caller: %p,%p,%p,%p).\n",
4551 mdname(mddev),
4552 MAJOR(rdev->bdev->bd_dev), MINOR(rdev->bdev->bd_dev),
4553 __builtin_return_address(0),__builtin_return_address(1),
4554 __builtin_return_address(2),__builtin_return_address(3));
4556 if (!mddev->pers->error_handler)
4557 return;
4558 mddev->pers->error_handler(mddev,rdev);
4559 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4560 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4561 md_wakeup_thread(mddev->thread);
4562 md_new_event_inintr(mddev);
4565 /* seq_file implementation /proc/mdstat */
4567 static void status_unused(struct seq_file *seq)
4569 int i = 0;
4570 mdk_rdev_t *rdev;
4571 struct list_head *tmp;
4573 seq_printf(seq, "unused devices: ");
4575 ITERATE_RDEV_PENDING(rdev,tmp) {
4576 char b[BDEVNAME_SIZE];
4577 i++;
4578 seq_printf(seq, "%s ",
4579 bdevname(rdev->bdev,b));
4581 if (!i)
4582 seq_printf(seq, "<none>");
4584 seq_printf(seq, "\n");
4588 static void status_resync(struct seq_file *seq, mddev_t * mddev)
4590 sector_t max_blocks, resync, res;
4591 unsigned long dt, db, rt;
4592 int scale;
4593 unsigned int per_milli;
4595 resync = (mddev->curr_resync - atomic_read(&mddev->recovery_active))/2;
4597 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4598 max_blocks = mddev->resync_max_sectors >> 1;
4599 else
4600 max_blocks = mddev->size;
4603 * Should not happen.
4605 if (!max_blocks) {
4606 MD_BUG();
4607 return;
4609 /* Pick 'scale' such that (resync>>scale)*1000 will fit
4610 * in a sector_t, and (max_blocks>>scale) will fit in a
4611 * u32, as those are the requirements for sector_div.
4612 * Thus 'scale' must be at least 10
4614 scale = 10;
4615 if (sizeof(sector_t) > sizeof(unsigned long)) {
4616 while ( max_blocks/2 > (1ULL<<(scale+32)))
4617 scale++;
4619 res = (resync>>scale)*1000;
4620 sector_div(res, (u32)((max_blocks>>scale)+1));
4622 per_milli = res;
4624 int i, x = per_milli/50, y = 20-x;
4625 seq_printf(seq, "[");
4626 for (i = 0; i < x; i++)
4627 seq_printf(seq, "=");
4628 seq_printf(seq, ">");
4629 for (i = 0; i < y; i++)
4630 seq_printf(seq, ".");
4631 seq_printf(seq, "] ");
4633 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
4634 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
4635 "reshape" :
4636 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
4637 "resync" : "recovery")),
4638 per_milli/10, per_milli % 10,
4639 (unsigned long long) resync,
4640 (unsigned long long) max_blocks);
4643 * We do not want to overflow, so the order of operands and
4644 * the * 100 / 100 trick are important. We do a +1 to be
4645 * safe against division by zero. We only estimate anyway.
4647 * dt: time from mark until now
4648 * db: blocks written from mark until now
4649 * rt: remaining time
4651 dt = ((jiffies - mddev->resync_mark) / HZ);
4652 if (!dt) dt++;
4653 db = resync - (mddev->resync_mark_cnt/2);
4654 rt = (dt * ((unsigned long)(max_blocks-resync) / (db/100+1)))/100;
4656 seq_printf(seq, " finish=%lu.%lumin", rt / 60, (rt % 60)/6);
4658 seq_printf(seq, " speed=%ldK/sec", db/dt);
4661 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
4663 struct list_head *tmp;
4664 loff_t l = *pos;
4665 mddev_t *mddev;
4667 if (l >= 0x10000)
4668 return NULL;
4669 if (!l--)
4670 /* header */
4671 return (void*)1;
4673 spin_lock(&all_mddevs_lock);
4674 list_for_each(tmp,&all_mddevs)
4675 if (!l--) {
4676 mddev = list_entry(tmp, mddev_t, all_mddevs);
4677 mddev_get(mddev);
4678 spin_unlock(&all_mddevs_lock);
4679 return mddev;
4681 spin_unlock(&all_mddevs_lock);
4682 if (!l--)
4683 return (void*)2;/* tail */
4684 return NULL;
4687 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
4689 struct list_head *tmp;
4690 mddev_t *next_mddev, *mddev = v;
4692 ++*pos;
4693 if (v == (void*)2)
4694 return NULL;
4696 spin_lock(&all_mddevs_lock);
4697 if (v == (void*)1)
4698 tmp = all_mddevs.next;
4699 else
4700 tmp = mddev->all_mddevs.next;
4701 if (tmp != &all_mddevs)
4702 next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
4703 else {
4704 next_mddev = (void*)2;
4705 *pos = 0x10000;
4707 spin_unlock(&all_mddevs_lock);
4709 if (v != (void*)1)
4710 mddev_put(mddev);
4711 return next_mddev;
4715 static void md_seq_stop(struct seq_file *seq, void *v)
4717 mddev_t *mddev = v;
4719 if (mddev && v != (void*)1 && v != (void*)2)
4720 mddev_put(mddev);
4723 struct mdstat_info {
4724 int event;
4727 static int md_seq_show(struct seq_file *seq, void *v)
4729 mddev_t *mddev = v;
4730 sector_t size;
4731 struct list_head *tmp2;
4732 mdk_rdev_t *rdev;
4733 struct mdstat_info *mi = seq->private;
4734 struct bitmap *bitmap;
4736 if (v == (void*)1) {
4737 struct mdk_personality *pers;
4738 seq_printf(seq, "Personalities : ");
4739 spin_lock(&pers_lock);
4740 list_for_each_entry(pers, &pers_list, list)
4741 seq_printf(seq, "[%s] ", pers->name);
4743 spin_unlock(&pers_lock);
4744 seq_printf(seq, "\n");
4745 mi->event = atomic_read(&md_event_count);
4746 return 0;
4748 if (v == (void*)2) {
4749 status_unused(seq);
4750 return 0;
4753 if (mddev_lock(mddev) < 0)
4754 return -EINTR;
4756 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
4757 seq_printf(seq, "%s : %sactive", mdname(mddev),
4758 mddev->pers ? "" : "in");
4759 if (mddev->pers) {
4760 if (mddev->ro==1)
4761 seq_printf(seq, " (read-only)");
4762 if (mddev->ro==2)
4763 seq_printf(seq, "(auto-read-only)");
4764 seq_printf(seq, " %s", mddev->pers->name);
4767 size = 0;
4768 ITERATE_RDEV(mddev,rdev,tmp2) {
4769 char b[BDEVNAME_SIZE];
4770 seq_printf(seq, " %s[%d]",
4771 bdevname(rdev->bdev,b), rdev->desc_nr);
4772 if (test_bit(WriteMostly, &rdev->flags))
4773 seq_printf(seq, "(W)");
4774 if (test_bit(Faulty, &rdev->flags)) {
4775 seq_printf(seq, "(F)");
4776 continue;
4777 } else if (rdev->raid_disk < 0)
4778 seq_printf(seq, "(S)"); /* spare */
4779 size += rdev->size;
4782 if (!list_empty(&mddev->disks)) {
4783 if (mddev->pers)
4784 seq_printf(seq, "\n %llu blocks",
4785 (unsigned long long)mddev->array_size);
4786 else
4787 seq_printf(seq, "\n %llu blocks",
4788 (unsigned long long)size);
4790 if (mddev->persistent) {
4791 if (mddev->major_version != 0 ||
4792 mddev->minor_version != 90) {
4793 seq_printf(seq," super %d.%d",
4794 mddev->major_version,
4795 mddev->minor_version);
4797 } else
4798 seq_printf(seq, " super non-persistent");
4800 if (mddev->pers) {
4801 mddev->pers->status (seq, mddev);
4802 seq_printf(seq, "\n ");
4803 if (mddev->pers->sync_request) {
4804 if (mddev->curr_resync > 2) {
4805 status_resync (seq, mddev);
4806 seq_printf(seq, "\n ");
4807 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
4808 seq_printf(seq, "\tresync=DELAYED\n ");
4809 else if (mddev->recovery_cp < MaxSector)
4810 seq_printf(seq, "\tresync=PENDING\n ");
4812 } else
4813 seq_printf(seq, "\n ");
4815 if ((bitmap = mddev->bitmap)) {
4816 unsigned long chunk_kb;
4817 unsigned long flags;
4818 spin_lock_irqsave(&bitmap->lock, flags);
4819 chunk_kb = bitmap->chunksize >> 10;
4820 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
4821 "%lu%s chunk",
4822 bitmap->pages - bitmap->missing_pages,
4823 bitmap->pages,
4824 (bitmap->pages - bitmap->missing_pages)
4825 << (PAGE_SHIFT - 10),
4826 chunk_kb ? chunk_kb : bitmap->chunksize,
4827 chunk_kb ? "KB" : "B");
4828 if (bitmap->file) {
4829 seq_printf(seq, ", file: ");
4830 seq_path(seq, bitmap->file->f_vfsmnt,
4831 bitmap->file->f_dentry," \t\n");
4834 seq_printf(seq, "\n");
4835 spin_unlock_irqrestore(&bitmap->lock, flags);
4838 seq_printf(seq, "\n");
4840 mddev_unlock(mddev);
4842 return 0;
4845 static struct seq_operations md_seq_ops = {
4846 .start = md_seq_start,
4847 .next = md_seq_next,
4848 .stop = md_seq_stop,
4849 .show = md_seq_show,
4852 static int md_seq_open(struct inode *inode, struct file *file)
4854 int error;
4855 struct mdstat_info *mi = kmalloc(sizeof(*mi), GFP_KERNEL);
4856 if (mi == NULL)
4857 return -ENOMEM;
4859 error = seq_open(file, &md_seq_ops);
4860 if (error)
4861 kfree(mi);
4862 else {
4863 struct seq_file *p = file->private_data;
4864 p->private = mi;
4865 mi->event = atomic_read(&md_event_count);
4867 return error;
4870 static int md_seq_release(struct inode *inode, struct file *file)
4872 struct seq_file *m = file->private_data;
4873 struct mdstat_info *mi = m->private;
4874 m->private = NULL;
4875 kfree(mi);
4876 return seq_release(inode, file);
4879 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
4881 struct seq_file *m = filp->private_data;
4882 struct mdstat_info *mi = m->private;
4883 int mask;
4885 poll_wait(filp, &md_event_waiters, wait);
4887 /* always allow read */
4888 mask = POLLIN | POLLRDNORM;
4890 if (mi->event != atomic_read(&md_event_count))
4891 mask |= POLLERR | POLLPRI;
4892 return mask;
4895 static struct file_operations md_seq_fops = {
4896 .open = md_seq_open,
4897 .read = seq_read,
4898 .llseek = seq_lseek,
4899 .release = md_seq_release,
4900 .poll = mdstat_poll,
4903 int register_md_personality(struct mdk_personality *p)
4905 spin_lock(&pers_lock);
4906 list_add_tail(&p->list, &pers_list);
4907 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
4908 spin_unlock(&pers_lock);
4909 return 0;
4912 int unregister_md_personality(struct mdk_personality *p)
4914 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
4915 spin_lock(&pers_lock);
4916 list_del_init(&p->list);
4917 spin_unlock(&pers_lock);
4918 return 0;
4921 static int is_mddev_idle(mddev_t *mddev)
4923 mdk_rdev_t * rdev;
4924 struct list_head *tmp;
4925 int idle;
4926 unsigned long curr_events;
4928 idle = 1;
4929 ITERATE_RDEV(mddev,rdev,tmp) {
4930 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
4931 curr_events = disk_stat_read(disk, sectors[0]) +
4932 disk_stat_read(disk, sectors[1]) -
4933 atomic_read(&disk->sync_io);
4934 /* The difference between curr_events and last_events
4935 * will be affected by any new non-sync IO (making
4936 * curr_events bigger) and any difference in the amount of
4937 * in-flight syncio (making current_events bigger or smaller)
4938 * The amount in-flight is currently limited to
4939 * 32*64K in raid1/10 and 256*PAGE_SIZE in raid5/6
4940 * which is at most 4096 sectors.
4941 * These numbers are fairly fragile and should be made
4942 * more robust, probably by enforcing the
4943 * 'window size' that md_do_sync sort-of uses.
4945 * Note: the following is an unsigned comparison.
4947 if ((curr_events - rdev->last_events + 4096) > 8192) {
4948 rdev->last_events = curr_events;
4949 idle = 0;
4952 return idle;
4955 void md_done_sync(mddev_t *mddev, int blocks, int ok)
4957 /* another "blocks" (512byte) blocks have been synced */
4958 atomic_sub(blocks, &mddev->recovery_active);
4959 wake_up(&mddev->recovery_wait);
4960 if (!ok) {
4961 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
4962 md_wakeup_thread(mddev->thread);
4963 // stop recovery, signal do_sync ....
4968 /* md_write_start(mddev, bi)
4969 * If we need to update some array metadata (e.g. 'active' flag
4970 * in superblock) before writing, schedule a superblock update
4971 * and wait for it to complete.
4973 void md_write_start(mddev_t *mddev, struct bio *bi)
4975 if (bio_data_dir(bi) != WRITE)
4976 return;
4978 BUG_ON(mddev->ro == 1);
4979 if (mddev->ro == 2) {
4980 /* need to switch to read/write */
4981 mddev->ro = 0;
4982 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4983 md_wakeup_thread(mddev->thread);
4985 atomic_inc(&mddev->writes_pending);
4986 if (mddev->in_sync) {
4987 spin_lock_irq(&mddev->write_lock);
4988 if (mddev->in_sync) {
4989 mddev->in_sync = 0;
4990 mddev->sb_dirty = 3;
4991 md_wakeup_thread(mddev->thread);
4993 spin_unlock_irq(&mddev->write_lock);
4995 wait_event(mddev->sb_wait, mddev->sb_dirty==0);
4998 void md_write_end(mddev_t *mddev)
5000 if (atomic_dec_and_test(&mddev->writes_pending)) {
5001 if (mddev->safemode == 2)
5002 md_wakeup_thread(mddev->thread);
5003 else if (mddev->safemode_delay)
5004 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
5008 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
5010 #define SYNC_MARKS 10
5011 #define SYNC_MARK_STEP (3*HZ)
5012 void md_do_sync(mddev_t *mddev)
5014 mddev_t *mddev2;
5015 unsigned int currspeed = 0,
5016 window;
5017 sector_t max_sectors,j, io_sectors;
5018 unsigned long mark[SYNC_MARKS];
5019 sector_t mark_cnt[SYNC_MARKS];
5020 int last_mark,m;
5021 struct list_head *tmp;
5022 sector_t last_check;
5023 int skipped = 0;
5024 struct list_head *rtmp;
5025 mdk_rdev_t *rdev;
5027 /* just incase thread restarts... */
5028 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
5029 return;
5030 if (mddev->ro) /* never try to sync a read-only array */
5031 return;
5033 /* we overload curr_resync somewhat here.
5034 * 0 == not engaged in resync at all
5035 * 2 == checking that there is no conflict with another sync
5036 * 1 == like 2, but have yielded to allow conflicting resync to
5037 * commense
5038 * other == active in resync - this many blocks
5040 * Before starting a resync we must have set curr_resync to
5041 * 2, and then checked that every "conflicting" array has curr_resync
5042 * less than ours. When we find one that is the same or higher
5043 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
5044 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
5045 * This will mean we have to start checking from the beginning again.
5049 do {
5050 mddev->curr_resync = 2;
5052 try_again:
5053 if (kthread_should_stop()) {
5054 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5055 goto skip;
5057 ITERATE_MDDEV(mddev2,tmp) {
5058 if (mddev2 == mddev)
5059 continue;
5060 if (mddev2->curr_resync &&
5061 match_mddev_units(mddev,mddev2)) {
5062 DEFINE_WAIT(wq);
5063 if (mddev < mddev2 && mddev->curr_resync == 2) {
5064 /* arbitrarily yield */
5065 mddev->curr_resync = 1;
5066 wake_up(&resync_wait);
5068 if (mddev > mddev2 && mddev->curr_resync == 1)
5069 /* no need to wait here, we can wait the next
5070 * time 'round when curr_resync == 2
5072 continue;
5073 prepare_to_wait(&resync_wait, &wq, TASK_UNINTERRUPTIBLE);
5074 if (!kthread_should_stop() &&
5075 mddev2->curr_resync >= mddev->curr_resync) {
5076 printk(KERN_INFO "md: delaying resync of %s"
5077 " until %s has finished resync (they"
5078 " share one or more physical units)\n",
5079 mdname(mddev), mdname(mddev2));
5080 mddev_put(mddev2);
5081 schedule();
5082 finish_wait(&resync_wait, &wq);
5083 goto try_again;
5085 finish_wait(&resync_wait, &wq);
5088 } while (mddev->curr_resync < 2);
5090 j = 0;
5091 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5092 /* resync follows the size requested by the personality,
5093 * which defaults to physical size, but can be virtual size
5095 max_sectors = mddev->resync_max_sectors;
5096 mddev->resync_mismatches = 0;
5097 /* we don't use the checkpoint if there's a bitmap */
5098 if (!mddev->bitmap &&
5099 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
5100 j = mddev->recovery_cp;
5101 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
5102 max_sectors = mddev->size << 1;
5103 else {
5104 /* recovery follows the physical size of devices */
5105 max_sectors = mddev->size << 1;
5106 j = MaxSector;
5107 ITERATE_RDEV(mddev,rdev,rtmp)
5108 if (rdev->raid_disk >= 0 &&
5109 !test_bit(Faulty, &rdev->flags) &&
5110 !test_bit(In_sync, &rdev->flags) &&
5111 rdev->recovery_offset < j)
5112 j = rdev->recovery_offset;
5115 printk(KERN_INFO "md: syncing RAID array %s\n", mdname(mddev));
5116 printk(KERN_INFO "md: minimum _guaranteed_ reconstruction speed:"
5117 " %d KB/sec/disc.\n", speed_min(mddev));
5118 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
5119 "(but not more than %d KB/sec) for reconstruction.\n",
5120 speed_max(mddev));
5122 is_mddev_idle(mddev); /* this also initializes IO event counters */
5124 io_sectors = 0;
5125 for (m = 0; m < SYNC_MARKS; m++) {
5126 mark[m] = jiffies;
5127 mark_cnt[m] = io_sectors;
5129 last_mark = 0;
5130 mddev->resync_mark = mark[last_mark];
5131 mddev->resync_mark_cnt = mark_cnt[last_mark];
5134 * Tune reconstruction:
5136 window = 32*(PAGE_SIZE/512);
5137 printk(KERN_INFO "md: using %dk window, over a total of %llu blocks.\n",
5138 window/2,(unsigned long long) max_sectors/2);
5140 atomic_set(&mddev->recovery_active, 0);
5141 init_waitqueue_head(&mddev->recovery_wait);
5142 last_check = 0;
5144 if (j>2) {
5145 printk(KERN_INFO
5146 "md: resuming recovery of %s from checkpoint.\n",
5147 mdname(mddev));
5148 mddev->curr_resync = j;
5151 while (j < max_sectors) {
5152 sector_t sectors;
5154 skipped = 0;
5155 sectors = mddev->pers->sync_request(mddev, j, &skipped,
5156 currspeed < speed_min(mddev));
5157 if (sectors == 0) {
5158 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
5159 goto out;
5162 if (!skipped) { /* actual IO requested */
5163 io_sectors += sectors;
5164 atomic_add(sectors, &mddev->recovery_active);
5167 j += sectors;
5168 if (j>1) mddev->curr_resync = j;
5169 if (last_check == 0)
5170 /* this is the earliers that rebuilt will be
5171 * visible in /proc/mdstat
5173 md_new_event(mddev);
5175 if (last_check + window > io_sectors || j == max_sectors)
5176 continue;
5178 last_check = io_sectors;
5180 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery) ||
5181 test_bit(MD_RECOVERY_ERR, &mddev->recovery))
5182 break;
5184 repeat:
5185 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
5186 /* step marks */
5187 int next = (last_mark+1) % SYNC_MARKS;
5189 mddev->resync_mark = mark[next];
5190 mddev->resync_mark_cnt = mark_cnt[next];
5191 mark[next] = jiffies;
5192 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
5193 last_mark = next;
5197 if (kthread_should_stop()) {
5199 * got a signal, exit.
5201 printk(KERN_INFO
5202 "md: md_do_sync() got signal ... exiting\n");
5203 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5204 goto out;
5208 * this loop exits only if either when we are slower than
5209 * the 'hard' speed limit, or the system was IO-idle for
5210 * a jiffy.
5211 * the system might be non-idle CPU-wise, but we only care
5212 * about not overloading the IO subsystem. (things like an
5213 * e2fsck being done on the RAID array should execute fast)
5215 mddev->queue->unplug_fn(mddev->queue);
5216 cond_resched();
5218 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
5219 /((jiffies-mddev->resync_mark)/HZ +1) +1;
5221 if (currspeed > speed_min(mddev)) {
5222 if ((currspeed > speed_max(mddev)) ||
5223 !is_mddev_idle(mddev)) {
5224 msleep(500);
5225 goto repeat;
5229 printk(KERN_INFO "md: %s: sync done.\n",mdname(mddev));
5231 * this also signals 'finished resyncing' to md_stop
5233 out:
5234 mddev->queue->unplug_fn(mddev->queue);
5236 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
5238 /* tell personality that we are finished */
5239 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
5241 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5242 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
5243 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
5244 mddev->curr_resync > 2) {
5245 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
5246 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5247 if (mddev->curr_resync >= mddev->recovery_cp) {
5248 printk(KERN_INFO
5249 "md: checkpointing recovery of %s.\n",
5250 mdname(mddev));
5251 mddev->recovery_cp = mddev->curr_resync;
5253 } else
5254 mddev->recovery_cp = MaxSector;
5255 } else {
5256 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5257 mddev->curr_resync = MaxSector;
5258 ITERATE_RDEV(mddev,rdev,rtmp)
5259 if (rdev->raid_disk >= 0 &&
5260 !test_bit(Faulty, &rdev->flags) &&
5261 !test_bit(In_sync, &rdev->flags) &&
5262 rdev->recovery_offset < mddev->curr_resync)
5263 rdev->recovery_offset = mddev->curr_resync;
5264 mddev->sb_dirty = 1;
5268 skip:
5269 mddev->curr_resync = 0;
5270 wake_up(&resync_wait);
5271 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
5272 md_wakeup_thread(mddev->thread);
5274 EXPORT_SYMBOL_GPL(md_do_sync);
5278 * This routine is regularly called by all per-raid-array threads to
5279 * deal with generic issues like resync and super-block update.
5280 * Raid personalities that don't have a thread (linear/raid0) do not
5281 * need this as they never do any recovery or update the superblock.
5283 * It does not do any resync itself, but rather "forks" off other threads
5284 * to do that as needed.
5285 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
5286 * "->recovery" and create a thread at ->sync_thread.
5287 * When the thread finishes it sets MD_RECOVERY_DONE (and might set MD_RECOVERY_ERR)
5288 * and wakeups up this thread which will reap the thread and finish up.
5289 * This thread also removes any faulty devices (with nr_pending == 0).
5291 * The overall approach is:
5292 * 1/ if the superblock needs updating, update it.
5293 * 2/ If a recovery thread is running, don't do anything else.
5294 * 3/ If recovery has finished, clean up, possibly marking spares active.
5295 * 4/ If there are any faulty devices, remove them.
5296 * 5/ If array is degraded, try to add spares devices
5297 * 6/ If array has spares or is not in-sync, start a resync thread.
5299 void md_check_recovery(mddev_t *mddev)
5301 mdk_rdev_t *rdev;
5302 struct list_head *rtmp;
5305 if (mddev->bitmap)
5306 bitmap_daemon_work(mddev->bitmap);
5308 if (mddev->ro)
5309 return;
5311 if (signal_pending(current)) {
5312 if (mddev->pers->sync_request) {
5313 printk(KERN_INFO "md: %s in immediate safe mode\n",
5314 mdname(mddev));
5315 mddev->safemode = 2;
5317 flush_signals(current);
5320 if ( ! (
5321 mddev->sb_dirty ||
5322 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
5323 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
5324 (mddev->safemode == 1) ||
5325 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
5326 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
5328 return;
5330 if (mddev_trylock(mddev)) {
5331 int spares =0;
5333 spin_lock_irq(&mddev->write_lock);
5334 if (mddev->safemode && !atomic_read(&mddev->writes_pending) &&
5335 !mddev->in_sync && mddev->recovery_cp == MaxSector) {
5336 mddev->in_sync = 1;
5337 mddev->sb_dirty = 3;
5339 if (mddev->safemode == 1)
5340 mddev->safemode = 0;
5341 spin_unlock_irq(&mddev->write_lock);
5343 if (mddev->sb_dirty)
5344 md_update_sb(mddev);
5347 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
5348 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
5349 /* resync/recovery still happening */
5350 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5351 goto unlock;
5353 if (mddev->sync_thread) {
5354 /* resync has finished, collect result */
5355 md_unregister_thread(mddev->sync_thread);
5356 mddev->sync_thread = NULL;
5357 if (!test_bit(MD_RECOVERY_ERR, &mddev->recovery) &&
5358 !test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5359 /* success...*/
5360 /* activate any spares */
5361 mddev->pers->spare_active(mddev);
5363 md_update_sb(mddev);
5365 /* if array is no-longer degraded, then any saved_raid_disk
5366 * information must be scrapped
5368 if (!mddev->degraded)
5369 ITERATE_RDEV(mddev,rdev,rtmp)
5370 rdev->saved_raid_disk = -1;
5372 mddev->recovery = 0;
5373 /* flag recovery needed just to double check */
5374 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5375 md_new_event(mddev);
5376 goto unlock;
5378 /* Clear some bits that don't mean anything, but
5379 * might be left set
5381 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5382 clear_bit(MD_RECOVERY_ERR, &mddev->recovery);
5383 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
5384 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
5386 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
5387 goto unlock;
5388 /* no recovery is running.
5389 * remove any failed drives, then
5390 * add spares if possible.
5391 * Spare are also removed and re-added, to allow
5392 * the personality to fail the re-add.
5394 ITERATE_RDEV(mddev,rdev,rtmp)
5395 if (rdev->raid_disk >= 0 &&
5396 (test_bit(Faulty, &rdev->flags) || ! test_bit(In_sync, &rdev->flags)) &&
5397 atomic_read(&rdev->nr_pending)==0) {
5398 if (mddev->pers->hot_remove_disk(mddev, rdev->raid_disk)==0) {
5399 char nm[20];
5400 sprintf(nm,"rd%d", rdev->raid_disk);
5401 sysfs_remove_link(&mddev->kobj, nm);
5402 rdev->raid_disk = -1;
5406 if (mddev->degraded) {
5407 ITERATE_RDEV(mddev,rdev,rtmp)
5408 if (rdev->raid_disk < 0
5409 && !test_bit(Faulty, &rdev->flags)) {
5410 rdev->recovery_offset = 0;
5411 if (mddev->pers->hot_add_disk(mddev,rdev)) {
5412 char nm[20];
5413 sprintf(nm, "rd%d", rdev->raid_disk);
5414 sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
5415 spares++;
5416 md_new_event(mddev);
5417 } else
5418 break;
5422 if (spares) {
5423 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5424 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5425 } else if (mddev->recovery_cp < MaxSector) {
5426 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5427 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
5428 /* nothing to be done ... */
5429 goto unlock;
5431 if (mddev->pers->sync_request) {
5432 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5433 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
5434 /* We are adding a device or devices to an array
5435 * which has the bitmap stored on all devices.
5436 * So make sure all bitmap pages get written
5438 bitmap_write_all(mddev->bitmap);
5440 mddev->sync_thread = md_register_thread(md_do_sync,
5441 mddev,
5442 "%s_resync");
5443 if (!mddev->sync_thread) {
5444 printk(KERN_ERR "%s: could not start resync"
5445 " thread...\n",
5446 mdname(mddev));
5447 /* leave the spares where they are, it shouldn't hurt */
5448 mddev->recovery = 0;
5449 } else
5450 md_wakeup_thread(mddev->sync_thread);
5451 md_new_event(mddev);
5453 unlock:
5454 mddev_unlock(mddev);
5458 static int md_notify_reboot(struct notifier_block *this,
5459 unsigned long code, void *x)
5461 struct list_head *tmp;
5462 mddev_t *mddev;
5464 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
5466 printk(KERN_INFO "md: stopping all md devices.\n");
5468 ITERATE_MDDEV(mddev,tmp)
5469 if (mddev_trylock(mddev)) {
5470 do_md_stop (mddev, 1);
5471 mddev_unlock(mddev);
5474 * certain more exotic SCSI devices are known to be
5475 * volatile wrt too early system reboots. While the
5476 * right place to handle this issue is the given
5477 * driver, we do want to have a safe RAID driver ...
5479 mdelay(1000*1);
5481 return NOTIFY_DONE;
5484 static struct notifier_block md_notifier = {
5485 .notifier_call = md_notify_reboot,
5486 .next = NULL,
5487 .priority = INT_MAX, /* before any real devices */
5490 static void md_geninit(void)
5492 struct proc_dir_entry *p;
5494 dprintk("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
5496 p = create_proc_entry("mdstat", S_IRUGO, NULL);
5497 if (p)
5498 p->proc_fops = &md_seq_fops;
5501 static int __init md_init(void)
5503 int minor;
5505 printk(KERN_INFO "md: md driver %d.%d.%d MAX_MD_DEVS=%d,"
5506 " MD_SB_DISKS=%d\n",
5507 MD_MAJOR_VERSION, MD_MINOR_VERSION,
5508 MD_PATCHLEVEL_VERSION, MAX_MD_DEVS, MD_SB_DISKS);
5509 printk(KERN_INFO "md: bitmap version %d.%d\n", BITMAP_MAJOR_HI,
5510 BITMAP_MINOR);
5512 if (register_blkdev(MAJOR_NR, "md"))
5513 return -1;
5514 if ((mdp_major=register_blkdev(0, "mdp"))<=0) {
5515 unregister_blkdev(MAJOR_NR, "md");
5516 return -1;
5518 devfs_mk_dir("md");
5519 blk_register_region(MKDEV(MAJOR_NR, 0), MAX_MD_DEVS, THIS_MODULE,
5520 md_probe, NULL, NULL);
5521 blk_register_region(MKDEV(mdp_major, 0), MAX_MD_DEVS<<MdpMinorShift, THIS_MODULE,
5522 md_probe, NULL, NULL);
5524 for (minor=0; minor < MAX_MD_DEVS; ++minor)
5525 devfs_mk_bdev(MKDEV(MAJOR_NR, minor),
5526 S_IFBLK|S_IRUSR|S_IWUSR,
5527 "md/%d", minor);
5529 for (minor=0; minor < MAX_MD_DEVS; ++minor)
5530 devfs_mk_bdev(MKDEV(mdp_major, minor<<MdpMinorShift),
5531 S_IFBLK|S_IRUSR|S_IWUSR,
5532 "md/mdp%d", minor);
5535 register_reboot_notifier(&md_notifier);
5536 raid_table_header = register_sysctl_table(raid_root_table, 1);
5538 md_geninit();
5539 return (0);
5543 #ifndef MODULE
5546 * Searches all registered partitions for autorun RAID arrays
5547 * at boot time.
5549 static dev_t detected_devices[128];
5550 static int dev_cnt;
5552 void md_autodetect_dev(dev_t dev)
5554 if (dev_cnt >= 0 && dev_cnt < 127)
5555 detected_devices[dev_cnt++] = dev;
5559 static void autostart_arrays(int part)
5561 mdk_rdev_t *rdev;
5562 int i;
5564 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
5566 for (i = 0; i < dev_cnt; i++) {
5567 dev_t dev = detected_devices[i];
5569 rdev = md_import_device(dev,0, 0);
5570 if (IS_ERR(rdev))
5571 continue;
5573 if (test_bit(Faulty, &rdev->flags)) {
5574 MD_BUG();
5575 continue;
5577 list_add(&rdev->same_set, &pending_raid_disks);
5579 dev_cnt = 0;
5581 autorun_devices(part);
5584 #endif
5586 static __exit void md_exit(void)
5588 mddev_t *mddev;
5589 struct list_head *tmp;
5590 int i;
5591 blk_unregister_region(MKDEV(MAJOR_NR,0), MAX_MD_DEVS);
5592 blk_unregister_region(MKDEV(mdp_major,0), MAX_MD_DEVS << MdpMinorShift);
5593 for (i=0; i < MAX_MD_DEVS; i++)
5594 devfs_remove("md/%d", i);
5595 for (i=0; i < MAX_MD_DEVS; i++)
5596 devfs_remove("md/d%d", i);
5598 devfs_remove("md");
5600 unregister_blkdev(MAJOR_NR,"md");
5601 unregister_blkdev(mdp_major, "mdp");
5602 unregister_reboot_notifier(&md_notifier);
5603 unregister_sysctl_table(raid_table_header);
5604 remove_proc_entry("mdstat", NULL);
5605 ITERATE_MDDEV(mddev,tmp) {
5606 struct gendisk *disk = mddev->gendisk;
5607 if (!disk)
5608 continue;
5609 export_array(mddev);
5610 del_gendisk(disk);
5611 put_disk(disk);
5612 mddev->gendisk = NULL;
5613 mddev_put(mddev);
5617 module_init(md_init)
5618 module_exit(md_exit)
5620 static int get_ro(char *buffer, struct kernel_param *kp)
5622 return sprintf(buffer, "%d", start_readonly);
5624 static int set_ro(const char *val, struct kernel_param *kp)
5626 char *e;
5627 int num = simple_strtoul(val, &e, 10);
5628 if (*val && (*e == '\0' || *e == '\n')) {
5629 start_readonly = num;
5630 return 0;
5632 return -EINVAL;
5635 module_param_call(start_ro, set_ro, get_ro, NULL, 0600);
5636 module_param(start_dirty_degraded, int, 0644);
5639 EXPORT_SYMBOL(register_md_personality);
5640 EXPORT_SYMBOL(unregister_md_personality);
5641 EXPORT_SYMBOL(md_error);
5642 EXPORT_SYMBOL(md_done_sync);
5643 EXPORT_SYMBOL(md_write_start);
5644 EXPORT_SYMBOL(md_write_end);
5645 EXPORT_SYMBOL(md_register_thread);
5646 EXPORT_SYMBOL(md_unregister_thread);
5647 EXPORT_SYMBOL(md_wakeup_thread);
5648 EXPORT_SYMBOL(md_check_recovery);
5649 MODULE_LICENSE("GPL");
5650 MODULE_ALIAS("md");
5651 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);