Slab allocators: Drop support for destructors
[usb.git] / include / linux / reiserfs_fs.h
blob965d5b3ea9eb3deaf583c4d986d45a9e3b70bc8c
1 /*
2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
3 */
5 /* this file has an amazingly stupid
6 name, yura please fix it to be
7 reiserfs.h, and merge all the rest
8 of our .h files that are in this
9 directory into it. */
11 #ifndef _LINUX_REISER_FS_H
12 #define _LINUX_REISER_FS_H
14 #include <linux/types.h>
15 #include <linux/magic.h>
17 #ifdef __KERNEL__
18 #include <linux/slab.h>
19 #include <linux/interrupt.h>
20 #include <linux/sched.h>
21 #include <linux/workqueue.h>
22 #include <asm/unaligned.h>
23 #include <linux/bitops.h>
24 #include <linux/proc_fs.h>
25 #include <linux/smp_lock.h>
26 #include <linux/buffer_head.h>
27 #include <linux/reiserfs_fs_i.h>
28 #include <linux/reiserfs_fs_sb.h>
29 #endif
32 * include/linux/reiser_fs.h
34 * Reiser File System constants and structures
38 /* in reading the #defines, it may help to understand that they employ
39 the following abbreviations:
41 B = Buffer
42 I = Item header
43 H = Height within the tree (should be changed to LEV)
44 N = Number of the item in the node
45 STAT = stat data
46 DEH = Directory Entry Header
47 EC = Entry Count
48 E = Entry number
49 UL = Unsigned Long
50 BLKH = BLocK Header
51 UNFM = UNForMatted node
52 DC = Disk Child
53 P = Path
55 These #defines are named by concatenating these abbreviations,
56 where first comes the arguments, and last comes the return value,
57 of the macro.
61 #define USE_INODE_GENERATION_COUNTER
63 #define REISERFS_PREALLOCATE
64 #define DISPLACE_NEW_PACKING_LOCALITIES
65 #define PREALLOCATION_SIZE 9
67 /* n must be power of 2 */
68 #define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
70 // to be ok for alpha and others we have to align structures to 8 byte
71 // boundary.
72 // FIXME: do not change 4 by anything else: there is code which relies on that
73 #define ROUND_UP(x) _ROUND_UP(x,8LL)
75 /* debug levels. Right now, CONFIG_REISERFS_CHECK means print all debug
76 ** messages.
78 #define REISERFS_DEBUG_CODE 5 /* extra messages to help find/debug errors */
80 void reiserfs_warning(struct super_block *s, const char *fmt, ...);
81 /* assertions handling */
83 /** always check a condition and panic if it's false. */
84 #define RASSERT( cond, format, args... ) \
85 if( !( cond ) ) \
86 reiserfs_panic( NULL, "reiserfs[%i]: assertion " #cond " failed at " \
87 __FILE__ ":%i:%s: " format "\n", \
88 in_interrupt() ? -1 : current -> pid, __LINE__ , __FUNCTION__ , ##args )
90 #if defined( CONFIG_REISERFS_CHECK )
91 #define RFALSE( cond, format, args... ) RASSERT( !( cond ), format, ##args )
92 #else
93 #define RFALSE( cond, format, args... ) do {;} while( 0 )
94 #endif
96 #define CONSTF __attribute_const__
98 * Disk Data Structures
101 /***************************************************************************/
102 /* SUPER BLOCK */
103 /***************************************************************************/
106 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
107 * the version in RAM is part of a larger structure containing fields never written to disk.
109 #define UNSET_HASH 0 // read_super will guess about, what hash names
110 // in directories were sorted with
111 #define TEA_HASH 1
112 #define YURA_HASH 2
113 #define R5_HASH 3
114 #define DEFAULT_HASH R5_HASH
116 struct journal_params {
117 __le32 jp_journal_1st_block; /* where does journal start from on its
118 * device */
119 __le32 jp_journal_dev; /* journal device st_rdev */
120 __le32 jp_journal_size; /* size of the journal */
121 __le32 jp_journal_trans_max; /* max number of blocks in a transaction. */
122 __le32 jp_journal_magic; /* random value made on fs creation (this
123 * was sb_journal_block_count) */
124 __le32 jp_journal_max_batch; /* max number of blocks to batch into a
125 * trans */
126 __le32 jp_journal_max_commit_age; /* in seconds, how old can an async
127 * commit be */
128 __le32 jp_journal_max_trans_age; /* in seconds, how old can a transaction
129 * be */
132 /* this is the super from 3.5.X, where X >= 10 */
133 struct reiserfs_super_block_v1 {
134 __le32 s_block_count; /* blocks count */
135 __le32 s_free_blocks; /* free blocks count */
136 __le32 s_root_block; /* root block number */
137 struct journal_params s_journal;
138 __le16 s_blocksize; /* block size */
139 __le16 s_oid_maxsize; /* max size of object id array, see
140 * get_objectid() commentary */
141 __le16 s_oid_cursize; /* current size of object id array */
142 __le16 s_umount_state; /* this is set to 1 when filesystem was
143 * umounted, to 2 - when not */
144 char s_magic[10]; /* reiserfs magic string indicates that
145 * file system is reiserfs:
146 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
147 __le16 s_fs_state; /* it is set to used by fsck to mark which
148 * phase of rebuilding is done */
149 __le32 s_hash_function_code; /* indicate, what hash function is being use
150 * to sort names in a directory*/
151 __le16 s_tree_height; /* height of disk tree */
152 __le16 s_bmap_nr; /* amount of bitmap blocks needed to address
153 * each block of file system */
154 __le16 s_version; /* this field is only reliable on filesystem
155 * with non-standard journal */
156 __le16 s_reserved_for_journal; /* size in blocks of journal area on main
157 * device, we need to keep after
158 * making fs with non-standard journal */
159 } __attribute__ ((__packed__));
161 #define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
163 /* this is the on disk super block */
164 struct reiserfs_super_block {
165 struct reiserfs_super_block_v1 s_v1;
166 __le32 s_inode_generation;
167 __le32 s_flags; /* Right now used only by inode-attributes, if enabled */
168 unsigned char s_uuid[16]; /* filesystem unique identifier */
169 unsigned char s_label[16]; /* filesystem volume label */
170 char s_unused[88]; /* zero filled by mkreiserfs and
171 * reiserfs_convert_objectid_map_v1()
172 * so any additions must be updated
173 * there as well. */
174 } __attribute__ ((__packed__));
176 #define SB_SIZE (sizeof(struct reiserfs_super_block))
178 #define REISERFS_VERSION_1 0
179 #define REISERFS_VERSION_2 2
181 // on-disk super block fields converted to cpu form
182 #define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
183 #define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
184 #define SB_BLOCKSIZE(s) \
185 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
186 #define SB_BLOCK_COUNT(s) \
187 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
188 #define SB_FREE_BLOCKS(s) \
189 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
190 #define SB_REISERFS_MAGIC(s) \
191 (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
192 #define SB_ROOT_BLOCK(s) \
193 le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
194 #define SB_TREE_HEIGHT(s) \
195 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
196 #define SB_REISERFS_STATE(s) \
197 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
198 #define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
199 #define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
201 #define PUT_SB_BLOCK_COUNT(s, val) \
202 do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
203 #define PUT_SB_FREE_BLOCKS(s, val) \
204 do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
205 #define PUT_SB_ROOT_BLOCK(s, val) \
206 do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
207 #define PUT_SB_TREE_HEIGHT(s, val) \
208 do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
209 #define PUT_SB_REISERFS_STATE(s, val) \
210 do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
211 #define PUT_SB_VERSION(s, val) \
212 do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
213 #define PUT_SB_BMAP_NR(s, val) \
214 do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
216 #define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
217 #define SB_ONDISK_JOURNAL_SIZE(s) \
218 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
219 #define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
220 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
221 #define SB_ONDISK_JOURNAL_DEVICE(s) \
222 le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
223 #define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
224 le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
226 #define is_block_in_log_or_reserved_area(s, block) \
227 block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
228 && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) + \
229 ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
230 SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
232 int is_reiserfs_3_5(struct reiserfs_super_block *rs);
233 int is_reiserfs_3_6(struct reiserfs_super_block *rs);
234 int is_reiserfs_jr(struct reiserfs_super_block *rs);
236 /* ReiserFS leaves the first 64k unused, so that partition labels have
237 enough space. If someone wants to write a fancy bootloader that
238 needs more than 64k, let us know, and this will be increased in size.
239 This number must be larger than than the largest block size on any
240 platform, or code will break. -Hans */
241 #define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
242 #define REISERFS_FIRST_BLOCK unused_define
243 #define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
245 /* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
246 #define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
248 // reiserfs internal error code (used by search_by_key adn fix_nodes))
249 #define CARRY_ON 0
250 #define REPEAT_SEARCH -1
251 #define IO_ERROR -2
252 #define NO_DISK_SPACE -3
253 #define NO_BALANCING_NEEDED (-4)
254 #define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
255 #define QUOTA_EXCEEDED -6
257 typedef __u32 b_blocknr_t;
258 typedef __le32 unp_t;
260 struct unfm_nodeinfo {
261 unp_t unfm_nodenum;
262 unsigned short unfm_freespace;
265 /* there are two formats of keys: 3.5 and 3.6
267 #define KEY_FORMAT_3_5 0
268 #define KEY_FORMAT_3_6 1
270 /* there are two stat datas */
271 #define STAT_DATA_V1 0
272 #define STAT_DATA_V2 1
274 static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
276 return container_of(inode, struct reiserfs_inode_info, vfs_inode);
279 static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
281 return sb->s_fs_info;
284 /** this says about version of key of all items (but stat data) the
285 object consists of */
286 #define get_inode_item_key_version( inode ) \
287 ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
289 #define set_inode_item_key_version( inode, version ) \
290 ({ if((version)==KEY_FORMAT_3_6) \
291 REISERFS_I(inode)->i_flags |= i_item_key_version_mask; \
292 else \
293 REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
295 #define get_inode_sd_version(inode) \
296 ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
298 #define set_inode_sd_version(inode, version) \
299 ({ if((version)==STAT_DATA_V2) \
300 REISERFS_I(inode)->i_flags |= i_stat_data_version_mask; \
301 else \
302 REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
304 /* This is an aggressive tail suppression policy, I am hoping it
305 improves our benchmarks. The principle behind it is that percentage
306 space saving is what matters, not absolute space saving. This is
307 non-intuitive, but it helps to understand it if you consider that the
308 cost to access 4 blocks is not much more than the cost to access 1
309 block, if you have to do a seek and rotate. A tail risks a
310 non-linear disk access that is significant as a percentage of total
311 time cost for a 4 block file and saves an amount of space that is
312 less significant as a percentage of space, or so goes the hypothesis.
313 -Hans */
314 #define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
316 (!(n_tail_size)) || \
317 (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
318 ( (n_file_size) >= (n_block_size) * 4 ) || \
319 ( ( (n_file_size) >= (n_block_size) * 3 ) && \
320 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
321 ( ( (n_file_size) >= (n_block_size) * 2 ) && \
322 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
323 ( ( (n_file_size) >= (n_block_size) ) && \
324 ( (n_tail_size) >= (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
327 /* Another strategy for tails, this one means only create a tail if all the
328 file would fit into one DIRECT item.
329 Primary intention for this one is to increase performance by decreasing
330 seeking.
332 #define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
334 (!(n_tail_size)) || \
335 (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
339 * values for s_umount_state field
341 #define REISERFS_VALID_FS 1
342 #define REISERFS_ERROR_FS 2
345 // there are 5 item types currently
347 #define TYPE_STAT_DATA 0
348 #define TYPE_INDIRECT 1
349 #define TYPE_DIRECT 2
350 #define TYPE_DIRENTRY 3
351 #define TYPE_MAXTYPE 3
352 #define TYPE_ANY 15 // FIXME: comment is required
354 /***************************************************************************/
355 /* KEY & ITEM HEAD */
356 /***************************************************************************/
359 // directories use this key as well as old files
361 struct offset_v1 {
362 __le32 k_offset;
363 __le32 k_uniqueness;
364 } __attribute__ ((__packed__));
366 struct offset_v2 {
367 __le64 v;
368 } __attribute__ ((__packed__));
370 static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
372 __u8 type = le64_to_cpu(v2->v) >> 60;
373 return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
376 static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
378 v2->v =
379 (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
382 static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
384 return le64_to_cpu(v2->v) & (~0ULL >> 4);
387 static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
389 offset &= (~0ULL >> 4);
390 v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
393 /* Key of an item determines its location in the S+tree, and
394 is composed of 4 components */
395 struct reiserfs_key {
396 __le32 k_dir_id; /* packing locality: by default parent
397 directory object id */
398 __le32 k_objectid; /* object identifier */
399 union {
400 struct offset_v1 k_offset_v1;
401 struct offset_v2 k_offset_v2;
402 } __attribute__ ((__packed__)) u;
403 } __attribute__ ((__packed__));
405 struct in_core_key {
406 __u32 k_dir_id; /* packing locality: by default parent
407 directory object id */
408 __u32 k_objectid; /* object identifier */
409 __u64 k_offset;
410 __u8 k_type;
413 struct cpu_key {
414 struct in_core_key on_disk_key;
415 int version;
416 int key_length; /* 3 in all cases but direct2indirect and
417 indirect2direct conversion */
420 /* Our function for comparing keys can compare keys of different
421 lengths. It takes as a parameter the length of the keys it is to
422 compare. These defines are used in determining what is to be passed
423 to it as that parameter. */
424 #define REISERFS_FULL_KEY_LEN 4
425 #define REISERFS_SHORT_KEY_LEN 2
427 /* The result of the key compare */
428 #define FIRST_GREATER 1
429 #define SECOND_GREATER -1
430 #define KEYS_IDENTICAL 0
431 #define KEY_FOUND 1
432 #define KEY_NOT_FOUND 0
434 #define KEY_SIZE (sizeof(struct reiserfs_key))
435 #define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
437 /* return values for search_by_key and clones */
438 #define ITEM_FOUND 1
439 #define ITEM_NOT_FOUND 0
440 #define ENTRY_FOUND 1
441 #define ENTRY_NOT_FOUND 0
442 #define DIRECTORY_NOT_FOUND -1
443 #define REGULAR_FILE_FOUND -2
444 #define DIRECTORY_FOUND -3
445 #define BYTE_FOUND 1
446 #define BYTE_NOT_FOUND 0
447 #define FILE_NOT_FOUND -1
449 #define POSITION_FOUND 1
450 #define POSITION_NOT_FOUND 0
452 // return values for reiserfs_find_entry and search_by_entry_key
453 #define NAME_FOUND 1
454 #define NAME_NOT_FOUND 0
455 #define GOTO_PREVIOUS_ITEM 2
456 #define NAME_FOUND_INVISIBLE 3
458 /* Everything in the filesystem is stored as a set of items. The
459 item head contains the key of the item, its free space (for
460 indirect items) and specifies the location of the item itself
461 within the block. */
463 struct item_head {
464 /* Everything in the tree is found by searching for it based on
465 * its key.*/
466 struct reiserfs_key ih_key;
467 union {
468 /* The free space in the last unformatted node of an
469 indirect item if this is an indirect item. This
470 equals 0xFFFF iff this is a direct item or stat data
471 item. Note that the key, not this field, is used to
472 determine the item type, and thus which field this
473 union contains. */
474 __le16 ih_free_space_reserved;
475 /* Iff this is a directory item, this field equals the
476 number of directory entries in the directory item. */
477 __le16 ih_entry_count;
478 } __attribute__ ((__packed__)) u;
479 __le16 ih_item_len; /* total size of the item body */
480 __le16 ih_item_location; /* an offset to the item body
481 * within the block */
482 __le16 ih_version; /* 0 for all old items, 2 for new
483 ones. Highest bit is set by fsck
484 temporary, cleaned after all
485 done */
486 } __attribute__ ((__packed__));
487 /* size of item header */
488 #define IH_SIZE (sizeof(struct item_head))
490 #define ih_free_space(ih) le16_to_cpu((ih)->u.ih_free_space_reserved)
491 #define ih_version(ih) le16_to_cpu((ih)->ih_version)
492 #define ih_entry_count(ih) le16_to_cpu((ih)->u.ih_entry_count)
493 #define ih_location(ih) le16_to_cpu((ih)->ih_item_location)
494 #define ih_item_len(ih) le16_to_cpu((ih)->ih_item_len)
496 #define put_ih_free_space(ih, val) do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
497 #define put_ih_version(ih, val) do { (ih)->ih_version = cpu_to_le16(val); } while (0)
498 #define put_ih_entry_count(ih, val) do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
499 #define put_ih_location(ih, val) do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
500 #define put_ih_item_len(ih, val) do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
502 #define unreachable_item(ih) (ih_version(ih) & (1 << 15))
504 #define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
505 #define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
507 /* these operate on indirect items, where you've got an array of ints
508 ** at a possibly unaligned location. These are a noop on ia32
510 ** p is the array of __u32, i is the index into the array, v is the value
511 ** to store there.
513 #define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
514 #define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
517 // in old version uniqueness field shows key type
519 #define V1_SD_UNIQUENESS 0
520 #define V1_INDIRECT_UNIQUENESS 0xfffffffe
521 #define V1_DIRECT_UNIQUENESS 0xffffffff
522 #define V1_DIRENTRY_UNIQUENESS 500
523 #define V1_ANY_UNIQUENESS 555 // FIXME: comment is required
526 // here are conversion routines
528 static inline int uniqueness2type(__u32 uniqueness) CONSTF;
529 static inline int uniqueness2type(__u32 uniqueness)
531 switch ((int)uniqueness) {
532 case V1_SD_UNIQUENESS:
533 return TYPE_STAT_DATA;
534 case V1_INDIRECT_UNIQUENESS:
535 return TYPE_INDIRECT;
536 case V1_DIRECT_UNIQUENESS:
537 return TYPE_DIRECT;
538 case V1_DIRENTRY_UNIQUENESS:
539 return TYPE_DIRENTRY;
540 default:
541 reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
542 uniqueness);
543 case V1_ANY_UNIQUENESS:
544 return TYPE_ANY;
548 static inline __u32 type2uniqueness(int type) CONSTF;
549 static inline __u32 type2uniqueness(int type)
551 switch (type) {
552 case TYPE_STAT_DATA:
553 return V1_SD_UNIQUENESS;
554 case TYPE_INDIRECT:
555 return V1_INDIRECT_UNIQUENESS;
556 case TYPE_DIRECT:
557 return V1_DIRECT_UNIQUENESS;
558 case TYPE_DIRENTRY:
559 return V1_DIRENTRY_UNIQUENESS;
560 default:
561 reiserfs_warning(NULL, "vs-501: unknown type %d", type);
562 case TYPE_ANY:
563 return V1_ANY_UNIQUENESS;
568 // key is pointer to on disk key which is stored in le, result is cpu,
569 // there is no way to get version of object from key, so, provide
570 // version to these defines
572 static inline loff_t le_key_k_offset(int version,
573 const struct reiserfs_key *key)
575 return (version == KEY_FORMAT_3_5) ?
576 le32_to_cpu(key->u.k_offset_v1.k_offset) :
577 offset_v2_k_offset(&(key->u.k_offset_v2));
580 static inline loff_t le_ih_k_offset(const struct item_head *ih)
582 return le_key_k_offset(ih_version(ih), &(ih->ih_key));
585 static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
587 return (version == KEY_FORMAT_3_5) ?
588 uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
589 offset_v2_k_type(&(key->u.k_offset_v2));
592 static inline loff_t le_ih_k_type(const struct item_head *ih)
594 return le_key_k_type(ih_version(ih), &(ih->ih_key));
597 static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
598 loff_t offset)
600 (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) : /* jdm check */
601 (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
604 static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
606 set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
609 static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
610 int type)
612 (version == KEY_FORMAT_3_5) ?
613 (void)(key->u.k_offset_v1.k_uniqueness =
614 cpu_to_le32(type2uniqueness(type)))
615 : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
617 static inline void set_le_ih_k_type(struct item_head *ih, int type)
619 set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
622 #define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
623 #define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
624 #define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
625 #define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
628 // item header has version.
630 #define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
631 #define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
632 #define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
633 #define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
636 // key is pointer to cpu key, result is cpu
638 static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
640 return key->on_disk_key.k_offset;
643 static inline loff_t cpu_key_k_type(const struct cpu_key *key)
645 return key->on_disk_key.k_type;
648 static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
650 key->on_disk_key.k_offset = offset;
653 static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
655 key->on_disk_key.k_type = type;
658 static inline void cpu_key_k_offset_dec(struct cpu_key *key)
660 key->on_disk_key.k_offset--;
663 #define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
664 #define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
665 #define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
666 #define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
668 /* are these used ? */
669 #define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
670 #define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
671 #define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
672 #define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
674 #define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
675 ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
676 I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
678 /* maximal length of item */
679 #define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
680 #define MIN_ITEM_LEN 1
682 /* object identifier for root dir */
683 #define REISERFS_ROOT_OBJECTID 2
684 #define REISERFS_ROOT_PARENT_OBJECTID 1
685 extern struct reiserfs_key root_key;
688 * Picture represents a leaf of the S+tree
689 * ______________________________________________________
690 * | | Array of | | |
691 * |Block | Object-Item | F r e e | Objects- |
692 * | head | Headers | S p a c e | Items |
693 * |______|_______________|___________________|___________|
696 /* Header of a disk block. More precisely, header of a formatted leaf
697 or internal node, and not the header of an unformatted node. */
698 struct block_head {
699 __le16 blk_level; /* Level of a block in the tree. */
700 __le16 blk_nr_item; /* Number of keys/items in a block. */
701 __le16 blk_free_space; /* Block free space in bytes. */
702 __le16 blk_reserved;
703 /* dump this in v4/planA */
704 struct reiserfs_key blk_right_delim_key; /* kept only for compatibility */
707 #define BLKH_SIZE (sizeof(struct block_head))
708 #define blkh_level(p_blkh) (le16_to_cpu((p_blkh)->blk_level))
709 #define blkh_nr_item(p_blkh) (le16_to_cpu((p_blkh)->blk_nr_item))
710 #define blkh_free_space(p_blkh) (le16_to_cpu((p_blkh)->blk_free_space))
711 #define blkh_reserved(p_blkh) (le16_to_cpu((p_blkh)->blk_reserved))
712 #define set_blkh_level(p_blkh,val) ((p_blkh)->blk_level = cpu_to_le16(val))
713 #define set_blkh_nr_item(p_blkh,val) ((p_blkh)->blk_nr_item = cpu_to_le16(val))
714 #define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
715 #define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
716 #define blkh_right_delim_key(p_blkh) ((p_blkh)->blk_right_delim_key)
717 #define set_blkh_right_delim_key(p_blkh,val) ((p_blkh)->blk_right_delim_key = val)
720 * values for blk_level field of the struct block_head
723 #define FREE_LEVEL 0 /* when node gets removed from the tree its
724 blk_level is set to FREE_LEVEL. It is then
725 used to see whether the node is still in the
726 tree */
728 #define DISK_LEAF_NODE_LEVEL 1 /* Leaf node level. */
730 /* Given the buffer head of a formatted node, resolve to the block head of that node. */
731 #define B_BLK_HEAD(p_s_bh) ((struct block_head *)((p_s_bh)->b_data))
732 /* Number of items that are in buffer. */
733 #define B_NR_ITEMS(p_s_bh) (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
734 #define B_LEVEL(p_s_bh) (blkh_level(B_BLK_HEAD(p_s_bh)))
735 #define B_FREE_SPACE(p_s_bh) (blkh_free_space(B_BLK_HEAD(p_s_bh)))
737 #define PUT_B_NR_ITEMS(p_s_bh,val) do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
738 #define PUT_B_LEVEL(p_s_bh,val) do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
739 #define PUT_B_FREE_SPACE(p_s_bh,val) do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
741 /* Get right delimiting key. -- little endian */
742 #define B_PRIGHT_DELIM_KEY(p_s_bh) (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
744 /* Does the buffer contain a disk leaf. */
745 #define B_IS_ITEMS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
747 /* Does the buffer contain a disk internal node */
748 #define B_IS_KEYS_LEVEL(p_s_bh) (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
749 && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
751 /***************************************************************************/
752 /* STAT DATA */
753 /***************************************************************************/
756 // old stat data is 32 bytes long. We are going to distinguish new one by
757 // different size
759 struct stat_data_v1 {
760 __le16 sd_mode; /* file type, permissions */
761 __le16 sd_nlink; /* number of hard links */
762 __le16 sd_uid; /* owner */
763 __le16 sd_gid; /* group */
764 __le32 sd_size; /* file size */
765 __le32 sd_atime; /* time of last access */
766 __le32 sd_mtime; /* time file was last modified */
767 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
768 union {
769 __le32 sd_rdev;
770 __le32 sd_blocks; /* number of blocks file uses */
771 } __attribute__ ((__packed__)) u;
772 __le32 sd_first_direct_byte; /* first byte of file which is stored
773 in a direct item: except that if it
774 equals 1 it is a symlink and if it
775 equals ~(__u32)0 there is no
776 direct item. The existence of this
777 field really grates on me. Let's
778 replace it with a macro based on
779 sd_size and our tail suppression
780 policy. Someday. -Hans */
781 } __attribute__ ((__packed__));
783 #define SD_V1_SIZE (sizeof(struct stat_data_v1))
784 #define stat_data_v1(ih) (ih_version (ih) == KEY_FORMAT_3_5)
785 #define sd_v1_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
786 #define set_sd_v1_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
787 #define sd_v1_nlink(sdp) (le16_to_cpu((sdp)->sd_nlink))
788 #define set_sd_v1_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le16(v))
789 #define sd_v1_uid(sdp) (le16_to_cpu((sdp)->sd_uid))
790 #define set_sd_v1_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le16(v))
791 #define sd_v1_gid(sdp) (le16_to_cpu((sdp)->sd_gid))
792 #define set_sd_v1_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le16(v))
793 #define sd_v1_size(sdp) (le32_to_cpu((sdp)->sd_size))
794 #define set_sd_v1_size(sdp,v) ((sdp)->sd_size = cpu_to_le32(v))
795 #define sd_v1_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
796 #define set_sd_v1_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
797 #define sd_v1_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
798 #define set_sd_v1_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
799 #define sd_v1_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
800 #define set_sd_v1_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
801 #define sd_v1_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
802 #define set_sd_v1_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
803 #define sd_v1_blocks(sdp) (le32_to_cpu((sdp)->u.sd_blocks))
804 #define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
805 #define sd_v1_first_direct_byte(sdp) \
806 (le32_to_cpu((sdp)->sd_first_direct_byte))
807 #define set_sd_v1_first_direct_byte(sdp,v) \
808 ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
810 /* inode flags stored in sd_attrs (nee sd_reserved) */
812 /* we want common flags to have the same values as in ext2,
813 so chattr(1) will work without problems */
814 #define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
815 #define REISERFS_APPEND_FL FS_APPEND_FL
816 #define REISERFS_SYNC_FL FS_SYNC_FL
817 #define REISERFS_NOATIME_FL FS_NOATIME_FL
818 #define REISERFS_NODUMP_FL FS_NODUMP_FL
819 #define REISERFS_SECRM_FL FS_SECRM_FL
820 #define REISERFS_UNRM_FL FS_UNRM_FL
821 #define REISERFS_COMPR_FL FS_COMPR_FL
822 #define REISERFS_NOTAIL_FL FS_NOTAIL_FL
824 /* persistent flags that file inherits from the parent directory */
825 #define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
826 REISERFS_SYNC_FL | \
827 REISERFS_NOATIME_FL | \
828 REISERFS_NODUMP_FL | \
829 REISERFS_SECRM_FL | \
830 REISERFS_COMPR_FL | \
831 REISERFS_NOTAIL_FL )
833 /* Stat Data on disk (reiserfs version of UFS disk inode minus the
834 address blocks) */
835 struct stat_data {
836 __le16 sd_mode; /* file type, permissions */
837 __le16 sd_attrs; /* persistent inode flags */
838 __le32 sd_nlink; /* number of hard links */
839 __le64 sd_size; /* file size */
840 __le32 sd_uid; /* owner */
841 __le32 sd_gid; /* group */
842 __le32 sd_atime; /* time of last access */
843 __le32 sd_mtime; /* time file was last modified */
844 __le32 sd_ctime; /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
845 __le32 sd_blocks;
846 union {
847 __le32 sd_rdev;
848 __le32 sd_generation;
849 //__le32 sd_first_direct_byte;
850 /* first byte of file which is stored in a
851 direct item: except that if it equals 1
852 it is a symlink and if it equals
853 ~(__u32)0 there is no direct item. The
854 existence of this field really grates
855 on me. Let's replace it with a macro
856 based on sd_size and our tail
857 suppression policy? */
858 } __attribute__ ((__packed__)) u;
859 } __attribute__ ((__packed__));
861 // this is 44 bytes long
863 #define SD_SIZE (sizeof(struct stat_data))
864 #define SD_V2_SIZE SD_SIZE
865 #define stat_data_v2(ih) (ih_version (ih) == KEY_FORMAT_3_6)
866 #define sd_v2_mode(sdp) (le16_to_cpu((sdp)->sd_mode))
867 #define set_sd_v2_mode(sdp,v) ((sdp)->sd_mode = cpu_to_le16(v))
868 /* sd_reserved */
869 /* set_sd_reserved */
870 #define sd_v2_nlink(sdp) (le32_to_cpu((sdp)->sd_nlink))
871 #define set_sd_v2_nlink(sdp,v) ((sdp)->sd_nlink = cpu_to_le32(v))
872 #define sd_v2_size(sdp) (le64_to_cpu((sdp)->sd_size))
873 #define set_sd_v2_size(sdp,v) ((sdp)->sd_size = cpu_to_le64(v))
874 #define sd_v2_uid(sdp) (le32_to_cpu((sdp)->sd_uid))
875 #define set_sd_v2_uid(sdp,v) ((sdp)->sd_uid = cpu_to_le32(v))
876 #define sd_v2_gid(sdp) (le32_to_cpu((sdp)->sd_gid))
877 #define set_sd_v2_gid(sdp,v) ((sdp)->sd_gid = cpu_to_le32(v))
878 #define sd_v2_atime(sdp) (le32_to_cpu((sdp)->sd_atime))
879 #define set_sd_v2_atime(sdp,v) ((sdp)->sd_atime = cpu_to_le32(v))
880 #define sd_v2_mtime(sdp) (le32_to_cpu((sdp)->sd_mtime))
881 #define set_sd_v2_mtime(sdp,v) ((sdp)->sd_mtime = cpu_to_le32(v))
882 #define sd_v2_ctime(sdp) (le32_to_cpu((sdp)->sd_ctime))
883 #define set_sd_v2_ctime(sdp,v) ((sdp)->sd_ctime = cpu_to_le32(v))
884 #define sd_v2_blocks(sdp) (le32_to_cpu((sdp)->sd_blocks))
885 #define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
886 #define sd_v2_rdev(sdp) (le32_to_cpu((sdp)->u.sd_rdev))
887 #define set_sd_v2_rdev(sdp,v) ((sdp)->u.sd_rdev = cpu_to_le32(v))
888 #define sd_v2_generation(sdp) (le32_to_cpu((sdp)->u.sd_generation))
889 #define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
890 #define sd_v2_attrs(sdp) (le16_to_cpu((sdp)->sd_attrs))
891 #define set_sd_v2_attrs(sdp,v) ((sdp)->sd_attrs = cpu_to_le16(v))
893 /***************************************************************************/
894 /* DIRECTORY STRUCTURE */
895 /***************************************************************************/
897 Picture represents the structure of directory items
898 ________________________________________________
899 | Array of | | | | | |
900 | directory |N-1| N-2 | .... | 1st |0th|
901 | entry headers | | | | | |
902 |_______________|___|_____|________|_______|___|
903 <---- directory entries ------>
905 First directory item has k_offset component 1. We store "." and ".."
906 in one item, always, we never split "." and ".." into differing
907 items. This makes, among other things, the code for removing
908 directories simpler. */
909 #define SD_OFFSET 0
910 #define SD_UNIQUENESS 0
911 #define DOT_OFFSET 1
912 #define DOT_DOT_OFFSET 2
913 #define DIRENTRY_UNIQUENESS 500
915 /* */
916 #define FIRST_ITEM_OFFSET 1
919 Q: How to get key of object pointed to by entry from entry?
921 A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
922 of object, entry points to */
924 /* NOT IMPLEMENTED:
925 Directory will someday contain stat data of object */
927 struct reiserfs_de_head {
928 __le32 deh_offset; /* third component of the directory entry key */
929 __le32 deh_dir_id; /* objectid of the parent directory of the object, that is referenced
930 by directory entry */
931 __le32 deh_objectid; /* objectid of the object, that is referenced by directory entry */
932 __le16 deh_location; /* offset of name in the whole item */
933 __le16 deh_state; /* whether 1) entry contains stat data (for future), and 2) whether
934 entry is hidden (unlinked) */
935 } __attribute__ ((__packed__));
936 #define DEH_SIZE sizeof(struct reiserfs_de_head)
937 #define deh_offset(p_deh) (le32_to_cpu((p_deh)->deh_offset))
938 #define deh_dir_id(p_deh) (le32_to_cpu((p_deh)->deh_dir_id))
939 #define deh_objectid(p_deh) (le32_to_cpu((p_deh)->deh_objectid))
940 #define deh_location(p_deh) (le16_to_cpu((p_deh)->deh_location))
941 #define deh_state(p_deh) (le16_to_cpu((p_deh)->deh_state))
943 #define put_deh_offset(p_deh,v) ((p_deh)->deh_offset = cpu_to_le32((v)))
944 #define put_deh_dir_id(p_deh,v) ((p_deh)->deh_dir_id = cpu_to_le32((v)))
945 #define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
946 #define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
947 #define put_deh_state(p_deh,v) ((p_deh)->deh_state = cpu_to_le16((v)))
949 /* empty directory contains two entries "." and ".." and their headers */
950 #define EMPTY_DIR_SIZE \
951 (DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
953 /* old format directories have this size when empty */
954 #define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
956 #define DEH_Statdata 0 /* not used now */
957 #define DEH_Visible 2
959 /* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
960 #if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
961 # define ADDR_UNALIGNED_BITS (3)
962 #endif
964 /* These are only used to manipulate deh_state.
965 * Because of this, we'll use the ext2_ bit routines,
966 * since they are little endian */
967 #ifdef ADDR_UNALIGNED_BITS
969 # define aligned_address(addr) ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
970 # define unaligned_offset(addr) (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
972 # define set_bit_unaligned(nr, addr) ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
973 # define clear_bit_unaligned(nr, addr) ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
974 # define test_bit_unaligned(nr, addr) ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
976 #else
978 # define set_bit_unaligned(nr, addr) ext2_set_bit(nr, addr)
979 # define clear_bit_unaligned(nr, addr) ext2_clear_bit(nr, addr)
980 # define test_bit_unaligned(nr, addr) ext2_test_bit(nr, addr)
982 #endif
984 #define mark_de_with_sd(deh) set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
985 #define mark_de_without_sd(deh) clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
986 #define mark_de_visible(deh) set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
987 #define mark_de_hidden(deh) clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
989 #define de_with_sd(deh) test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
990 #define de_visible(deh) test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
991 #define de_hidden(deh) !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
993 extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
994 __le32 par_dirid, __le32 par_objid);
995 extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
996 __le32 par_dirid, __le32 par_objid);
998 /* array of the entry headers */
999 /* get item body */
1000 #define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1001 #define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1003 /* length of the directory entry in directory item. This define
1004 calculates length of i-th directory entry using directory entry
1005 locations from dir entry head. When it calculates length of 0-th
1006 directory entry, it uses length of whole item in place of entry
1007 location of the non-existent following entry in the calculation.
1008 See picture above.*/
1010 #define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1011 ((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1013 static inline int entry_length(const struct buffer_head *bh,
1014 const struct item_head *ih, int pos_in_item)
1016 struct reiserfs_de_head *deh;
1018 deh = B_I_DEH(bh, ih) + pos_in_item;
1019 if (pos_in_item)
1020 return deh_location(deh - 1) - deh_location(deh);
1022 return ih_item_len(ih) - deh_location(deh);
1025 /* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1026 #define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1028 /* name by bh, ih and entry_num */
1029 #define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1031 // two entries per block (at least)
1032 #define REISERFS_MAX_NAME(block_size) 255
1034 /* this structure is used for operations on directory entries. It is
1035 not a disk structure. */
1036 /* When reiserfs_find_entry or search_by_entry_key find directory
1037 entry, they return filled reiserfs_dir_entry structure */
1038 struct reiserfs_dir_entry {
1039 struct buffer_head *de_bh;
1040 int de_item_num;
1041 struct item_head *de_ih;
1042 int de_entry_num;
1043 struct reiserfs_de_head *de_deh;
1044 int de_entrylen;
1045 int de_namelen;
1046 char *de_name;
1047 unsigned long *de_gen_number_bit_string;
1049 __u32 de_dir_id;
1050 __u32 de_objectid;
1052 struct cpu_key de_entry_key;
1055 /* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1057 /* pointer to file name, stored in entry */
1058 #define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1060 /* length of name */
1061 #define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1062 (I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1064 /* hash value occupies bits from 7 up to 30 */
1065 #define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1066 /* generation number occupies 7 bits starting from 0 up to 6 */
1067 #define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1068 #define MAX_GENERATION_NUMBER 127
1070 #define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1073 * Picture represents an internal node of the reiserfs tree
1074 * ______________________________________________________
1075 * | | Array of | Array of | Free |
1076 * |block | keys | pointers | space |
1077 * | head | N | N+1 | |
1078 * |______|_______________|___________________|___________|
1081 /***************************************************************************/
1082 /* DISK CHILD */
1083 /***************************************************************************/
1084 /* Disk child pointer: The pointer from an internal node of the tree
1085 to a node that is on disk. */
1086 struct disk_child {
1087 __le32 dc_block_number; /* Disk child's block number. */
1088 __le16 dc_size; /* Disk child's used space. */
1089 __le16 dc_reserved;
1092 #define DC_SIZE (sizeof(struct disk_child))
1093 #define dc_block_number(dc_p) (le32_to_cpu((dc_p)->dc_block_number))
1094 #define dc_size(dc_p) (le16_to_cpu((dc_p)->dc_size))
1095 #define put_dc_block_number(dc_p, val) do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1096 #define put_dc_size(dc_p, val) do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1098 /* Get disk child by buffer header and position in the tree node. */
1099 #define B_N_CHILD(p_s_bh,n_pos) ((struct disk_child *)\
1100 ((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1102 /* Get disk child number by buffer header and position in the tree node. */
1103 #define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1104 #define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1106 /* maximal value of field child_size in structure disk_child */
1107 /* child size is the combined size of all items and their headers */
1108 #define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1110 /* amount of used space in buffer (not including block head) */
1111 #define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1113 /* max and min number of keys in internal node */
1114 #define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1115 #define MIN_NR_KEY(bh) (MAX_NR_KEY(bh)/2)
1117 /***************************************************************************/
1118 /* PATH STRUCTURES AND DEFINES */
1119 /***************************************************************************/
1121 /* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1122 key. It uses reiserfs_bread to try to find buffers in the cache given their block number. If it
1123 does not find them in the cache it reads them from disk. For each node search_by_key finds using
1124 reiserfs_bread it then uses bin_search to look through that node. bin_search will find the
1125 position of the block_number of the next node if it is looking through an internal node. If it
1126 is looking through a leaf node bin_search will find the position of the item which has key either
1127 equal to given key, or which is the maximal key less than the given key. */
1129 struct path_element {
1130 struct buffer_head *pe_buffer; /* Pointer to the buffer at the path in the tree. */
1131 int pe_position; /* Position in the tree node which is placed in the */
1132 /* buffer above. */
1135 #define MAX_HEIGHT 5 /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1136 #define EXTENDED_MAX_HEIGHT 7 /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1137 #define FIRST_PATH_ELEMENT_OFFSET 2 /* Must be equal to at least 2. */
1139 #define ILLEGAL_PATH_ELEMENT_OFFSET 1 /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1140 #define MAX_FEB_SIZE 6 /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1142 /* We need to keep track of who the ancestors of nodes are. When we
1143 perform a search we record which nodes were visited while
1144 descending the tree looking for the node we searched for. This list
1145 of nodes is called the path. This information is used while
1146 performing balancing. Note that this path information may become
1147 invalid, and this means we must check it when using it to see if it
1148 is still valid. You'll need to read search_by_key and the comments
1149 in it, especially about decrement_counters_in_path(), to understand
1150 this structure.
1152 Paths make the code so much harder to work with and debug.... An
1153 enormous number of bugs are due to them, and trying to write or modify
1154 code that uses them just makes my head hurt. They are based on an
1155 excessive effort to avoid disturbing the precious VFS code.:-( The
1156 gods only know how we are going to SMP the code that uses them.
1157 znodes are the way! */
1159 #define PATH_READA 0x1 /* do read ahead */
1160 #define PATH_READA_BACK 0x2 /* read backwards */
1162 struct treepath {
1163 int path_length; /* Length of the array above. */
1164 int reada;
1165 struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements. */
1166 int pos_in_item;
1169 #define pos_in_item(path) ((path)->pos_in_item)
1171 #define INITIALIZE_PATH(var) \
1172 struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1174 /* Get path element by path and path position. */
1175 #define PATH_OFFSET_PELEMENT(p_s_path,n_offset) ((p_s_path)->path_elements +(n_offset))
1177 /* Get buffer header at the path by path and path position. */
1178 #define PATH_OFFSET_PBUFFER(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1180 /* Get position in the element at the path by path and path position. */
1181 #define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1183 #define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1184 /* you know, to the person who didn't
1185 write this the macro name does not
1186 at first suggest what it does.
1187 Maybe POSITION_FROM_PATH_END? Or
1188 maybe we should just focus on
1189 dumping paths... -Hans */
1190 #define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1192 #define PATH_PITEM_HEAD(p_s_path) B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1194 /* in do_balance leaf has h == 0 in contrast with path structure,
1195 where root has level == 0. That is why we need these defines */
1196 #define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1197 #define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1) /* tb->F[h] or tb->S[0]->b_parent */
1198 #define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1199 #define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1) /* tb->S[h]->b_item_order */
1201 #define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1203 #define get_last_bh(path) PATH_PLAST_BUFFER(path)
1204 #define get_ih(path) PATH_PITEM_HEAD(path)
1205 #define get_item_pos(path) PATH_LAST_POSITION(path)
1206 #define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1207 #define item_moved(ih,path) comp_items(ih, path)
1208 #define path_changed(ih,path) comp_items (ih, path)
1210 /***************************************************************************/
1211 /* MISC */
1212 /***************************************************************************/
1214 /* Size of pointer to the unformatted node. */
1215 #define UNFM_P_SIZE (sizeof(unp_t))
1216 #define UNFM_P_SHIFT 2
1218 // in in-core inode key is stored on le form
1219 #define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1221 #define MAX_UL_INT 0xffffffff
1222 #define MAX_INT 0x7ffffff
1223 #define MAX_US_INT 0xffff
1225 // reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1226 #define U32_MAX (~(__u32)0)
1228 static inline loff_t max_reiserfs_offset(struct inode *inode)
1230 if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1231 return (loff_t) U32_MAX;
1233 return (loff_t) ((~(__u64) 0) >> 4);
1236 /*#define MAX_KEY_UNIQUENESS MAX_UL_INT*/
1237 #define MAX_KEY_OBJECTID MAX_UL_INT
1239 #define MAX_B_NUM MAX_UL_INT
1240 #define MAX_FC_NUM MAX_US_INT
1242 /* the purpose is to detect overflow of an unsigned short */
1243 #define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1245 /* The following defines are used in reiserfs_insert_item and reiserfs_append_item */
1246 #define REISERFS_KERNEL_MEM 0 /* reiserfs kernel memory mode */
1247 #define REISERFS_USER_MEM 1 /* reiserfs user memory mode */
1249 #define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1250 #define get_generation(s) atomic_read (&fs_generation(s))
1251 #define FILESYSTEM_CHANGED_TB(tb) (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1252 #define __fs_changed(gen,s) (gen != get_generation (s))
1253 #define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1255 /***************************************************************************/
1256 /* FIXATE NODES */
1257 /***************************************************************************/
1259 #define VI_TYPE_LEFT_MERGEABLE 1
1260 #define VI_TYPE_RIGHT_MERGEABLE 2
1262 /* To make any changes in the tree we always first find node, that
1263 contains item to be changed/deleted or place to insert a new
1264 item. We call this node S. To do balancing we need to decide what
1265 we will shift to left/right neighbor, or to a new node, where new
1266 item will be etc. To make this analysis simpler we build virtual
1267 node. Virtual node is an array of items, that will replace items of
1268 node S. (For instance if we are going to delete an item, virtual
1269 node does not contain it). Virtual node keeps information about
1270 item sizes and types, mergeability of first and last items, sizes
1271 of all entries in directory item. We use this array of items when
1272 calculating what we can shift to neighbors and how many nodes we
1273 have to have if we do not any shiftings, if we shift to left/right
1274 neighbor or to both. */
1275 struct virtual_item {
1276 int vi_index; // index in the array of item operations
1277 unsigned short vi_type; // left/right mergeability
1278 unsigned short vi_item_len; /* length of item that it will have after balancing */
1279 struct item_head *vi_ih;
1280 const char *vi_item; // body of item (old or new)
1281 const void *vi_new_data; // 0 always but paste mode
1282 void *vi_uarea; // item specific area
1285 struct virtual_node {
1286 char *vn_free_ptr; /* this is a pointer to the free space in the buffer */
1287 unsigned short vn_nr_item; /* number of items in virtual node */
1288 short vn_size; /* size of node , that node would have if it has unlimited size and no balancing is performed */
1289 short vn_mode; /* mode of balancing (paste, insert, delete, cut) */
1290 short vn_affected_item_num;
1291 short vn_pos_in_item;
1292 struct item_head *vn_ins_ih; /* item header of inserted item, 0 for other modes */
1293 const void *vn_data;
1294 struct virtual_item *vn_vi; /* array of items (including a new one, excluding item to be deleted) */
1297 /* used by directory items when creating virtual nodes */
1298 struct direntry_uarea {
1299 int flags;
1300 __u16 entry_count;
1301 __u16 entry_sizes[1];
1302 } __attribute__ ((__packed__));
1304 /***************************************************************************/
1305 /* TREE BALANCE */
1306 /***************************************************************************/
1308 /* This temporary structure is used in tree balance algorithms, and
1309 constructed as we go to the extent that its various parts are
1310 needed. It contains arrays of nodes that can potentially be
1311 involved in the balancing of node S, and parameters that define how
1312 each of the nodes must be balanced. Note that in these algorithms
1313 for balancing the worst case is to need to balance the current node
1314 S and the left and right neighbors and all of their parents plus
1315 create a new node. We implement S1 balancing for the leaf nodes
1316 and S0 balancing for the internal nodes (S1 and S0 are defined in
1317 our papers.)*/
1319 #define MAX_FREE_BLOCK 7 /* size of the array of buffers to free at end of do_balance */
1321 /* maximum number of FEB blocknrs on a single level */
1322 #define MAX_AMOUNT_NEEDED 2
1324 /* someday somebody will prefix every field in this struct with tb_ */
1325 struct tree_balance {
1326 int tb_mode;
1327 int need_balance_dirty;
1328 struct super_block *tb_sb;
1329 struct reiserfs_transaction_handle *transaction_handle;
1330 struct treepath *tb_path;
1331 struct buffer_head *L[MAX_HEIGHT]; /* array of left neighbors of nodes in the path */
1332 struct buffer_head *R[MAX_HEIGHT]; /* array of right neighbors of nodes in the path */
1333 struct buffer_head *FL[MAX_HEIGHT]; /* array of fathers of the left neighbors */
1334 struct buffer_head *FR[MAX_HEIGHT]; /* array of fathers of the right neighbors */
1335 struct buffer_head *CFL[MAX_HEIGHT]; /* array of common parents of center node and its left neighbor */
1336 struct buffer_head *CFR[MAX_HEIGHT]; /* array of common parents of center node and its right neighbor */
1338 struct buffer_head *FEB[MAX_FEB_SIZE]; /* array of empty buffers. Number of buffers in array equals
1339 cur_blknum. */
1340 struct buffer_head *used[MAX_FEB_SIZE];
1341 struct buffer_head *thrown[MAX_FEB_SIZE];
1342 int lnum[MAX_HEIGHT]; /* array of number of items which must be
1343 shifted to the left in order to balance the
1344 current node; for leaves includes item that
1345 will be partially shifted; for internal
1346 nodes, it is the number of child pointers
1347 rather than items. It includes the new item
1348 being created. The code sometimes subtracts
1349 one to get the number of wholly shifted
1350 items for other purposes. */
1351 int rnum[MAX_HEIGHT]; /* substitute right for left in comment above */
1352 int lkey[MAX_HEIGHT]; /* array indexed by height h mapping the key delimiting L[h] and
1353 S[h] to its item number within the node CFL[h] */
1354 int rkey[MAX_HEIGHT]; /* substitute r for l in comment above */
1355 int insert_size[MAX_HEIGHT]; /* the number of bytes by we are trying to add or remove from
1356 S[h]. A negative value means removing. */
1357 int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1358 balancing on the level h of the tree. If 0 then S is
1359 being deleted, if 1 then S is remaining and no new nodes
1360 are being created, if 2 or 3 then 1 or 2 new nodes is
1361 being created */
1363 /* fields that are used only for balancing leaves of the tree */
1364 int cur_blknum; /* number of empty blocks having been already allocated */
1365 int s0num; /* number of items that fall into left most node when S[0] splits */
1366 int s1num; /* number of items that fall into first new node when S[0] splits */
1367 int s2num; /* number of items that fall into second new node when S[0] splits */
1368 int lbytes; /* number of bytes which can flow to the left neighbor from the left */
1369 /* most liquid item that cannot be shifted from S[0] entirely */
1370 /* if -1 then nothing will be partially shifted */
1371 int rbytes; /* number of bytes which will flow to the right neighbor from the right */
1372 /* most liquid item that cannot be shifted from S[0] entirely */
1373 /* if -1 then nothing will be partially shifted */
1374 int s1bytes; /* number of bytes which flow to the first new node when S[0] splits */
1375 /* note: if S[0] splits into 3 nodes, then items do not need to be cut */
1376 int s2bytes;
1377 struct buffer_head *buf_to_free[MAX_FREE_BLOCK]; /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1378 char *vn_buf; /* kmalloced memory. Used to create
1379 virtual node and keep map of
1380 dirtied bitmap blocks */
1381 int vn_buf_size; /* size of the vn_buf */
1382 struct virtual_node *tb_vn; /* VN starts after bitmap of bitmap blocks */
1384 int fs_gen; /* saved value of `reiserfs_generation' counter
1385 see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1386 #ifdef DISPLACE_NEW_PACKING_LOCALITIES
1387 struct in_core_key key; /* key pointer, to pass to block allocator or
1388 another low-level subsystem */
1389 #endif
1392 /* These are modes of balancing */
1394 /* When inserting an item. */
1395 #define M_INSERT 'i'
1396 /* When inserting into (directories only) or appending onto an already
1397 existant item. */
1398 #define M_PASTE 'p'
1399 /* When deleting an item. */
1400 #define M_DELETE 'd'
1401 /* When truncating an item or removing an entry from a (directory) item. */
1402 #define M_CUT 'c'
1404 /* used when balancing on leaf level skipped (in reiserfsck) */
1405 #define M_INTERNAL 'n'
1407 /* When further balancing is not needed, then do_balance does not need
1408 to be called. */
1409 #define M_SKIP_BALANCING 's'
1410 #define M_CONVERT 'v'
1412 /* modes of leaf_move_items */
1413 #define LEAF_FROM_S_TO_L 0
1414 #define LEAF_FROM_S_TO_R 1
1415 #define LEAF_FROM_R_TO_L 2
1416 #define LEAF_FROM_L_TO_R 3
1417 #define LEAF_FROM_S_TO_SNEW 4
1419 #define FIRST_TO_LAST 0
1420 #define LAST_TO_FIRST 1
1422 /* used in do_balance for passing parent of node information that has
1423 been gotten from tb struct */
1424 struct buffer_info {
1425 struct tree_balance *tb;
1426 struct buffer_head *bi_bh;
1427 struct buffer_head *bi_parent;
1428 int bi_position;
1431 /* there are 4 types of items: stat data, directory item, indirect, direct.
1432 +-------------------+------------+--------------+------------+
1433 | | k_offset | k_uniqueness | mergeable? |
1434 +-------------------+------------+--------------+------------+
1435 | stat data | 0 | 0 | no |
1436 +-------------------+------------+--------------+------------+
1437 | 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS| no |
1438 | non 1st directory | hash value | | yes |
1439 | item | | | |
1440 +-------------------+------------+--------------+------------+
1441 | indirect item | offset + 1 |TYPE_INDIRECT | if this is not the first indirect item of the object
1442 +-------------------+------------+--------------+------------+
1443 | direct item | offset + 1 |TYPE_DIRECT | if not this is not the first direct item of the object
1444 +-------------------+------------+--------------+------------+
1447 struct item_operations {
1448 int (*bytes_number) (struct item_head * ih, int block_size);
1449 void (*decrement_key) (struct cpu_key *);
1450 int (*is_left_mergeable) (struct reiserfs_key * ih,
1451 unsigned long bsize);
1452 void (*print_item) (struct item_head *, char *item);
1453 void (*check_item) (struct item_head *, char *item);
1455 int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1456 int is_affected, int insert_size);
1457 int (*check_left) (struct virtual_item * vi, int free,
1458 int start_skip, int end_skip);
1459 int (*check_right) (struct virtual_item * vi, int free);
1460 int (*part_size) (struct virtual_item * vi, int from, int to);
1461 int (*unit_num) (struct virtual_item * vi);
1462 void (*print_vi) (struct virtual_item * vi);
1465 extern struct item_operations *item_ops[TYPE_ANY + 1];
1467 #define op_bytes_number(ih,bsize) item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1468 #define op_is_left_mergeable(key,bsize) item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1469 #define op_print_item(ih,item) item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1470 #define op_check_item(ih,item) item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1471 #define op_create_vi(vn,vi,is_affected,insert_size) item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1472 #define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1473 #define op_check_right(vi,free) item_ops[(vi)->vi_index]->check_right (vi, free)
1474 #define op_part_size(vi,from,to) item_ops[(vi)->vi_index]->part_size (vi, from, to)
1475 #define op_unit_num(vi) item_ops[(vi)->vi_index]->unit_num (vi)
1476 #define op_print_vi(vi) item_ops[(vi)->vi_index]->print_vi (vi)
1478 #define COMP_SHORT_KEYS comp_short_keys
1480 /* number of blocks pointed to by the indirect item */
1481 #define I_UNFM_NUM(p_s_ih) ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1483 /* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1484 #define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1486 /* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1488 /* get the item header */
1489 #define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1491 /* get key */
1492 #define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1494 /* get the key */
1495 #define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1497 /* get item body */
1498 #define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1500 /* get the stat data by the buffer header and the item order */
1501 #define B_N_STAT_DATA(bh,nr) \
1502 ( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1504 /* following defines use reiserfs buffer header and item header */
1506 /* get stat-data */
1507 #define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1509 // this is 3976 for size==4096
1510 #define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1512 /* indirect items consist of entries which contain blocknrs, pos
1513 indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1514 blocknr contained by the entry pos points to */
1515 #define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1516 #define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1518 struct reiserfs_iget_args {
1519 __u32 objectid;
1520 __u32 dirid;
1523 /***************************************************************************/
1524 /* FUNCTION DECLARATIONS */
1525 /***************************************************************************/
1527 /*#ifdef __KERNEL__*/
1528 #define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1530 #define journal_trans_half(blocksize) \
1531 ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1533 /* journal.c see journal.c for all the comments here */
1535 /* first block written in a commit. */
1536 struct reiserfs_journal_desc {
1537 __le32 j_trans_id; /* id of commit */
1538 __le32 j_len; /* length of commit. len +1 is the commit block */
1539 __le32 j_mount_id; /* mount id of this trans */
1540 __le32 j_realblock[1]; /* real locations for each block */
1543 #define get_desc_trans_id(d) le32_to_cpu((d)->j_trans_id)
1544 #define get_desc_trans_len(d) le32_to_cpu((d)->j_len)
1545 #define get_desc_mount_id(d) le32_to_cpu((d)->j_mount_id)
1547 #define set_desc_trans_id(d,val) do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1548 #define set_desc_trans_len(d,val) do { (d)->j_len = cpu_to_le32 (val); } while (0)
1549 #define set_desc_mount_id(d,val) do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1551 /* last block written in a commit */
1552 struct reiserfs_journal_commit {
1553 __le32 j_trans_id; /* must match j_trans_id from the desc block */
1554 __le32 j_len; /* ditto */
1555 __le32 j_realblock[1]; /* real locations for each block */
1558 #define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1559 #define get_commit_trans_len(c) le32_to_cpu((c)->j_len)
1560 #define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1562 #define set_commit_trans_id(c,val) do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1563 #define set_commit_trans_len(c,val) do { (c)->j_len = cpu_to_le32 (val); } while (0)
1565 /* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1566 ** last fully flushed transaction. fully flushed means all the log blocks and all the real blocks are on disk,
1567 ** and this transaction does not need to be replayed.
1569 struct reiserfs_journal_header {
1570 __le32 j_last_flush_trans_id; /* id of last fully flushed transaction */
1571 __le32 j_first_unflushed_offset; /* offset in the log of where to start replay after a crash */
1572 __le32 j_mount_id;
1573 /* 12 */ struct journal_params jh_journal;
1576 /* biggest tunable defines are right here */
1577 #define JOURNAL_BLOCK_COUNT 8192 /* number of blocks in the journal */
1578 #define JOURNAL_TRANS_MAX_DEFAULT 1024 /* biggest possible single transaction, don't change for now (8/3/99) */
1579 #define JOURNAL_TRANS_MIN_DEFAULT 256
1580 #define JOURNAL_MAX_BATCH_DEFAULT 900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1581 #define JOURNAL_MIN_RATIO 2
1582 #define JOURNAL_MAX_COMMIT_AGE 30
1583 #define JOURNAL_MAX_TRANS_AGE 30
1584 #define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1585 #ifdef CONFIG_QUOTA
1586 /* We need to update data and inode (atime) */
1587 #define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1588 /* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1589 #define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1590 (DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1591 /* same as with INIT */
1592 #define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1593 (DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1594 #else
1595 #define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1596 #define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1597 #define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1598 #endif
1600 /* both of these can be as low as 1, or as high as you want. The min is the
1601 ** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1602 ** as needed, and released when transactions are committed. On release, if
1603 ** the current number of nodes is > max, the node is freed, otherwise,
1604 ** it is put on a free list for faster use later.
1606 #define REISERFS_MIN_BITMAP_NODES 10
1607 #define REISERFS_MAX_BITMAP_NODES 100
1609 #define JBH_HASH_SHIFT 13 /* these are based on journal hash size of 8192 */
1610 #define JBH_HASH_MASK 8191
1612 #define _jhashfn(sb,block) \
1613 (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1614 (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1615 #define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1617 // We need these to make journal.c code more readable
1618 #define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1619 #define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1620 #define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1622 enum reiserfs_bh_state_bits {
1623 BH_JDirty = BH_PrivateStart, /* buffer is in current transaction */
1624 BH_JDirty_wait,
1625 BH_JNew, /* disk block was taken off free list before
1626 * being in a finished transaction, or
1627 * written to disk. Can be reused immed. */
1628 BH_JPrepared,
1629 BH_JRestore_dirty,
1630 BH_JTest, // debugging only will go away
1633 BUFFER_FNS(JDirty, journaled);
1634 TAS_BUFFER_FNS(JDirty, journaled);
1635 BUFFER_FNS(JDirty_wait, journal_dirty);
1636 TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1637 BUFFER_FNS(JNew, journal_new);
1638 TAS_BUFFER_FNS(JNew, journal_new);
1639 BUFFER_FNS(JPrepared, journal_prepared);
1640 TAS_BUFFER_FNS(JPrepared, journal_prepared);
1641 BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1642 TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1643 BUFFER_FNS(JTest, journal_test);
1644 TAS_BUFFER_FNS(JTest, journal_test);
1647 ** transaction handle which is passed around for all journal calls
1649 struct reiserfs_transaction_handle {
1650 struct super_block *t_super; /* super for this FS when journal_begin was
1651 called. saves calls to reiserfs_get_super
1652 also used by nested transactions to make
1653 sure they are nesting on the right FS
1654 _must_ be first in the handle
1656 int t_refcount;
1657 int t_blocks_logged; /* number of blocks this writer has logged */
1658 int t_blocks_allocated; /* number of blocks this writer allocated */
1659 unsigned long t_trans_id; /* sanity check, equals the current trans id */
1660 void *t_handle_save; /* save existing current->journal_info */
1661 unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1662 should be displaced from others */
1663 struct list_head t_list;
1666 /* used to keep track of ordered and tail writes, attached to the buffer
1667 * head through b_journal_head.
1669 struct reiserfs_jh {
1670 struct reiserfs_journal_list *jl;
1671 struct buffer_head *bh;
1672 struct list_head list;
1675 void reiserfs_free_jh(struct buffer_head *bh);
1676 int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1677 int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1678 int journal_mark_dirty(struct reiserfs_transaction_handle *,
1679 struct super_block *, struct buffer_head *bh);
1681 static inline int reiserfs_file_data_log(struct inode *inode)
1683 if (reiserfs_data_log(inode->i_sb) ||
1684 (REISERFS_I(inode)->i_flags & i_data_log))
1685 return 1;
1686 return 0;
1689 static inline int reiserfs_transaction_running(struct super_block *s)
1691 struct reiserfs_transaction_handle *th = current->journal_info;
1692 if (th && th->t_super == s)
1693 return 1;
1694 if (th && th->t_super == NULL)
1695 BUG();
1696 return 0;
1699 static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1701 return th->t_blocks_allocated - th->t_blocks_logged;
1704 int reiserfs_async_progress_wait(struct super_block *s);
1706 struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1707 super_block
1709 int count);
1710 int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1711 int reiserfs_commit_page(struct inode *inode, struct page *page,
1712 unsigned from, unsigned to);
1713 int reiserfs_flush_old_commits(struct super_block *);
1714 int reiserfs_commit_for_inode(struct inode *);
1715 int reiserfs_inode_needs_commit(struct inode *);
1716 void reiserfs_update_inode_transaction(struct inode *);
1717 void reiserfs_wait_on_write_block(struct super_block *s);
1718 void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1719 void reiserfs_allow_writes(struct super_block *s);
1720 void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1721 int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1722 int wait);
1723 void reiserfs_restore_prepared_buffer(struct super_block *,
1724 struct buffer_head *bh);
1725 int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1726 unsigned int);
1727 int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1728 int journal_release_error(struct reiserfs_transaction_handle *,
1729 struct super_block *);
1730 int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1731 unsigned long);
1732 int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1733 unsigned long);
1734 int journal_mark_freed(struct reiserfs_transaction_handle *,
1735 struct super_block *, b_blocknr_t blocknr);
1736 int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1737 int reiserfs_in_journal(struct super_block *p_s_sb, int bmap_nr, int bit_nr,
1738 int searchall, b_blocknr_t * next);
1739 int journal_begin(struct reiserfs_transaction_handle *,
1740 struct super_block *p_s_sb, unsigned long);
1741 int journal_join_abort(struct reiserfs_transaction_handle *,
1742 struct super_block *p_s_sb, unsigned long);
1743 void reiserfs_journal_abort(struct super_block *sb, int errno);
1744 void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1745 int reiserfs_allocate_list_bitmaps(struct super_block *s,
1746 struct reiserfs_list_bitmap *, int);
1748 void add_save_link(struct reiserfs_transaction_handle *th,
1749 struct inode *inode, int truncate);
1750 int remove_save_link(struct inode *inode, int truncate);
1752 /* objectid.c */
1753 __u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1754 void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1755 __u32 objectid_to_release);
1756 int reiserfs_convert_objectid_map_v1(struct super_block *);
1758 /* stree.c */
1759 int B_IS_IN_TREE(const struct buffer_head *);
1760 extern void copy_item_head(struct item_head *p_v_to,
1761 const struct item_head *p_v_from);
1763 // first key is in cpu form, second - le
1764 extern int comp_short_keys(const struct reiserfs_key *le_key,
1765 const struct cpu_key *cpu_key);
1766 extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1768 // both are in le form
1769 extern int comp_le_keys(const struct reiserfs_key *,
1770 const struct reiserfs_key *);
1771 extern int comp_short_le_keys(const struct reiserfs_key *,
1772 const struct reiserfs_key *);
1775 // get key version from on disk key - kludge
1777 static inline int le_key_version(const struct reiserfs_key *key)
1779 int type;
1781 type = offset_v2_k_type(&(key->u.k_offset_v2));
1782 if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1783 && type != TYPE_DIRENTRY)
1784 return KEY_FORMAT_3_5;
1786 return KEY_FORMAT_3_6;
1790 static inline void copy_key(struct reiserfs_key *to,
1791 const struct reiserfs_key *from)
1793 memcpy(to, from, KEY_SIZE);
1796 int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
1797 const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
1798 const struct super_block *p_s_sb);
1799 int search_by_key(struct super_block *, const struct cpu_key *,
1800 struct treepath *, int);
1801 #define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1802 int search_for_position_by_key(struct super_block *p_s_sb,
1803 const struct cpu_key *p_s_cpu_key,
1804 struct treepath *p_s_search_path);
1805 extern void decrement_bcount(struct buffer_head *p_s_bh);
1806 void decrement_counters_in_path(struct treepath *p_s_search_path);
1807 void pathrelse(struct treepath *p_s_search_path);
1808 int reiserfs_check_path(struct treepath *p);
1809 void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
1811 int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1812 struct treepath *path,
1813 const struct cpu_key *key,
1814 struct item_head *ih,
1815 struct inode *inode, const char *body);
1817 int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1818 struct treepath *path,
1819 const struct cpu_key *key,
1820 struct inode *inode,
1821 const char *body, int paste_size);
1823 int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1824 struct treepath *path,
1825 struct cpu_key *key,
1826 struct inode *inode,
1827 struct page *page, loff_t new_file_size);
1829 int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1830 struct treepath *path,
1831 const struct cpu_key *key,
1832 struct inode *inode, struct buffer_head *p_s_un_bh);
1834 void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1835 struct inode *inode, struct reiserfs_key *key);
1836 int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1837 struct inode *p_s_inode);
1838 int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1839 struct inode *p_s_inode, struct page *,
1840 int update_timestamps);
1842 #define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1843 #define file_size(inode) ((inode)->i_size)
1844 #define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1846 #define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1847 !STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1849 void padd_item(char *item, int total_length, int length);
1851 /* inode.c */
1852 /* args for the create parameter of reiserfs_get_block */
1853 #define GET_BLOCK_NO_CREATE 0 /* don't create new blocks or convert tails */
1854 #define GET_BLOCK_CREATE 1 /* add anything you need to find block */
1855 #define GET_BLOCK_NO_HOLE 2 /* return -ENOENT for file holes */
1856 #define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1857 #define GET_BLOCK_NO_IMUX 8 /* i_mutex is not held, don't preallocate */
1858 #define GET_BLOCK_NO_DANGLE 16 /* don't leave any transactions running */
1860 int restart_transaction(struct reiserfs_transaction_handle *th,
1861 struct inode *inode, struct treepath *path);
1862 void reiserfs_read_locked_inode(struct inode *inode,
1863 struct reiserfs_iget_args *args);
1864 int reiserfs_find_actor(struct inode *inode, void *p);
1865 int reiserfs_init_locked_inode(struct inode *inode, void *p);
1866 void reiserfs_delete_inode(struct inode *inode);
1867 int reiserfs_write_inode(struct inode *inode, int);
1868 int reiserfs_get_block(struct inode *inode, sector_t block,
1869 struct buffer_head *bh_result, int create);
1870 struct dentry *reiserfs_get_dentry(struct super_block *, void *);
1871 struct dentry *reiserfs_decode_fh(struct super_block *sb, __u32 * data,
1872 int len, int fhtype,
1873 int (*acceptable) (void *contect,
1874 struct dentry * de),
1875 void *context);
1876 int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1877 int connectable);
1879 int reiserfs_truncate_file(struct inode *, int update_timestamps);
1880 void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1881 int type, int key_length);
1882 void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1883 int version,
1884 loff_t offset, int type, int length, int entry_count);
1885 struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1887 int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1888 struct inode *dir, int mode,
1889 const char *symname, loff_t i_size,
1890 struct dentry *dentry, struct inode *inode);
1892 void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1893 struct inode *inode, loff_t size);
1895 static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1896 struct inode *inode)
1898 reiserfs_update_sd_size(th, inode, inode->i_size);
1901 void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1902 void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1903 int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1905 /* namei.c */
1906 void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1907 int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1908 struct treepath *path, struct reiserfs_dir_entry *de);
1909 struct dentry *reiserfs_get_parent(struct dentry *);
1910 /* procfs.c */
1912 #if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1913 #define REISERFS_PROC_INFO
1914 #else
1915 #undef REISERFS_PROC_INFO
1916 #endif
1918 int reiserfs_proc_info_init(struct super_block *sb);
1919 int reiserfs_proc_info_done(struct super_block *sb);
1920 struct proc_dir_entry *reiserfs_proc_register_global(char *name,
1921 read_proc_t * func);
1922 void reiserfs_proc_unregister_global(const char *name);
1923 int reiserfs_proc_info_global_init(void);
1924 int reiserfs_proc_info_global_done(void);
1925 int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
1926 int count, int *eof, void *data);
1928 #if defined( REISERFS_PROC_INFO )
1930 #define PROC_EXP( e ) e
1932 #define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1933 #define PROC_INFO_MAX( sb, field, value ) \
1934 __PINFO( sb ).field = \
1935 max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1936 #define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1937 #define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1938 #define PROC_INFO_BH_STAT( sb, bh, level ) \
1939 PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] ); \
1940 PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) ); \
1941 PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1942 #else
1943 #define PROC_EXP( e )
1944 #define VOID_V ( ( void ) 0 )
1945 #define PROC_INFO_MAX( sb, field, value ) VOID_V
1946 #define PROC_INFO_INC( sb, field ) VOID_V
1947 #define PROC_INFO_ADD( sb, field, val ) VOID_V
1948 #define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1949 #endif
1951 /* dir.c */
1952 extern const struct inode_operations reiserfs_dir_inode_operations;
1953 extern const struct inode_operations reiserfs_symlink_inode_operations;
1954 extern const struct inode_operations reiserfs_special_inode_operations;
1955 extern const struct file_operations reiserfs_dir_operations;
1957 /* tail_conversion.c */
1958 int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
1959 struct treepath *, struct buffer_head *, loff_t);
1960 int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
1961 struct page *, struct treepath *, const struct cpu_key *,
1962 loff_t, char *);
1963 void reiserfs_unmap_buffer(struct buffer_head *);
1965 /* file.c */
1966 extern const struct inode_operations reiserfs_file_inode_operations;
1967 extern const struct file_operations reiserfs_file_operations;
1968 extern const struct address_space_operations reiserfs_address_space_operations;
1970 /* fix_nodes.c */
1972 int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
1973 struct item_head *p_s_ins_ih, const void *);
1974 void unfix_nodes(struct tree_balance *);
1976 /* prints.c */
1977 void reiserfs_panic(struct super_block *s, const char *fmt, ...)
1978 __attribute__ ((noreturn));
1979 void reiserfs_info(struct super_block *s, const char *fmt, ...);
1980 void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
1981 void print_indirect_item(struct buffer_head *bh, int item_num);
1982 void store_print_tb(struct tree_balance *tb);
1983 void print_cur_tb(char *mes);
1984 void print_de(struct reiserfs_dir_entry *de);
1985 void print_bi(struct buffer_info *bi, char *mes);
1986 #define PRINT_LEAF_ITEMS 1 /* print all items */
1987 #define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
1988 #define PRINT_DIRECT_ITEMS 4 /* print contents of direct items */
1989 void print_block(struct buffer_head *bh, ...);
1990 void print_bmap(struct super_block *s, int silent);
1991 void print_bmap_block(int i, char *data, int size, int silent);
1992 /*void print_super_block (struct super_block * s, char * mes);*/
1993 void print_objectid_map(struct super_block *s);
1994 void print_block_head(struct buffer_head *bh, char *mes);
1995 void check_leaf(struct buffer_head *bh);
1996 void check_internal(struct buffer_head *bh);
1997 void print_statistics(struct super_block *s);
1998 char *reiserfs_hashname(int code);
2000 /* lbalance.c */
2001 int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2002 int mov_bytes, struct buffer_head *Snew);
2003 int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2004 int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2005 void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2006 int del_num, int del_bytes);
2007 void leaf_insert_into_buf(struct buffer_info *bi, int before,
2008 struct item_head *inserted_item_ih,
2009 const char *inserted_item_body, int zeros_number);
2010 void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2011 int pos_in_item, int paste_size, const char *body,
2012 int zeros_number);
2013 void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2014 int pos_in_item, int cut_size);
2015 void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
2016 int new_entry_count, struct reiserfs_de_head *new_dehs,
2017 const char *records, int paste_size);
2018 /* ibalance.c */
2019 int balance_internal(struct tree_balance *, int, int, struct item_head *,
2020 struct buffer_head **);
2022 /* do_balance.c */
2023 void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2024 struct buffer_head *bh, int flag);
2025 #define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2026 #define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2028 void do_balance(struct tree_balance *tb, struct item_head *ih,
2029 const char *body, int flag);
2030 void reiserfs_invalidate_buffer(struct tree_balance *tb,
2031 struct buffer_head *bh);
2033 int get_left_neighbor_position(struct tree_balance *tb, int h);
2034 int get_right_neighbor_position(struct tree_balance *tb, int h);
2035 void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2036 struct buffer_head *, int);
2037 void make_empty_node(struct buffer_info *);
2038 struct buffer_head *get_FEB(struct tree_balance *);
2040 /* bitmap.c */
2042 /* structure contains hints for block allocator, and it is a container for
2043 * arguments, such as node, search path, transaction_handle, etc. */
2044 struct __reiserfs_blocknr_hint {
2045 struct inode *inode; /* inode passed to allocator, if we allocate unf. nodes */
2046 long block; /* file offset, in blocks */
2047 struct in_core_key key;
2048 struct treepath *path; /* search path, used by allocator to deternine search_start by
2049 * various ways */
2050 struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2051 * bitmap blocks changes */
2052 b_blocknr_t beg, end;
2053 b_blocknr_t search_start; /* a field used to transfer search start value (block number)
2054 * between different block allocator procedures
2055 * (determine_search_start() and others) */
2056 int prealloc_size; /* is set in determine_prealloc_size() function, used by underlayed
2057 * function that do actual allocation */
2059 unsigned formatted_node:1; /* the allocator uses different polices for getting disk space for
2060 * formatted/unformatted blocks with/without preallocation */
2061 unsigned preallocate:1;
2064 typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2066 int reiserfs_parse_alloc_options(struct super_block *, char *);
2067 void reiserfs_init_alloc_options(struct super_block *s);
2070 * given a directory, this will tell you what packing locality
2071 * to use for a new object underneat it. The locality is returned
2072 * in disk byte order (le).
2074 __le32 reiserfs_choose_packing(struct inode *dir);
2076 int reiserfs_init_bitmap_cache(struct super_block *sb);
2077 void reiserfs_free_bitmap_cache(struct super_block *sb);
2078 void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2079 struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2080 int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2081 void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2082 b_blocknr_t, int for_unformatted);
2083 int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2084 int);
2085 static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2086 b_blocknr_t * new_blocknrs,
2087 int amount_needed)
2089 reiserfs_blocknr_hint_t hint = {
2090 .th = tb->transaction_handle,
2091 .path = tb->tb_path,
2092 .inode = NULL,
2093 .key = tb->key,
2094 .block = 0,
2095 .formatted_node = 1
2097 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2101 static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2102 *th, struct inode *inode,
2103 b_blocknr_t * new_blocknrs,
2104 struct treepath *path, long block)
2106 reiserfs_blocknr_hint_t hint = {
2107 .th = th,
2108 .path = path,
2109 .inode = inode,
2110 .block = block,
2111 .formatted_node = 0,
2112 .preallocate = 0
2114 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2117 #ifdef REISERFS_PREALLOCATE
2118 static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2119 *th, struct inode *inode,
2120 b_blocknr_t * new_blocknrs,
2121 struct treepath *path, long block)
2123 reiserfs_blocknr_hint_t hint = {
2124 .th = th,
2125 .path = path,
2126 .inode = inode,
2127 .block = block,
2128 .formatted_node = 0,
2129 .preallocate = 1
2131 return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2134 void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2135 struct inode *inode);
2136 void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2137 #endif
2138 void reiserfs_claim_blocks_to_be_allocated(struct super_block *sb, int blocks);
2139 void reiserfs_release_claimed_blocks(struct super_block *sb, int blocks);
2140 int reiserfs_can_fit_pages(struct super_block *sb);
2142 /* hashes.c */
2143 __u32 keyed_hash(const signed char *msg, int len);
2144 __u32 yura_hash(const signed char *msg, int len);
2145 __u32 r5_hash(const signed char *msg, int len);
2147 /* the ext2 bit routines adjust for big or little endian as
2148 ** appropriate for the arch, so in our laziness we use them rather
2149 ** than using the bit routines they call more directly. These
2150 ** routines must be used when changing on disk bitmaps. */
2151 #define reiserfs_test_and_set_le_bit ext2_set_bit
2152 #define reiserfs_test_and_clear_le_bit ext2_clear_bit
2153 #define reiserfs_test_le_bit ext2_test_bit
2154 #define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2156 /* sometimes reiserfs_truncate may require to allocate few new blocks
2157 to perform indirect2direct conversion. People probably used to
2158 think, that truncate should work without problems on a filesystem
2159 without free disk space. They may complain that they can not
2160 truncate due to lack of free disk space. This spare space allows us
2161 to not worry about it. 500 is probably too much, but it should be
2162 absolutely safe */
2163 #define SPARE_SPACE 500
2165 /* prototypes from ioctl.c */
2166 int reiserfs_ioctl(struct inode *inode, struct file *filp,
2167 unsigned int cmd, unsigned long arg);
2168 long reiserfs_compat_ioctl(struct file *filp,
2169 unsigned int cmd, unsigned long arg);
2171 /* ioctl's command */
2172 #define REISERFS_IOC_UNPACK _IOW(0xCD,1,long)
2173 /* define following flags to be the same as in ext2, so that chattr(1),
2174 lsattr(1) will work with us. */
2175 #define REISERFS_IOC_GETFLAGS FS_IOC_GETFLAGS
2176 #define REISERFS_IOC_SETFLAGS FS_IOC_SETFLAGS
2177 #define REISERFS_IOC_GETVERSION FS_IOC_GETVERSION
2178 #define REISERFS_IOC_SETVERSION FS_IOC_SETVERSION
2180 /* the 32 bit compat definitions with int argument */
2181 #define REISERFS_IOC32_UNPACK _IOW(0xCD, 1, int)
2182 #define REISERFS_IOC32_GETFLAGS FS_IOC32_GETFLAGS
2183 #define REISERFS_IOC32_SETFLAGS FS_IOC32_SETFLAGS
2184 #define REISERFS_IOC32_GETVERSION FS_IOC32_GETVERSION
2185 #define REISERFS_IOC32_SETVERSION FS_IOC32_SETVERSION
2187 /* Locking primitives */
2188 /* Right now we are still falling back to (un)lock_kernel, but eventually that
2189 would evolve into real per-fs locks */
2190 #define reiserfs_write_lock( sb ) lock_kernel()
2191 #define reiserfs_write_unlock( sb ) unlock_kernel()
2193 /* xattr stuff */
2194 #define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2196 #endif /* _LINUX_REISER_FS_H */