3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
39 * empty slabs with no allocated objects
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
53 * The c_cpuarray may not be read with enabled local interrupts -
54 * it's changed with a smp_call_function().
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
58 * Several members in kmem_cache_t and struct slab never change, they
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
68 * Further notes from the original documentation:
70 * 11 April '97. Started multi-threading - markhe
71 * The global cache-chain is protected by the semaphore 'cache_chain_sem'.
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
76 * At present, each engine can be growing a cache. This should be blocked.
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
89 #include <linux/config.h>
90 #include <linux/slab.h>
92 #include <linux/swap.h>
93 #include <linux/cache.h>
94 #include <linux/interrupt.h>
95 #include <linux/init.h>
96 #include <linux/compiler.h>
97 #include <linux/seq_file.h>
98 #include <linux/notifier.h>
99 #include <linux/kallsyms.h>
100 #include <linux/cpu.h>
101 #include <linux/sysctl.h>
102 #include <linux/module.h>
103 #include <linux/rcupdate.h>
104 #include <linux/string.h>
105 #include <linux/nodemask.h>
107 #include <asm/uaccess.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110 #include <asm/page.h>
113 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
114 * SLAB_RED_ZONE & SLAB_POISON.
115 * 0 for faster, smaller code (especially in the critical paths).
117 * STATS - 1 to collect stats for /proc/slabinfo.
118 * 0 for faster, smaller code (especially in the critical paths).
120 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
123 #ifdef CONFIG_DEBUG_SLAB
126 #define FORCED_DEBUG 1
130 #define FORCED_DEBUG 0
134 /* Shouldn't this be in a header file somewhere? */
135 #define BYTES_PER_WORD sizeof(void *)
137 #ifndef cache_line_size
138 #define cache_line_size() L1_CACHE_BYTES
141 #ifndef ARCH_KMALLOC_MINALIGN
143 * Enforce a minimum alignment for the kmalloc caches.
144 * Usually, the kmalloc caches are cache_line_size() aligned, except when
145 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
146 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
147 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
148 * Note that this flag disables some debug features.
150 #define ARCH_KMALLOC_MINALIGN 0
153 #ifndef ARCH_SLAB_MINALIGN
155 * Enforce a minimum alignment for all caches.
156 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
157 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
158 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
159 * some debug features.
161 #define ARCH_SLAB_MINALIGN 0
164 #ifndef ARCH_KMALLOC_FLAGS
165 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
168 /* Legal flag mask for kmem_cache_create(). */
170 # define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
171 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
172 SLAB_NO_REAP | SLAB_CACHE_DMA | \
173 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
174 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
177 # define CREATE_MASK (SLAB_HWCACHE_ALIGN | SLAB_NO_REAP | \
178 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
186 * Bufctl's are used for linking objs within a slab
189 * This implementation relies on "struct page" for locating the cache &
190 * slab an object belongs to.
191 * This allows the bufctl structure to be small (one int), but limits
192 * the number of objects a slab (not a cache) can contain when off-slab
193 * bufctls are used. The limit is the size of the largest general cache
194 * that does not use off-slab slabs.
195 * For 32bit archs with 4 kB pages, is this 56.
196 * This is not serious, as it is only for large objects, when it is unwise
197 * to have too many per slab.
198 * Note: This limit can be raised by introducing a general cache whose size
199 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
202 typedef unsigned int kmem_bufctl_t
;
203 #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
204 #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
205 #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-2)
207 /* Max number of objs-per-slab for caches which use off-slab slabs.
208 * Needed to avoid a possible looping condition in cache_grow().
210 static unsigned long offslab_limit
;
215 * Manages the objs in a slab. Placed either at the beginning of mem allocated
216 * for a slab, or allocated from an general cache.
217 * Slabs are chained into three list: fully used, partial, fully free slabs.
220 struct list_head list
;
221 unsigned long colouroff
;
222 void *s_mem
; /* including colour offset */
223 unsigned int inuse
; /* num of objs active in slab */
225 unsigned short nodeid
;
231 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
232 * arrange for kmem_freepages to be called via RCU. This is useful if
233 * we need to approach a kernel structure obliquely, from its address
234 * obtained without the usual locking. We can lock the structure to
235 * stabilize it and check it's still at the given address, only if we
236 * can be sure that the memory has not been meanwhile reused for some
237 * other kind of object (which our subsystem's lock might corrupt).
239 * rcu_read_lock before reading the address, then rcu_read_unlock after
240 * taking the spinlock within the structure expected at that address.
242 * We assume struct slab_rcu can overlay struct slab when destroying.
245 struct rcu_head head
;
246 kmem_cache_t
*cachep
;
254 * - LIFO ordering, to hand out cache-warm objects from _alloc
255 * - reduce the number of linked list operations
256 * - reduce spinlock operations
258 * The limit is stored in the per-cpu structure to reduce the data cache
265 unsigned int batchcount
;
266 unsigned int touched
;
269 * Must have this definition in here for the proper
270 * alignment of array_cache. Also simplifies accessing
272 * [0] is for gcc 2.95. It should really be [].
276 /* bootstrap: The caches do not work without cpuarrays anymore,
277 * but the cpuarrays are allocated from the generic caches...
279 #define BOOT_CPUCACHE_ENTRIES 1
280 struct arraycache_init
{
281 struct array_cache cache
;
282 void * entries
[BOOT_CPUCACHE_ENTRIES
];
286 * The slab lists for all objects.
289 struct list_head slabs_partial
; /* partial list first, better asm code */
290 struct list_head slabs_full
;
291 struct list_head slabs_free
;
292 unsigned long free_objects
;
293 unsigned long next_reap
;
295 unsigned int free_limit
;
296 spinlock_t list_lock
;
297 struct array_cache
*shared
; /* shared per node */
298 struct array_cache
**alien
; /* on other nodes */
302 * Need this for bootstrapping a per node allocator.
304 #define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
305 struct kmem_list3 __initdata initkmem_list3
[NUM_INIT_LISTS
];
306 #define CACHE_CACHE 0
308 #define SIZE_L3 (1 + MAX_NUMNODES)
311 * This function may be completely optimized away if
312 * a constant is passed to it. Mostly the same as
313 * what is in linux/slab.h except it returns an
316 static inline int index_of(const size_t size
)
318 if (__builtin_constant_p(size
)) {
326 #include "linux/kmalloc_sizes.h"
329 extern void __bad_size(void);
336 #define INDEX_AC index_of(sizeof(struct arraycache_init))
337 #define INDEX_L3 index_of(sizeof(struct kmem_list3))
339 static inline void kmem_list3_init(struct kmem_list3
*parent
)
341 INIT_LIST_HEAD(&parent
->slabs_full
);
342 INIT_LIST_HEAD(&parent
->slabs_partial
);
343 INIT_LIST_HEAD(&parent
->slabs_free
);
344 parent
->shared
= NULL
;
345 parent
->alien
= NULL
;
346 spin_lock_init(&parent
->list_lock
);
347 parent
->free_objects
= 0;
348 parent
->free_touched
= 0;
351 #define MAKE_LIST(cachep, listp, slab, nodeid) \
353 INIT_LIST_HEAD(listp); \
354 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
357 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
359 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
360 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
361 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
370 struct kmem_cache_s
{
371 /* 1) per-cpu data, touched during every alloc/free */
372 struct array_cache
*array
[NR_CPUS
];
373 unsigned int batchcount
;
376 unsigned int objsize
;
377 /* 2) touched by every alloc & free from the backend */
378 struct kmem_list3
*nodelists
[MAX_NUMNODES
];
379 unsigned int flags
; /* constant flags */
380 unsigned int num
; /* # of objs per slab */
383 /* 3) cache_grow/shrink */
384 /* order of pgs per slab (2^n) */
385 unsigned int gfporder
;
387 /* force GFP flags, e.g. GFP_DMA */
388 unsigned int gfpflags
;
390 size_t colour
; /* cache colouring range */
391 unsigned int colour_off
; /* colour offset */
392 unsigned int colour_next
; /* cache colouring */
393 kmem_cache_t
*slabp_cache
;
394 unsigned int slab_size
;
395 unsigned int dflags
; /* dynamic flags */
397 /* constructor func */
398 void (*ctor
)(void *, kmem_cache_t
*, unsigned long);
400 /* de-constructor func */
401 void (*dtor
)(void *, kmem_cache_t
*, unsigned long);
403 /* 4) cache creation/removal */
405 struct list_head next
;
409 unsigned long num_active
;
410 unsigned long num_allocations
;
411 unsigned long high_mark
;
413 unsigned long reaped
;
414 unsigned long errors
;
415 unsigned long max_freeable
;
416 unsigned long node_allocs
;
417 unsigned long node_frees
;
429 #define CFLGS_OFF_SLAB (0x80000000UL)
430 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
432 #define BATCHREFILL_LIMIT 16
433 /* Optimization question: fewer reaps means less
434 * probability for unnessary cpucache drain/refill cycles.
436 * OTHO the cpuarrays can contain lots of objects,
437 * which could lock up otherwise freeable slabs.
439 #define REAPTIMEOUT_CPUC (2*HZ)
440 #define REAPTIMEOUT_LIST3 (4*HZ)
443 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
444 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
445 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
446 #define STATS_INC_GROWN(x) ((x)->grown++)
447 #define STATS_INC_REAPED(x) ((x)->reaped++)
448 #define STATS_SET_HIGH(x) do { if ((x)->num_active > (x)->high_mark) \
449 (x)->high_mark = (x)->num_active; \
451 #define STATS_INC_ERR(x) ((x)->errors++)
452 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
453 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
454 #define STATS_SET_FREEABLE(x, i) \
455 do { if ((x)->max_freeable < i) \
456 (x)->max_freeable = i; \
459 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
460 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
461 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
462 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
464 #define STATS_INC_ACTIVE(x) do { } while (0)
465 #define STATS_DEC_ACTIVE(x) do { } while (0)
466 #define STATS_INC_ALLOCED(x) do { } while (0)
467 #define STATS_INC_GROWN(x) do { } while (0)
468 #define STATS_INC_REAPED(x) do { } while (0)
469 #define STATS_SET_HIGH(x) do { } while (0)
470 #define STATS_INC_ERR(x) do { } while (0)
471 #define STATS_INC_NODEALLOCS(x) do { } while (0)
472 #define STATS_INC_NODEFREES(x) do { } while (0)
473 #define STATS_SET_FREEABLE(x, i) \
476 #define STATS_INC_ALLOCHIT(x) do { } while (0)
477 #define STATS_INC_ALLOCMISS(x) do { } while (0)
478 #define STATS_INC_FREEHIT(x) do { } while (0)
479 #define STATS_INC_FREEMISS(x) do { } while (0)
483 /* Magic nums for obj red zoning.
484 * Placed in the first word before and the first word after an obj.
486 #define RED_INACTIVE 0x5A2CF071UL /* when obj is inactive */
487 #define RED_ACTIVE 0x170FC2A5UL /* when obj is active */
489 /* ...and for poisoning */
490 #define POISON_INUSE 0x5a /* for use-uninitialised poisoning */
491 #define POISON_FREE 0x6b /* for use-after-free poisoning */
492 #define POISON_END 0xa5 /* end-byte of poisoning */
494 /* memory layout of objects:
496 * 0 .. cachep->dbghead - BYTES_PER_WORD - 1: padding. This ensures that
497 * the end of an object is aligned with the end of the real
498 * allocation. Catches writes behind the end of the allocation.
499 * cachep->dbghead - BYTES_PER_WORD .. cachep->dbghead - 1:
501 * cachep->dbghead: The real object.
502 * cachep->objsize - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
503 * cachep->objsize - 1* BYTES_PER_WORD: last caller address [BYTES_PER_WORD long]
505 static int obj_dbghead(kmem_cache_t
*cachep
)
507 return cachep
->dbghead
;
510 static int obj_reallen(kmem_cache_t
*cachep
)
512 return cachep
->reallen
;
515 static unsigned long *dbg_redzone1(kmem_cache_t
*cachep
, void *objp
)
517 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
518 return (unsigned long*) (objp
+obj_dbghead(cachep
)-BYTES_PER_WORD
);
521 static unsigned long *dbg_redzone2(kmem_cache_t
*cachep
, void *objp
)
523 BUG_ON(!(cachep
->flags
& SLAB_RED_ZONE
));
524 if (cachep
->flags
& SLAB_STORE_USER
)
525 return (unsigned long*) (objp
+cachep
->objsize
-2*BYTES_PER_WORD
);
526 return (unsigned long*) (objp
+cachep
->objsize
-BYTES_PER_WORD
);
529 static void **dbg_userword(kmem_cache_t
*cachep
, void *objp
)
531 BUG_ON(!(cachep
->flags
& SLAB_STORE_USER
));
532 return (void**)(objp
+cachep
->objsize
-BYTES_PER_WORD
);
537 #define obj_dbghead(x) 0
538 #define obj_reallen(cachep) (cachep->objsize)
539 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
540 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
541 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
546 * Maximum size of an obj (in 2^order pages)
547 * and absolute limit for the gfp order.
549 #if defined(CONFIG_LARGE_ALLOCS)
550 #define MAX_OBJ_ORDER 13 /* up to 32Mb */
551 #define MAX_GFP_ORDER 13 /* up to 32Mb */
552 #elif defined(CONFIG_MMU)
553 #define MAX_OBJ_ORDER 5 /* 32 pages */
554 #define MAX_GFP_ORDER 5 /* 32 pages */
556 #define MAX_OBJ_ORDER 8 /* up to 1Mb */
557 #define MAX_GFP_ORDER 8 /* up to 1Mb */
561 * Do not go above this order unless 0 objects fit into the slab.
563 #define BREAK_GFP_ORDER_HI 1
564 #define BREAK_GFP_ORDER_LO 0
565 static int slab_break_gfp_order
= BREAK_GFP_ORDER_LO
;
567 /* Macros for storing/retrieving the cachep and or slab from the
568 * global 'mem_map'. These are used to find the slab an obj belongs to.
569 * With kfree(), these are used to find the cache which an obj belongs to.
571 #define SET_PAGE_CACHE(pg,x) ((pg)->lru.next = (struct list_head *)(x))
572 #define GET_PAGE_CACHE(pg) ((kmem_cache_t *)(pg)->lru.next)
573 #define SET_PAGE_SLAB(pg,x) ((pg)->lru.prev = (struct list_head *)(x))
574 #define GET_PAGE_SLAB(pg) ((struct slab *)(pg)->lru.prev)
576 /* These are the default caches for kmalloc. Custom caches can have other sizes. */
577 struct cache_sizes malloc_sizes
[] = {
578 #define CACHE(x) { .cs_size = (x) },
579 #include <linux/kmalloc_sizes.h>
583 EXPORT_SYMBOL(malloc_sizes
);
585 /* Must match cache_sizes above. Out of line to keep cache footprint low. */
591 static struct cache_names __initdata cache_names
[] = {
592 #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
593 #include <linux/kmalloc_sizes.h>
598 static struct arraycache_init initarray_cache __initdata
=
599 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
600 static struct arraycache_init initarray_generic
=
601 { { 0, BOOT_CPUCACHE_ENTRIES
, 1, 0} };
603 /* internal cache of cache description objs */
604 static kmem_cache_t cache_cache
= {
606 .limit
= BOOT_CPUCACHE_ENTRIES
,
608 .objsize
= sizeof(kmem_cache_t
),
609 .flags
= SLAB_NO_REAP
,
610 .spinlock
= SPIN_LOCK_UNLOCKED
,
611 .name
= "kmem_cache",
613 .reallen
= sizeof(kmem_cache_t
),
617 /* Guard access to the cache-chain. */
618 static struct semaphore cache_chain_sem
;
619 static struct list_head cache_chain
;
622 * vm_enough_memory() looks at this to determine how many
623 * slab-allocated pages are possibly freeable under pressure
625 * SLAB_RECLAIM_ACCOUNT turns this on per-slab
627 atomic_t slab_reclaim_pages
;
630 * chicken and egg problem: delay the per-cpu array allocation
631 * until the general caches are up.
640 static DEFINE_PER_CPU(struct work_struct
, reap_work
);
642 static void free_block(kmem_cache_t
* cachep
, void** objpp
, int len
);
643 static void enable_cpucache (kmem_cache_t
*cachep
);
644 static void cache_reap (void *unused
);
645 static int __node_shrink(kmem_cache_t
*cachep
, int node
);
647 static inline struct array_cache
*ac_data(kmem_cache_t
*cachep
)
649 return cachep
->array
[smp_processor_id()];
652 static inline kmem_cache_t
*__find_general_cachep(size_t size
,
653 unsigned int __nocast gfpflags
)
655 struct cache_sizes
*csizep
= malloc_sizes
;
658 /* This happens if someone tries to call
659 * kmem_cache_create(), or __kmalloc(), before
660 * the generic caches are initialized.
662 BUG_ON(malloc_sizes
[INDEX_AC
].cs_cachep
== NULL
);
664 while (size
> csizep
->cs_size
)
668 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
669 * has cs_{dma,}cachep==NULL. Thus no special case
670 * for large kmalloc calls required.
672 if (unlikely(gfpflags
& GFP_DMA
))
673 return csizep
->cs_dmacachep
;
674 return csizep
->cs_cachep
;
677 kmem_cache_t
*kmem_find_general_cachep(size_t size
,
678 unsigned int __nocast gfpflags
)
680 return __find_general_cachep(size
, gfpflags
);
682 EXPORT_SYMBOL(kmem_find_general_cachep
);
684 /* Cal the num objs, wastage, and bytes left over for a given slab size. */
685 static void cache_estimate(unsigned long gfporder
, size_t size
, size_t align
,
686 int flags
, size_t *left_over
, unsigned int *num
)
689 size_t wastage
= PAGE_SIZE
<<gfporder
;
693 if (!(flags
& CFLGS_OFF_SLAB
)) {
694 base
= sizeof(struct slab
);
695 extra
= sizeof(kmem_bufctl_t
);
698 while (i
*size
+ ALIGN(base
+i
*extra
, align
) <= wastage
)
708 wastage
-= ALIGN(base
+i
*extra
, align
);
709 *left_over
= wastage
;
712 #define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
714 static void __slab_error(const char *function
, kmem_cache_t
*cachep
, char *msg
)
716 printk(KERN_ERR
"slab error in %s(): cache `%s': %s\n",
717 function
, cachep
->name
, msg
);
722 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
723 * via the workqueue/eventd.
724 * Add the CPU number into the expiration time to minimize the possibility of
725 * the CPUs getting into lockstep and contending for the global cache chain
728 static void __devinit
start_cpu_timer(int cpu
)
730 struct work_struct
*reap_work
= &per_cpu(reap_work
, cpu
);
733 * When this gets called from do_initcalls via cpucache_init(),
734 * init_workqueues() has already run, so keventd will be setup
737 if (keventd_up() && reap_work
->func
== NULL
) {
738 INIT_WORK(reap_work
, cache_reap
, NULL
);
739 schedule_delayed_work_on(cpu
, reap_work
, HZ
+ 3 * cpu
);
743 static struct array_cache
*alloc_arraycache(int node
, int entries
,
746 int memsize
= sizeof(void*)*entries
+sizeof(struct array_cache
);
747 struct array_cache
*nc
= NULL
;
749 nc
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
753 nc
->batchcount
= batchcount
;
755 spin_lock_init(&nc
->lock
);
761 static inline struct array_cache
**alloc_alien_cache(int node
, int limit
)
763 struct array_cache
**ac_ptr
;
764 int memsize
= sizeof(void*)*MAX_NUMNODES
;
769 ac_ptr
= kmalloc_node(memsize
, GFP_KERNEL
, node
);
772 if (i
== node
|| !node_online(i
)) {
776 ac_ptr
[i
] = alloc_arraycache(node
, limit
, 0xbaadf00d);
778 for (i
--; i
<=0; i
--)
788 static inline void free_alien_cache(struct array_cache
**ac_ptr
)
801 static inline void __drain_alien_cache(kmem_cache_t
*cachep
, struct array_cache
*ac
, int node
)
803 struct kmem_list3
*rl3
= cachep
->nodelists
[node
];
806 spin_lock(&rl3
->list_lock
);
807 free_block(cachep
, ac
->entry
, ac
->avail
);
809 spin_unlock(&rl3
->list_lock
);
813 static void drain_alien_cache(kmem_cache_t
*cachep
, struct kmem_list3
*l3
)
816 struct array_cache
*ac
;
819 for_each_online_node(i
) {
822 spin_lock_irqsave(&ac
->lock
, flags
);
823 __drain_alien_cache(cachep
, ac
, i
);
824 spin_unlock_irqrestore(&ac
->lock
, flags
);
829 #define alloc_alien_cache(node, limit) do { } while (0)
830 #define free_alien_cache(ac_ptr) do { } while (0)
831 #define drain_alien_cache(cachep, l3) do { } while (0)
834 static int __devinit
cpuup_callback(struct notifier_block
*nfb
,
835 unsigned long action
, void *hcpu
)
837 long cpu
= (long)hcpu
;
838 kmem_cache_t
* cachep
;
839 struct kmem_list3
*l3
= NULL
;
840 int node
= cpu_to_node(cpu
);
841 int memsize
= sizeof(struct kmem_list3
);
842 struct array_cache
*nc
= NULL
;
846 down(&cache_chain_sem
);
847 /* we need to do this right in the beginning since
848 * alloc_arraycache's are going to use this list.
849 * kmalloc_node allows us to add the slab to the right
850 * kmem_list3 and not this cpu's kmem_list3
853 list_for_each_entry(cachep
, &cache_chain
, next
) {
854 /* setup the size64 kmemlist for cpu before we can
855 * begin anything. Make sure some other cpu on this
856 * node has not already allocated this
858 if (!cachep
->nodelists
[node
]) {
859 if (!(l3
= kmalloc_node(memsize
,
863 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
864 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
866 cachep
->nodelists
[node
] = l3
;
869 spin_lock_irq(&cachep
->nodelists
[node
]->list_lock
);
870 cachep
->nodelists
[node
]->free_limit
=
871 (1 + nr_cpus_node(node
)) *
872 cachep
->batchcount
+ cachep
->num
;
873 spin_unlock_irq(&cachep
->nodelists
[node
]->list_lock
);
876 /* Now we can go ahead with allocating the shared array's
878 list_for_each_entry(cachep
, &cache_chain
, next
) {
879 nc
= alloc_arraycache(node
, cachep
->limit
,
883 cachep
->array
[cpu
] = nc
;
885 l3
= cachep
->nodelists
[node
];
888 if (!(nc
= alloc_arraycache(node
,
889 cachep
->shared
*cachep
->batchcount
,
893 /* we are serialised from CPU_DEAD or
894 CPU_UP_CANCELLED by the cpucontrol lock */
898 up(&cache_chain_sem
);
901 start_cpu_timer(cpu
);
903 #ifdef CONFIG_HOTPLUG_CPU
906 case CPU_UP_CANCELED
:
907 down(&cache_chain_sem
);
909 list_for_each_entry(cachep
, &cache_chain
, next
) {
910 struct array_cache
*nc
;
913 mask
= node_to_cpumask(node
);
914 spin_lock_irq(&cachep
->spinlock
);
915 /* cpu is dead; no one can alloc from it. */
916 nc
= cachep
->array
[cpu
];
917 cachep
->array
[cpu
] = NULL
;
918 l3
= cachep
->nodelists
[node
];
923 spin_lock(&l3
->list_lock
);
925 /* Free limit for this kmem_list3 */
926 l3
->free_limit
-= cachep
->batchcount
;
928 free_block(cachep
, nc
->entry
, nc
->avail
);
930 if (!cpus_empty(mask
)) {
931 spin_unlock(&l3
->list_lock
);
936 free_block(cachep
, l3
->shared
->entry
,
942 drain_alien_cache(cachep
, l3
);
943 free_alien_cache(l3
->alien
);
947 /* free slabs belonging to this node */
948 if (__node_shrink(cachep
, node
)) {
949 cachep
->nodelists
[node
] = NULL
;
950 spin_unlock(&l3
->list_lock
);
953 spin_unlock(&l3
->list_lock
);
956 spin_unlock_irq(&cachep
->spinlock
);
959 up(&cache_chain_sem
);
965 up(&cache_chain_sem
);
969 static struct notifier_block cpucache_notifier
= { &cpuup_callback
, NULL
, 0 };
972 * swap the static kmem_list3 with kmalloced memory
974 static void init_list(kmem_cache_t
*cachep
, struct kmem_list3
*list
,
977 struct kmem_list3
*ptr
;
979 BUG_ON(cachep
->nodelists
[nodeid
] != list
);
980 ptr
= kmalloc_node(sizeof(struct kmem_list3
), GFP_KERNEL
, nodeid
);
984 memcpy(ptr
, list
, sizeof(struct kmem_list3
));
985 MAKE_ALL_LISTS(cachep
, ptr
, nodeid
);
986 cachep
->nodelists
[nodeid
] = ptr
;
991 * Called after the gfp() functions have been enabled, and before smp_init().
993 void __init
kmem_cache_init(void)
996 struct cache_sizes
*sizes
;
997 struct cache_names
*names
;
1000 for (i
= 0; i
< NUM_INIT_LISTS
; i
++) {
1001 kmem_list3_init(&initkmem_list3
[i
]);
1002 if (i
< MAX_NUMNODES
)
1003 cache_cache
.nodelists
[i
] = NULL
;
1007 * Fragmentation resistance on low memory - only use bigger
1008 * page orders on machines with more than 32MB of memory.
1010 if (num_physpages
> (32 << 20) >> PAGE_SHIFT
)
1011 slab_break_gfp_order
= BREAK_GFP_ORDER_HI
;
1013 /* Bootstrap is tricky, because several objects are allocated
1014 * from caches that do not exist yet:
1015 * 1) initialize the cache_cache cache: it contains the kmem_cache_t
1016 * structures of all caches, except cache_cache itself: cache_cache
1017 * is statically allocated.
1018 * Initially an __init data area is used for the head array and the
1019 * kmem_list3 structures, it's replaced with a kmalloc allocated
1020 * array at the end of the bootstrap.
1021 * 2) Create the first kmalloc cache.
1022 * The kmem_cache_t for the new cache is allocated normally.
1023 * An __init data area is used for the head array.
1024 * 3) Create the remaining kmalloc caches, with minimally sized
1026 * 4) Replace the __init data head arrays for cache_cache and the first
1027 * kmalloc cache with kmalloc allocated arrays.
1028 * 5) Replace the __init data for kmem_list3 for cache_cache and
1029 * the other cache's with kmalloc allocated memory.
1030 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1033 /* 1) create the cache_cache */
1034 init_MUTEX(&cache_chain_sem
);
1035 INIT_LIST_HEAD(&cache_chain
);
1036 list_add(&cache_cache
.next
, &cache_chain
);
1037 cache_cache
.colour_off
= cache_line_size();
1038 cache_cache
.array
[smp_processor_id()] = &initarray_cache
.cache
;
1039 cache_cache
.nodelists
[numa_node_id()] = &initkmem_list3
[CACHE_CACHE
];
1041 cache_cache
.objsize
= ALIGN(cache_cache
.objsize
, cache_line_size());
1043 cache_estimate(0, cache_cache
.objsize
, cache_line_size(), 0,
1044 &left_over
, &cache_cache
.num
);
1045 if (!cache_cache
.num
)
1048 cache_cache
.colour
= left_over
/cache_cache
.colour_off
;
1049 cache_cache
.colour_next
= 0;
1050 cache_cache
.slab_size
= ALIGN(cache_cache
.num
*sizeof(kmem_bufctl_t
) +
1051 sizeof(struct slab
), cache_line_size());
1053 /* 2+3) create the kmalloc caches */
1054 sizes
= malloc_sizes
;
1055 names
= cache_names
;
1057 /* Initialize the caches that provide memory for the array cache
1058 * and the kmem_list3 structures first.
1059 * Without this, further allocations will bug
1062 sizes
[INDEX_AC
].cs_cachep
= kmem_cache_create(names
[INDEX_AC
].name
,
1063 sizes
[INDEX_AC
].cs_size
, ARCH_KMALLOC_MINALIGN
,
1064 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
1066 if (INDEX_AC
!= INDEX_L3
)
1067 sizes
[INDEX_L3
].cs_cachep
=
1068 kmem_cache_create(names
[INDEX_L3
].name
,
1069 sizes
[INDEX_L3
].cs_size
, ARCH_KMALLOC_MINALIGN
,
1070 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
1072 while (sizes
->cs_size
!= ULONG_MAX
) {
1074 * For performance, all the general caches are L1 aligned.
1075 * This should be particularly beneficial on SMP boxes, as it
1076 * eliminates "false sharing".
1077 * Note for systems short on memory removing the alignment will
1078 * allow tighter packing of the smaller caches.
1080 if(!sizes
->cs_cachep
)
1081 sizes
->cs_cachep
= kmem_cache_create(names
->name
,
1082 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
1083 (ARCH_KMALLOC_FLAGS
| SLAB_PANIC
), NULL
, NULL
);
1085 /* Inc off-slab bufctl limit until the ceiling is hit. */
1086 if (!(OFF_SLAB(sizes
->cs_cachep
))) {
1087 offslab_limit
= sizes
->cs_size
-sizeof(struct slab
);
1088 offslab_limit
/= sizeof(kmem_bufctl_t
);
1091 sizes
->cs_dmacachep
= kmem_cache_create(names
->name_dma
,
1092 sizes
->cs_size
, ARCH_KMALLOC_MINALIGN
,
1093 (ARCH_KMALLOC_FLAGS
| SLAB_CACHE_DMA
| SLAB_PANIC
),
1099 /* 4) Replace the bootstrap head arrays */
1103 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1105 local_irq_disable();
1106 BUG_ON(ac_data(&cache_cache
) != &initarray_cache
.cache
);
1107 memcpy(ptr
, ac_data(&cache_cache
),
1108 sizeof(struct arraycache_init
));
1109 cache_cache
.array
[smp_processor_id()] = ptr
;
1112 ptr
= kmalloc(sizeof(struct arraycache_init
), GFP_KERNEL
);
1114 local_irq_disable();
1115 BUG_ON(ac_data(malloc_sizes
[INDEX_AC
].cs_cachep
)
1116 != &initarray_generic
.cache
);
1117 memcpy(ptr
, ac_data(malloc_sizes
[INDEX_AC
].cs_cachep
),
1118 sizeof(struct arraycache_init
));
1119 malloc_sizes
[INDEX_AC
].cs_cachep
->array
[smp_processor_id()] =
1123 /* 5) Replace the bootstrap kmem_list3's */
1126 /* Replace the static kmem_list3 structures for the boot cpu */
1127 init_list(&cache_cache
, &initkmem_list3
[CACHE_CACHE
],
1130 for_each_online_node(node
) {
1131 init_list(malloc_sizes
[INDEX_AC
].cs_cachep
,
1132 &initkmem_list3
[SIZE_AC
+node
], node
);
1134 if (INDEX_AC
!= INDEX_L3
) {
1135 init_list(malloc_sizes
[INDEX_L3
].cs_cachep
,
1136 &initkmem_list3
[SIZE_L3
+node
],
1142 /* 6) resize the head arrays to their final sizes */
1144 kmem_cache_t
*cachep
;
1145 down(&cache_chain_sem
);
1146 list_for_each_entry(cachep
, &cache_chain
, next
)
1147 enable_cpucache(cachep
);
1148 up(&cache_chain_sem
);
1152 g_cpucache_up
= FULL
;
1154 /* Register a cpu startup notifier callback
1155 * that initializes ac_data for all new cpus
1157 register_cpu_notifier(&cpucache_notifier
);
1159 /* The reap timers are started later, with a module init call:
1160 * That part of the kernel is not yet operational.
1164 static int __init
cpucache_init(void)
1169 * Register the timers that return unneeded
1172 for_each_online_cpu(cpu
)
1173 start_cpu_timer(cpu
);
1178 __initcall(cpucache_init
);
1181 * Interface to system's page allocator. No need to hold the cache-lock.
1183 * If we requested dmaable memory, we will get it. Even if we
1184 * did not request dmaable memory, we might get it, but that
1185 * would be relatively rare and ignorable.
1187 static void *kmem_getpages(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
1193 flags
|= cachep
->gfpflags
;
1194 if (likely(nodeid
== -1)) {
1195 page
= alloc_pages(flags
, cachep
->gfporder
);
1197 page
= alloc_pages_node(nodeid
, flags
, cachep
->gfporder
);
1201 addr
= page_address(page
);
1203 i
= (1 << cachep
->gfporder
);
1204 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1205 atomic_add(i
, &slab_reclaim_pages
);
1206 add_page_state(nr_slab
, i
);
1215 * Interface to system's page release.
1217 static void kmem_freepages(kmem_cache_t
*cachep
, void *addr
)
1219 unsigned long i
= (1<<cachep
->gfporder
);
1220 struct page
*page
= virt_to_page(addr
);
1221 const unsigned long nr_freed
= i
;
1224 if (!TestClearPageSlab(page
))
1228 sub_page_state(nr_slab
, nr_freed
);
1229 if (current
->reclaim_state
)
1230 current
->reclaim_state
->reclaimed_slab
+= nr_freed
;
1231 free_pages((unsigned long)addr
, cachep
->gfporder
);
1232 if (cachep
->flags
& SLAB_RECLAIM_ACCOUNT
)
1233 atomic_sub(1<<cachep
->gfporder
, &slab_reclaim_pages
);
1236 static void kmem_rcu_free(struct rcu_head
*head
)
1238 struct slab_rcu
*slab_rcu
= (struct slab_rcu
*) head
;
1239 kmem_cache_t
*cachep
= slab_rcu
->cachep
;
1241 kmem_freepages(cachep
, slab_rcu
->addr
);
1242 if (OFF_SLAB(cachep
))
1243 kmem_cache_free(cachep
->slabp_cache
, slab_rcu
);
1248 #ifdef CONFIG_DEBUG_PAGEALLOC
1249 static void store_stackinfo(kmem_cache_t
*cachep
, unsigned long *addr
,
1250 unsigned long caller
)
1252 int size
= obj_reallen(cachep
);
1254 addr
= (unsigned long *)&((char*)addr
)[obj_dbghead(cachep
)];
1256 if (size
< 5*sizeof(unsigned long))
1261 *addr
++=smp_processor_id();
1262 size
-= 3*sizeof(unsigned long);
1264 unsigned long *sptr
= &caller
;
1265 unsigned long svalue
;
1267 while (!kstack_end(sptr
)) {
1269 if (kernel_text_address(svalue
)) {
1271 size
-= sizeof(unsigned long);
1272 if (size
<= sizeof(unsigned long))
1282 static void poison_obj(kmem_cache_t
*cachep
, void *addr
, unsigned char val
)
1284 int size
= obj_reallen(cachep
);
1285 addr
= &((char*)addr
)[obj_dbghead(cachep
)];
1287 memset(addr
, val
, size
);
1288 *(unsigned char *)(addr
+size
-1) = POISON_END
;
1291 static void dump_line(char *data
, int offset
, int limit
)
1294 printk(KERN_ERR
"%03x:", offset
);
1295 for (i
=0;i
<limit
;i
++) {
1296 printk(" %02x", (unsigned char)data
[offset
+i
]);
1304 static void print_objinfo(kmem_cache_t
*cachep
, void *objp
, int lines
)
1309 if (cachep
->flags
& SLAB_RED_ZONE
) {
1310 printk(KERN_ERR
"Redzone: 0x%lx/0x%lx.\n",
1311 *dbg_redzone1(cachep
, objp
),
1312 *dbg_redzone2(cachep
, objp
));
1315 if (cachep
->flags
& SLAB_STORE_USER
) {
1316 printk(KERN_ERR
"Last user: [<%p>]",
1317 *dbg_userword(cachep
, objp
));
1318 print_symbol("(%s)",
1319 (unsigned long)*dbg_userword(cachep
, objp
));
1322 realobj
= (char*)objp
+obj_dbghead(cachep
);
1323 size
= obj_reallen(cachep
);
1324 for (i
=0; i
<size
&& lines
;i
+=16, lines
--) {
1329 dump_line(realobj
, i
, limit
);
1333 static void check_poison_obj(kmem_cache_t
*cachep
, void *objp
)
1339 realobj
= (char*)objp
+obj_dbghead(cachep
);
1340 size
= obj_reallen(cachep
);
1342 for (i
=0;i
<size
;i
++) {
1343 char exp
= POISON_FREE
;
1346 if (realobj
[i
] != exp
) {
1351 printk(KERN_ERR
"Slab corruption: start=%p, len=%d\n",
1353 print_objinfo(cachep
, objp
, 0);
1355 /* Hexdump the affected line */
1360 dump_line(realobj
, i
, limit
);
1363 /* Limit to 5 lines */
1369 /* Print some data about the neighboring objects, if they
1372 struct slab
*slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
1375 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
1377 objp
= slabp
->s_mem
+(objnr
-1)*cachep
->objsize
;
1378 realobj
= (char*)objp
+obj_dbghead(cachep
);
1379 printk(KERN_ERR
"Prev obj: start=%p, len=%d\n",
1381 print_objinfo(cachep
, objp
, 2);
1383 if (objnr
+1 < cachep
->num
) {
1384 objp
= slabp
->s_mem
+(objnr
+1)*cachep
->objsize
;
1385 realobj
= (char*)objp
+obj_dbghead(cachep
);
1386 printk(KERN_ERR
"Next obj: start=%p, len=%d\n",
1388 print_objinfo(cachep
, objp
, 2);
1394 /* Destroy all the objs in a slab, and release the mem back to the system.
1395 * Before calling the slab must have been unlinked from the cache.
1396 * The cache-lock is not held/needed.
1398 static void slab_destroy (kmem_cache_t
*cachep
, struct slab
*slabp
)
1400 void *addr
= slabp
->s_mem
- slabp
->colouroff
;
1404 for (i
= 0; i
< cachep
->num
; i
++) {
1405 void *objp
= slabp
->s_mem
+ cachep
->objsize
* i
;
1407 if (cachep
->flags
& SLAB_POISON
) {
1408 #ifdef CONFIG_DEBUG_PAGEALLOC
1409 if ((cachep
->objsize
%PAGE_SIZE
)==0 && OFF_SLAB(cachep
))
1410 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
,1);
1412 check_poison_obj(cachep
, objp
);
1414 check_poison_obj(cachep
, objp
);
1417 if (cachep
->flags
& SLAB_RED_ZONE
) {
1418 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
1419 slab_error(cachep
, "start of a freed object "
1421 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
1422 slab_error(cachep
, "end of a freed object "
1425 if (cachep
->dtor
&& !(cachep
->flags
& SLAB_POISON
))
1426 (cachep
->dtor
)(objp
+obj_dbghead(cachep
), cachep
, 0);
1431 for (i
= 0; i
< cachep
->num
; i
++) {
1432 void* objp
= slabp
->s_mem
+cachep
->objsize
*i
;
1433 (cachep
->dtor
)(objp
, cachep
, 0);
1438 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
)) {
1439 struct slab_rcu
*slab_rcu
;
1441 slab_rcu
= (struct slab_rcu
*) slabp
;
1442 slab_rcu
->cachep
= cachep
;
1443 slab_rcu
->addr
= addr
;
1444 call_rcu(&slab_rcu
->head
, kmem_rcu_free
);
1446 kmem_freepages(cachep
, addr
);
1447 if (OFF_SLAB(cachep
))
1448 kmem_cache_free(cachep
->slabp_cache
, slabp
);
1452 /* For setting up all the kmem_list3s for cache whose objsize is same
1453 as size of kmem_list3. */
1454 static inline void set_up_list3s(kmem_cache_t
*cachep
, int index
)
1458 for_each_online_node(node
) {
1459 cachep
->nodelists
[node
] = &initkmem_list3
[index
+node
];
1460 cachep
->nodelists
[node
]->next_reap
= jiffies
+
1462 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1467 * kmem_cache_create - Create a cache.
1468 * @name: A string which is used in /proc/slabinfo to identify this cache.
1469 * @size: The size of objects to be created in this cache.
1470 * @align: The required alignment for the objects.
1471 * @flags: SLAB flags
1472 * @ctor: A constructor for the objects.
1473 * @dtor: A destructor for the objects.
1475 * Returns a ptr to the cache on success, NULL on failure.
1476 * Cannot be called within a int, but can be interrupted.
1477 * The @ctor is run when new pages are allocated by the cache
1478 * and the @dtor is run before the pages are handed back.
1480 * @name must be valid until the cache is destroyed. This implies that
1481 * the module calling this has to destroy the cache before getting
1486 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1487 * to catch references to uninitialised memory.
1489 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1490 * for buffer overruns.
1492 * %SLAB_NO_REAP - Don't automatically reap this cache when we're under
1495 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
1496 * cacheline. This can be beneficial if you're counting cycles as closely
1500 kmem_cache_create (const char *name
, size_t size
, size_t align
,
1501 unsigned long flags
, void (*ctor
)(void*, kmem_cache_t
*, unsigned long),
1502 void (*dtor
)(void*, kmem_cache_t
*, unsigned long))
1504 size_t left_over
, slab_size
, ralign
;
1505 kmem_cache_t
*cachep
= NULL
;
1508 * Sanity checks... these are all serious usage bugs.
1512 (size
< BYTES_PER_WORD
) ||
1513 (size
> (1<<MAX_OBJ_ORDER
)*PAGE_SIZE
) ||
1515 printk(KERN_ERR
"%s: Early error in slab %s\n",
1516 __FUNCTION__
, name
);
1521 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
1522 if ((flags
& SLAB_DEBUG_INITIAL
) && !ctor
) {
1523 /* No constructor, but inital state check requested */
1524 printk(KERN_ERR
"%s: No con, but init state check "
1525 "requested - %s\n", __FUNCTION__
, name
);
1526 flags
&= ~SLAB_DEBUG_INITIAL
;
1531 * Enable redzoning and last user accounting, except for caches with
1532 * large objects, if the increased size would increase the object size
1533 * above the next power of two: caches with object sizes just above a
1534 * power of two have a significant amount of internal fragmentation.
1536 if ((size
< 4096 || fls(size
-1) == fls(size
-1+3*BYTES_PER_WORD
)))
1537 flags
|= SLAB_RED_ZONE
|SLAB_STORE_USER
;
1538 if (!(flags
& SLAB_DESTROY_BY_RCU
))
1539 flags
|= SLAB_POISON
;
1541 if (flags
& SLAB_DESTROY_BY_RCU
)
1542 BUG_ON(flags
& SLAB_POISON
);
1544 if (flags
& SLAB_DESTROY_BY_RCU
)
1548 * Always checks flags, a caller might be expecting debug
1549 * support which isn't available.
1551 if (flags
& ~CREATE_MASK
)
1554 /* Check that size is in terms of words. This is needed to avoid
1555 * unaligned accesses for some archs when redzoning is used, and makes
1556 * sure any on-slab bufctl's are also correctly aligned.
1558 if (size
& (BYTES_PER_WORD
-1)) {
1559 size
+= (BYTES_PER_WORD
-1);
1560 size
&= ~(BYTES_PER_WORD
-1);
1563 /* calculate out the final buffer alignment: */
1564 /* 1) arch recommendation: can be overridden for debug */
1565 if (flags
& SLAB_HWCACHE_ALIGN
) {
1566 /* Default alignment: as specified by the arch code.
1567 * Except if an object is really small, then squeeze multiple
1568 * objects into one cacheline.
1570 ralign
= cache_line_size();
1571 while (size
<= ralign
/2)
1574 ralign
= BYTES_PER_WORD
;
1576 /* 2) arch mandated alignment: disables debug if necessary */
1577 if (ralign
< ARCH_SLAB_MINALIGN
) {
1578 ralign
= ARCH_SLAB_MINALIGN
;
1579 if (ralign
> BYTES_PER_WORD
)
1580 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1582 /* 3) caller mandated alignment: disables debug if necessary */
1583 if (ralign
< align
) {
1585 if (ralign
> BYTES_PER_WORD
)
1586 flags
&= ~(SLAB_RED_ZONE
|SLAB_STORE_USER
);
1588 /* 4) Store it. Note that the debug code below can reduce
1589 * the alignment to BYTES_PER_WORD.
1593 /* Get cache's description obj. */
1594 cachep
= (kmem_cache_t
*) kmem_cache_alloc(&cache_cache
, SLAB_KERNEL
);
1597 memset(cachep
, 0, sizeof(kmem_cache_t
));
1600 cachep
->reallen
= size
;
1602 if (flags
& SLAB_RED_ZONE
) {
1603 /* redzoning only works with word aligned caches */
1604 align
= BYTES_PER_WORD
;
1606 /* add space for red zone words */
1607 cachep
->dbghead
+= BYTES_PER_WORD
;
1608 size
+= 2*BYTES_PER_WORD
;
1610 if (flags
& SLAB_STORE_USER
) {
1611 /* user store requires word alignment and
1612 * one word storage behind the end of the real
1615 align
= BYTES_PER_WORD
;
1616 size
+= BYTES_PER_WORD
;
1618 #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
1619 if (size
>= malloc_sizes
[INDEX_L3
+1].cs_size
&& cachep
->reallen
> cache_line_size() && size
< PAGE_SIZE
) {
1620 cachep
->dbghead
+= PAGE_SIZE
- size
;
1626 /* Determine if the slab management is 'on' or 'off' slab. */
1627 if (size
>= (PAGE_SIZE
>>3))
1629 * Size is large, assume best to place the slab management obj
1630 * off-slab (should allow better packing of objs).
1632 flags
|= CFLGS_OFF_SLAB
;
1634 size
= ALIGN(size
, align
);
1636 if ((flags
& SLAB_RECLAIM_ACCOUNT
) && size
<= PAGE_SIZE
) {
1638 * A VFS-reclaimable slab tends to have most allocations
1639 * as GFP_NOFS and we really don't want to have to be allocating
1640 * higher-order pages when we are unable to shrink dcache.
1642 cachep
->gfporder
= 0;
1643 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1644 &left_over
, &cachep
->num
);
1647 * Calculate size (in pages) of slabs, and the num of objs per
1648 * slab. This could be made much more intelligent. For now,
1649 * try to avoid using high page-orders for slabs. When the
1650 * gfp() funcs are more friendly towards high-order requests,
1651 * this should be changed.
1654 unsigned int break_flag
= 0;
1656 cache_estimate(cachep
->gfporder
, size
, align
, flags
,
1657 &left_over
, &cachep
->num
);
1660 if (cachep
->gfporder
>= MAX_GFP_ORDER
)
1664 if (flags
& CFLGS_OFF_SLAB
&&
1665 cachep
->num
> offslab_limit
) {
1666 /* This num of objs will cause problems. */
1673 * Large num of objs is good, but v. large slabs are
1674 * currently bad for the gfp()s.
1676 if (cachep
->gfporder
>= slab_break_gfp_order
)
1679 if ((left_over
*8) <= (PAGE_SIZE
<<cachep
->gfporder
))
1680 break; /* Acceptable internal fragmentation. */
1687 printk("kmem_cache_create: couldn't create cache %s.\n", name
);
1688 kmem_cache_free(&cache_cache
, cachep
);
1692 slab_size
= ALIGN(cachep
->num
*sizeof(kmem_bufctl_t
)
1693 + sizeof(struct slab
), align
);
1696 * If the slab has been placed off-slab, and we have enough space then
1697 * move it on-slab. This is at the expense of any extra colouring.
1699 if (flags
& CFLGS_OFF_SLAB
&& left_over
>= slab_size
) {
1700 flags
&= ~CFLGS_OFF_SLAB
;
1701 left_over
-= slab_size
;
1704 if (flags
& CFLGS_OFF_SLAB
) {
1705 /* really off slab. No need for manual alignment */
1706 slab_size
= cachep
->num
*sizeof(kmem_bufctl_t
)+sizeof(struct slab
);
1709 cachep
->colour_off
= cache_line_size();
1710 /* Offset must be a multiple of the alignment. */
1711 if (cachep
->colour_off
< align
)
1712 cachep
->colour_off
= align
;
1713 cachep
->colour
= left_over
/cachep
->colour_off
;
1714 cachep
->slab_size
= slab_size
;
1715 cachep
->flags
= flags
;
1716 cachep
->gfpflags
= 0;
1717 if (flags
& SLAB_CACHE_DMA
)
1718 cachep
->gfpflags
|= GFP_DMA
;
1719 spin_lock_init(&cachep
->spinlock
);
1720 cachep
->objsize
= size
;
1722 if (flags
& CFLGS_OFF_SLAB
)
1723 cachep
->slabp_cache
= kmem_find_general_cachep(slab_size
, 0u);
1724 cachep
->ctor
= ctor
;
1725 cachep
->dtor
= dtor
;
1726 cachep
->name
= name
;
1728 /* Don't let CPUs to come and go */
1731 if (g_cpucache_up
== FULL
) {
1732 enable_cpucache(cachep
);
1734 if (g_cpucache_up
== NONE
) {
1735 /* Note: the first kmem_cache_create must create
1736 * the cache that's used by kmalloc(24), otherwise
1737 * the creation of further caches will BUG().
1739 cachep
->array
[smp_processor_id()] =
1740 &initarray_generic
.cache
;
1742 /* If the cache that's used by
1743 * kmalloc(sizeof(kmem_list3)) is the first cache,
1744 * then we need to set up all its list3s, otherwise
1745 * the creation of further caches will BUG().
1747 set_up_list3s(cachep
, SIZE_AC
);
1748 if (INDEX_AC
== INDEX_L3
)
1749 g_cpucache_up
= PARTIAL_L3
;
1751 g_cpucache_up
= PARTIAL_AC
;
1753 cachep
->array
[smp_processor_id()] =
1754 kmalloc(sizeof(struct arraycache_init
),
1757 if (g_cpucache_up
== PARTIAL_AC
) {
1758 set_up_list3s(cachep
, SIZE_L3
);
1759 g_cpucache_up
= PARTIAL_L3
;
1762 for_each_online_node(node
) {
1764 cachep
->nodelists
[node
] =
1765 kmalloc_node(sizeof(struct kmem_list3
),
1767 BUG_ON(!cachep
->nodelists
[node
]);
1768 kmem_list3_init(cachep
->nodelists
[node
]);
1772 cachep
->nodelists
[numa_node_id()]->next_reap
=
1773 jiffies
+ REAPTIMEOUT_LIST3
+
1774 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
1776 BUG_ON(!ac_data(cachep
));
1777 ac_data(cachep
)->avail
= 0;
1778 ac_data(cachep
)->limit
= BOOT_CPUCACHE_ENTRIES
;
1779 ac_data(cachep
)->batchcount
= 1;
1780 ac_data(cachep
)->touched
= 0;
1781 cachep
->batchcount
= 1;
1782 cachep
->limit
= BOOT_CPUCACHE_ENTRIES
;
1785 /* Need the semaphore to access the chain. */
1786 down(&cache_chain_sem
);
1788 struct list_head
*p
;
1789 mm_segment_t old_fs
;
1793 list_for_each(p
, &cache_chain
) {
1794 kmem_cache_t
*pc
= list_entry(p
, kmem_cache_t
, next
);
1796 /* This happens when the module gets unloaded and doesn't
1797 destroy its slab cache and noone else reuses the vmalloc
1798 area of the module. Print a warning. */
1799 if (__get_user(tmp
,pc
->name
)) {
1800 printk("SLAB: cache with size %d has lost its name\n",
1804 if (!strcmp(pc
->name
,name
)) {
1805 printk("kmem_cache_create: duplicate cache %s\n",name
);
1806 up(&cache_chain_sem
);
1807 unlock_cpu_hotplug();
1814 /* cache setup completed, link it into the list */
1815 list_add(&cachep
->next
, &cache_chain
);
1816 up(&cache_chain_sem
);
1817 unlock_cpu_hotplug();
1819 if (!cachep
&& (flags
& SLAB_PANIC
))
1820 panic("kmem_cache_create(): failed to create slab `%s'\n",
1824 EXPORT_SYMBOL(kmem_cache_create
);
1827 static void check_irq_off(void)
1829 BUG_ON(!irqs_disabled());
1832 static void check_irq_on(void)
1834 BUG_ON(irqs_disabled());
1837 static void check_spinlock_acquired(kmem_cache_t
*cachep
)
1841 assert_spin_locked(&cachep
->nodelists
[numa_node_id()]->list_lock
);
1845 static inline void check_spinlock_acquired_node(kmem_cache_t
*cachep
, int node
)
1849 assert_spin_locked(&cachep
->nodelists
[node
]->list_lock
);
1854 #define check_irq_off() do { } while(0)
1855 #define check_irq_on() do { } while(0)
1856 #define check_spinlock_acquired(x) do { } while(0)
1857 #define check_spinlock_acquired_node(x, y) do { } while(0)
1861 * Waits for all CPUs to execute func().
1863 static void smp_call_function_all_cpus(void (*func
) (void *arg
), void *arg
)
1868 local_irq_disable();
1872 if (smp_call_function(func
, arg
, 1, 1))
1878 static void drain_array_locked(kmem_cache_t
* cachep
,
1879 struct array_cache
*ac
, int force
, int node
);
1881 static void do_drain(void *arg
)
1883 kmem_cache_t
*cachep
= (kmem_cache_t
*)arg
;
1884 struct array_cache
*ac
;
1887 ac
= ac_data(cachep
);
1888 spin_lock(&cachep
->nodelists
[numa_node_id()]->list_lock
);
1889 free_block(cachep
, ac
->entry
, ac
->avail
);
1890 spin_unlock(&cachep
->nodelists
[numa_node_id()]->list_lock
);
1894 static void drain_cpu_caches(kmem_cache_t
*cachep
)
1896 struct kmem_list3
*l3
;
1899 smp_call_function_all_cpus(do_drain
, cachep
);
1901 spin_lock_irq(&cachep
->spinlock
);
1902 for_each_online_node(node
) {
1903 l3
= cachep
->nodelists
[node
];
1905 spin_lock(&l3
->list_lock
);
1906 drain_array_locked(cachep
, l3
->shared
, 1, node
);
1907 spin_unlock(&l3
->list_lock
);
1909 drain_alien_cache(cachep
, l3
);
1912 spin_unlock_irq(&cachep
->spinlock
);
1915 static int __node_shrink(kmem_cache_t
*cachep
, int node
)
1918 struct kmem_list3
*l3
= cachep
->nodelists
[node
];
1922 struct list_head
*p
;
1924 p
= l3
->slabs_free
.prev
;
1925 if (p
== &l3
->slabs_free
)
1928 slabp
= list_entry(l3
->slabs_free
.prev
, struct slab
, list
);
1933 list_del(&slabp
->list
);
1935 l3
->free_objects
-= cachep
->num
;
1936 spin_unlock_irq(&l3
->list_lock
);
1937 slab_destroy(cachep
, slabp
);
1938 spin_lock_irq(&l3
->list_lock
);
1940 ret
= !list_empty(&l3
->slabs_full
) ||
1941 !list_empty(&l3
->slabs_partial
);
1945 static int __cache_shrink(kmem_cache_t
*cachep
)
1948 struct kmem_list3
*l3
;
1950 drain_cpu_caches(cachep
);
1953 for_each_online_node(i
) {
1954 l3
= cachep
->nodelists
[i
];
1956 spin_lock_irq(&l3
->list_lock
);
1957 ret
+= __node_shrink(cachep
, i
);
1958 spin_unlock_irq(&l3
->list_lock
);
1961 return (ret
? 1 : 0);
1965 * kmem_cache_shrink - Shrink a cache.
1966 * @cachep: The cache to shrink.
1968 * Releases as many slabs as possible for a cache.
1969 * To help debugging, a zero exit status indicates all slabs were released.
1971 int kmem_cache_shrink(kmem_cache_t
*cachep
)
1973 if (!cachep
|| in_interrupt())
1976 return __cache_shrink(cachep
);
1978 EXPORT_SYMBOL(kmem_cache_shrink
);
1981 * kmem_cache_destroy - delete a cache
1982 * @cachep: the cache to destroy
1984 * Remove a kmem_cache_t object from the slab cache.
1985 * Returns 0 on success.
1987 * It is expected this function will be called by a module when it is
1988 * unloaded. This will remove the cache completely, and avoid a duplicate
1989 * cache being allocated each time a module is loaded and unloaded, if the
1990 * module doesn't have persistent in-kernel storage across loads and unloads.
1992 * The cache must be empty before calling this function.
1994 * The caller must guarantee that noone will allocate memory from the cache
1995 * during the kmem_cache_destroy().
1997 int kmem_cache_destroy(kmem_cache_t
* cachep
)
2000 struct kmem_list3
*l3
;
2002 if (!cachep
|| in_interrupt())
2005 /* Don't let CPUs to come and go */
2008 /* Find the cache in the chain of caches. */
2009 down(&cache_chain_sem
);
2011 * the chain is never empty, cache_cache is never destroyed
2013 list_del(&cachep
->next
);
2014 up(&cache_chain_sem
);
2016 if (__cache_shrink(cachep
)) {
2017 slab_error(cachep
, "Can't free all objects");
2018 down(&cache_chain_sem
);
2019 list_add(&cachep
->next
,&cache_chain
);
2020 up(&cache_chain_sem
);
2021 unlock_cpu_hotplug();
2025 if (unlikely(cachep
->flags
& SLAB_DESTROY_BY_RCU
))
2028 for_each_online_cpu(i
)
2029 kfree(cachep
->array
[i
]);
2031 /* NUMA: free the list3 structures */
2032 for_each_online_node(i
) {
2033 if ((l3
= cachep
->nodelists
[i
])) {
2035 free_alien_cache(l3
->alien
);
2039 kmem_cache_free(&cache_cache
, cachep
);
2041 unlock_cpu_hotplug();
2045 EXPORT_SYMBOL(kmem_cache_destroy
);
2047 /* Get the memory for a slab management obj. */
2048 static struct slab
* alloc_slabmgmt(kmem_cache_t
*cachep
, void *objp
,
2049 int colour_off
, unsigned int __nocast local_flags
)
2053 if (OFF_SLAB(cachep
)) {
2054 /* Slab management obj is off-slab. */
2055 slabp
= kmem_cache_alloc(cachep
->slabp_cache
, local_flags
);
2059 slabp
= objp
+colour_off
;
2060 colour_off
+= cachep
->slab_size
;
2063 slabp
->colouroff
= colour_off
;
2064 slabp
->s_mem
= objp
+colour_off
;
2069 static inline kmem_bufctl_t
*slab_bufctl(struct slab
*slabp
)
2071 return (kmem_bufctl_t
*)(slabp
+1);
2074 static void cache_init_objs(kmem_cache_t
*cachep
,
2075 struct slab
*slabp
, unsigned long ctor_flags
)
2079 for (i
= 0; i
< cachep
->num
; i
++) {
2080 void *objp
= slabp
->s_mem
+cachep
->objsize
*i
;
2082 /* need to poison the objs? */
2083 if (cachep
->flags
& SLAB_POISON
)
2084 poison_obj(cachep
, objp
, POISON_FREE
);
2085 if (cachep
->flags
& SLAB_STORE_USER
)
2086 *dbg_userword(cachep
, objp
) = NULL
;
2088 if (cachep
->flags
& SLAB_RED_ZONE
) {
2089 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2090 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2093 * Constructors are not allowed to allocate memory from
2094 * the same cache which they are a constructor for.
2095 * Otherwise, deadlock. They must also be threaded.
2097 if (cachep
->ctor
&& !(cachep
->flags
& SLAB_POISON
))
2098 cachep
->ctor(objp
+obj_dbghead(cachep
), cachep
, ctor_flags
);
2100 if (cachep
->flags
& SLAB_RED_ZONE
) {
2101 if (*dbg_redzone2(cachep
, objp
) != RED_INACTIVE
)
2102 slab_error(cachep
, "constructor overwrote the"
2103 " end of an object");
2104 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
)
2105 slab_error(cachep
, "constructor overwrote the"
2106 " start of an object");
2108 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
) && cachep
->flags
& SLAB_POISON
)
2109 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
2112 cachep
->ctor(objp
, cachep
, ctor_flags
);
2114 slab_bufctl(slabp
)[i
] = i
+1;
2116 slab_bufctl(slabp
)[i
-1] = BUFCTL_END
;
2120 static void kmem_flagcheck(kmem_cache_t
*cachep
, unsigned int flags
)
2122 if (flags
& SLAB_DMA
) {
2123 if (!(cachep
->gfpflags
& GFP_DMA
))
2126 if (cachep
->gfpflags
& GFP_DMA
)
2131 static void set_slab_attr(kmem_cache_t
*cachep
, struct slab
*slabp
, void *objp
)
2136 /* Nasty!!!!!! I hope this is OK. */
2137 i
= 1 << cachep
->gfporder
;
2138 page
= virt_to_page(objp
);
2140 SET_PAGE_CACHE(page
, cachep
);
2141 SET_PAGE_SLAB(page
, slabp
);
2147 * Grow (by 1) the number of slabs within a cache. This is called by
2148 * kmem_cache_alloc() when there are no active objs left in a cache.
2150 static int cache_grow(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
2155 unsigned int local_flags
;
2156 unsigned long ctor_flags
;
2157 struct kmem_list3
*l3
;
2159 /* Be lazy and only check for valid flags here,
2160 * keeping it out of the critical path in kmem_cache_alloc().
2162 if (flags
& ~(SLAB_DMA
|SLAB_LEVEL_MASK
|SLAB_NO_GROW
))
2164 if (flags
& SLAB_NO_GROW
)
2167 ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2168 local_flags
= (flags
& SLAB_LEVEL_MASK
);
2169 if (!(local_flags
& __GFP_WAIT
))
2171 * Not allowed to sleep. Need to tell a constructor about
2172 * this - it might need to know...
2174 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2176 /* About to mess with non-constant members - lock. */
2178 spin_lock(&cachep
->spinlock
);
2180 /* Get colour for the slab, and cal the next value. */
2181 offset
= cachep
->colour_next
;
2182 cachep
->colour_next
++;
2183 if (cachep
->colour_next
>= cachep
->colour
)
2184 cachep
->colour_next
= 0;
2185 offset
*= cachep
->colour_off
;
2187 spin_unlock(&cachep
->spinlock
);
2190 if (local_flags
& __GFP_WAIT
)
2194 * The test for missing atomic flag is performed here, rather than
2195 * the more obvious place, simply to reduce the critical path length
2196 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2197 * will eventually be caught here (where it matters).
2199 kmem_flagcheck(cachep
, flags
);
2201 /* Get mem for the objs.
2202 * Attempt to allocate a physical page from 'nodeid',
2204 if (!(objp
= kmem_getpages(cachep
, flags
, nodeid
)))
2207 /* Get slab management. */
2208 if (!(slabp
= alloc_slabmgmt(cachep
, objp
, offset
, local_flags
)))
2211 slabp
->nodeid
= nodeid
;
2212 set_slab_attr(cachep
, slabp
, objp
);
2214 cache_init_objs(cachep
, slabp
, ctor_flags
);
2216 if (local_flags
& __GFP_WAIT
)
2217 local_irq_disable();
2219 l3
= cachep
->nodelists
[nodeid
];
2220 spin_lock(&l3
->list_lock
);
2222 /* Make slab active. */
2223 list_add_tail(&slabp
->list
, &(l3
->slabs_free
));
2224 STATS_INC_GROWN(cachep
);
2225 l3
->free_objects
+= cachep
->num
;
2226 spin_unlock(&l3
->list_lock
);
2229 kmem_freepages(cachep
, objp
);
2231 if (local_flags
& __GFP_WAIT
)
2232 local_irq_disable();
2239 * Perform extra freeing checks:
2240 * - detect bad pointers.
2241 * - POISON/RED_ZONE checking
2242 * - destructor calls, for caches with POISON+dtor
2244 static void kfree_debugcheck(const void *objp
)
2248 if (!virt_addr_valid(objp
)) {
2249 printk(KERN_ERR
"kfree_debugcheck: out of range ptr %lxh.\n",
2250 (unsigned long)objp
);
2253 page
= virt_to_page(objp
);
2254 if (!PageSlab(page
)) {
2255 printk(KERN_ERR
"kfree_debugcheck: bad ptr %lxh.\n", (unsigned long)objp
);
2260 static void *cache_free_debugcheck(kmem_cache_t
*cachep
, void *objp
,
2267 objp
-= obj_dbghead(cachep
);
2268 kfree_debugcheck(objp
);
2269 page
= virt_to_page(objp
);
2271 if (GET_PAGE_CACHE(page
) != cachep
) {
2272 printk(KERN_ERR
"mismatch in kmem_cache_free: expected cache %p, got %p\n",
2273 GET_PAGE_CACHE(page
),cachep
);
2274 printk(KERN_ERR
"%p is %s.\n", cachep
, cachep
->name
);
2275 printk(KERN_ERR
"%p is %s.\n", GET_PAGE_CACHE(page
), GET_PAGE_CACHE(page
)->name
);
2278 slabp
= GET_PAGE_SLAB(page
);
2280 if (cachep
->flags
& SLAB_RED_ZONE
) {
2281 if (*dbg_redzone1(cachep
, objp
) != RED_ACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_ACTIVE
) {
2282 slab_error(cachep
, "double free, or memory outside"
2283 " object was overwritten");
2284 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2285 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
2287 *dbg_redzone1(cachep
, objp
) = RED_INACTIVE
;
2288 *dbg_redzone2(cachep
, objp
) = RED_INACTIVE
;
2290 if (cachep
->flags
& SLAB_STORE_USER
)
2291 *dbg_userword(cachep
, objp
) = caller
;
2293 objnr
= (objp
-slabp
->s_mem
)/cachep
->objsize
;
2295 BUG_ON(objnr
>= cachep
->num
);
2296 BUG_ON(objp
!= slabp
->s_mem
+ objnr
*cachep
->objsize
);
2298 if (cachep
->flags
& SLAB_DEBUG_INITIAL
) {
2299 /* Need to call the slab's constructor so the
2300 * caller can perform a verify of its state (debugging).
2301 * Called without the cache-lock held.
2303 cachep
->ctor(objp
+obj_dbghead(cachep
),
2304 cachep
, SLAB_CTOR_CONSTRUCTOR
|SLAB_CTOR_VERIFY
);
2306 if (cachep
->flags
& SLAB_POISON
&& cachep
->dtor
) {
2307 /* we want to cache poison the object,
2308 * call the destruction callback
2310 cachep
->dtor(objp
+obj_dbghead(cachep
), cachep
, 0);
2312 if (cachep
->flags
& SLAB_POISON
) {
2313 #ifdef CONFIG_DEBUG_PAGEALLOC
2314 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
)) {
2315 store_stackinfo(cachep
, objp
, (unsigned long)caller
);
2316 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 0);
2318 poison_obj(cachep
, objp
, POISON_FREE
);
2321 poison_obj(cachep
, objp
, POISON_FREE
);
2327 static void check_slabp(kmem_cache_t
*cachep
, struct slab
*slabp
)
2332 /* Check slab's freelist to see if this obj is there. */
2333 for (i
= slabp
->free
; i
!= BUFCTL_END
; i
= slab_bufctl(slabp
)[i
]) {
2335 if (entries
> cachep
->num
|| i
>= cachep
->num
)
2338 if (entries
!= cachep
->num
- slabp
->inuse
) {
2340 printk(KERN_ERR
"slab: Internal list corruption detected in cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2341 cachep
->name
, cachep
->num
, slabp
, slabp
->inuse
);
2342 for (i
=0;i
<sizeof(slabp
)+cachep
->num
*sizeof(kmem_bufctl_t
);i
++) {
2344 printk("\n%03x:", i
);
2345 printk(" %02x", ((unsigned char*)slabp
)[i
]);
2352 #define kfree_debugcheck(x) do { } while(0)
2353 #define cache_free_debugcheck(x,objp,z) (objp)
2354 #define check_slabp(x,y) do { } while(0)
2357 static void *cache_alloc_refill(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2360 struct kmem_list3
*l3
;
2361 struct array_cache
*ac
;
2364 ac
= ac_data(cachep
);
2366 batchcount
= ac
->batchcount
;
2367 if (!ac
->touched
&& batchcount
> BATCHREFILL_LIMIT
) {
2368 /* if there was little recent activity on this
2369 * cache, then perform only a partial refill.
2370 * Otherwise we could generate refill bouncing.
2372 batchcount
= BATCHREFILL_LIMIT
;
2374 l3
= cachep
->nodelists
[numa_node_id()];
2376 BUG_ON(ac
->avail
> 0 || !l3
);
2377 spin_lock(&l3
->list_lock
);
2380 struct array_cache
*shared_array
= l3
->shared
;
2381 if (shared_array
->avail
) {
2382 if (batchcount
> shared_array
->avail
)
2383 batchcount
= shared_array
->avail
;
2384 shared_array
->avail
-= batchcount
;
2385 ac
->avail
= batchcount
;
2387 &(shared_array
->entry
[shared_array
->avail
]),
2388 sizeof(void*)*batchcount
);
2389 shared_array
->touched
= 1;
2393 while (batchcount
> 0) {
2394 struct list_head
*entry
;
2396 /* Get slab alloc is to come from. */
2397 entry
= l3
->slabs_partial
.next
;
2398 if (entry
== &l3
->slabs_partial
) {
2399 l3
->free_touched
= 1;
2400 entry
= l3
->slabs_free
.next
;
2401 if (entry
== &l3
->slabs_free
)
2405 slabp
= list_entry(entry
, struct slab
, list
);
2406 check_slabp(cachep
, slabp
);
2407 check_spinlock_acquired(cachep
);
2408 while (slabp
->inuse
< cachep
->num
&& batchcount
--) {
2410 STATS_INC_ALLOCED(cachep
);
2411 STATS_INC_ACTIVE(cachep
);
2412 STATS_SET_HIGH(cachep
);
2414 /* get obj pointer */
2415 ac
->entry
[ac
->avail
++] = slabp
->s_mem
+
2416 slabp
->free
*cachep
->objsize
;
2419 next
= slab_bufctl(slabp
)[slabp
->free
];
2421 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2425 check_slabp(cachep
, slabp
);
2427 /* move slabp to correct slabp list: */
2428 list_del(&slabp
->list
);
2429 if (slabp
->free
== BUFCTL_END
)
2430 list_add(&slabp
->list
, &l3
->slabs_full
);
2432 list_add(&slabp
->list
, &l3
->slabs_partial
);
2436 l3
->free_objects
-= ac
->avail
;
2438 spin_unlock(&l3
->list_lock
);
2440 if (unlikely(!ac
->avail
)) {
2442 x
= cache_grow(cachep
, flags
, numa_node_id());
2444 // cache_grow can reenable interrupts, then ac could change.
2445 ac
= ac_data(cachep
);
2446 if (!x
&& ac
->avail
== 0) // no objects in sight? abort
2449 if (!ac
->avail
) // objects refilled by interrupt?
2453 return ac
->entry
[--ac
->avail
];
2457 cache_alloc_debugcheck_before(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2459 might_sleep_if(flags
& __GFP_WAIT
);
2461 kmem_flagcheck(cachep
, flags
);
2467 cache_alloc_debugcheck_after(kmem_cache_t
*cachep
,
2468 unsigned int __nocast flags
, void *objp
, void *caller
)
2472 if (cachep
->flags
& SLAB_POISON
) {
2473 #ifdef CONFIG_DEBUG_PAGEALLOC
2474 if ((cachep
->objsize
% PAGE_SIZE
) == 0 && OFF_SLAB(cachep
))
2475 kernel_map_pages(virt_to_page(objp
), cachep
->objsize
/PAGE_SIZE
, 1);
2477 check_poison_obj(cachep
, objp
);
2479 check_poison_obj(cachep
, objp
);
2481 poison_obj(cachep
, objp
, POISON_INUSE
);
2483 if (cachep
->flags
& SLAB_STORE_USER
)
2484 *dbg_userword(cachep
, objp
) = caller
;
2486 if (cachep
->flags
& SLAB_RED_ZONE
) {
2487 if (*dbg_redzone1(cachep
, objp
) != RED_INACTIVE
|| *dbg_redzone2(cachep
, objp
) != RED_INACTIVE
) {
2488 slab_error(cachep
, "double free, or memory outside"
2489 " object was overwritten");
2490 printk(KERN_ERR
"%p: redzone 1: 0x%lx, redzone 2: 0x%lx.\n",
2491 objp
, *dbg_redzone1(cachep
, objp
), *dbg_redzone2(cachep
, objp
));
2493 *dbg_redzone1(cachep
, objp
) = RED_ACTIVE
;
2494 *dbg_redzone2(cachep
, objp
) = RED_ACTIVE
;
2496 objp
+= obj_dbghead(cachep
);
2497 if (cachep
->ctor
&& cachep
->flags
& SLAB_POISON
) {
2498 unsigned long ctor_flags
= SLAB_CTOR_CONSTRUCTOR
;
2500 if (!(flags
& __GFP_WAIT
))
2501 ctor_flags
|= SLAB_CTOR_ATOMIC
;
2503 cachep
->ctor(objp
, cachep
, ctor_flags
);
2508 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
2512 static inline void *__cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2514 unsigned long save_flags
;
2516 struct array_cache
*ac
;
2518 cache_alloc_debugcheck_before(cachep
, flags
);
2520 local_irq_save(save_flags
);
2521 ac
= ac_data(cachep
);
2522 if (likely(ac
->avail
)) {
2523 STATS_INC_ALLOCHIT(cachep
);
2525 objp
= ac
->entry
[--ac
->avail
];
2527 STATS_INC_ALLOCMISS(cachep
);
2528 objp
= cache_alloc_refill(cachep
, flags
);
2530 local_irq_restore(save_flags
);
2531 objp
= cache_alloc_debugcheck_after(cachep
, flags
, objp
,
2532 __builtin_return_address(0));
2539 * A interface to enable slab creation on nodeid
2541 static void *__cache_alloc_node(kmem_cache_t
*cachep
, int flags
, int nodeid
)
2543 struct list_head
*entry
;
2545 struct kmem_list3
*l3
;
2550 l3
= cachep
->nodelists
[nodeid
];
2554 spin_lock(&l3
->list_lock
);
2555 entry
= l3
->slabs_partial
.next
;
2556 if (entry
== &l3
->slabs_partial
) {
2557 l3
->free_touched
= 1;
2558 entry
= l3
->slabs_free
.next
;
2559 if (entry
== &l3
->slabs_free
)
2563 slabp
= list_entry(entry
, struct slab
, list
);
2564 check_spinlock_acquired_node(cachep
, nodeid
);
2565 check_slabp(cachep
, slabp
);
2567 STATS_INC_NODEALLOCS(cachep
);
2568 STATS_INC_ACTIVE(cachep
);
2569 STATS_SET_HIGH(cachep
);
2571 BUG_ON(slabp
->inuse
== cachep
->num
);
2573 /* get obj pointer */
2574 obj
= slabp
->s_mem
+ slabp
->free
*cachep
->objsize
;
2576 next
= slab_bufctl(slabp
)[slabp
->free
];
2578 slab_bufctl(slabp
)[slabp
->free
] = BUFCTL_FREE
;
2581 check_slabp(cachep
, slabp
);
2583 /* move slabp to correct slabp list: */
2584 list_del(&slabp
->list
);
2586 if (slabp
->free
== BUFCTL_END
) {
2587 list_add(&slabp
->list
, &l3
->slabs_full
);
2589 list_add(&slabp
->list
, &l3
->slabs_partial
);
2592 spin_unlock(&l3
->list_lock
);
2596 spin_unlock(&l3
->list_lock
);
2597 x
= cache_grow(cachep
, flags
, nodeid
);
2609 * Caller needs to acquire correct kmem_list's list_lock
2611 static void free_block(kmem_cache_t
*cachep
, void **objpp
, int nr_objects
)
2614 struct kmem_list3
*l3
;
2616 for (i
= 0; i
< nr_objects
; i
++) {
2617 void *objp
= objpp
[i
];
2622 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
2623 nodeid
= slabp
->nodeid
;
2624 l3
= cachep
->nodelists
[nodeid
];
2625 list_del(&slabp
->list
);
2626 objnr
= (objp
- slabp
->s_mem
) / cachep
->objsize
;
2627 check_spinlock_acquired_node(cachep
, nodeid
);
2628 check_slabp(cachep
, slabp
);
2632 if (slab_bufctl(slabp
)[objnr
] != BUFCTL_FREE
) {
2633 printk(KERN_ERR
"slab: double free detected in cache "
2634 "'%s', objp %p\n", cachep
->name
, objp
);
2638 slab_bufctl(slabp
)[objnr
] = slabp
->free
;
2639 slabp
->free
= objnr
;
2640 STATS_DEC_ACTIVE(cachep
);
2643 check_slabp(cachep
, slabp
);
2645 /* fixup slab chains */
2646 if (slabp
->inuse
== 0) {
2647 if (l3
->free_objects
> l3
->free_limit
) {
2648 l3
->free_objects
-= cachep
->num
;
2649 slab_destroy(cachep
, slabp
);
2651 list_add(&slabp
->list
, &l3
->slabs_free
);
2654 /* Unconditionally move a slab to the end of the
2655 * partial list on free - maximum time for the
2656 * other objects to be freed, too.
2658 list_add_tail(&slabp
->list
, &l3
->slabs_partial
);
2663 static void cache_flusharray(kmem_cache_t
*cachep
, struct array_cache
*ac
)
2666 struct kmem_list3
*l3
;
2668 batchcount
= ac
->batchcount
;
2670 BUG_ON(!batchcount
|| batchcount
> ac
->avail
);
2673 l3
= cachep
->nodelists
[numa_node_id()];
2674 spin_lock(&l3
->list_lock
);
2676 struct array_cache
*shared_array
= l3
->shared
;
2677 int max
= shared_array
->limit
-shared_array
->avail
;
2679 if (batchcount
> max
)
2681 memcpy(&(shared_array
->entry
[shared_array
->avail
]),
2683 sizeof(void*)*batchcount
);
2684 shared_array
->avail
+= batchcount
;
2689 free_block(cachep
, ac
->entry
, batchcount
);
2694 struct list_head
*p
;
2696 p
= l3
->slabs_free
.next
;
2697 while (p
!= &(l3
->slabs_free
)) {
2700 slabp
= list_entry(p
, struct slab
, list
);
2701 BUG_ON(slabp
->inuse
);
2706 STATS_SET_FREEABLE(cachep
, i
);
2709 spin_unlock(&l3
->list_lock
);
2710 ac
->avail
-= batchcount
;
2711 memmove(ac
->entry
, &(ac
->entry
[batchcount
]),
2712 sizeof(void*)*ac
->avail
);
2718 * Release an obj back to its cache. If the obj has a constructed
2719 * state, it must be in this state _before_ it is released.
2721 * Called with disabled ints.
2723 static inline void __cache_free(kmem_cache_t
*cachep
, void *objp
)
2725 struct array_cache
*ac
= ac_data(cachep
);
2728 objp
= cache_free_debugcheck(cachep
, objp
, __builtin_return_address(0));
2730 /* Make sure we are not freeing a object from another
2731 * node to the array cache on this cpu.
2736 slabp
= GET_PAGE_SLAB(virt_to_page(objp
));
2737 if (unlikely(slabp
->nodeid
!= numa_node_id())) {
2738 struct array_cache
*alien
= NULL
;
2739 int nodeid
= slabp
->nodeid
;
2740 struct kmem_list3
*l3
= cachep
->nodelists
[numa_node_id()];
2742 STATS_INC_NODEFREES(cachep
);
2743 if (l3
->alien
&& l3
->alien
[nodeid
]) {
2744 alien
= l3
->alien
[nodeid
];
2745 spin_lock(&alien
->lock
);
2746 if (unlikely(alien
->avail
== alien
->limit
))
2747 __drain_alien_cache(cachep
,
2749 alien
->entry
[alien
->avail
++] = objp
;
2750 spin_unlock(&alien
->lock
);
2752 spin_lock(&(cachep
->nodelists
[nodeid
])->
2754 free_block(cachep
, &objp
, 1);
2755 spin_unlock(&(cachep
->nodelists
[nodeid
])->
2762 if (likely(ac
->avail
< ac
->limit
)) {
2763 STATS_INC_FREEHIT(cachep
);
2764 ac
->entry
[ac
->avail
++] = objp
;
2767 STATS_INC_FREEMISS(cachep
);
2768 cache_flusharray(cachep
, ac
);
2769 ac
->entry
[ac
->avail
++] = objp
;
2774 * kmem_cache_alloc - Allocate an object
2775 * @cachep: The cache to allocate from.
2776 * @flags: See kmalloc().
2778 * Allocate an object from this cache. The flags are only relevant
2779 * if the cache has no available objects.
2781 void *kmem_cache_alloc(kmem_cache_t
*cachep
, unsigned int __nocast flags
)
2783 return __cache_alloc(cachep
, flags
);
2785 EXPORT_SYMBOL(kmem_cache_alloc
);
2788 * kmem_ptr_validate - check if an untrusted pointer might
2790 * @cachep: the cache we're checking against
2791 * @ptr: pointer to validate
2793 * This verifies that the untrusted pointer looks sane:
2794 * it is _not_ a guarantee that the pointer is actually
2795 * part of the slab cache in question, but it at least
2796 * validates that the pointer can be dereferenced and
2797 * looks half-way sane.
2799 * Currently only used for dentry validation.
2801 int fastcall
kmem_ptr_validate(kmem_cache_t
*cachep
, void *ptr
)
2803 unsigned long addr
= (unsigned long) ptr
;
2804 unsigned long min_addr
= PAGE_OFFSET
;
2805 unsigned long align_mask
= BYTES_PER_WORD
-1;
2806 unsigned long size
= cachep
->objsize
;
2809 if (unlikely(addr
< min_addr
))
2811 if (unlikely(addr
> (unsigned long)high_memory
- size
))
2813 if (unlikely(addr
& align_mask
))
2815 if (unlikely(!kern_addr_valid(addr
)))
2817 if (unlikely(!kern_addr_valid(addr
+ size
- 1)))
2819 page
= virt_to_page(ptr
);
2820 if (unlikely(!PageSlab(page
)))
2822 if (unlikely(GET_PAGE_CACHE(page
) != cachep
))
2831 * kmem_cache_alloc_node - Allocate an object on the specified node
2832 * @cachep: The cache to allocate from.
2833 * @flags: See kmalloc().
2834 * @nodeid: node number of the target node.
2836 * Identical to kmem_cache_alloc, except that this function is slow
2837 * and can sleep. And it will allocate memory on the given node, which
2838 * can improve the performance for cpu bound structures.
2839 * New and improved: it will now make sure that the object gets
2840 * put on the correct node list so that there is no false sharing.
2842 void *kmem_cache_alloc_node(kmem_cache_t
*cachep
, unsigned int __nocast flags
, int nodeid
)
2844 unsigned long save_flags
;
2847 if (nodeid
== numa_node_id() || nodeid
== -1)
2848 return __cache_alloc(cachep
, flags
);
2850 if (unlikely(!cachep
->nodelists
[nodeid
])) {
2851 /* Fall back to __cache_alloc if we run into trouble */
2852 printk(KERN_WARNING
"slab: not allocating in inactive node %d for cache %s\n", nodeid
, cachep
->name
);
2853 return __cache_alloc(cachep
,flags
);
2856 cache_alloc_debugcheck_before(cachep
, flags
);
2857 local_irq_save(save_flags
);
2858 ptr
= __cache_alloc_node(cachep
, flags
, nodeid
);
2859 local_irq_restore(save_flags
);
2860 ptr
= cache_alloc_debugcheck_after(cachep
, flags
, ptr
, __builtin_return_address(0));
2864 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2866 void *kmalloc_node(size_t size
, unsigned int __nocast flags
, int node
)
2868 kmem_cache_t
*cachep
;
2870 cachep
= kmem_find_general_cachep(size
, flags
);
2871 if (unlikely(cachep
== NULL
))
2873 return kmem_cache_alloc_node(cachep
, flags
, node
);
2875 EXPORT_SYMBOL(kmalloc_node
);
2879 * kmalloc - allocate memory
2880 * @size: how many bytes of memory are required.
2881 * @flags: the type of memory to allocate.
2883 * kmalloc is the normal method of allocating memory
2886 * The @flags argument may be one of:
2888 * %GFP_USER - Allocate memory on behalf of user. May sleep.
2890 * %GFP_KERNEL - Allocate normal kernel ram. May sleep.
2892 * %GFP_ATOMIC - Allocation will not sleep. Use inside interrupt handlers.
2894 * Additionally, the %GFP_DMA flag may be set to indicate the memory
2895 * must be suitable for DMA. This can mean different things on different
2896 * platforms. For example, on i386, it means that the memory must come
2897 * from the first 16MB.
2899 void *__kmalloc(size_t size
, unsigned int __nocast flags
)
2901 kmem_cache_t
*cachep
;
2903 /* If you want to save a few bytes .text space: replace
2905 * Then kmalloc uses the uninlined functions instead of the inline
2908 cachep
= __find_general_cachep(size
, flags
);
2909 if (unlikely(cachep
== NULL
))
2911 return __cache_alloc(cachep
, flags
);
2913 EXPORT_SYMBOL(__kmalloc
);
2917 * __alloc_percpu - allocate one copy of the object for every present
2918 * cpu in the system, zeroing them.
2919 * Objects should be dereferenced using the per_cpu_ptr macro only.
2921 * @size: how many bytes of memory are required.
2922 * @align: the alignment, which can't be greater than SMP_CACHE_BYTES.
2924 void *__alloc_percpu(size_t size
, size_t align
)
2927 struct percpu_data
*pdata
= kmalloc(sizeof (*pdata
), GFP_KERNEL
);
2933 * Cannot use for_each_online_cpu since a cpu may come online
2934 * and we have no way of figuring out how to fix the array
2935 * that we have allocated then....
2938 int node
= cpu_to_node(i
);
2940 if (node_online(node
))
2941 pdata
->ptrs
[i
] = kmalloc_node(size
, GFP_KERNEL
, node
);
2943 pdata
->ptrs
[i
] = kmalloc(size
, GFP_KERNEL
);
2945 if (!pdata
->ptrs
[i
])
2947 memset(pdata
->ptrs
[i
], 0, size
);
2950 /* Catch derefs w/o wrappers */
2951 return (void *) (~(unsigned long) pdata
);
2955 if (!cpu_possible(i
))
2957 kfree(pdata
->ptrs
[i
]);
2962 EXPORT_SYMBOL(__alloc_percpu
);
2966 * kmem_cache_free - Deallocate an object
2967 * @cachep: The cache the allocation was from.
2968 * @objp: The previously allocated object.
2970 * Free an object which was previously allocated from this
2973 void kmem_cache_free(kmem_cache_t
*cachep
, void *objp
)
2975 unsigned long flags
;
2977 local_irq_save(flags
);
2978 __cache_free(cachep
, objp
);
2979 local_irq_restore(flags
);
2981 EXPORT_SYMBOL(kmem_cache_free
);
2984 * kzalloc - allocate memory. The memory is set to zero.
2985 * @size: how many bytes of memory are required.
2986 * @flags: the type of memory to allocate.
2988 void *kzalloc(size_t size
, unsigned int __nocast flags
)
2990 void *ret
= kmalloc(size
, flags
);
2992 memset(ret
, 0, size
);
2995 EXPORT_SYMBOL(kzalloc
);
2998 * kfree - free previously allocated memory
2999 * @objp: pointer returned by kmalloc.
3001 * If @objp is NULL, no operation is performed.
3003 * Don't free memory not originally allocated by kmalloc()
3004 * or you will run into trouble.
3006 void kfree(const void *objp
)
3009 unsigned long flags
;
3011 if (unlikely(!objp
))
3013 local_irq_save(flags
);
3014 kfree_debugcheck(objp
);
3015 c
= GET_PAGE_CACHE(virt_to_page(objp
));
3016 __cache_free(c
, (void*)objp
);
3017 local_irq_restore(flags
);
3019 EXPORT_SYMBOL(kfree
);
3023 * free_percpu - free previously allocated percpu memory
3024 * @objp: pointer returned by alloc_percpu.
3026 * Don't free memory not originally allocated by alloc_percpu()
3027 * The complemented objp is to check for that.
3030 free_percpu(const void *objp
)
3033 struct percpu_data
*p
= (struct percpu_data
*) (~(unsigned long) objp
);
3036 * We allocate for all cpus so we cannot use for online cpu here.
3042 EXPORT_SYMBOL(free_percpu
);
3045 unsigned int kmem_cache_size(kmem_cache_t
*cachep
)
3047 return obj_reallen(cachep
);
3049 EXPORT_SYMBOL(kmem_cache_size
);
3051 const char *kmem_cache_name(kmem_cache_t
*cachep
)
3053 return cachep
->name
;
3055 EXPORT_SYMBOL_GPL(kmem_cache_name
);
3058 * This initializes kmem_list3 for all nodes.
3060 static int alloc_kmemlist(kmem_cache_t
*cachep
)
3063 struct kmem_list3
*l3
;
3066 for_each_online_node(node
) {
3067 struct array_cache
*nc
= NULL
, *new;
3068 struct array_cache
**new_alien
= NULL
;
3070 if (!(new_alien
= alloc_alien_cache(node
, cachep
->limit
)))
3073 if (!(new = alloc_arraycache(node
, (cachep
->shared
*
3074 cachep
->batchcount
), 0xbaadf00d)))
3076 if ((l3
= cachep
->nodelists
[node
])) {
3078 spin_lock_irq(&l3
->list_lock
);
3080 if ((nc
= cachep
->nodelists
[node
]->shared
))
3081 free_block(cachep
, nc
->entry
,
3085 if (!cachep
->nodelists
[node
]->alien
) {
3086 l3
->alien
= new_alien
;
3089 l3
->free_limit
= (1 + nr_cpus_node(node
))*
3090 cachep
->batchcount
+ cachep
->num
;
3091 spin_unlock_irq(&l3
->list_lock
);
3093 free_alien_cache(new_alien
);
3096 if (!(l3
= kmalloc_node(sizeof(struct kmem_list3
),
3100 kmem_list3_init(l3
);
3101 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
+
3102 ((unsigned long)cachep
)%REAPTIMEOUT_LIST3
;
3104 l3
->alien
= new_alien
;
3105 l3
->free_limit
= (1 + nr_cpus_node(node
))*
3106 cachep
->batchcount
+ cachep
->num
;
3107 cachep
->nodelists
[node
] = l3
;
3115 struct ccupdate_struct
{
3116 kmem_cache_t
*cachep
;
3117 struct array_cache
*new[NR_CPUS
];
3120 static void do_ccupdate_local(void *info
)
3122 struct ccupdate_struct
*new = (struct ccupdate_struct
*)info
;
3123 struct array_cache
*old
;
3126 old
= ac_data(new->cachep
);
3128 new->cachep
->array
[smp_processor_id()] = new->new[smp_processor_id()];
3129 new->new[smp_processor_id()] = old
;
3133 static int do_tune_cpucache(kmem_cache_t
*cachep
, int limit
, int batchcount
,
3136 struct ccupdate_struct
new;
3139 memset(&new.new,0,sizeof(new.new));
3140 for_each_online_cpu(i
) {
3141 new.new[i
] = alloc_arraycache(cpu_to_node(i
), limit
, batchcount
);
3143 for (i
--; i
>= 0; i
--) kfree(new.new[i
]);
3147 new.cachep
= cachep
;
3149 smp_call_function_all_cpus(do_ccupdate_local
, (void *)&new);
3152 spin_lock_irq(&cachep
->spinlock
);
3153 cachep
->batchcount
= batchcount
;
3154 cachep
->limit
= limit
;
3155 cachep
->shared
= shared
;
3156 spin_unlock_irq(&cachep
->spinlock
);
3158 for_each_online_cpu(i
) {
3159 struct array_cache
*ccold
= new.new[i
];
3162 spin_lock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3163 free_block(cachep
, ccold
->entry
, ccold
->avail
);
3164 spin_unlock_irq(&cachep
->nodelists
[cpu_to_node(i
)]->list_lock
);
3168 err
= alloc_kmemlist(cachep
);
3170 printk(KERN_ERR
"alloc_kmemlist failed for %s, error %d.\n",
3171 cachep
->name
, -err
);
3178 static void enable_cpucache(kmem_cache_t
*cachep
)
3183 /* The head array serves three purposes:
3184 * - create a LIFO ordering, i.e. return objects that are cache-warm
3185 * - reduce the number of spinlock operations.
3186 * - reduce the number of linked list operations on the slab and
3187 * bufctl chains: array operations are cheaper.
3188 * The numbers are guessed, we should auto-tune as described by
3191 if (cachep
->objsize
> 131072)
3193 else if (cachep
->objsize
> PAGE_SIZE
)
3195 else if (cachep
->objsize
> 1024)
3197 else if (cachep
->objsize
> 256)
3202 /* Cpu bound tasks (e.g. network routing) can exhibit cpu bound
3203 * allocation behaviour: Most allocs on one cpu, most free operations
3204 * on another cpu. For these cases, an efficient object passing between
3205 * cpus is necessary. This is provided by a shared array. The array
3206 * replaces Bonwick's magazine layer.
3207 * On uniprocessor, it's functionally equivalent (but less efficient)
3208 * to a larger limit. Thus disabled by default.
3212 if (cachep
->objsize
<= PAGE_SIZE
)
3217 /* With debugging enabled, large batchcount lead to excessively
3218 * long periods with disabled local interrupts. Limit the
3224 err
= do_tune_cpucache(cachep
, limit
, (limit
+1)/2, shared
);
3226 printk(KERN_ERR
"enable_cpucache failed for %s, error %d.\n",
3227 cachep
->name
, -err
);
3230 static void drain_array_locked(kmem_cache_t
*cachep
,
3231 struct array_cache
*ac
, int force
, int node
)
3235 check_spinlock_acquired_node(cachep
, node
);
3236 if (ac
->touched
&& !force
) {
3238 } else if (ac
->avail
) {
3239 tofree
= force
? ac
->avail
: (ac
->limit
+4)/5;
3240 if (tofree
> ac
->avail
) {
3241 tofree
= (ac
->avail
+1)/2;
3243 free_block(cachep
, ac
->entry
, tofree
);
3244 ac
->avail
-= tofree
;
3245 memmove(ac
->entry
, &(ac
->entry
[tofree
]),
3246 sizeof(void*)*ac
->avail
);
3251 * cache_reap - Reclaim memory from caches.
3253 * Called from workqueue/eventd every few seconds.
3255 * - clear the per-cpu caches for this CPU.
3256 * - return freeable pages to the main free memory pool.
3258 * If we cannot acquire the cache chain semaphore then just give up - we'll
3259 * try again on the next iteration.
3261 static void cache_reap(void *unused
)
3263 struct list_head
*walk
;
3264 struct kmem_list3
*l3
;
3266 if (down_trylock(&cache_chain_sem
)) {
3267 /* Give up. Setup the next iteration. */
3268 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
3272 list_for_each(walk
, &cache_chain
) {
3273 kmem_cache_t
*searchp
;
3274 struct list_head
* p
;
3278 searchp
= list_entry(walk
, kmem_cache_t
, next
);
3280 if (searchp
->flags
& SLAB_NO_REAP
)
3285 l3
= searchp
->nodelists
[numa_node_id()];
3287 drain_alien_cache(searchp
, l3
);
3288 spin_lock_irq(&l3
->list_lock
);
3290 drain_array_locked(searchp
, ac_data(searchp
), 0,
3293 if (time_after(l3
->next_reap
, jiffies
))
3296 l3
->next_reap
= jiffies
+ REAPTIMEOUT_LIST3
;
3299 drain_array_locked(searchp
, l3
->shared
, 0,
3302 if (l3
->free_touched
) {
3303 l3
->free_touched
= 0;
3307 tofree
= (l3
->free_limit
+5*searchp
->num
-1)/(5*searchp
->num
);
3309 p
= l3
->slabs_free
.next
;
3310 if (p
== &(l3
->slabs_free
))
3313 slabp
= list_entry(p
, struct slab
, list
);
3314 BUG_ON(slabp
->inuse
);
3315 list_del(&slabp
->list
);
3316 STATS_INC_REAPED(searchp
);
3318 /* Safe to drop the lock. The slab is no longer
3319 * linked to the cache.
3320 * searchp cannot disappear, we hold
3323 l3
->free_objects
-= searchp
->num
;
3324 spin_unlock_irq(&l3
->list_lock
);
3325 slab_destroy(searchp
, slabp
);
3326 spin_lock_irq(&l3
->list_lock
);
3327 } while(--tofree
> 0);
3329 spin_unlock_irq(&l3
->list_lock
);
3334 up(&cache_chain_sem
);
3335 drain_remote_pages();
3336 /* Setup the next iteration */
3337 schedule_delayed_work(&__get_cpu_var(reap_work
), REAPTIMEOUT_CPUC
+ smp_processor_id());
3340 #ifdef CONFIG_PROC_FS
3342 static void *s_start(struct seq_file
*m
, loff_t
*pos
)
3345 struct list_head
*p
;
3347 down(&cache_chain_sem
);
3350 * Output format version, so at least we can change it
3351 * without _too_ many complaints.
3354 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
3356 seq_puts(m
, "slabinfo - version: 2.1\n");
3358 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
3359 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
3360 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
3362 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped>"
3363 " <error> <maxfreeable> <nodeallocs> <remotefrees>");
3364 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
3368 p
= cache_chain
.next
;
3371 if (p
== &cache_chain
)
3374 return list_entry(p
, kmem_cache_t
, next
);
3377 static void *s_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
3379 kmem_cache_t
*cachep
= p
;
3381 return cachep
->next
.next
== &cache_chain
? NULL
3382 : list_entry(cachep
->next
.next
, kmem_cache_t
, next
);
3385 static void s_stop(struct seq_file
*m
, void *p
)
3387 up(&cache_chain_sem
);
3390 static int s_show(struct seq_file
*m
, void *p
)
3392 kmem_cache_t
*cachep
= p
;
3393 struct list_head
*q
;
3395 unsigned long active_objs
;
3396 unsigned long num_objs
;
3397 unsigned long active_slabs
= 0;
3398 unsigned long num_slabs
, free_objects
= 0, shared_avail
= 0;
3402 struct kmem_list3
*l3
;
3405 spin_lock_irq(&cachep
->spinlock
);
3408 for_each_online_node(node
) {
3409 l3
= cachep
->nodelists
[node
];
3413 spin_lock(&l3
->list_lock
);
3415 list_for_each(q
,&l3
->slabs_full
) {
3416 slabp
= list_entry(q
, struct slab
, list
);
3417 if (slabp
->inuse
!= cachep
->num
&& !error
)
3418 error
= "slabs_full accounting error";
3419 active_objs
+= cachep
->num
;
3422 list_for_each(q
,&l3
->slabs_partial
) {
3423 slabp
= list_entry(q
, struct slab
, list
);
3424 if (slabp
->inuse
== cachep
->num
&& !error
)
3425 error
= "slabs_partial inuse accounting error";
3426 if (!slabp
->inuse
&& !error
)
3427 error
= "slabs_partial/inuse accounting error";
3428 active_objs
+= slabp
->inuse
;
3431 list_for_each(q
,&l3
->slabs_free
) {
3432 slabp
= list_entry(q
, struct slab
, list
);
3433 if (slabp
->inuse
&& !error
)
3434 error
= "slabs_free/inuse accounting error";
3437 free_objects
+= l3
->free_objects
;
3438 shared_avail
+= l3
->shared
->avail
;
3440 spin_unlock(&l3
->list_lock
);
3442 num_slabs
+=active_slabs
;
3443 num_objs
= num_slabs
*cachep
->num
;
3444 if (num_objs
- active_objs
!= free_objects
&& !error
)
3445 error
= "free_objects accounting error";
3447 name
= cachep
->name
;
3449 printk(KERN_ERR
"slab: cache %s error: %s\n", name
, error
);
3451 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
3452 name
, active_objs
, num_objs
, cachep
->objsize
,
3453 cachep
->num
, (1<<cachep
->gfporder
));
3454 seq_printf(m
, " : tunables %4u %4u %4u",
3455 cachep
->limit
, cachep
->batchcount
,
3457 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
3458 active_slabs
, num_slabs
, shared_avail
);
3461 unsigned long high
= cachep
->high_mark
;
3462 unsigned long allocs
= cachep
->num_allocations
;
3463 unsigned long grown
= cachep
->grown
;
3464 unsigned long reaped
= cachep
->reaped
;
3465 unsigned long errors
= cachep
->errors
;
3466 unsigned long max_freeable
= cachep
->max_freeable
;
3467 unsigned long node_allocs
= cachep
->node_allocs
;
3468 unsigned long node_frees
= cachep
->node_frees
;
3470 seq_printf(m
, " : globalstat %7lu %6lu %5lu %4lu \
3471 %4lu %4lu %4lu %4lu",
3472 allocs
, high
, grown
, reaped
, errors
,
3473 max_freeable
, node_allocs
, node_frees
);
3477 unsigned long allochit
= atomic_read(&cachep
->allochit
);
3478 unsigned long allocmiss
= atomic_read(&cachep
->allocmiss
);
3479 unsigned long freehit
= atomic_read(&cachep
->freehit
);
3480 unsigned long freemiss
= atomic_read(&cachep
->freemiss
);
3482 seq_printf(m
, " : cpustat %6lu %6lu %6lu %6lu",
3483 allochit
, allocmiss
, freehit
, freemiss
);
3487 spin_unlock_irq(&cachep
->spinlock
);
3492 * slabinfo_op - iterator that generates /proc/slabinfo
3501 * num-pages-per-slab
3502 * + further values on SMP and with statistics enabled
3505 struct seq_operations slabinfo_op
= {
3512 #define MAX_SLABINFO_WRITE 128
3514 * slabinfo_write - Tuning for the slab allocator
3516 * @buffer: user buffer
3517 * @count: data length
3520 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
3521 size_t count
, loff_t
*ppos
)
3523 char kbuf
[MAX_SLABINFO_WRITE
+1], *tmp
;
3524 int limit
, batchcount
, shared
, res
;
3525 struct list_head
*p
;
3527 if (count
> MAX_SLABINFO_WRITE
)
3529 if (copy_from_user(&kbuf
, buffer
, count
))
3531 kbuf
[MAX_SLABINFO_WRITE
] = '\0';
3533 tmp
= strchr(kbuf
, ' ');
3538 if (sscanf(tmp
, " %d %d %d", &limit
, &batchcount
, &shared
) != 3)
3541 /* Find the cache in the chain of caches. */
3542 down(&cache_chain_sem
);
3544 list_for_each(p
,&cache_chain
) {
3545 kmem_cache_t
*cachep
= list_entry(p
, kmem_cache_t
, next
);
3547 if (!strcmp(cachep
->name
, kbuf
)) {
3550 batchcount
> limit
||
3554 res
= do_tune_cpucache(cachep
, limit
,
3555 batchcount
, shared
);
3560 up(&cache_chain_sem
);
3568 * ksize - get the actual amount of memory allocated for a given object
3569 * @objp: Pointer to the object
3571 * kmalloc may internally round up allocations and return more memory
3572 * than requested. ksize() can be used to determine the actual amount of
3573 * memory allocated. The caller may use this additional memory, even though
3574 * a smaller amount of memory was initially specified with the kmalloc call.
3575 * The caller must guarantee that objp points to a valid object previously
3576 * allocated with either kmalloc() or kmem_cache_alloc(). The object
3577 * must not be freed during the duration of the call.
3579 unsigned int ksize(const void *objp
)
3581 if (unlikely(objp
== NULL
))
3584 return obj_reallen(GET_PAGE_CACHE(virt_to_page(objp
)));
3589 * kstrdup - allocate space for and copy an existing string
3591 * @s: the string to duplicate
3592 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
3594 char *kstrdup(const char *s
, unsigned int __nocast gfp
)
3602 len
= strlen(s
) + 1;
3603 buf
= kmalloc(len
, gfp
);
3605 memcpy(buf
, s
, len
);
3608 EXPORT_SYMBOL(kstrdup
);