sched: eliminate rq_clock() use
[usb.git] / kernel / sched.c
blobfe3c152d0c68ea0d593998eb0a727d9cbdcfbddc
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
324 static void __update_rq_clock(struct rq *rq)
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
335 * Protect against sched_clock() occasionally going backwards:
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
342 * Catch too large forward jumps too:
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
358 static void update_rq_clock(struct rq *rq)
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
364 static u64 __rq_clock(struct rq *rq)
366 __update_rq_clock(rq);
368 return rq->clock;
371 static u64 rq_clock(struct rq *rq)
373 update_rq_clock(rq);
374 return rq->clock;
378 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
379 * See detach_destroy_domains: synchronize_sched for details.
381 * The domain tree of any CPU may only be accessed from within
382 * preempt-disabled sections.
384 #define for_each_domain(cpu, __sd) \
385 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
387 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
388 #define this_rq() (&__get_cpu_var(runqueues))
389 #define task_rq(p) cpu_rq(task_cpu(p))
390 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
393 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
394 * clock constructed from sched_clock():
396 unsigned long long cpu_clock(int cpu)
398 unsigned long long now;
399 unsigned long flags;
400 struct rq *rq;
402 local_irq_save(flags);
403 rq = cpu_rq(cpu);
404 update_rq_clock(rq);
405 now = rq->clock;
406 local_irq_restore(flags);
408 return now;
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* Change a task's ->cfs_rq if it moves across CPUs */
413 static inline void set_task_cfs_rq(struct task_struct *p)
415 p->se.cfs_rq = &task_rq(p)->cfs;
417 #else
418 static inline void set_task_cfs_rq(struct task_struct *p)
421 #endif
423 #ifndef prepare_arch_switch
424 # define prepare_arch_switch(next) do { } while (0)
425 #endif
426 #ifndef finish_arch_switch
427 # define finish_arch_switch(prev) do { } while (0)
428 #endif
430 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
431 static inline int task_running(struct rq *rq, struct task_struct *p)
433 return rq->curr == p;
436 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
440 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
442 #ifdef CONFIG_DEBUG_SPINLOCK
443 /* this is a valid case when another task releases the spinlock */
444 rq->lock.owner = current;
445 #endif
447 * If we are tracking spinlock dependencies then we have to
448 * fix up the runqueue lock - which gets 'carried over' from
449 * prev into current:
451 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
453 spin_unlock_irq(&rq->lock);
456 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
457 static inline int task_running(struct rq *rq, struct task_struct *p)
459 #ifdef CONFIG_SMP
460 return p->oncpu;
461 #else
462 return rq->curr == p;
463 #endif
466 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
468 #ifdef CONFIG_SMP
470 * We can optimise this out completely for !SMP, because the
471 * SMP rebalancing from interrupt is the only thing that cares
472 * here.
474 next->oncpu = 1;
475 #endif
476 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
477 spin_unlock_irq(&rq->lock);
478 #else
479 spin_unlock(&rq->lock);
480 #endif
483 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
485 #ifdef CONFIG_SMP
487 * After ->oncpu is cleared, the task can be moved to a different CPU.
488 * We must ensure this doesn't happen until the switch is completely
489 * finished.
491 smp_wmb();
492 prev->oncpu = 0;
493 #endif
494 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
495 local_irq_enable();
496 #endif
498 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
501 * __task_rq_lock - lock the runqueue a given task resides on.
502 * Must be called interrupts disabled.
504 static inline struct rq *__task_rq_lock(struct task_struct *p)
505 __acquires(rq->lock)
507 struct rq *rq;
509 repeat_lock_task:
510 rq = task_rq(p);
511 spin_lock(&rq->lock);
512 if (unlikely(rq != task_rq(p))) {
513 spin_unlock(&rq->lock);
514 goto repeat_lock_task;
516 return rq;
520 * task_rq_lock - lock the runqueue a given task resides on and disable
521 * interrupts. Note the ordering: we can safely lookup the task_rq without
522 * explicitly disabling preemption.
524 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
525 __acquires(rq->lock)
527 struct rq *rq;
529 repeat_lock_task:
530 local_irq_save(*flags);
531 rq = task_rq(p);
532 spin_lock(&rq->lock);
533 if (unlikely(rq != task_rq(p))) {
534 spin_unlock_irqrestore(&rq->lock, *flags);
535 goto repeat_lock_task;
537 return rq;
540 static inline void __task_rq_unlock(struct rq *rq)
541 __releases(rq->lock)
543 spin_unlock(&rq->lock);
546 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
547 __releases(rq->lock)
549 spin_unlock_irqrestore(&rq->lock, *flags);
553 * this_rq_lock - lock this runqueue and disable interrupts.
555 static inline struct rq *this_rq_lock(void)
556 __acquires(rq->lock)
558 struct rq *rq;
560 local_irq_disable();
561 rq = this_rq();
562 spin_lock(&rq->lock);
564 return rq;
568 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
570 void sched_clock_unstable_event(void)
572 unsigned long flags;
573 struct rq *rq;
575 rq = task_rq_lock(current, &flags);
576 rq->prev_clock_raw = sched_clock();
577 rq->clock_unstable_events++;
578 task_rq_unlock(rq, &flags);
582 * resched_task - mark a task 'to be rescheduled now'.
584 * On UP this means the setting of the need_resched flag, on SMP it
585 * might also involve a cross-CPU call to trigger the scheduler on
586 * the target CPU.
588 #ifdef CONFIG_SMP
590 #ifndef tsk_is_polling
591 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
592 #endif
594 static void resched_task(struct task_struct *p)
596 int cpu;
598 assert_spin_locked(&task_rq(p)->lock);
600 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
601 return;
603 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
605 cpu = task_cpu(p);
606 if (cpu == smp_processor_id())
607 return;
609 /* NEED_RESCHED must be visible before we test polling */
610 smp_mb();
611 if (!tsk_is_polling(p))
612 smp_send_reschedule(cpu);
615 static void resched_cpu(int cpu)
617 struct rq *rq = cpu_rq(cpu);
618 unsigned long flags;
620 if (!spin_trylock_irqsave(&rq->lock, flags))
621 return;
622 resched_task(cpu_curr(cpu));
623 spin_unlock_irqrestore(&rq->lock, flags);
625 #else
626 static inline void resched_task(struct task_struct *p)
628 assert_spin_locked(&task_rq(p)->lock);
629 set_tsk_need_resched(p);
631 #endif
633 static u64 div64_likely32(u64 divident, unsigned long divisor)
635 #if BITS_PER_LONG == 32
636 if (likely(divident <= 0xffffffffULL))
637 return (u32)divident / divisor;
638 do_div(divident, divisor);
640 return divident;
641 #else
642 return divident / divisor;
643 #endif
646 #if BITS_PER_LONG == 32
647 # define WMULT_CONST (~0UL)
648 #else
649 # define WMULT_CONST (1UL << 32)
650 #endif
652 #define WMULT_SHIFT 32
654 static unsigned long
655 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
656 struct load_weight *lw)
658 u64 tmp;
660 if (unlikely(!lw->inv_weight))
661 lw->inv_weight = WMULT_CONST / lw->weight;
663 tmp = (u64)delta_exec * weight;
665 * Check whether we'd overflow the 64-bit multiplication:
667 if (unlikely(tmp > WMULT_CONST)) {
668 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
669 >> (WMULT_SHIFT/2);
670 } else {
671 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
674 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
677 static inline unsigned long
678 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
680 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
683 static void update_load_add(struct load_weight *lw, unsigned long inc)
685 lw->weight += inc;
686 lw->inv_weight = 0;
689 static void update_load_sub(struct load_weight *lw, unsigned long dec)
691 lw->weight -= dec;
692 lw->inv_weight = 0;
696 * To aid in avoiding the subversion of "niceness" due to uneven distribution
697 * of tasks with abnormal "nice" values across CPUs the contribution that
698 * each task makes to its run queue's load is weighted according to its
699 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
700 * scaled version of the new time slice allocation that they receive on time
701 * slice expiry etc.
704 #define WEIGHT_IDLEPRIO 2
705 #define WMULT_IDLEPRIO (1 << 31)
708 * Nice levels are multiplicative, with a gentle 10% change for every
709 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
710 * nice 1, it will get ~10% less CPU time than another CPU-bound task
711 * that remained on nice 0.
713 * The "10% effect" is relative and cumulative: from _any_ nice level,
714 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
715 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
716 * If a task goes up by ~10% and another task goes down by ~10% then
717 * the relative distance between them is ~25%.)
719 static const int prio_to_weight[40] = {
720 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
721 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
722 /* 0 */ NICE_0_LOAD /* 1024 */,
723 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
724 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
728 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
730 * In cases where the weight does not change often, we can use the
731 * precalculated inverse to speed up arithmetics by turning divisions
732 * into multiplications:
734 static const u32 prio_to_wmult[40] = {
735 /* -20 */ 48356, 60446, 75558, 94446, 118058,
736 /* -15 */ 147573, 184467, 230589, 288233, 360285,
737 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
738 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
739 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
740 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
741 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
742 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
745 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
748 * runqueue iterator, to support SMP load-balancing between different
749 * scheduling classes, without having to expose their internal data
750 * structures to the load-balancing proper:
752 struct rq_iterator {
753 void *arg;
754 struct task_struct *(*start)(void *);
755 struct task_struct *(*next)(void *);
758 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
759 unsigned long max_nr_move, unsigned long max_load_move,
760 struct sched_domain *sd, enum cpu_idle_type idle,
761 int *all_pinned, unsigned long *load_moved,
762 int *this_best_prio, struct rq_iterator *iterator);
764 #include "sched_stats.h"
765 #include "sched_rt.c"
766 #include "sched_fair.c"
767 #include "sched_idletask.c"
768 #ifdef CONFIG_SCHED_DEBUG
769 # include "sched_debug.c"
770 #endif
772 #define sched_class_highest (&rt_sched_class)
774 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
776 if (rq->curr != rq->idle && ls->load.weight) {
777 ls->delta_exec += ls->delta_stat;
778 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
779 ls->delta_stat = 0;
784 * Update delta_exec, delta_fair fields for rq.
786 * delta_fair clock advances at a rate inversely proportional to
787 * total load (rq->ls.load.weight) on the runqueue, while
788 * delta_exec advances at the same rate as wall-clock (provided
789 * cpu is not idle).
791 * delta_exec / delta_fair is a measure of the (smoothened) load on this
792 * runqueue over any given interval. This (smoothened) load is used
793 * during load balance.
795 * This function is called /before/ updating rq->ls.load
796 * and when switching tasks.
798 static void update_curr_load(struct rq *rq, u64 now)
800 struct load_stat *ls = &rq->ls;
801 u64 start;
803 start = ls->load_update_start;
804 ls->load_update_start = now;
805 ls->delta_stat += now - start;
807 * Stagger updates to ls->delta_fair. Very frequent updates
808 * can be expensive.
810 if (ls->delta_stat >= sysctl_sched_stat_granularity)
811 __update_curr_load(rq, ls);
814 static inline void
815 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
817 update_curr_load(rq, now);
818 update_load_add(&rq->ls.load, p->se.load.weight);
821 static inline void
822 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
824 update_curr_load(rq, now);
825 update_load_sub(&rq->ls.load, p->se.load.weight);
828 static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
830 rq->nr_running++;
831 inc_load(rq, p, now);
834 static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
836 rq->nr_running--;
837 dec_load(rq, p, now);
840 static void set_load_weight(struct task_struct *p)
842 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
843 p->se.wait_runtime = 0;
845 if (task_has_rt_policy(p)) {
846 p->se.load.weight = prio_to_weight[0] * 2;
847 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
848 return;
852 * SCHED_IDLE tasks get minimal weight:
854 if (p->policy == SCHED_IDLE) {
855 p->se.load.weight = WEIGHT_IDLEPRIO;
856 p->se.load.inv_weight = WMULT_IDLEPRIO;
857 return;
860 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
861 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
864 static void
865 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
867 sched_info_queued(p);
868 p->sched_class->enqueue_task(rq, p, wakeup, now);
869 p->se.on_rq = 1;
872 static void
873 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
875 p->sched_class->dequeue_task(rq, p, sleep, now);
876 p->se.on_rq = 0;
880 * __normal_prio - return the priority that is based on the static prio
882 static inline int __normal_prio(struct task_struct *p)
884 return p->static_prio;
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
894 static inline int normal_prio(struct task_struct *p)
896 int prio;
898 if (task_has_rt_policy(p))
899 prio = MAX_RT_PRIO-1 - p->rt_priority;
900 else
901 prio = __normal_prio(p);
902 return prio;
906 * Calculate the current priority, i.e. the priority
907 * taken into account by the scheduler. This value might
908 * be boosted by RT tasks, or might be boosted by
909 * interactivity modifiers. Will be RT if the task got
910 * RT-boosted. If not then it returns p->normal_prio.
912 static int effective_prio(struct task_struct *p)
914 p->normal_prio = normal_prio(p);
916 * If we are RT tasks or we were boosted to RT priority,
917 * keep the priority unchanged. Otherwise, update priority
918 * to the normal priority:
920 if (!rt_prio(p->prio))
921 return p->normal_prio;
922 return p->prio;
926 * activate_task - move a task to the runqueue.
928 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
930 u64 now;
932 update_rq_clock(rq);
933 now = rq->clock;
935 if (p->state == TASK_UNINTERRUPTIBLE)
936 rq->nr_uninterruptible--;
938 enqueue_task(rq, p, wakeup, now);
939 inc_nr_running(p, rq, now);
943 * activate_idle_task - move idle task to the _front_ of runqueue.
945 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
947 u64 now;
949 update_rq_clock(rq);
950 now = rq->clock;
952 if (p->state == TASK_UNINTERRUPTIBLE)
953 rq->nr_uninterruptible--;
955 enqueue_task(rq, p, 0, now);
956 inc_nr_running(p, rq, now);
960 * deactivate_task - remove a task from the runqueue.
962 static void
963 deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
965 if (p->state == TASK_UNINTERRUPTIBLE)
966 rq->nr_uninterruptible++;
968 dequeue_task(rq, p, sleep, now);
969 dec_nr_running(p, rq, now);
973 * task_curr - is this task currently executing on a CPU?
974 * @p: the task in question.
976 inline int task_curr(const struct task_struct *p)
978 return cpu_curr(task_cpu(p)) == p;
981 /* Used instead of source_load when we know the type == 0 */
982 unsigned long weighted_cpuload(const int cpu)
984 return cpu_rq(cpu)->ls.load.weight;
987 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
989 #ifdef CONFIG_SMP
990 task_thread_info(p)->cpu = cpu;
991 set_task_cfs_rq(p);
992 #endif
995 #ifdef CONFIG_SMP
997 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
999 int old_cpu = task_cpu(p);
1000 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1001 u64 clock_offset, fair_clock_offset;
1003 clock_offset = old_rq->clock - new_rq->clock;
1004 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1006 if (p->se.wait_start_fair)
1007 p->se.wait_start_fair -= fair_clock_offset;
1008 if (p->se.sleep_start_fair)
1009 p->se.sleep_start_fair -= fair_clock_offset;
1011 #ifdef CONFIG_SCHEDSTATS
1012 if (p->se.wait_start)
1013 p->se.wait_start -= clock_offset;
1014 if (p->se.sleep_start)
1015 p->se.sleep_start -= clock_offset;
1016 if (p->se.block_start)
1017 p->se.block_start -= clock_offset;
1018 #endif
1020 __set_task_cpu(p, new_cpu);
1023 struct migration_req {
1024 struct list_head list;
1026 struct task_struct *task;
1027 int dest_cpu;
1029 struct completion done;
1033 * The task's runqueue lock must be held.
1034 * Returns true if you have to wait for migration thread.
1036 static int
1037 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1039 struct rq *rq = task_rq(p);
1042 * If the task is not on a runqueue (and not running), then
1043 * it is sufficient to simply update the task's cpu field.
1045 if (!p->se.on_rq && !task_running(rq, p)) {
1046 set_task_cpu(p, dest_cpu);
1047 return 0;
1050 init_completion(&req->done);
1051 req->task = p;
1052 req->dest_cpu = dest_cpu;
1053 list_add(&req->list, &rq->migration_queue);
1055 return 1;
1059 * wait_task_inactive - wait for a thread to unschedule.
1061 * The caller must ensure that the task *will* unschedule sometime soon,
1062 * else this function might spin for a *long* time. This function can't
1063 * be called with interrupts off, or it may introduce deadlock with
1064 * smp_call_function() if an IPI is sent by the same process we are
1065 * waiting to become inactive.
1067 void wait_task_inactive(struct task_struct *p)
1069 unsigned long flags;
1070 int running, on_rq;
1071 struct rq *rq;
1073 repeat:
1075 * We do the initial early heuristics without holding
1076 * any task-queue locks at all. We'll only try to get
1077 * the runqueue lock when things look like they will
1078 * work out!
1080 rq = task_rq(p);
1083 * If the task is actively running on another CPU
1084 * still, just relax and busy-wait without holding
1085 * any locks.
1087 * NOTE! Since we don't hold any locks, it's not
1088 * even sure that "rq" stays as the right runqueue!
1089 * But we don't care, since "task_running()" will
1090 * return false if the runqueue has changed and p
1091 * is actually now running somewhere else!
1093 while (task_running(rq, p))
1094 cpu_relax();
1097 * Ok, time to look more closely! We need the rq
1098 * lock now, to be *sure*. If we're wrong, we'll
1099 * just go back and repeat.
1101 rq = task_rq_lock(p, &flags);
1102 running = task_running(rq, p);
1103 on_rq = p->se.on_rq;
1104 task_rq_unlock(rq, &flags);
1107 * Was it really running after all now that we
1108 * checked with the proper locks actually held?
1110 * Oops. Go back and try again..
1112 if (unlikely(running)) {
1113 cpu_relax();
1114 goto repeat;
1118 * It's not enough that it's not actively running,
1119 * it must be off the runqueue _entirely_, and not
1120 * preempted!
1122 * So if it wa still runnable (but just not actively
1123 * running right now), it's preempted, and we should
1124 * yield - it could be a while.
1126 if (unlikely(on_rq)) {
1127 yield();
1128 goto repeat;
1132 * Ahh, all good. It wasn't running, and it wasn't
1133 * runnable, which means that it will never become
1134 * running in the future either. We're all done!
1138 /***
1139 * kick_process - kick a running thread to enter/exit the kernel
1140 * @p: the to-be-kicked thread
1142 * Cause a process which is running on another CPU to enter
1143 * kernel-mode, without any delay. (to get signals handled.)
1145 * NOTE: this function doesnt have to take the runqueue lock,
1146 * because all it wants to ensure is that the remote task enters
1147 * the kernel. If the IPI races and the task has been migrated
1148 * to another CPU then no harm is done and the purpose has been
1149 * achieved as well.
1151 void kick_process(struct task_struct *p)
1153 int cpu;
1155 preempt_disable();
1156 cpu = task_cpu(p);
1157 if ((cpu != smp_processor_id()) && task_curr(p))
1158 smp_send_reschedule(cpu);
1159 preempt_enable();
1163 * Return a low guess at the load of a migration-source cpu weighted
1164 * according to the scheduling class and "nice" value.
1166 * We want to under-estimate the load of migration sources, to
1167 * balance conservatively.
1169 static inline unsigned long source_load(int cpu, int type)
1171 struct rq *rq = cpu_rq(cpu);
1172 unsigned long total = weighted_cpuload(cpu);
1174 if (type == 0)
1175 return total;
1177 return min(rq->cpu_load[type-1], total);
1181 * Return a high guess at the load of a migration-target cpu weighted
1182 * according to the scheduling class and "nice" value.
1184 static inline unsigned long target_load(int cpu, int type)
1186 struct rq *rq = cpu_rq(cpu);
1187 unsigned long total = weighted_cpuload(cpu);
1189 if (type == 0)
1190 return total;
1192 return max(rq->cpu_load[type-1], total);
1196 * Return the average load per task on the cpu's run queue
1198 static inline unsigned long cpu_avg_load_per_task(int cpu)
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long total = weighted_cpuload(cpu);
1202 unsigned long n = rq->nr_running;
1204 return n ? total / n : SCHED_LOAD_SCALE;
1208 * find_idlest_group finds and returns the least busy CPU group within the
1209 * domain.
1211 static struct sched_group *
1212 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1214 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1215 unsigned long min_load = ULONG_MAX, this_load = 0;
1216 int load_idx = sd->forkexec_idx;
1217 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1219 do {
1220 unsigned long load, avg_load;
1221 int local_group;
1222 int i;
1224 /* Skip over this group if it has no CPUs allowed */
1225 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1226 goto nextgroup;
1228 local_group = cpu_isset(this_cpu, group->cpumask);
1230 /* Tally up the load of all CPUs in the group */
1231 avg_load = 0;
1233 for_each_cpu_mask(i, group->cpumask) {
1234 /* Bias balancing toward cpus of our domain */
1235 if (local_group)
1236 load = source_load(i, load_idx);
1237 else
1238 load = target_load(i, load_idx);
1240 avg_load += load;
1243 /* Adjust by relative CPU power of the group */
1244 avg_load = sg_div_cpu_power(group,
1245 avg_load * SCHED_LOAD_SCALE);
1247 if (local_group) {
1248 this_load = avg_load;
1249 this = group;
1250 } else if (avg_load < min_load) {
1251 min_load = avg_load;
1252 idlest = group;
1254 nextgroup:
1255 group = group->next;
1256 } while (group != sd->groups);
1258 if (!idlest || 100*this_load < imbalance*min_load)
1259 return NULL;
1260 return idlest;
1264 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1266 static int
1267 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1269 cpumask_t tmp;
1270 unsigned long load, min_load = ULONG_MAX;
1271 int idlest = -1;
1272 int i;
1274 /* Traverse only the allowed CPUs */
1275 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1277 for_each_cpu_mask(i, tmp) {
1278 load = weighted_cpuload(i);
1280 if (load < min_load || (load == min_load && i == this_cpu)) {
1281 min_load = load;
1282 idlest = i;
1286 return idlest;
1290 * sched_balance_self: balance the current task (running on cpu) in domains
1291 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1292 * SD_BALANCE_EXEC.
1294 * Balance, ie. select the least loaded group.
1296 * Returns the target CPU number, or the same CPU if no balancing is needed.
1298 * preempt must be disabled.
1300 static int sched_balance_self(int cpu, int flag)
1302 struct task_struct *t = current;
1303 struct sched_domain *tmp, *sd = NULL;
1305 for_each_domain(cpu, tmp) {
1307 * If power savings logic is enabled for a domain, stop there.
1309 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1310 break;
1311 if (tmp->flags & flag)
1312 sd = tmp;
1315 while (sd) {
1316 cpumask_t span;
1317 struct sched_group *group;
1318 int new_cpu, weight;
1320 if (!(sd->flags & flag)) {
1321 sd = sd->child;
1322 continue;
1325 span = sd->span;
1326 group = find_idlest_group(sd, t, cpu);
1327 if (!group) {
1328 sd = sd->child;
1329 continue;
1332 new_cpu = find_idlest_cpu(group, t, cpu);
1333 if (new_cpu == -1 || new_cpu == cpu) {
1334 /* Now try balancing at a lower domain level of cpu */
1335 sd = sd->child;
1336 continue;
1339 /* Now try balancing at a lower domain level of new_cpu */
1340 cpu = new_cpu;
1341 sd = NULL;
1342 weight = cpus_weight(span);
1343 for_each_domain(cpu, tmp) {
1344 if (weight <= cpus_weight(tmp->span))
1345 break;
1346 if (tmp->flags & flag)
1347 sd = tmp;
1349 /* while loop will break here if sd == NULL */
1352 return cpu;
1355 #endif /* CONFIG_SMP */
1358 * wake_idle() will wake a task on an idle cpu if task->cpu is
1359 * not idle and an idle cpu is available. The span of cpus to
1360 * search starts with cpus closest then further out as needed,
1361 * so we always favor a closer, idle cpu.
1363 * Returns the CPU we should wake onto.
1365 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1366 static int wake_idle(int cpu, struct task_struct *p)
1368 cpumask_t tmp;
1369 struct sched_domain *sd;
1370 int i;
1373 * If it is idle, then it is the best cpu to run this task.
1375 * This cpu is also the best, if it has more than one task already.
1376 * Siblings must be also busy(in most cases) as they didn't already
1377 * pickup the extra load from this cpu and hence we need not check
1378 * sibling runqueue info. This will avoid the checks and cache miss
1379 * penalities associated with that.
1381 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1382 return cpu;
1384 for_each_domain(cpu, sd) {
1385 if (sd->flags & SD_WAKE_IDLE) {
1386 cpus_and(tmp, sd->span, p->cpus_allowed);
1387 for_each_cpu_mask(i, tmp) {
1388 if (idle_cpu(i))
1389 return i;
1391 } else {
1392 break;
1395 return cpu;
1397 #else
1398 static inline int wake_idle(int cpu, struct task_struct *p)
1400 return cpu;
1402 #endif
1404 /***
1405 * try_to_wake_up - wake up a thread
1406 * @p: the to-be-woken-up thread
1407 * @state: the mask of task states that can be woken
1408 * @sync: do a synchronous wakeup?
1410 * Put it on the run-queue if it's not already there. The "current"
1411 * thread is always on the run-queue (except when the actual
1412 * re-schedule is in progress), and as such you're allowed to do
1413 * the simpler "current->state = TASK_RUNNING" to mark yourself
1414 * runnable without the overhead of this.
1416 * returns failure only if the task is already active.
1418 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1420 int cpu, this_cpu, success = 0;
1421 unsigned long flags;
1422 long old_state;
1423 struct rq *rq;
1424 #ifdef CONFIG_SMP
1425 struct sched_domain *sd, *this_sd = NULL;
1426 unsigned long load, this_load;
1427 int new_cpu;
1428 #endif
1430 rq = task_rq_lock(p, &flags);
1431 old_state = p->state;
1432 if (!(old_state & state))
1433 goto out;
1435 if (p->se.on_rq)
1436 goto out_running;
1438 cpu = task_cpu(p);
1439 this_cpu = smp_processor_id();
1441 #ifdef CONFIG_SMP
1442 if (unlikely(task_running(rq, p)))
1443 goto out_activate;
1445 new_cpu = cpu;
1447 schedstat_inc(rq, ttwu_cnt);
1448 if (cpu == this_cpu) {
1449 schedstat_inc(rq, ttwu_local);
1450 goto out_set_cpu;
1453 for_each_domain(this_cpu, sd) {
1454 if (cpu_isset(cpu, sd->span)) {
1455 schedstat_inc(sd, ttwu_wake_remote);
1456 this_sd = sd;
1457 break;
1461 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1462 goto out_set_cpu;
1465 * Check for affine wakeup and passive balancing possibilities.
1467 if (this_sd) {
1468 int idx = this_sd->wake_idx;
1469 unsigned int imbalance;
1471 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1473 load = source_load(cpu, idx);
1474 this_load = target_load(this_cpu, idx);
1476 new_cpu = this_cpu; /* Wake to this CPU if we can */
1478 if (this_sd->flags & SD_WAKE_AFFINE) {
1479 unsigned long tl = this_load;
1480 unsigned long tl_per_task;
1482 tl_per_task = cpu_avg_load_per_task(this_cpu);
1485 * If sync wakeup then subtract the (maximum possible)
1486 * effect of the currently running task from the load
1487 * of the current CPU:
1489 if (sync)
1490 tl -= current->se.load.weight;
1492 if ((tl <= load &&
1493 tl + target_load(cpu, idx) <= tl_per_task) ||
1494 100*(tl + p->se.load.weight) <= imbalance*load) {
1496 * This domain has SD_WAKE_AFFINE and
1497 * p is cache cold in this domain, and
1498 * there is no bad imbalance.
1500 schedstat_inc(this_sd, ttwu_move_affine);
1501 goto out_set_cpu;
1506 * Start passive balancing when half the imbalance_pct
1507 * limit is reached.
1509 if (this_sd->flags & SD_WAKE_BALANCE) {
1510 if (imbalance*this_load <= 100*load) {
1511 schedstat_inc(this_sd, ttwu_move_balance);
1512 goto out_set_cpu;
1517 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1518 out_set_cpu:
1519 new_cpu = wake_idle(new_cpu, p);
1520 if (new_cpu != cpu) {
1521 set_task_cpu(p, new_cpu);
1522 task_rq_unlock(rq, &flags);
1523 /* might preempt at this point */
1524 rq = task_rq_lock(p, &flags);
1525 old_state = p->state;
1526 if (!(old_state & state))
1527 goto out;
1528 if (p->se.on_rq)
1529 goto out_running;
1531 this_cpu = smp_processor_id();
1532 cpu = task_cpu(p);
1535 out_activate:
1536 #endif /* CONFIG_SMP */
1537 activate_task(rq, p, 1);
1539 * Sync wakeups (i.e. those types of wakeups where the waker
1540 * has indicated that it will leave the CPU in short order)
1541 * don't trigger a preemption, if the woken up task will run on
1542 * this cpu. (in this case the 'I will reschedule' promise of
1543 * the waker guarantees that the freshly woken up task is going
1544 * to be considered on this CPU.)
1546 if (!sync || cpu != this_cpu)
1547 check_preempt_curr(rq, p);
1548 success = 1;
1550 out_running:
1551 p->state = TASK_RUNNING;
1552 out:
1553 task_rq_unlock(rq, &flags);
1555 return success;
1558 int fastcall wake_up_process(struct task_struct *p)
1560 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1561 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1563 EXPORT_SYMBOL(wake_up_process);
1565 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1567 return try_to_wake_up(p, state, 0);
1571 * Perform scheduler related setup for a newly forked process p.
1572 * p is forked by current.
1574 * __sched_fork() is basic setup used by init_idle() too:
1576 static void __sched_fork(struct task_struct *p)
1578 p->se.wait_start_fair = 0;
1579 p->se.exec_start = 0;
1580 p->se.sum_exec_runtime = 0;
1581 p->se.delta_exec = 0;
1582 p->se.delta_fair_run = 0;
1583 p->se.delta_fair_sleep = 0;
1584 p->se.wait_runtime = 0;
1585 p->se.sleep_start_fair = 0;
1587 #ifdef CONFIG_SCHEDSTATS
1588 p->se.wait_start = 0;
1589 p->se.sum_wait_runtime = 0;
1590 p->se.sum_sleep_runtime = 0;
1591 p->se.sleep_start = 0;
1592 p->se.block_start = 0;
1593 p->se.sleep_max = 0;
1594 p->se.block_max = 0;
1595 p->se.exec_max = 0;
1596 p->se.wait_max = 0;
1597 p->se.wait_runtime_overruns = 0;
1598 p->se.wait_runtime_underruns = 0;
1599 #endif
1601 INIT_LIST_HEAD(&p->run_list);
1602 p->se.on_rq = 0;
1604 #ifdef CONFIG_PREEMPT_NOTIFIERS
1605 INIT_HLIST_HEAD(&p->preempt_notifiers);
1606 #endif
1609 * We mark the process as running here, but have not actually
1610 * inserted it onto the runqueue yet. This guarantees that
1611 * nobody will actually run it, and a signal or other external
1612 * event cannot wake it up and insert it on the runqueue either.
1614 p->state = TASK_RUNNING;
1618 * fork()/clone()-time setup:
1620 void sched_fork(struct task_struct *p, int clone_flags)
1622 int cpu = get_cpu();
1624 __sched_fork(p);
1626 #ifdef CONFIG_SMP
1627 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1628 #endif
1629 __set_task_cpu(p, cpu);
1632 * Make sure we do not leak PI boosting priority to the child:
1634 p->prio = current->normal_prio;
1636 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1637 if (likely(sched_info_on()))
1638 memset(&p->sched_info, 0, sizeof(p->sched_info));
1639 #endif
1640 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1641 p->oncpu = 0;
1642 #endif
1643 #ifdef CONFIG_PREEMPT
1644 /* Want to start with kernel preemption disabled. */
1645 task_thread_info(p)->preempt_count = 1;
1646 #endif
1647 put_cpu();
1651 * After fork, child runs first. (default) If set to 0 then
1652 * parent will (try to) run first.
1654 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1657 * wake_up_new_task - wake up a newly created task for the first time.
1659 * This function will do some initial scheduler statistics housekeeping
1660 * that must be done for every newly created context, then puts the task
1661 * on the runqueue and wakes it.
1663 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1665 unsigned long flags;
1666 struct rq *rq;
1667 int this_cpu;
1668 u64 now;
1670 rq = task_rq_lock(p, &flags);
1671 BUG_ON(p->state != TASK_RUNNING);
1672 this_cpu = smp_processor_id(); /* parent's CPU */
1673 update_rq_clock(rq);
1674 now = rq->clock;
1676 p->prio = effective_prio(p);
1678 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1679 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1680 !current->se.on_rq) {
1682 activate_task(rq, p, 0);
1683 } else {
1685 * Let the scheduling class do new task startup
1686 * management (if any):
1688 p->sched_class->task_new(rq, p, now);
1689 inc_nr_running(p, rq, now);
1691 check_preempt_curr(rq, p);
1692 task_rq_unlock(rq, &flags);
1695 #ifdef CONFIG_PREEMPT_NOTIFIERS
1698 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1699 * @notifier: notifier struct to register
1701 void preempt_notifier_register(struct preempt_notifier *notifier)
1703 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1705 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1708 * preempt_notifier_unregister - no longer interested in preemption notifications
1709 * @notifier: notifier struct to unregister
1711 * This is safe to call from within a preemption notifier.
1713 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1715 hlist_del(&notifier->link);
1717 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1719 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1721 struct preempt_notifier *notifier;
1722 struct hlist_node *node;
1724 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1725 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1728 static void
1729 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1730 struct task_struct *next)
1732 struct preempt_notifier *notifier;
1733 struct hlist_node *node;
1735 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1736 notifier->ops->sched_out(notifier, next);
1739 #else
1741 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1745 static void
1746 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1747 struct task_struct *next)
1751 #endif
1754 * prepare_task_switch - prepare to switch tasks
1755 * @rq: the runqueue preparing to switch
1756 * @prev: the current task that is being switched out
1757 * @next: the task we are going to switch to.
1759 * This is called with the rq lock held and interrupts off. It must
1760 * be paired with a subsequent finish_task_switch after the context
1761 * switch.
1763 * prepare_task_switch sets up locking and calls architecture specific
1764 * hooks.
1766 static inline void
1767 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1768 struct task_struct *next)
1770 fire_sched_out_preempt_notifiers(prev, next);
1771 prepare_lock_switch(rq, next);
1772 prepare_arch_switch(next);
1776 * finish_task_switch - clean up after a task-switch
1777 * @rq: runqueue associated with task-switch
1778 * @prev: the thread we just switched away from.
1780 * finish_task_switch must be called after the context switch, paired
1781 * with a prepare_task_switch call before the context switch.
1782 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1783 * and do any other architecture-specific cleanup actions.
1785 * Note that we may have delayed dropping an mm in context_switch(). If
1786 * so, we finish that here outside of the runqueue lock. (Doing it
1787 * with the lock held can cause deadlocks; see schedule() for
1788 * details.)
1790 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1791 __releases(rq->lock)
1793 struct mm_struct *mm = rq->prev_mm;
1794 long prev_state;
1796 rq->prev_mm = NULL;
1799 * A task struct has one reference for the use as "current".
1800 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1801 * schedule one last time. The schedule call will never return, and
1802 * the scheduled task must drop that reference.
1803 * The test for TASK_DEAD must occur while the runqueue locks are
1804 * still held, otherwise prev could be scheduled on another cpu, die
1805 * there before we look at prev->state, and then the reference would
1806 * be dropped twice.
1807 * Manfred Spraul <manfred@colorfullife.com>
1809 prev_state = prev->state;
1810 finish_arch_switch(prev);
1811 finish_lock_switch(rq, prev);
1812 fire_sched_in_preempt_notifiers(current);
1813 if (mm)
1814 mmdrop(mm);
1815 if (unlikely(prev_state == TASK_DEAD)) {
1817 * Remove function-return probe instances associated with this
1818 * task and put them back on the free list.
1820 kprobe_flush_task(prev);
1821 put_task_struct(prev);
1826 * schedule_tail - first thing a freshly forked thread must call.
1827 * @prev: the thread we just switched away from.
1829 asmlinkage void schedule_tail(struct task_struct *prev)
1830 __releases(rq->lock)
1832 struct rq *rq = this_rq();
1834 finish_task_switch(rq, prev);
1835 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1836 /* In this case, finish_task_switch does not reenable preemption */
1837 preempt_enable();
1838 #endif
1839 if (current->set_child_tid)
1840 put_user(current->pid, current->set_child_tid);
1844 * context_switch - switch to the new MM and the new
1845 * thread's register state.
1847 static inline void
1848 context_switch(struct rq *rq, struct task_struct *prev,
1849 struct task_struct *next)
1851 struct mm_struct *mm, *oldmm;
1853 prepare_task_switch(rq, prev, next);
1854 mm = next->mm;
1855 oldmm = prev->active_mm;
1857 * For paravirt, this is coupled with an exit in switch_to to
1858 * combine the page table reload and the switch backend into
1859 * one hypercall.
1861 arch_enter_lazy_cpu_mode();
1863 if (unlikely(!mm)) {
1864 next->active_mm = oldmm;
1865 atomic_inc(&oldmm->mm_count);
1866 enter_lazy_tlb(oldmm, next);
1867 } else
1868 switch_mm(oldmm, mm, next);
1870 if (unlikely(!prev->mm)) {
1871 prev->active_mm = NULL;
1872 rq->prev_mm = oldmm;
1875 * Since the runqueue lock will be released by the next
1876 * task (which is an invalid locking op but in the case
1877 * of the scheduler it's an obvious special-case), so we
1878 * do an early lockdep release here:
1880 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1881 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1882 #endif
1884 /* Here we just switch the register state and the stack. */
1885 switch_to(prev, next, prev);
1887 barrier();
1889 * this_rq must be evaluated again because prev may have moved
1890 * CPUs since it called schedule(), thus the 'rq' on its stack
1891 * frame will be invalid.
1893 finish_task_switch(this_rq(), prev);
1897 * nr_running, nr_uninterruptible and nr_context_switches:
1899 * externally visible scheduler statistics: current number of runnable
1900 * threads, current number of uninterruptible-sleeping threads, total
1901 * number of context switches performed since bootup.
1903 unsigned long nr_running(void)
1905 unsigned long i, sum = 0;
1907 for_each_online_cpu(i)
1908 sum += cpu_rq(i)->nr_running;
1910 return sum;
1913 unsigned long nr_uninterruptible(void)
1915 unsigned long i, sum = 0;
1917 for_each_possible_cpu(i)
1918 sum += cpu_rq(i)->nr_uninterruptible;
1921 * Since we read the counters lockless, it might be slightly
1922 * inaccurate. Do not allow it to go below zero though:
1924 if (unlikely((long)sum < 0))
1925 sum = 0;
1927 return sum;
1930 unsigned long long nr_context_switches(void)
1932 int i;
1933 unsigned long long sum = 0;
1935 for_each_possible_cpu(i)
1936 sum += cpu_rq(i)->nr_switches;
1938 return sum;
1941 unsigned long nr_iowait(void)
1943 unsigned long i, sum = 0;
1945 for_each_possible_cpu(i)
1946 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1948 return sum;
1951 unsigned long nr_active(void)
1953 unsigned long i, running = 0, uninterruptible = 0;
1955 for_each_online_cpu(i) {
1956 running += cpu_rq(i)->nr_running;
1957 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1960 if (unlikely((long)uninterruptible < 0))
1961 uninterruptible = 0;
1963 return running + uninterruptible;
1967 * Update rq->cpu_load[] statistics. This function is usually called every
1968 * scheduler tick (TICK_NSEC).
1970 static void update_cpu_load(struct rq *this_rq)
1972 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1973 unsigned long total_load = this_rq->ls.load.weight;
1974 unsigned long this_load = total_load;
1975 struct load_stat *ls = &this_rq->ls;
1976 u64 now = __rq_clock(this_rq);
1977 int i, scale;
1979 this_rq->nr_load_updates++;
1980 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1981 goto do_avg;
1983 /* Update delta_fair/delta_exec fields first */
1984 update_curr_load(this_rq, now);
1986 fair_delta64 = ls->delta_fair + 1;
1987 ls->delta_fair = 0;
1989 exec_delta64 = ls->delta_exec + 1;
1990 ls->delta_exec = 0;
1992 sample_interval64 = now - ls->load_update_last;
1993 ls->load_update_last = now;
1995 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1996 sample_interval64 = TICK_NSEC;
1998 if (exec_delta64 > sample_interval64)
1999 exec_delta64 = sample_interval64;
2001 idle_delta64 = sample_interval64 - exec_delta64;
2003 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2004 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2006 this_load = (unsigned long)tmp64;
2008 do_avg:
2010 /* Update our load: */
2011 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2012 unsigned long old_load, new_load;
2014 /* scale is effectively 1 << i now, and >> i divides by scale */
2016 old_load = this_rq->cpu_load[i];
2017 new_load = this_load;
2019 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2023 #ifdef CONFIG_SMP
2026 * double_rq_lock - safely lock two runqueues
2028 * Note this does not disable interrupts like task_rq_lock,
2029 * you need to do so manually before calling.
2031 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2032 __acquires(rq1->lock)
2033 __acquires(rq2->lock)
2035 BUG_ON(!irqs_disabled());
2036 if (rq1 == rq2) {
2037 spin_lock(&rq1->lock);
2038 __acquire(rq2->lock); /* Fake it out ;) */
2039 } else {
2040 if (rq1 < rq2) {
2041 spin_lock(&rq1->lock);
2042 spin_lock(&rq2->lock);
2043 } else {
2044 spin_lock(&rq2->lock);
2045 spin_lock(&rq1->lock);
2051 * double_rq_unlock - safely unlock two runqueues
2053 * Note this does not restore interrupts like task_rq_unlock,
2054 * you need to do so manually after calling.
2056 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2057 __releases(rq1->lock)
2058 __releases(rq2->lock)
2060 spin_unlock(&rq1->lock);
2061 if (rq1 != rq2)
2062 spin_unlock(&rq2->lock);
2063 else
2064 __release(rq2->lock);
2068 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2070 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2071 __releases(this_rq->lock)
2072 __acquires(busiest->lock)
2073 __acquires(this_rq->lock)
2075 if (unlikely(!irqs_disabled())) {
2076 /* printk() doesn't work good under rq->lock */
2077 spin_unlock(&this_rq->lock);
2078 BUG_ON(1);
2080 if (unlikely(!spin_trylock(&busiest->lock))) {
2081 if (busiest < this_rq) {
2082 spin_unlock(&this_rq->lock);
2083 spin_lock(&busiest->lock);
2084 spin_lock(&this_rq->lock);
2085 } else
2086 spin_lock(&busiest->lock);
2091 * If dest_cpu is allowed for this process, migrate the task to it.
2092 * This is accomplished by forcing the cpu_allowed mask to only
2093 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2094 * the cpu_allowed mask is restored.
2096 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2098 struct migration_req req;
2099 unsigned long flags;
2100 struct rq *rq;
2102 rq = task_rq_lock(p, &flags);
2103 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2104 || unlikely(cpu_is_offline(dest_cpu)))
2105 goto out;
2107 /* force the process onto the specified CPU */
2108 if (migrate_task(p, dest_cpu, &req)) {
2109 /* Need to wait for migration thread (might exit: take ref). */
2110 struct task_struct *mt = rq->migration_thread;
2112 get_task_struct(mt);
2113 task_rq_unlock(rq, &flags);
2114 wake_up_process(mt);
2115 put_task_struct(mt);
2116 wait_for_completion(&req.done);
2118 return;
2120 out:
2121 task_rq_unlock(rq, &flags);
2125 * sched_exec - execve() is a valuable balancing opportunity, because at
2126 * this point the task has the smallest effective memory and cache footprint.
2128 void sched_exec(void)
2130 int new_cpu, this_cpu = get_cpu();
2131 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2132 put_cpu();
2133 if (new_cpu != this_cpu)
2134 sched_migrate_task(current, new_cpu);
2138 * pull_task - move a task from a remote runqueue to the local runqueue.
2139 * Both runqueues must be locked.
2141 static void pull_task(struct rq *src_rq, struct task_struct *p,
2142 struct rq *this_rq, int this_cpu)
2144 update_rq_clock(src_rq);
2145 deactivate_task(src_rq, p, 0, src_rq->clock);
2146 set_task_cpu(p, this_cpu);
2147 activate_task(this_rq, p, 0);
2149 * Note that idle threads have a prio of MAX_PRIO, for this test
2150 * to be always true for them.
2152 check_preempt_curr(this_rq, p);
2156 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2158 static
2159 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2160 struct sched_domain *sd, enum cpu_idle_type idle,
2161 int *all_pinned)
2164 * We do not migrate tasks that are:
2165 * 1) running (obviously), or
2166 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2167 * 3) are cache-hot on their current CPU.
2169 if (!cpu_isset(this_cpu, p->cpus_allowed))
2170 return 0;
2171 *all_pinned = 0;
2173 if (task_running(rq, p))
2174 return 0;
2177 * Aggressive migration if too many balance attempts have failed:
2179 if (sd->nr_balance_failed > sd->cache_nice_tries)
2180 return 1;
2182 return 1;
2185 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2186 unsigned long max_nr_move, unsigned long max_load_move,
2187 struct sched_domain *sd, enum cpu_idle_type idle,
2188 int *all_pinned, unsigned long *load_moved,
2189 int *this_best_prio, struct rq_iterator *iterator)
2191 int pulled = 0, pinned = 0, skip_for_load;
2192 struct task_struct *p;
2193 long rem_load_move = max_load_move;
2195 if (max_nr_move == 0 || max_load_move == 0)
2196 goto out;
2198 pinned = 1;
2201 * Start the load-balancing iterator:
2203 p = iterator->start(iterator->arg);
2204 next:
2205 if (!p)
2206 goto out;
2208 * To help distribute high priority tasks accross CPUs we don't
2209 * skip a task if it will be the highest priority task (i.e. smallest
2210 * prio value) on its new queue regardless of its load weight
2212 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2213 SCHED_LOAD_SCALE_FUZZ;
2214 if ((skip_for_load && p->prio >= *this_best_prio) ||
2215 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2216 p = iterator->next(iterator->arg);
2217 goto next;
2220 pull_task(busiest, p, this_rq, this_cpu);
2221 pulled++;
2222 rem_load_move -= p->se.load.weight;
2225 * We only want to steal up to the prescribed number of tasks
2226 * and the prescribed amount of weighted load.
2228 if (pulled < max_nr_move && rem_load_move > 0) {
2229 if (p->prio < *this_best_prio)
2230 *this_best_prio = p->prio;
2231 p = iterator->next(iterator->arg);
2232 goto next;
2234 out:
2236 * Right now, this is the only place pull_task() is called,
2237 * so we can safely collect pull_task() stats here rather than
2238 * inside pull_task().
2240 schedstat_add(sd, lb_gained[idle], pulled);
2242 if (all_pinned)
2243 *all_pinned = pinned;
2244 *load_moved = max_load_move - rem_load_move;
2245 return pulled;
2249 * move_tasks tries to move up to max_load_move weighted load from busiest to
2250 * this_rq, as part of a balancing operation within domain "sd".
2251 * Returns 1 if successful and 0 otherwise.
2253 * Called with both runqueues locked.
2255 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 unsigned long max_load_move,
2257 struct sched_domain *sd, enum cpu_idle_type idle,
2258 int *all_pinned)
2260 struct sched_class *class = sched_class_highest;
2261 unsigned long total_load_moved = 0;
2262 int this_best_prio = this_rq->curr->prio;
2264 do {
2265 total_load_moved +=
2266 class->load_balance(this_rq, this_cpu, busiest,
2267 ULONG_MAX, max_load_move - total_load_moved,
2268 sd, idle, all_pinned, &this_best_prio);
2269 class = class->next;
2270 } while (class && max_load_move > total_load_moved);
2272 return total_load_moved > 0;
2276 * move_one_task tries to move exactly one task from busiest to this_rq, as
2277 * part of active balancing operations within "domain".
2278 * Returns 1 if successful and 0 otherwise.
2280 * Called with both runqueues locked.
2282 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2283 struct sched_domain *sd, enum cpu_idle_type idle)
2285 struct sched_class *class;
2286 int this_best_prio = MAX_PRIO;
2288 for (class = sched_class_highest; class; class = class->next)
2289 if (class->load_balance(this_rq, this_cpu, busiest,
2290 1, ULONG_MAX, sd, idle, NULL,
2291 &this_best_prio))
2292 return 1;
2294 return 0;
2298 * find_busiest_group finds and returns the busiest CPU group within the
2299 * domain. It calculates and returns the amount of weighted load which
2300 * should be moved to restore balance via the imbalance parameter.
2302 static struct sched_group *
2303 find_busiest_group(struct sched_domain *sd, int this_cpu,
2304 unsigned long *imbalance, enum cpu_idle_type idle,
2305 int *sd_idle, cpumask_t *cpus, int *balance)
2307 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2308 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2309 unsigned long max_pull;
2310 unsigned long busiest_load_per_task, busiest_nr_running;
2311 unsigned long this_load_per_task, this_nr_running;
2312 int load_idx;
2313 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2314 int power_savings_balance = 1;
2315 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2316 unsigned long min_nr_running = ULONG_MAX;
2317 struct sched_group *group_min = NULL, *group_leader = NULL;
2318 #endif
2320 max_load = this_load = total_load = total_pwr = 0;
2321 busiest_load_per_task = busiest_nr_running = 0;
2322 this_load_per_task = this_nr_running = 0;
2323 if (idle == CPU_NOT_IDLE)
2324 load_idx = sd->busy_idx;
2325 else if (idle == CPU_NEWLY_IDLE)
2326 load_idx = sd->newidle_idx;
2327 else
2328 load_idx = sd->idle_idx;
2330 do {
2331 unsigned long load, group_capacity;
2332 int local_group;
2333 int i;
2334 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2335 unsigned long sum_nr_running, sum_weighted_load;
2337 local_group = cpu_isset(this_cpu, group->cpumask);
2339 if (local_group)
2340 balance_cpu = first_cpu(group->cpumask);
2342 /* Tally up the load of all CPUs in the group */
2343 sum_weighted_load = sum_nr_running = avg_load = 0;
2345 for_each_cpu_mask(i, group->cpumask) {
2346 struct rq *rq;
2348 if (!cpu_isset(i, *cpus))
2349 continue;
2351 rq = cpu_rq(i);
2353 if (*sd_idle && rq->nr_running)
2354 *sd_idle = 0;
2356 /* Bias balancing toward cpus of our domain */
2357 if (local_group) {
2358 if (idle_cpu(i) && !first_idle_cpu) {
2359 first_idle_cpu = 1;
2360 balance_cpu = i;
2363 load = target_load(i, load_idx);
2364 } else
2365 load = source_load(i, load_idx);
2367 avg_load += load;
2368 sum_nr_running += rq->nr_running;
2369 sum_weighted_load += weighted_cpuload(i);
2373 * First idle cpu or the first cpu(busiest) in this sched group
2374 * is eligible for doing load balancing at this and above
2375 * domains. In the newly idle case, we will allow all the cpu's
2376 * to do the newly idle load balance.
2378 if (idle != CPU_NEWLY_IDLE && local_group &&
2379 balance_cpu != this_cpu && balance) {
2380 *balance = 0;
2381 goto ret;
2384 total_load += avg_load;
2385 total_pwr += group->__cpu_power;
2387 /* Adjust by relative CPU power of the group */
2388 avg_load = sg_div_cpu_power(group,
2389 avg_load * SCHED_LOAD_SCALE);
2391 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2393 if (local_group) {
2394 this_load = avg_load;
2395 this = group;
2396 this_nr_running = sum_nr_running;
2397 this_load_per_task = sum_weighted_load;
2398 } else if (avg_load > max_load &&
2399 sum_nr_running > group_capacity) {
2400 max_load = avg_load;
2401 busiest = group;
2402 busiest_nr_running = sum_nr_running;
2403 busiest_load_per_task = sum_weighted_load;
2406 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2408 * Busy processors will not participate in power savings
2409 * balance.
2411 if (idle == CPU_NOT_IDLE ||
2412 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2413 goto group_next;
2416 * If the local group is idle or completely loaded
2417 * no need to do power savings balance at this domain
2419 if (local_group && (this_nr_running >= group_capacity ||
2420 !this_nr_running))
2421 power_savings_balance = 0;
2424 * If a group is already running at full capacity or idle,
2425 * don't include that group in power savings calculations
2427 if (!power_savings_balance || sum_nr_running >= group_capacity
2428 || !sum_nr_running)
2429 goto group_next;
2432 * Calculate the group which has the least non-idle load.
2433 * This is the group from where we need to pick up the load
2434 * for saving power
2436 if ((sum_nr_running < min_nr_running) ||
2437 (sum_nr_running == min_nr_running &&
2438 first_cpu(group->cpumask) <
2439 first_cpu(group_min->cpumask))) {
2440 group_min = group;
2441 min_nr_running = sum_nr_running;
2442 min_load_per_task = sum_weighted_load /
2443 sum_nr_running;
2447 * Calculate the group which is almost near its
2448 * capacity but still has some space to pick up some load
2449 * from other group and save more power
2451 if (sum_nr_running <= group_capacity - 1) {
2452 if (sum_nr_running > leader_nr_running ||
2453 (sum_nr_running == leader_nr_running &&
2454 first_cpu(group->cpumask) >
2455 first_cpu(group_leader->cpumask))) {
2456 group_leader = group;
2457 leader_nr_running = sum_nr_running;
2460 group_next:
2461 #endif
2462 group = group->next;
2463 } while (group != sd->groups);
2465 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2466 goto out_balanced;
2468 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2470 if (this_load >= avg_load ||
2471 100*max_load <= sd->imbalance_pct*this_load)
2472 goto out_balanced;
2474 busiest_load_per_task /= busiest_nr_running;
2476 * We're trying to get all the cpus to the average_load, so we don't
2477 * want to push ourselves above the average load, nor do we wish to
2478 * reduce the max loaded cpu below the average load, as either of these
2479 * actions would just result in more rebalancing later, and ping-pong
2480 * tasks around. Thus we look for the minimum possible imbalance.
2481 * Negative imbalances (*we* are more loaded than anyone else) will
2482 * be counted as no imbalance for these purposes -- we can't fix that
2483 * by pulling tasks to us. Be careful of negative numbers as they'll
2484 * appear as very large values with unsigned longs.
2486 if (max_load <= busiest_load_per_task)
2487 goto out_balanced;
2490 * In the presence of smp nice balancing, certain scenarios can have
2491 * max load less than avg load(as we skip the groups at or below
2492 * its cpu_power, while calculating max_load..)
2494 if (max_load < avg_load) {
2495 *imbalance = 0;
2496 goto small_imbalance;
2499 /* Don't want to pull so many tasks that a group would go idle */
2500 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2502 /* How much load to actually move to equalise the imbalance */
2503 *imbalance = min(max_pull * busiest->__cpu_power,
2504 (avg_load - this_load) * this->__cpu_power)
2505 / SCHED_LOAD_SCALE;
2508 * if *imbalance is less than the average load per runnable task
2509 * there is no gaurantee that any tasks will be moved so we'll have
2510 * a think about bumping its value to force at least one task to be
2511 * moved
2513 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2514 unsigned long tmp, pwr_now, pwr_move;
2515 unsigned int imbn;
2517 small_imbalance:
2518 pwr_move = pwr_now = 0;
2519 imbn = 2;
2520 if (this_nr_running) {
2521 this_load_per_task /= this_nr_running;
2522 if (busiest_load_per_task > this_load_per_task)
2523 imbn = 1;
2524 } else
2525 this_load_per_task = SCHED_LOAD_SCALE;
2527 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2528 busiest_load_per_task * imbn) {
2529 *imbalance = busiest_load_per_task;
2530 return busiest;
2534 * OK, we don't have enough imbalance to justify moving tasks,
2535 * however we may be able to increase total CPU power used by
2536 * moving them.
2539 pwr_now += busiest->__cpu_power *
2540 min(busiest_load_per_task, max_load);
2541 pwr_now += this->__cpu_power *
2542 min(this_load_per_task, this_load);
2543 pwr_now /= SCHED_LOAD_SCALE;
2545 /* Amount of load we'd subtract */
2546 tmp = sg_div_cpu_power(busiest,
2547 busiest_load_per_task * SCHED_LOAD_SCALE);
2548 if (max_load > tmp)
2549 pwr_move += busiest->__cpu_power *
2550 min(busiest_load_per_task, max_load - tmp);
2552 /* Amount of load we'd add */
2553 if (max_load * busiest->__cpu_power <
2554 busiest_load_per_task * SCHED_LOAD_SCALE)
2555 tmp = sg_div_cpu_power(this,
2556 max_load * busiest->__cpu_power);
2557 else
2558 tmp = sg_div_cpu_power(this,
2559 busiest_load_per_task * SCHED_LOAD_SCALE);
2560 pwr_move += this->__cpu_power *
2561 min(this_load_per_task, this_load + tmp);
2562 pwr_move /= SCHED_LOAD_SCALE;
2564 /* Move if we gain throughput */
2565 if (pwr_move <= pwr_now)
2566 goto out_balanced;
2568 *imbalance = busiest_load_per_task;
2571 return busiest;
2573 out_balanced:
2574 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2575 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2576 goto ret;
2578 if (this == group_leader && group_leader != group_min) {
2579 *imbalance = min_load_per_task;
2580 return group_min;
2582 #endif
2583 ret:
2584 *imbalance = 0;
2585 return NULL;
2589 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2591 static struct rq *
2592 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2593 unsigned long imbalance, cpumask_t *cpus)
2595 struct rq *busiest = NULL, *rq;
2596 unsigned long max_load = 0;
2597 int i;
2599 for_each_cpu_mask(i, group->cpumask) {
2600 unsigned long wl;
2602 if (!cpu_isset(i, *cpus))
2603 continue;
2605 rq = cpu_rq(i);
2606 wl = weighted_cpuload(i);
2608 if (rq->nr_running == 1 && wl > imbalance)
2609 continue;
2611 if (wl > max_load) {
2612 max_load = wl;
2613 busiest = rq;
2617 return busiest;
2621 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2622 * so long as it is large enough.
2624 #define MAX_PINNED_INTERVAL 512
2627 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2628 * tasks if there is an imbalance.
2630 static int load_balance(int this_cpu, struct rq *this_rq,
2631 struct sched_domain *sd, enum cpu_idle_type idle,
2632 int *balance)
2634 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2635 struct sched_group *group;
2636 unsigned long imbalance;
2637 struct rq *busiest;
2638 cpumask_t cpus = CPU_MASK_ALL;
2639 unsigned long flags;
2642 * When power savings policy is enabled for the parent domain, idle
2643 * sibling can pick up load irrespective of busy siblings. In this case,
2644 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2645 * portraying it as CPU_NOT_IDLE.
2647 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2648 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2649 sd_idle = 1;
2651 schedstat_inc(sd, lb_cnt[idle]);
2653 redo:
2654 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2655 &cpus, balance);
2657 if (*balance == 0)
2658 goto out_balanced;
2660 if (!group) {
2661 schedstat_inc(sd, lb_nobusyg[idle]);
2662 goto out_balanced;
2665 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2666 if (!busiest) {
2667 schedstat_inc(sd, lb_nobusyq[idle]);
2668 goto out_balanced;
2671 BUG_ON(busiest == this_rq);
2673 schedstat_add(sd, lb_imbalance[idle], imbalance);
2675 ld_moved = 0;
2676 if (busiest->nr_running > 1) {
2678 * Attempt to move tasks. If find_busiest_group has found
2679 * an imbalance but busiest->nr_running <= 1, the group is
2680 * still unbalanced. ld_moved simply stays zero, so it is
2681 * correctly treated as an imbalance.
2683 local_irq_save(flags);
2684 double_rq_lock(this_rq, busiest);
2685 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2686 imbalance, sd, idle, &all_pinned);
2687 double_rq_unlock(this_rq, busiest);
2688 local_irq_restore(flags);
2691 * some other cpu did the load balance for us.
2693 if (ld_moved && this_cpu != smp_processor_id())
2694 resched_cpu(this_cpu);
2696 /* All tasks on this runqueue were pinned by CPU affinity */
2697 if (unlikely(all_pinned)) {
2698 cpu_clear(cpu_of(busiest), cpus);
2699 if (!cpus_empty(cpus))
2700 goto redo;
2701 goto out_balanced;
2705 if (!ld_moved) {
2706 schedstat_inc(sd, lb_failed[idle]);
2707 sd->nr_balance_failed++;
2709 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2711 spin_lock_irqsave(&busiest->lock, flags);
2713 /* don't kick the migration_thread, if the curr
2714 * task on busiest cpu can't be moved to this_cpu
2716 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2717 spin_unlock_irqrestore(&busiest->lock, flags);
2718 all_pinned = 1;
2719 goto out_one_pinned;
2722 if (!busiest->active_balance) {
2723 busiest->active_balance = 1;
2724 busiest->push_cpu = this_cpu;
2725 active_balance = 1;
2727 spin_unlock_irqrestore(&busiest->lock, flags);
2728 if (active_balance)
2729 wake_up_process(busiest->migration_thread);
2732 * We've kicked active balancing, reset the failure
2733 * counter.
2735 sd->nr_balance_failed = sd->cache_nice_tries+1;
2737 } else
2738 sd->nr_balance_failed = 0;
2740 if (likely(!active_balance)) {
2741 /* We were unbalanced, so reset the balancing interval */
2742 sd->balance_interval = sd->min_interval;
2743 } else {
2745 * If we've begun active balancing, start to back off. This
2746 * case may not be covered by the all_pinned logic if there
2747 * is only 1 task on the busy runqueue (because we don't call
2748 * move_tasks).
2750 if (sd->balance_interval < sd->max_interval)
2751 sd->balance_interval *= 2;
2754 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2755 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2756 return -1;
2757 return ld_moved;
2759 out_balanced:
2760 schedstat_inc(sd, lb_balanced[idle]);
2762 sd->nr_balance_failed = 0;
2764 out_one_pinned:
2765 /* tune up the balancing interval */
2766 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2767 (sd->balance_interval < sd->max_interval))
2768 sd->balance_interval *= 2;
2770 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2771 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2772 return -1;
2773 return 0;
2777 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2778 * tasks if there is an imbalance.
2780 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2781 * this_rq is locked.
2783 static int
2784 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2786 struct sched_group *group;
2787 struct rq *busiest = NULL;
2788 unsigned long imbalance;
2789 int ld_moved = 0;
2790 int sd_idle = 0;
2791 int all_pinned = 0;
2792 cpumask_t cpus = CPU_MASK_ALL;
2795 * When power savings policy is enabled for the parent domain, idle
2796 * sibling can pick up load irrespective of busy siblings. In this case,
2797 * let the state of idle sibling percolate up as IDLE, instead of
2798 * portraying it as CPU_NOT_IDLE.
2800 if (sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2802 sd_idle = 1;
2804 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2805 redo:
2806 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2807 &sd_idle, &cpus, NULL);
2808 if (!group) {
2809 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2810 goto out_balanced;
2813 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2814 &cpus);
2815 if (!busiest) {
2816 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2817 goto out_balanced;
2820 BUG_ON(busiest == this_rq);
2822 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2824 ld_moved = 0;
2825 if (busiest->nr_running > 1) {
2826 /* Attempt to move tasks */
2827 double_lock_balance(this_rq, busiest);
2828 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2829 imbalance, sd, CPU_NEWLY_IDLE,
2830 &all_pinned);
2831 spin_unlock(&busiest->lock);
2833 if (unlikely(all_pinned)) {
2834 cpu_clear(cpu_of(busiest), cpus);
2835 if (!cpus_empty(cpus))
2836 goto redo;
2840 if (!ld_moved) {
2841 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2842 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2844 return -1;
2845 } else
2846 sd->nr_balance_failed = 0;
2848 return ld_moved;
2850 out_balanced:
2851 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2852 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2853 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2854 return -1;
2855 sd->nr_balance_failed = 0;
2857 return 0;
2861 * idle_balance is called by schedule() if this_cpu is about to become
2862 * idle. Attempts to pull tasks from other CPUs.
2864 static void idle_balance(int this_cpu, struct rq *this_rq)
2866 struct sched_domain *sd;
2867 int pulled_task = -1;
2868 unsigned long next_balance = jiffies + HZ;
2870 for_each_domain(this_cpu, sd) {
2871 unsigned long interval;
2873 if (!(sd->flags & SD_LOAD_BALANCE))
2874 continue;
2876 if (sd->flags & SD_BALANCE_NEWIDLE)
2877 /* If we've pulled tasks over stop searching: */
2878 pulled_task = load_balance_newidle(this_cpu,
2879 this_rq, sd);
2881 interval = msecs_to_jiffies(sd->balance_interval);
2882 if (time_after(next_balance, sd->last_balance + interval))
2883 next_balance = sd->last_balance + interval;
2884 if (pulled_task)
2885 break;
2887 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2889 * We are going idle. next_balance may be set based on
2890 * a busy processor. So reset next_balance.
2892 this_rq->next_balance = next_balance;
2897 * active_load_balance is run by migration threads. It pushes running tasks
2898 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2899 * running on each physical CPU where possible, and avoids physical /
2900 * logical imbalances.
2902 * Called with busiest_rq locked.
2904 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2906 int target_cpu = busiest_rq->push_cpu;
2907 struct sched_domain *sd;
2908 struct rq *target_rq;
2910 /* Is there any task to move? */
2911 if (busiest_rq->nr_running <= 1)
2912 return;
2914 target_rq = cpu_rq(target_cpu);
2917 * This condition is "impossible", if it occurs
2918 * we need to fix it. Originally reported by
2919 * Bjorn Helgaas on a 128-cpu setup.
2921 BUG_ON(busiest_rq == target_rq);
2923 /* move a task from busiest_rq to target_rq */
2924 double_lock_balance(busiest_rq, target_rq);
2926 /* Search for an sd spanning us and the target CPU. */
2927 for_each_domain(target_cpu, sd) {
2928 if ((sd->flags & SD_LOAD_BALANCE) &&
2929 cpu_isset(busiest_cpu, sd->span))
2930 break;
2933 if (likely(sd)) {
2934 schedstat_inc(sd, alb_cnt);
2936 if (move_one_task(target_rq, target_cpu, busiest_rq,
2937 sd, CPU_IDLE))
2938 schedstat_inc(sd, alb_pushed);
2939 else
2940 schedstat_inc(sd, alb_failed);
2942 spin_unlock(&target_rq->lock);
2945 #ifdef CONFIG_NO_HZ
2946 static struct {
2947 atomic_t load_balancer;
2948 cpumask_t cpu_mask;
2949 } nohz ____cacheline_aligned = {
2950 .load_balancer = ATOMIC_INIT(-1),
2951 .cpu_mask = CPU_MASK_NONE,
2955 * This routine will try to nominate the ilb (idle load balancing)
2956 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2957 * load balancing on behalf of all those cpus. If all the cpus in the system
2958 * go into this tickless mode, then there will be no ilb owner (as there is
2959 * no need for one) and all the cpus will sleep till the next wakeup event
2960 * arrives...
2962 * For the ilb owner, tick is not stopped. And this tick will be used
2963 * for idle load balancing. ilb owner will still be part of
2964 * nohz.cpu_mask..
2966 * While stopping the tick, this cpu will become the ilb owner if there
2967 * is no other owner. And will be the owner till that cpu becomes busy
2968 * or if all cpus in the system stop their ticks at which point
2969 * there is no need for ilb owner.
2971 * When the ilb owner becomes busy, it nominates another owner, during the
2972 * next busy scheduler_tick()
2974 int select_nohz_load_balancer(int stop_tick)
2976 int cpu = smp_processor_id();
2978 if (stop_tick) {
2979 cpu_set(cpu, nohz.cpu_mask);
2980 cpu_rq(cpu)->in_nohz_recently = 1;
2983 * If we are going offline and still the leader, give up!
2985 if (cpu_is_offline(cpu) &&
2986 atomic_read(&nohz.load_balancer) == cpu) {
2987 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2988 BUG();
2989 return 0;
2992 /* time for ilb owner also to sleep */
2993 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2994 if (atomic_read(&nohz.load_balancer) == cpu)
2995 atomic_set(&nohz.load_balancer, -1);
2996 return 0;
2999 if (atomic_read(&nohz.load_balancer) == -1) {
3000 /* make me the ilb owner */
3001 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3002 return 1;
3003 } else if (atomic_read(&nohz.load_balancer) == cpu)
3004 return 1;
3005 } else {
3006 if (!cpu_isset(cpu, nohz.cpu_mask))
3007 return 0;
3009 cpu_clear(cpu, nohz.cpu_mask);
3011 if (atomic_read(&nohz.load_balancer) == cpu)
3012 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3013 BUG();
3015 return 0;
3017 #endif
3019 static DEFINE_SPINLOCK(balancing);
3022 * It checks each scheduling domain to see if it is due to be balanced,
3023 * and initiates a balancing operation if so.
3025 * Balancing parameters are set up in arch_init_sched_domains.
3027 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3029 int balance = 1;
3030 struct rq *rq = cpu_rq(cpu);
3031 unsigned long interval;
3032 struct sched_domain *sd;
3033 /* Earliest time when we have to do rebalance again */
3034 unsigned long next_balance = jiffies + 60*HZ;
3036 for_each_domain(cpu, sd) {
3037 if (!(sd->flags & SD_LOAD_BALANCE))
3038 continue;
3040 interval = sd->balance_interval;
3041 if (idle != CPU_IDLE)
3042 interval *= sd->busy_factor;
3044 /* scale ms to jiffies */
3045 interval = msecs_to_jiffies(interval);
3046 if (unlikely(!interval))
3047 interval = 1;
3048 if (interval > HZ*NR_CPUS/10)
3049 interval = HZ*NR_CPUS/10;
3052 if (sd->flags & SD_SERIALIZE) {
3053 if (!spin_trylock(&balancing))
3054 goto out;
3057 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3058 if (load_balance(cpu, rq, sd, idle, &balance)) {
3060 * We've pulled tasks over so either we're no
3061 * longer idle, or one of our SMT siblings is
3062 * not idle.
3064 idle = CPU_NOT_IDLE;
3066 sd->last_balance = jiffies;
3068 if (sd->flags & SD_SERIALIZE)
3069 spin_unlock(&balancing);
3070 out:
3071 if (time_after(next_balance, sd->last_balance + interval))
3072 next_balance = sd->last_balance + interval;
3075 * Stop the load balance at this level. There is another
3076 * CPU in our sched group which is doing load balancing more
3077 * actively.
3079 if (!balance)
3080 break;
3082 rq->next_balance = next_balance;
3086 * run_rebalance_domains is triggered when needed from the scheduler tick.
3087 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3088 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3090 static void run_rebalance_domains(struct softirq_action *h)
3092 int this_cpu = smp_processor_id();
3093 struct rq *this_rq = cpu_rq(this_cpu);
3094 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3095 CPU_IDLE : CPU_NOT_IDLE;
3097 rebalance_domains(this_cpu, idle);
3099 #ifdef CONFIG_NO_HZ
3101 * If this cpu is the owner for idle load balancing, then do the
3102 * balancing on behalf of the other idle cpus whose ticks are
3103 * stopped.
3105 if (this_rq->idle_at_tick &&
3106 atomic_read(&nohz.load_balancer) == this_cpu) {
3107 cpumask_t cpus = nohz.cpu_mask;
3108 struct rq *rq;
3109 int balance_cpu;
3111 cpu_clear(this_cpu, cpus);
3112 for_each_cpu_mask(balance_cpu, cpus) {
3114 * If this cpu gets work to do, stop the load balancing
3115 * work being done for other cpus. Next load
3116 * balancing owner will pick it up.
3118 if (need_resched())
3119 break;
3121 rebalance_domains(balance_cpu, SCHED_IDLE);
3123 rq = cpu_rq(balance_cpu);
3124 if (time_after(this_rq->next_balance, rq->next_balance))
3125 this_rq->next_balance = rq->next_balance;
3128 #endif
3132 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3134 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3135 * idle load balancing owner or decide to stop the periodic load balancing,
3136 * if the whole system is idle.
3138 static inline void trigger_load_balance(struct rq *rq, int cpu)
3140 #ifdef CONFIG_NO_HZ
3142 * If we were in the nohz mode recently and busy at the current
3143 * scheduler tick, then check if we need to nominate new idle
3144 * load balancer.
3146 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3147 rq->in_nohz_recently = 0;
3149 if (atomic_read(&nohz.load_balancer) == cpu) {
3150 cpu_clear(cpu, nohz.cpu_mask);
3151 atomic_set(&nohz.load_balancer, -1);
3154 if (atomic_read(&nohz.load_balancer) == -1) {
3156 * simple selection for now: Nominate the
3157 * first cpu in the nohz list to be the next
3158 * ilb owner.
3160 * TBD: Traverse the sched domains and nominate
3161 * the nearest cpu in the nohz.cpu_mask.
3163 int ilb = first_cpu(nohz.cpu_mask);
3165 if (ilb != NR_CPUS)
3166 resched_cpu(ilb);
3171 * If this cpu is idle and doing idle load balancing for all the
3172 * cpus with ticks stopped, is it time for that to stop?
3174 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3175 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3176 resched_cpu(cpu);
3177 return;
3181 * If this cpu is idle and the idle load balancing is done by
3182 * someone else, then no need raise the SCHED_SOFTIRQ
3184 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3185 cpu_isset(cpu, nohz.cpu_mask))
3186 return;
3187 #endif
3188 if (time_after_eq(jiffies, rq->next_balance))
3189 raise_softirq(SCHED_SOFTIRQ);
3192 #else /* CONFIG_SMP */
3195 * on UP we do not need to balance between CPUs:
3197 static inline void idle_balance(int cpu, struct rq *rq)
3201 /* Avoid "used but not defined" warning on UP */
3202 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3203 unsigned long max_nr_move, unsigned long max_load_move,
3204 struct sched_domain *sd, enum cpu_idle_type idle,
3205 int *all_pinned, unsigned long *load_moved,
3206 int *this_best_prio, struct rq_iterator *iterator)
3208 *load_moved = 0;
3210 return 0;
3213 #endif
3215 DEFINE_PER_CPU(struct kernel_stat, kstat);
3217 EXPORT_PER_CPU_SYMBOL(kstat);
3220 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3221 * that have not yet been banked in case the task is currently running.
3223 unsigned long long task_sched_runtime(struct task_struct *p)
3225 unsigned long flags;
3226 u64 ns, delta_exec;
3227 struct rq *rq;
3229 rq = task_rq_lock(p, &flags);
3230 ns = p->se.sum_exec_runtime;
3231 if (rq->curr == p) {
3232 update_rq_clock(rq);
3233 delta_exec = rq->clock - p->se.exec_start;
3234 if ((s64)delta_exec > 0)
3235 ns += delta_exec;
3237 task_rq_unlock(rq, &flags);
3239 return ns;
3243 * Account user cpu time to a process.
3244 * @p: the process that the cpu time gets accounted to
3245 * @hardirq_offset: the offset to subtract from hardirq_count()
3246 * @cputime: the cpu time spent in user space since the last update
3248 void account_user_time(struct task_struct *p, cputime_t cputime)
3250 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3251 cputime64_t tmp;
3253 p->utime = cputime_add(p->utime, cputime);
3255 /* Add user time to cpustat. */
3256 tmp = cputime_to_cputime64(cputime);
3257 if (TASK_NICE(p) > 0)
3258 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3259 else
3260 cpustat->user = cputime64_add(cpustat->user, tmp);
3264 * Account system cpu time to a process.
3265 * @p: the process that the cpu time gets accounted to
3266 * @hardirq_offset: the offset to subtract from hardirq_count()
3267 * @cputime: the cpu time spent in kernel space since the last update
3269 void account_system_time(struct task_struct *p, int hardirq_offset,
3270 cputime_t cputime)
3272 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3273 struct rq *rq = this_rq();
3274 cputime64_t tmp;
3276 p->stime = cputime_add(p->stime, cputime);
3278 /* Add system time to cpustat. */
3279 tmp = cputime_to_cputime64(cputime);
3280 if (hardirq_count() - hardirq_offset)
3281 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3282 else if (softirq_count())
3283 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3284 else if (p != rq->idle)
3285 cpustat->system = cputime64_add(cpustat->system, tmp);
3286 else if (atomic_read(&rq->nr_iowait) > 0)
3287 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3288 else
3289 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3290 /* Account for system time used */
3291 acct_update_integrals(p);
3295 * Account for involuntary wait time.
3296 * @p: the process from which the cpu time has been stolen
3297 * @steal: the cpu time spent in involuntary wait
3299 void account_steal_time(struct task_struct *p, cputime_t steal)
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t tmp = cputime_to_cputime64(steal);
3303 struct rq *rq = this_rq();
3305 if (p == rq->idle) {
3306 p->stime = cputime_add(p->stime, steal);
3307 if (atomic_read(&rq->nr_iowait) > 0)
3308 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3309 else
3310 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3311 } else
3312 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3316 * This function gets called by the timer code, with HZ frequency.
3317 * We call it with interrupts disabled.
3319 * It also gets called by the fork code, when changing the parent's
3320 * timeslices.
3322 void scheduler_tick(void)
3324 int cpu = smp_processor_id();
3325 struct rq *rq = cpu_rq(cpu);
3326 struct task_struct *curr = rq->curr;
3328 spin_lock(&rq->lock);
3329 update_cpu_load(rq);
3330 if (curr != rq->idle) /* FIXME: needed? */
3331 curr->sched_class->task_tick(rq, curr);
3332 spin_unlock(&rq->lock);
3334 #ifdef CONFIG_SMP
3335 rq->idle_at_tick = idle_cpu(cpu);
3336 trigger_load_balance(rq, cpu);
3337 #endif
3340 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3342 void fastcall add_preempt_count(int val)
3345 * Underflow?
3347 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3348 return;
3349 preempt_count() += val;
3351 * Spinlock count overflowing soon?
3353 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3354 PREEMPT_MASK - 10);
3356 EXPORT_SYMBOL(add_preempt_count);
3358 void fastcall sub_preempt_count(int val)
3361 * Underflow?
3363 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3364 return;
3366 * Is the spinlock portion underflowing?
3368 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3369 !(preempt_count() & PREEMPT_MASK)))
3370 return;
3372 preempt_count() -= val;
3374 EXPORT_SYMBOL(sub_preempt_count);
3376 #endif
3379 * Print scheduling while atomic bug:
3381 static noinline void __schedule_bug(struct task_struct *prev)
3383 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3384 prev->comm, preempt_count(), prev->pid);
3385 debug_show_held_locks(prev);
3386 if (irqs_disabled())
3387 print_irqtrace_events(prev);
3388 dump_stack();
3392 * Various schedule()-time debugging checks and statistics:
3394 static inline void schedule_debug(struct task_struct *prev)
3397 * Test if we are atomic. Since do_exit() needs to call into
3398 * schedule() atomically, we ignore that path for now.
3399 * Otherwise, whine if we are scheduling when we should not be.
3401 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3402 __schedule_bug(prev);
3404 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3406 schedstat_inc(this_rq(), sched_cnt);
3410 * Pick up the highest-prio task:
3412 static inline struct task_struct *
3413 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3415 struct sched_class *class;
3416 struct task_struct *p;
3419 * Optimization: we know that if all tasks are in
3420 * the fair class we can call that function directly:
3422 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3423 p = fair_sched_class.pick_next_task(rq, now);
3424 if (likely(p))
3425 return p;
3428 class = sched_class_highest;
3429 for ( ; ; ) {
3430 p = class->pick_next_task(rq, now);
3431 if (p)
3432 return p;
3434 * Will never be NULL as the idle class always
3435 * returns a non-NULL p:
3437 class = class->next;
3442 * schedule() is the main scheduler function.
3444 asmlinkage void __sched schedule(void)
3446 struct task_struct *prev, *next;
3447 long *switch_count;
3448 struct rq *rq;
3449 u64 now;
3450 int cpu;
3452 need_resched:
3453 preempt_disable();
3454 cpu = smp_processor_id();
3455 rq = cpu_rq(cpu);
3456 rcu_qsctr_inc(cpu);
3457 prev = rq->curr;
3458 switch_count = &prev->nivcsw;
3460 release_kernel_lock(prev);
3461 need_resched_nonpreemptible:
3463 schedule_debug(prev);
3465 spin_lock_irq(&rq->lock);
3466 clear_tsk_need_resched(prev);
3467 now = __rq_clock(rq);
3469 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3470 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3471 unlikely(signal_pending(prev)))) {
3472 prev->state = TASK_RUNNING;
3473 } else {
3474 deactivate_task(rq, prev, 1, now);
3476 switch_count = &prev->nvcsw;
3479 if (unlikely(!rq->nr_running))
3480 idle_balance(cpu, rq);
3482 prev->sched_class->put_prev_task(rq, prev, now);
3483 next = pick_next_task(rq, prev, now);
3485 sched_info_switch(prev, next);
3487 if (likely(prev != next)) {
3488 rq->nr_switches++;
3489 rq->curr = next;
3490 ++*switch_count;
3492 context_switch(rq, prev, next); /* unlocks the rq */
3493 } else
3494 spin_unlock_irq(&rq->lock);
3496 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3497 cpu = smp_processor_id();
3498 rq = cpu_rq(cpu);
3499 goto need_resched_nonpreemptible;
3501 preempt_enable_no_resched();
3502 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3503 goto need_resched;
3505 EXPORT_SYMBOL(schedule);
3507 #ifdef CONFIG_PREEMPT
3509 * this is the entry point to schedule() from in-kernel preemption
3510 * off of preempt_enable. Kernel preemptions off return from interrupt
3511 * occur there and call schedule directly.
3513 asmlinkage void __sched preempt_schedule(void)
3515 struct thread_info *ti = current_thread_info();
3516 #ifdef CONFIG_PREEMPT_BKL
3517 struct task_struct *task = current;
3518 int saved_lock_depth;
3519 #endif
3521 * If there is a non-zero preempt_count or interrupts are disabled,
3522 * we do not want to preempt the current task. Just return..
3524 if (likely(ti->preempt_count || irqs_disabled()))
3525 return;
3527 need_resched:
3528 add_preempt_count(PREEMPT_ACTIVE);
3530 * We keep the big kernel semaphore locked, but we
3531 * clear ->lock_depth so that schedule() doesnt
3532 * auto-release the semaphore:
3534 #ifdef CONFIG_PREEMPT_BKL
3535 saved_lock_depth = task->lock_depth;
3536 task->lock_depth = -1;
3537 #endif
3538 schedule();
3539 #ifdef CONFIG_PREEMPT_BKL
3540 task->lock_depth = saved_lock_depth;
3541 #endif
3542 sub_preempt_count(PREEMPT_ACTIVE);
3544 /* we could miss a preemption opportunity between schedule and now */
3545 barrier();
3546 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3547 goto need_resched;
3549 EXPORT_SYMBOL(preempt_schedule);
3552 * this is the entry point to schedule() from kernel preemption
3553 * off of irq context.
3554 * Note, that this is called and return with irqs disabled. This will
3555 * protect us against recursive calling from irq.
3557 asmlinkage void __sched preempt_schedule_irq(void)
3559 struct thread_info *ti = current_thread_info();
3560 #ifdef CONFIG_PREEMPT_BKL
3561 struct task_struct *task = current;
3562 int saved_lock_depth;
3563 #endif
3564 /* Catch callers which need to be fixed */
3565 BUG_ON(ti->preempt_count || !irqs_disabled());
3567 need_resched:
3568 add_preempt_count(PREEMPT_ACTIVE);
3570 * We keep the big kernel semaphore locked, but we
3571 * clear ->lock_depth so that schedule() doesnt
3572 * auto-release the semaphore:
3574 #ifdef CONFIG_PREEMPT_BKL
3575 saved_lock_depth = task->lock_depth;
3576 task->lock_depth = -1;
3577 #endif
3578 local_irq_enable();
3579 schedule();
3580 local_irq_disable();
3581 #ifdef CONFIG_PREEMPT_BKL
3582 task->lock_depth = saved_lock_depth;
3583 #endif
3584 sub_preempt_count(PREEMPT_ACTIVE);
3586 /* we could miss a preemption opportunity between schedule and now */
3587 barrier();
3588 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3589 goto need_resched;
3592 #endif /* CONFIG_PREEMPT */
3594 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3595 void *key)
3597 return try_to_wake_up(curr->private, mode, sync);
3599 EXPORT_SYMBOL(default_wake_function);
3602 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3603 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3604 * number) then we wake all the non-exclusive tasks and one exclusive task.
3606 * There are circumstances in which we can try to wake a task which has already
3607 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3608 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3610 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3611 int nr_exclusive, int sync, void *key)
3613 struct list_head *tmp, *next;
3615 list_for_each_safe(tmp, next, &q->task_list) {
3616 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3617 unsigned flags = curr->flags;
3619 if (curr->func(curr, mode, sync, key) &&
3620 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3621 break;
3626 * __wake_up - wake up threads blocked on a waitqueue.
3627 * @q: the waitqueue
3628 * @mode: which threads
3629 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3630 * @key: is directly passed to the wakeup function
3632 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3633 int nr_exclusive, void *key)
3635 unsigned long flags;
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, 0, key);
3639 spin_unlock_irqrestore(&q->lock, flags);
3641 EXPORT_SYMBOL(__wake_up);
3644 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3646 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3648 __wake_up_common(q, mode, 1, 0, NULL);
3652 * __wake_up_sync - wake up threads blocked on a waitqueue.
3653 * @q: the waitqueue
3654 * @mode: which threads
3655 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3657 * The sync wakeup differs that the waker knows that it will schedule
3658 * away soon, so while the target thread will be woken up, it will not
3659 * be migrated to another CPU - ie. the two threads are 'synchronized'
3660 * with each other. This can prevent needless bouncing between CPUs.
3662 * On UP it can prevent extra preemption.
3664 void fastcall
3665 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3667 unsigned long flags;
3668 int sync = 1;
3670 if (unlikely(!q))
3671 return;
3673 if (unlikely(!nr_exclusive))
3674 sync = 0;
3676 spin_lock_irqsave(&q->lock, flags);
3677 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3678 spin_unlock_irqrestore(&q->lock, flags);
3680 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3682 void fastcall complete(struct completion *x)
3684 unsigned long flags;
3686 spin_lock_irqsave(&x->wait.lock, flags);
3687 x->done++;
3688 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3689 1, 0, NULL);
3690 spin_unlock_irqrestore(&x->wait.lock, flags);
3692 EXPORT_SYMBOL(complete);
3694 void fastcall complete_all(struct completion *x)
3696 unsigned long flags;
3698 spin_lock_irqsave(&x->wait.lock, flags);
3699 x->done += UINT_MAX/2;
3700 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3701 0, 0, NULL);
3702 spin_unlock_irqrestore(&x->wait.lock, flags);
3704 EXPORT_SYMBOL(complete_all);
3706 void fastcall __sched wait_for_completion(struct completion *x)
3708 might_sleep();
3710 spin_lock_irq(&x->wait.lock);
3711 if (!x->done) {
3712 DECLARE_WAITQUEUE(wait, current);
3714 wait.flags |= WQ_FLAG_EXCLUSIVE;
3715 __add_wait_queue_tail(&x->wait, &wait);
3716 do {
3717 __set_current_state(TASK_UNINTERRUPTIBLE);
3718 spin_unlock_irq(&x->wait.lock);
3719 schedule();
3720 spin_lock_irq(&x->wait.lock);
3721 } while (!x->done);
3722 __remove_wait_queue(&x->wait, &wait);
3724 x->done--;
3725 spin_unlock_irq(&x->wait.lock);
3727 EXPORT_SYMBOL(wait_for_completion);
3729 unsigned long fastcall __sched
3730 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3732 might_sleep();
3734 spin_lock_irq(&x->wait.lock);
3735 if (!x->done) {
3736 DECLARE_WAITQUEUE(wait, current);
3738 wait.flags |= WQ_FLAG_EXCLUSIVE;
3739 __add_wait_queue_tail(&x->wait, &wait);
3740 do {
3741 __set_current_state(TASK_UNINTERRUPTIBLE);
3742 spin_unlock_irq(&x->wait.lock);
3743 timeout = schedule_timeout(timeout);
3744 spin_lock_irq(&x->wait.lock);
3745 if (!timeout) {
3746 __remove_wait_queue(&x->wait, &wait);
3747 goto out;
3749 } while (!x->done);
3750 __remove_wait_queue(&x->wait, &wait);
3752 x->done--;
3753 out:
3754 spin_unlock_irq(&x->wait.lock);
3755 return timeout;
3757 EXPORT_SYMBOL(wait_for_completion_timeout);
3759 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3761 int ret = 0;
3763 might_sleep();
3765 spin_lock_irq(&x->wait.lock);
3766 if (!x->done) {
3767 DECLARE_WAITQUEUE(wait, current);
3769 wait.flags |= WQ_FLAG_EXCLUSIVE;
3770 __add_wait_queue_tail(&x->wait, &wait);
3771 do {
3772 if (signal_pending(current)) {
3773 ret = -ERESTARTSYS;
3774 __remove_wait_queue(&x->wait, &wait);
3775 goto out;
3777 __set_current_state(TASK_INTERRUPTIBLE);
3778 spin_unlock_irq(&x->wait.lock);
3779 schedule();
3780 spin_lock_irq(&x->wait.lock);
3781 } while (!x->done);
3782 __remove_wait_queue(&x->wait, &wait);
3784 x->done--;
3785 out:
3786 spin_unlock_irq(&x->wait.lock);
3788 return ret;
3790 EXPORT_SYMBOL(wait_for_completion_interruptible);
3792 unsigned long fastcall __sched
3793 wait_for_completion_interruptible_timeout(struct completion *x,
3794 unsigned long timeout)
3796 might_sleep();
3798 spin_lock_irq(&x->wait.lock);
3799 if (!x->done) {
3800 DECLARE_WAITQUEUE(wait, current);
3802 wait.flags |= WQ_FLAG_EXCLUSIVE;
3803 __add_wait_queue_tail(&x->wait, &wait);
3804 do {
3805 if (signal_pending(current)) {
3806 timeout = -ERESTARTSYS;
3807 __remove_wait_queue(&x->wait, &wait);
3808 goto out;
3810 __set_current_state(TASK_INTERRUPTIBLE);
3811 spin_unlock_irq(&x->wait.lock);
3812 timeout = schedule_timeout(timeout);
3813 spin_lock_irq(&x->wait.lock);
3814 if (!timeout) {
3815 __remove_wait_queue(&x->wait, &wait);
3816 goto out;
3818 } while (!x->done);
3819 __remove_wait_queue(&x->wait, &wait);
3821 x->done--;
3822 out:
3823 spin_unlock_irq(&x->wait.lock);
3824 return timeout;
3826 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3828 static inline void
3829 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3831 spin_lock_irqsave(&q->lock, *flags);
3832 __add_wait_queue(q, wait);
3833 spin_unlock(&q->lock);
3836 static inline void
3837 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3839 spin_lock_irq(&q->lock);
3840 __remove_wait_queue(q, wait);
3841 spin_unlock_irqrestore(&q->lock, *flags);
3844 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3846 unsigned long flags;
3847 wait_queue_t wait;
3849 init_waitqueue_entry(&wait, current);
3851 current->state = TASK_INTERRUPTIBLE;
3853 sleep_on_head(q, &wait, &flags);
3854 schedule();
3855 sleep_on_tail(q, &wait, &flags);
3857 EXPORT_SYMBOL(interruptible_sleep_on);
3859 long __sched
3860 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3862 unsigned long flags;
3863 wait_queue_t wait;
3865 init_waitqueue_entry(&wait, current);
3867 current->state = TASK_INTERRUPTIBLE;
3869 sleep_on_head(q, &wait, &flags);
3870 timeout = schedule_timeout(timeout);
3871 sleep_on_tail(q, &wait, &flags);
3873 return timeout;
3875 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3877 void __sched sleep_on(wait_queue_head_t *q)
3879 unsigned long flags;
3880 wait_queue_t wait;
3882 init_waitqueue_entry(&wait, current);
3884 current->state = TASK_UNINTERRUPTIBLE;
3886 sleep_on_head(q, &wait, &flags);
3887 schedule();
3888 sleep_on_tail(q, &wait, &flags);
3890 EXPORT_SYMBOL(sleep_on);
3892 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3894 unsigned long flags;
3895 wait_queue_t wait;
3897 init_waitqueue_entry(&wait, current);
3899 current->state = TASK_UNINTERRUPTIBLE;
3901 sleep_on_head(q, &wait, &flags);
3902 timeout = schedule_timeout(timeout);
3903 sleep_on_tail(q, &wait, &flags);
3905 return timeout;
3907 EXPORT_SYMBOL(sleep_on_timeout);
3909 #ifdef CONFIG_RT_MUTEXES
3912 * rt_mutex_setprio - set the current priority of a task
3913 * @p: task
3914 * @prio: prio value (kernel-internal form)
3916 * This function changes the 'effective' priority of a task. It does
3917 * not touch ->normal_prio like __setscheduler().
3919 * Used by the rt_mutex code to implement priority inheritance logic.
3921 void rt_mutex_setprio(struct task_struct *p, int prio)
3923 unsigned long flags;
3924 int oldprio, on_rq;
3925 struct rq *rq;
3926 u64 now;
3928 BUG_ON(prio < 0 || prio > MAX_PRIO);
3930 rq = task_rq_lock(p, &flags);
3931 update_rq_clock(rq);
3932 now = rq->clock;
3934 oldprio = p->prio;
3935 on_rq = p->se.on_rq;
3936 if (on_rq)
3937 dequeue_task(rq, p, 0, now);
3939 if (rt_prio(prio))
3940 p->sched_class = &rt_sched_class;
3941 else
3942 p->sched_class = &fair_sched_class;
3944 p->prio = prio;
3946 if (on_rq) {
3947 enqueue_task(rq, p, 0, now);
3949 * Reschedule if we are currently running on this runqueue and
3950 * our priority decreased, or if we are not currently running on
3951 * this runqueue and our priority is higher than the current's
3953 if (task_running(rq, p)) {
3954 if (p->prio > oldprio)
3955 resched_task(rq->curr);
3956 } else {
3957 check_preempt_curr(rq, p);
3960 task_rq_unlock(rq, &flags);
3963 #endif
3965 void set_user_nice(struct task_struct *p, long nice)
3967 int old_prio, delta, on_rq;
3968 unsigned long flags;
3969 struct rq *rq;
3970 u64 now;
3972 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3973 return;
3975 * We have to be careful, if called from sys_setpriority(),
3976 * the task might be in the middle of scheduling on another CPU.
3978 rq = task_rq_lock(p, &flags);
3979 update_rq_clock(rq);
3980 now = rq->clock;
3982 * The RT priorities are set via sched_setscheduler(), but we still
3983 * allow the 'normal' nice value to be set - but as expected
3984 * it wont have any effect on scheduling until the task is
3985 * SCHED_FIFO/SCHED_RR:
3987 if (task_has_rt_policy(p)) {
3988 p->static_prio = NICE_TO_PRIO(nice);
3989 goto out_unlock;
3991 on_rq = p->se.on_rq;
3992 if (on_rq) {
3993 dequeue_task(rq, p, 0, now);
3994 dec_load(rq, p, now);
3997 p->static_prio = NICE_TO_PRIO(nice);
3998 set_load_weight(p);
3999 old_prio = p->prio;
4000 p->prio = effective_prio(p);
4001 delta = p->prio - old_prio;
4003 if (on_rq) {
4004 enqueue_task(rq, p, 0, now);
4005 inc_load(rq, p, now);
4007 * If the task increased its priority or is running and
4008 * lowered its priority, then reschedule its CPU:
4010 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4011 resched_task(rq->curr);
4013 out_unlock:
4014 task_rq_unlock(rq, &flags);
4016 EXPORT_SYMBOL(set_user_nice);
4019 * can_nice - check if a task can reduce its nice value
4020 * @p: task
4021 * @nice: nice value
4023 int can_nice(const struct task_struct *p, const int nice)
4025 /* convert nice value [19,-20] to rlimit style value [1,40] */
4026 int nice_rlim = 20 - nice;
4028 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4029 capable(CAP_SYS_NICE));
4032 #ifdef __ARCH_WANT_SYS_NICE
4035 * sys_nice - change the priority of the current process.
4036 * @increment: priority increment
4038 * sys_setpriority is a more generic, but much slower function that
4039 * does similar things.
4041 asmlinkage long sys_nice(int increment)
4043 long nice, retval;
4046 * Setpriority might change our priority at the same moment.
4047 * We don't have to worry. Conceptually one call occurs first
4048 * and we have a single winner.
4050 if (increment < -40)
4051 increment = -40;
4052 if (increment > 40)
4053 increment = 40;
4055 nice = PRIO_TO_NICE(current->static_prio) + increment;
4056 if (nice < -20)
4057 nice = -20;
4058 if (nice > 19)
4059 nice = 19;
4061 if (increment < 0 && !can_nice(current, nice))
4062 return -EPERM;
4064 retval = security_task_setnice(current, nice);
4065 if (retval)
4066 return retval;
4068 set_user_nice(current, nice);
4069 return 0;
4072 #endif
4075 * task_prio - return the priority value of a given task.
4076 * @p: the task in question.
4078 * This is the priority value as seen by users in /proc.
4079 * RT tasks are offset by -200. Normal tasks are centered
4080 * around 0, value goes from -16 to +15.
4082 int task_prio(const struct task_struct *p)
4084 return p->prio - MAX_RT_PRIO;
4088 * task_nice - return the nice value of a given task.
4089 * @p: the task in question.
4091 int task_nice(const struct task_struct *p)
4093 return TASK_NICE(p);
4095 EXPORT_SYMBOL_GPL(task_nice);
4098 * idle_cpu - is a given cpu idle currently?
4099 * @cpu: the processor in question.
4101 int idle_cpu(int cpu)
4103 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4107 * idle_task - return the idle task for a given cpu.
4108 * @cpu: the processor in question.
4110 struct task_struct *idle_task(int cpu)
4112 return cpu_rq(cpu)->idle;
4116 * find_process_by_pid - find a process with a matching PID value.
4117 * @pid: the pid in question.
4119 static inline struct task_struct *find_process_by_pid(pid_t pid)
4121 return pid ? find_task_by_pid(pid) : current;
4124 /* Actually do priority change: must hold rq lock. */
4125 static void
4126 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4128 BUG_ON(p->se.on_rq);
4130 p->policy = policy;
4131 switch (p->policy) {
4132 case SCHED_NORMAL:
4133 case SCHED_BATCH:
4134 case SCHED_IDLE:
4135 p->sched_class = &fair_sched_class;
4136 break;
4137 case SCHED_FIFO:
4138 case SCHED_RR:
4139 p->sched_class = &rt_sched_class;
4140 break;
4143 p->rt_priority = prio;
4144 p->normal_prio = normal_prio(p);
4145 /* we are holding p->pi_lock already */
4146 p->prio = rt_mutex_getprio(p);
4147 set_load_weight(p);
4151 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4152 * @p: the task in question.
4153 * @policy: new policy.
4154 * @param: structure containing the new RT priority.
4156 * NOTE that the task may be already dead.
4158 int sched_setscheduler(struct task_struct *p, int policy,
4159 struct sched_param *param)
4161 int retval, oldprio, oldpolicy = -1, on_rq;
4162 unsigned long flags;
4163 struct rq *rq;
4165 /* may grab non-irq protected spin_locks */
4166 BUG_ON(in_interrupt());
4167 recheck:
4168 /* double check policy once rq lock held */
4169 if (policy < 0)
4170 policy = oldpolicy = p->policy;
4171 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4172 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4173 policy != SCHED_IDLE)
4174 return -EINVAL;
4176 * Valid priorities for SCHED_FIFO and SCHED_RR are
4177 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4178 * SCHED_BATCH and SCHED_IDLE is 0.
4180 if (param->sched_priority < 0 ||
4181 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4182 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4183 return -EINVAL;
4184 if (rt_policy(policy) != (param->sched_priority != 0))
4185 return -EINVAL;
4188 * Allow unprivileged RT tasks to decrease priority:
4190 if (!capable(CAP_SYS_NICE)) {
4191 if (rt_policy(policy)) {
4192 unsigned long rlim_rtprio;
4194 if (!lock_task_sighand(p, &flags))
4195 return -ESRCH;
4196 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4197 unlock_task_sighand(p, &flags);
4199 /* can't set/change the rt policy */
4200 if (policy != p->policy && !rlim_rtprio)
4201 return -EPERM;
4203 /* can't increase priority */
4204 if (param->sched_priority > p->rt_priority &&
4205 param->sched_priority > rlim_rtprio)
4206 return -EPERM;
4209 * Like positive nice levels, dont allow tasks to
4210 * move out of SCHED_IDLE either:
4212 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4213 return -EPERM;
4215 /* can't change other user's priorities */
4216 if ((current->euid != p->euid) &&
4217 (current->euid != p->uid))
4218 return -EPERM;
4221 retval = security_task_setscheduler(p, policy, param);
4222 if (retval)
4223 return retval;
4225 * make sure no PI-waiters arrive (or leave) while we are
4226 * changing the priority of the task:
4228 spin_lock_irqsave(&p->pi_lock, flags);
4230 * To be able to change p->policy safely, the apropriate
4231 * runqueue lock must be held.
4233 rq = __task_rq_lock(p);
4234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 policy = oldpolicy = -1;
4237 __task_rq_unlock(rq);
4238 spin_unlock_irqrestore(&p->pi_lock, flags);
4239 goto recheck;
4241 on_rq = p->se.on_rq;
4242 if (on_rq) {
4243 update_rq_clock(rq);
4244 deactivate_task(rq, p, 0, rq->clock);
4246 oldprio = p->prio;
4247 __setscheduler(rq, p, policy, param->sched_priority);
4248 if (on_rq) {
4249 activate_task(rq, p, 0);
4251 * Reschedule if we are currently running on this runqueue and
4252 * our priority decreased, or if we are not currently running on
4253 * this runqueue and our priority is higher than the current's
4255 if (task_running(rq, p)) {
4256 if (p->prio > oldprio)
4257 resched_task(rq->curr);
4258 } else {
4259 check_preempt_curr(rq, p);
4262 __task_rq_unlock(rq);
4263 spin_unlock_irqrestore(&p->pi_lock, flags);
4265 rt_mutex_adjust_pi(p);
4267 return 0;
4269 EXPORT_SYMBOL_GPL(sched_setscheduler);
4271 static int
4272 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4274 struct sched_param lparam;
4275 struct task_struct *p;
4276 int retval;
4278 if (!param || pid < 0)
4279 return -EINVAL;
4280 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4281 return -EFAULT;
4283 rcu_read_lock();
4284 retval = -ESRCH;
4285 p = find_process_by_pid(pid);
4286 if (p != NULL)
4287 retval = sched_setscheduler(p, policy, &lparam);
4288 rcu_read_unlock();
4290 return retval;
4294 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4295 * @pid: the pid in question.
4296 * @policy: new policy.
4297 * @param: structure containing the new RT priority.
4299 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4300 struct sched_param __user *param)
4302 /* negative values for policy are not valid */
4303 if (policy < 0)
4304 return -EINVAL;
4306 return do_sched_setscheduler(pid, policy, param);
4310 * sys_sched_setparam - set/change the RT priority of a thread
4311 * @pid: the pid in question.
4312 * @param: structure containing the new RT priority.
4314 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4316 return do_sched_setscheduler(pid, -1, param);
4320 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4321 * @pid: the pid in question.
4323 asmlinkage long sys_sched_getscheduler(pid_t pid)
4325 struct task_struct *p;
4326 int retval = -EINVAL;
4328 if (pid < 0)
4329 goto out_nounlock;
4331 retval = -ESRCH;
4332 read_lock(&tasklist_lock);
4333 p = find_process_by_pid(pid);
4334 if (p) {
4335 retval = security_task_getscheduler(p);
4336 if (!retval)
4337 retval = p->policy;
4339 read_unlock(&tasklist_lock);
4341 out_nounlock:
4342 return retval;
4346 * sys_sched_getscheduler - get the RT priority of a thread
4347 * @pid: the pid in question.
4348 * @param: structure containing the RT priority.
4350 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4352 struct sched_param lp;
4353 struct task_struct *p;
4354 int retval = -EINVAL;
4356 if (!param || pid < 0)
4357 goto out_nounlock;
4359 read_lock(&tasklist_lock);
4360 p = find_process_by_pid(pid);
4361 retval = -ESRCH;
4362 if (!p)
4363 goto out_unlock;
4365 retval = security_task_getscheduler(p);
4366 if (retval)
4367 goto out_unlock;
4369 lp.sched_priority = p->rt_priority;
4370 read_unlock(&tasklist_lock);
4373 * This one might sleep, we cannot do it with a spinlock held ...
4375 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4377 out_nounlock:
4378 return retval;
4380 out_unlock:
4381 read_unlock(&tasklist_lock);
4382 return retval;
4385 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4387 cpumask_t cpus_allowed;
4388 struct task_struct *p;
4389 int retval;
4391 mutex_lock(&sched_hotcpu_mutex);
4392 read_lock(&tasklist_lock);
4394 p = find_process_by_pid(pid);
4395 if (!p) {
4396 read_unlock(&tasklist_lock);
4397 mutex_unlock(&sched_hotcpu_mutex);
4398 return -ESRCH;
4402 * It is not safe to call set_cpus_allowed with the
4403 * tasklist_lock held. We will bump the task_struct's
4404 * usage count and then drop tasklist_lock.
4406 get_task_struct(p);
4407 read_unlock(&tasklist_lock);
4409 retval = -EPERM;
4410 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4411 !capable(CAP_SYS_NICE))
4412 goto out_unlock;
4414 retval = security_task_setscheduler(p, 0, NULL);
4415 if (retval)
4416 goto out_unlock;
4418 cpus_allowed = cpuset_cpus_allowed(p);
4419 cpus_and(new_mask, new_mask, cpus_allowed);
4420 retval = set_cpus_allowed(p, new_mask);
4422 out_unlock:
4423 put_task_struct(p);
4424 mutex_unlock(&sched_hotcpu_mutex);
4425 return retval;
4428 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4429 cpumask_t *new_mask)
4431 if (len < sizeof(cpumask_t)) {
4432 memset(new_mask, 0, sizeof(cpumask_t));
4433 } else if (len > sizeof(cpumask_t)) {
4434 len = sizeof(cpumask_t);
4436 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4440 * sys_sched_setaffinity - set the cpu affinity of a process
4441 * @pid: pid of the process
4442 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4443 * @user_mask_ptr: user-space pointer to the new cpu mask
4445 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4446 unsigned long __user *user_mask_ptr)
4448 cpumask_t new_mask;
4449 int retval;
4451 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4452 if (retval)
4453 return retval;
4455 return sched_setaffinity(pid, new_mask);
4459 * Represents all cpu's present in the system
4460 * In systems capable of hotplug, this map could dynamically grow
4461 * as new cpu's are detected in the system via any platform specific
4462 * method, such as ACPI for e.g.
4465 cpumask_t cpu_present_map __read_mostly;
4466 EXPORT_SYMBOL(cpu_present_map);
4468 #ifndef CONFIG_SMP
4469 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4470 EXPORT_SYMBOL(cpu_online_map);
4472 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4473 EXPORT_SYMBOL(cpu_possible_map);
4474 #endif
4476 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4478 struct task_struct *p;
4479 int retval;
4481 mutex_lock(&sched_hotcpu_mutex);
4482 read_lock(&tasklist_lock);
4484 retval = -ESRCH;
4485 p = find_process_by_pid(pid);
4486 if (!p)
4487 goto out_unlock;
4489 retval = security_task_getscheduler(p);
4490 if (retval)
4491 goto out_unlock;
4493 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4495 out_unlock:
4496 read_unlock(&tasklist_lock);
4497 mutex_unlock(&sched_hotcpu_mutex);
4499 return retval;
4503 * sys_sched_getaffinity - get the cpu affinity of a process
4504 * @pid: pid of the process
4505 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4506 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4508 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4509 unsigned long __user *user_mask_ptr)
4511 int ret;
4512 cpumask_t mask;
4514 if (len < sizeof(cpumask_t))
4515 return -EINVAL;
4517 ret = sched_getaffinity(pid, &mask);
4518 if (ret < 0)
4519 return ret;
4521 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4522 return -EFAULT;
4524 return sizeof(cpumask_t);
4528 * sys_sched_yield - yield the current processor to other threads.
4530 * This function yields the current CPU to other tasks. If there are no
4531 * other threads running on this CPU then this function will return.
4533 asmlinkage long sys_sched_yield(void)
4535 struct rq *rq = this_rq_lock();
4537 schedstat_inc(rq, yld_cnt);
4538 if (unlikely(rq->nr_running == 1))
4539 schedstat_inc(rq, yld_act_empty);
4540 else
4541 current->sched_class->yield_task(rq, current);
4544 * Since we are going to call schedule() anyway, there's
4545 * no need to preempt or enable interrupts:
4547 __release(rq->lock);
4548 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4549 _raw_spin_unlock(&rq->lock);
4550 preempt_enable_no_resched();
4552 schedule();
4554 return 0;
4557 static void __cond_resched(void)
4559 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4560 __might_sleep(__FILE__, __LINE__);
4561 #endif
4563 * The BKS might be reacquired before we have dropped
4564 * PREEMPT_ACTIVE, which could trigger a second
4565 * cond_resched() call.
4567 do {
4568 add_preempt_count(PREEMPT_ACTIVE);
4569 schedule();
4570 sub_preempt_count(PREEMPT_ACTIVE);
4571 } while (need_resched());
4574 int __sched cond_resched(void)
4576 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4577 system_state == SYSTEM_RUNNING) {
4578 __cond_resched();
4579 return 1;
4581 return 0;
4583 EXPORT_SYMBOL(cond_resched);
4586 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4587 * call schedule, and on return reacquire the lock.
4589 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4590 * operations here to prevent schedule() from being called twice (once via
4591 * spin_unlock(), once by hand).
4593 int cond_resched_lock(spinlock_t *lock)
4595 int ret = 0;
4597 if (need_lockbreak(lock)) {
4598 spin_unlock(lock);
4599 cpu_relax();
4600 ret = 1;
4601 spin_lock(lock);
4603 if (need_resched() && system_state == SYSTEM_RUNNING) {
4604 spin_release(&lock->dep_map, 1, _THIS_IP_);
4605 _raw_spin_unlock(lock);
4606 preempt_enable_no_resched();
4607 __cond_resched();
4608 ret = 1;
4609 spin_lock(lock);
4611 return ret;
4613 EXPORT_SYMBOL(cond_resched_lock);
4615 int __sched cond_resched_softirq(void)
4617 BUG_ON(!in_softirq());
4619 if (need_resched() && system_state == SYSTEM_RUNNING) {
4620 local_bh_enable();
4621 __cond_resched();
4622 local_bh_disable();
4623 return 1;
4625 return 0;
4627 EXPORT_SYMBOL(cond_resched_softirq);
4630 * yield - yield the current processor to other threads.
4632 * This is a shortcut for kernel-space yielding - it marks the
4633 * thread runnable and calls sys_sched_yield().
4635 void __sched yield(void)
4637 set_current_state(TASK_RUNNING);
4638 sys_sched_yield();
4640 EXPORT_SYMBOL(yield);
4643 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4644 * that process accounting knows that this is a task in IO wait state.
4646 * But don't do that if it is a deliberate, throttling IO wait (this task
4647 * has set its backing_dev_info: the queue against which it should throttle)
4649 void __sched io_schedule(void)
4651 struct rq *rq = &__raw_get_cpu_var(runqueues);
4653 delayacct_blkio_start();
4654 atomic_inc(&rq->nr_iowait);
4655 schedule();
4656 atomic_dec(&rq->nr_iowait);
4657 delayacct_blkio_end();
4659 EXPORT_SYMBOL(io_schedule);
4661 long __sched io_schedule_timeout(long timeout)
4663 struct rq *rq = &__raw_get_cpu_var(runqueues);
4664 long ret;
4666 delayacct_blkio_start();
4667 atomic_inc(&rq->nr_iowait);
4668 ret = schedule_timeout(timeout);
4669 atomic_dec(&rq->nr_iowait);
4670 delayacct_blkio_end();
4671 return ret;
4675 * sys_sched_get_priority_max - return maximum RT priority.
4676 * @policy: scheduling class.
4678 * this syscall returns the maximum rt_priority that can be used
4679 * by a given scheduling class.
4681 asmlinkage long sys_sched_get_priority_max(int policy)
4683 int ret = -EINVAL;
4685 switch (policy) {
4686 case SCHED_FIFO:
4687 case SCHED_RR:
4688 ret = MAX_USER_RT_PRIO-1;
4689 break;
4690 case SCHED_NORMAL:
4691 case SCHED_BATCH:
4692 case SCHED_IDLE:
4693 ret = 0;
4694 break;
4696 return ret;
4700 * sys_sched_get_priority_min - return minimum RT priority.
4701 * @policy: scheduling class.
4703 * this syscall returns the minimum rt_priority that can be used
4704 * by a given scheduling class.
4706 asmlinkage long sys_sched_get_priority_min(int policy)
4708 int ret = -EINVAL;
4710 switch (policy) {
4711 case SCHED_FIFO:
4712 case SCHED_RR:
4713 ret = 1;
4714 break;
4715 case SCHED_NORMAL:
4716 case SCHED_BATCH:
4717 case SCHED_IDLE:
4718 ret = 0;
4720 return ret;
4724 * sys_sched_rr_get_interval - return the default timeslice of a process.
4725 * @pid: pid of the process.
4726 * @interval: userspace pointer to the timeslice value.
4728 * this syscall writes the default timeslice value of a given process
4729 * into the user-space timespec buffer. A value of '0' means infinity.
4731 asmlinkage
4732 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4734 struct task_struct *p;
4735 int retval = -EINVAL;
4736 struct timespec t;
4738 if (pid < 0)
4739 goto out_nounlock;
4741 retval = -ESRCH;
4742 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4744 if (!p)
4745 goto out_unlock;
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4751 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4752 0 : static_prio_timeslice(p->static_prio), &t);
4753 read_unlock(&tasklist_lock);
4754 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4755 out_nounlock:
4756 return retval;
4757 out_unlock:
4758 read_unlock(&tasklist_lock);
4759 return retval;
4762 static const char stat_nam[] = "RSDTtZX";
4764 static void show_task(struct task_struct *p)
4766 unsigned long free = 0;
4767 unsigned state;
4769 state = p->state ? __ffs(p->state) + 1 : 0;
4770 printk("%-13.13s %c", p->comm,
4771 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4772 #if BITS_PER_LONG == 32
4773 if (state == TASK_RUNNING)
4774 printk(" running ");
4775 else
4776 printk(" %08lx ", thread_saved_pc(p));
4777 #else
4778 if (state == TASK_RUNNING)
4779 printk(" running task ");
4780 else
4781 printk(" %016lx ", thread_saved_pc(p));
4782 #endif
4783 #ifdef CONFIG_DEBUG_STACK_USAGE
4785 unsigned long *n = end_of_stack(p);
4786 while (!*n)
4787 n++;
4788 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4790 #endif
4791 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4793 if (state != TASK_RUNNING)
4794 show_stack(p, NULL);
4797 void show_state_filter(unsigned long state_filter)
4799 struct task_struct *g, *p;
4801 #if BITS_PER_LONG == 32
4802 printk(KERN_INFO
4803 " task PC stack pid father\n");
4804 #else
4805 printk(KERN_INFO
4806 " task PC stack pid father\n");
4807 #endif
4808 read_lock(&tasklist_lock);
4809 do_each_thread(g, p) {
4811 * reset the NMI-timeout, listing all files on a slow
4812 * console might take alot of time:
4814 touch_nmi_watchdog();
4815 if (!state_filter || (p->state & state_filter))
4816 show_task(p);
4817 } while_each_thread(g, p);
4819 touch_all_softlockup_watchdogs();
4821 #ifdef CONFIG_SCHED_DEBUG
4822 sysrq_sched_debug_show();
4823 #endif
4824 read_unlock(&tasklist_lock);
4826 * Only show locks if all tasks are dumped:
4828 if (state_filter == -1)
4829 debug_show_all_locks();
4832 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4834 idle->sched_class = &idle_sched_class;
4838 * init_idle - set up an idle thread for a given CPU
4839 * @idle: task in question
4840 * @cpu: cpu the idle task belongs to
4842 * NOTE: this function does not set the idle thread's NEED_RESCHED
4843 * flag, to make booting more robust.
4845 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4847 struct rq *rq = cpu_rq(cpu);
4848 unsigned long flags;
4850 __sched_fork(idle);
4851 idle->se.exec_start = sched_clock();
4853 idle->prio = idle->normal_prio = MAX_PRIO;
4854 idle->cpus_allowed = cpumask_of_cpu(cpu);
4855 __set_task_cpu(idle, cpu);
4857 spin_lock_irqsave(&rq->lock, flags);
4858 rq->curr = rq->idle = idle;
4859 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4860 idle->oncpu = 1;
4861 #endif
4862 spin_unlock_irqrestore(&rq->lock, flags);
4864 /* Set the preempt count _outside_ the spinlocks! */
4865 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4866 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4867 #else
4868 task_thread_info(idle)->preempt_count = 0;
4869 #endif
4871 * The idle tasks have their own, simple scheduling class:
4873 idle->sched_class = &idle_sched_class;
4877 * In a system that switches off the HZ timer nohz_cpu_mask
4878 * indicates which cpus entered this state. This is used
4879 * in the rcu update to wait only for active cpus. For system
4880 * which do not switch off the HZ timer nohz_cpu_mask should
4881 * always be CPU_MASK_NONE.
4883 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4886 * Increase the granularity value when there are more CPUs,
4887 * because with more CPUs the 'effective latency' as visible
4888 * to users decreases. But the relationship is not linear,
4889 * so pick a second-best guess by going with the log2 of the
4890 * number of CPUs.
4892 * This idea comes from the SD scheduler of Con Kolivas:
4894 static inline void sched_init_granularity(void)
4896 unsigned int factor = 1 + ilog2(num_online_cpus());
4897 const unsigned long gran_limit = 100000000;
4899 sysctl_sched_granularity *= factor;
4900 if (sysctl_sched_granularity > gran_limit)
4901 sysctl_sched_granularity = gran_limit;
4903 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4904 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4907 #ifdef CONFIG_SMP
4909 * This is how migration works:
4911 * 1) we queue a struct migration_req structure in the source CPU's
4912 * runqueue and wake up that CPU's migration thread.
4913 * 2) we down() the locked semaphore => thread blocks.
4914 * 3) migration thread wakes up (implicitly it forces the migrated
4915 * thread off the CPU)
4916 * 4) it gets the migration request and checks whether the migrated
4917 * task is still in the wrong runqueue.
4918 * 5) if it's in the wrong runqueue then the migration thread removes
4919 * it and puts it into the right queue.
4920 * 6) migration thread up()s the semaphore.
4921 * 7) we wake up and the migration is done.
4925 * Change a given task's CPU affinity. Migrate the thread to a
4926 * proper CPU and schedule it away if the CPU it's executing on
4927 * is removed from the allowed bitmask.
4929 * NOTE: the caller must have a valid reference to the task, the
4930 * task must not exit() & deallocate itself prematurely. The
4931 * call is not atomic; no spinlocks may be held.
4933 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4935 struct migration_req req;
4936 unsigned long flags;
4937 struct rq *rq;
4938 int ret = 0;
4940 rq = task_rq_lock(p, &flags);
4941 if (!cpus_intersects(new_mask, cpu_online_map)) {
4942 ret = -EINVAL;
4943 goto out;
4946 p->cpus_allowed = new_mask;
4947 /* Can the task run on the task's current CPU? If so, we're done */
4948 if (cpu_isset(task_cpu(p), new_mask))
4949 goto out;
4951 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4952 /* Need help from migration thread: drop lock and wait. */
4953 task_rq_unlock(rq, &flags);
4954 wake_up_process(rq->migration_thread);
4955 wait_for_completion(&req.done);
4956 tlb_migrate_finish(p->mm);
4957 return 0;
4959 out:
4960 task_rq_unlock(rq, &flags);
4962 return ret;
4964 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4967 * Move (not current) task off this cpu, onto dest cpu. We're doing
4968 * this because either it can't run here any more (set_cpus_allowed()
4969 * away from this CPU, or CPU going down), or because we're
4970 * attempting to rebalance this task on exec (sched_exec).
4972 * So we race with normal scheduler movements, but that's OK, as long
4973 * as the task is no longer on this CPU.
4975 * Returns non-zero if task was successfully migrated.
4977 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4979 struct rq *rq_dest, *rq_src;
4980 int ret = 0, on_rq;
4982 if (unlikely(cpu_is_offline(dest_cpu)))
4983 return ret;
4985 rq_src = cpu_rq(src_cpu);
4986 rq_dest = cpu_rq(dest_cpu);
4988 double_rq_lock(rq_src, rq_dest);
4989 /* Already moved. */
4990 if (task_cpu(p) != src_cpu)
4991 goto out;
4992 /* Affinity changed (again). */
4993 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4994 goto out;
4996 on_rq = p->se.on_rq;
4997 if (on_rq) {
4998 update_rq_clock(rq_src);
4999 deactivate_task(rq_src, p, 0, rq_src->clock);
5001 set_task_cpu(p, dest_cpu);
5002 if (on_rq) {
5003 activate_task(rq_dest, p, 0);
5004 check_preempt_curr(rq_dest, p);
5006 ret = 1;
5007 out:
5008 double_rq_unlock(rq_src, rq_dest);
5009 return ret;
5013 * migration_thread - this is a highprio system thread that performs
5014 * thread migration by bumping thread off CPU then 'pushing' onto
5015 * another runqueue.
5017 static int migration_thread(void *data)
5019 int cpu = (long)data;
5020 struct rq *rq;
5022 rq = cpu_rq(cpu);
5023 BUG_ON(rq->migration_thread != current);
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 while (!kthread_should_stop()) {
5027 struct migration_req *req;
5028 struct list_head *head;
5030 spin_lock_irq(&rq->lock);
5032 if (cpu_is_offline(cpu)) {
5033 spin_unlock_irq(&rq->lock);
5034 goto wait_to_die;
5037 if (rq->active_balance) {
5038 active_load_balance(rq, cpu);
5039 rq->active_balance = 0;
5042 head = &rq->migration_queue;
5044 if (list_empty(head)) {
5045 spin_unlock_irq(&rq->lock);
5046 schedule();
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 continue;
5050 req = list_entry(head->next, struct migration_req, list);
5051 list_del_init(head->next);
5053 spin_unlock(&rq->lock);
5054 __migrate_task(req->task, cpu, req->dest_cpu);
5055 local_irq_enable();
5057 complete(&req->done);
5059 __set_current_state(TASK_RUNNING);
5060 return 0;
5062 wait_to_die:
5063 /* Wait for kthread_stop */
5064 set_current_state(TASK_INTERRUPTIBLE);
5065 while (!kthread_should_stop()) {
5066 schedule();
5067 set_current_state(TASK_INTERRUPTIBLE);
5069 __set_current_state(TASK_RUNNING);
5070 return 0;
5073 #ifdef CONFIG_HOTPLUG_CPU
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5078 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5080 unsigned long flags;
5081 cpumask_t mask;
5082 struct rq *rq;
5083 int dest_cpu;
5085 restart:
5086 /* On same node? */
5087 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5088 cpus_and(mask, mask, p->cpus_allowed);
5089 dest_cpu = any_online_cpu(mask);
5091 /* On any allowed CPU? */
5092 if (dest_cpu == NR_CPUS)
5093 dest_cpu = any_online_cpu(p->cpus_allowed);
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu == NR_CPUS) {
5097 rq = task_rq_lock(p, &flags);
5098 cpus_setall(p->cpus_allowed);
5099 dest_cpu = any_online_cpu(p->cpus_allowed);
5100 task_rq_unlock(rq, &flags);
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5105 * leave kernel.
5107 if (p->mm && printk_ratelimit())
5108 printk(KERN_INFO "process %d (%s) no "
5109 "longer affine to cpu%d\n",
5110 p->pid, p->comm, dead_cpu);
5112 if (!__migrate_task(p, dead_cpu, dest_cpu))
5113 goto restart;
5117 * While a dead CPU has no uninterruptible tasks queued at this point,
5118 * it might still have a nonzero ->nr_uninterruptible counter, because
5119 * for performance reasons the counter is not stricly tracking tasks to
5120 * their home CPUs. So we just add the counter to another CPU's counter,
5121 * to keep the global sum constant after CPU-down:
5123 static void migrate_nr_uninterruptible(struct rq *rq_src)
5125 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5126 unsigned long flags;
5128 local_irq_save(flags);
5129 double_rq_lock(rq_src, rq_dest);
5130 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5131 rq_src->nr_uninterruptible = 0;
5132 double_rq_unlock(rq_src, rq_dest);
5133 local_irq_restore(flags);
5136 /* Run through task list and migrate tasks from the dead cpu. */
5137 static void migrate_live_tasks(int src_cpu)
5139 struct task_struct *p, *t;
5141 write_lock_irq(&tasklist_lock);
5143 do_each_thread(t, p) {
5144 if (p == current)
5145 continue;
5147 if (task_cpu(p) == src_cpu)
5148 move_task_off_dead_cpu(src_cpu, p);
5149 } while_each_thread(t, p);
5151 write_unlock_irq(&tasklist_lock);
5155 * Schedules idle task to be the next runnable task on current CPU.
5156 * It does so by boosting its priority to highest possible and adding it to
5157 * the _front_ of the runqueue. Used by CPU offline code.
5159 void sched_idle_next(void)
5161 int this_cpu = smp_processor_id();
5162 struct rq *rq = cpu_rq(this_cpu);
5163 struct task_struct *p = rq->idle;
5164 unsigned long flags;
5166 /* cpu has to be offline */
5167 BUG_ON(cpu_online(this_cpu));
5170 * Strictly not necessary since rest of the CPUs are stopped by now
5171 * and interrupts disabled on the current cpu.
5173 spin_lock_irqsave(&rq->lock, flags);
5175 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5177 /* Add idle task to the _front_ of its priority queue: */
5178 activate_idle_task(p, rq);
5180 spin_unlock_irqrestore(&rq->lock, flags);
5184 * Ensures that the idle task is using init_mm right before its cpu goes
5185 * offline.
5187 void idle_task_exit(void)
5189 struct mm_struct *mm = current->active_mm;
5191 BUG_ON(cpu_online(smp_processor_id()));
5193 if (mm != &init_mm)
5194 switch_mm(mm, &init_mm, current);
5195 mmdrop(mm);
5198 /* called under rq->lock with disabled interrupts */
5199 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5201 struct rq *rq = cpu_rq(dead_cpu);
5203 /* Must be exiting, otherwise would be on tasklist. */
5204 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5206 /* Cannot have done final schedule yet: would have vanished. */
5207 BUG_ON(p->state == TASK_DEAD);
5209 get_task_struct(p);
5212 * Drop lock around migration; if someone else moves it,
5213 * that's OK. No task can be added to this CPU, so iteration is
5214 * fine.
5215 * NOTE: interrupts should be left disabled --dev@
5217 spin_unlock(&rq->lock);
5218 move_task_off_dead_cpu(dead_cpu, p);
5219 spin_lock(&rq->lock);
5221 put_task_struct(p);
5224 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5225 static void migrate_dead_tasks(unsigned int dead_cpu)
5227 struct rq *rq = cpu_rq(dead_cpu);
5228 struct task_struct *next;
5230 for ( ; ; ) {
5231 if (!rq->nr_running)
5232 break;
5233 update_rq_clock(rq);
5234 next = pick_next_task(rq, rq->curr, rq->clock);
5235 if (!next)
5236 break;
5237 migrate_dead(dead_cpu, next);
5241 #endif /* CONFIG_HOTPLUG_CPU */
5243 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5245 static struct ctl_table sd_ctl_dir[] = {
5247 .procname = "sched_domain",
5248 .mode = 0755,
5250 {0,},
5253 static struct ctl_table sd_ctl_root[] = {
5255 .procname = "kernel",
5256 .mode = 0755,
5257 .child = sd_ctl_dir,
5259 {0,},
5262 static struct ctl_table *sd_alloc_ctl_entry(int n)
5264 struct ctl_table *entry =
5265 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5267 BUG_ON(!entry);
5268 memset(entry, 0, n * sizeof(struct ctl_table));
5270 return entry;
5273 static void
5274 set_table_entry(struct ctl_table *entry,
5275 const char *procname, void *data, int maxlen,
5276 mode_t mode, proc_handler *proc_handler)
5278 entry->procname = procname;
5279 entry->data = data;
5280 entry->maxlen = maxlen;
5281 entry->mode = mode;
5282 entry->proc_handler = proc_handler;
5285 static struct ctl_table *
5286 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5288 struct ctl_table *table = sd_alloc_ctl_entry(14);
5290 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5291 sizeof(long), 0644, proc_doulongvec_minmax);
5292 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5293 sizeof(long), 0644, proc_doulongvec_minmax);
5294 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5295 sizeof(int), 0644, proc_dointvec_minmax);
5296 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5297 sizeof(int), 0644, proc_dointvec_minmax);
5298 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5299 sizeof(int), 0644, proc_dointvec_minmax);
5300 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5305 sizeof(int), 0644, proc_dointvec_minmax);
5306 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5307 sizeof(int), 0644, proc_dointvec_minmax);
5308 set_table_entry(&table[10], "cache_nice_tries",
5309 &sd->cache_nice_tries,
5310 sizeof(int), 0644, proc_dointvec_minmax);
5311 set_table_entry(&table[12], "flags", &sd->flags,
5312 sizeof(int), 0644, proc_dointvec_minmax);
5314 return table;
5317 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5319 struct ctl_table *entry, *table;
5320 struct sched_domain *sd;
5321 int domain_num = 0, i;
5322 char buf[32];
5324 for_each_domain(cpu, sd)
5325 domain_num++;
5326 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5328 i = 0;
5329 for_each_domain(cpu, sd) {
5330 snprintf(buf, 32, "domain%d", i);
5331 entry->procname = kstrdup(buf, GFP_KERNEL);
5332 entry->mode = 0755;
5333 entry->child = sd_alloc_ctl_domain_table(sd);
5334 entry++;
5335 i++;
5337 return table;
5340 static struct ctl_table_header *sd_sysctl_header;
5341 static void init_sched_domain_sysctl(void)
5343 int i, cpu_num = num_online_cpus();
5344 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5345 char buf[32];
5347 sd_ctl_dir[0].child = entry;
5349 for (i = 0; i < cpu_num; i++, entry++) {
5350 snprintf(buf, 32, "cpu%d", i);
5351 entry->procname = kstrdup(buf, GFP_KERNEL);
5352 entry->mode = 0755;
5353 entry->child = sd_alloc_ctl_cpu_table(i);
5355 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5357 #else
5358 static void init_sched_domain_sysctl(void)
5361 #endif
5364 * migration_call - callback that gets triggered when a CPU is added.
5365 * Here we can start up the necessary migration thread for the new CPU.
5367 static int __cpuinit
5368 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5370 struct task_struct *p;
5371 int cpu = (long)hcpu;
5372 unsigned long flags;
5373 struct rq *rq;
5375 switch (action) {
5376 case CPU_LOCK_ACQUIRE:
5377 mutex_lock(&sched_hotcpu_mutex);
5378 break;
5380 case CPU_UP_PREPARE:
5381 case CPU_UP_PREPARE_FROZEN:
5382 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5383 if (IS_ERR(p))
5384 return NOTIFY_BAD;
5385 kthread_bind(p, cpu);
5386 /* Must be high prio: stop_machine expects to yield to it. */
5387 rq = task_rq_lock(p, &flags);
5388 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5389 task_rq_unlock(rq, &flags);
5390 cpu_rq(cpu)->migration_thread = p;
5391 break;
5393 case CPU_ONLINE:
5394 case CPU_ONLINE_FROZEN:
5395 /* Strictly unneccessary, as first user will wake it. */
5396 wake_up_process(cpu_rq(cpu)->migration_thread);
5397 break;
5399 #ifdef CONFIG_HOTPLUG_CPU
5400 case CPU_UP_CANCELED:
5401 case CPU_UP_CANCELED_FROZEN:
5402 if (!cpu_rq(cpu)->migration_thread)
5403 break;
5404 /* Unbind it from offline cpu so it can run. Fall thru. */
5405 kthread_bind(cpu_rq(cpu)->migration_thread,
5406 any_online_cpu(cpu_online_map));
5407 kthread_stop(cpu_rq(cpu)->migration_thread);
5408 cpu_rq(cpu)->migration_thread = NULL;
5409 break;
5411 case CPU_DEAD:
5412 case CPU_DEAD_FROZEN:
5413 migrate_live_tasks(cpu);
5414 rq = cpu_rq(cpu);
5415 kthread_stop(rq->migration_thread);
5416 rq->migration_thread = NULL;
5417 /* Idle task back to normal (off runqueue, low prio) */
5418 rq = task_rq_lock(rq->idle, &flags);
5419 update_rq_clock(rq);
5420 deactivate_task(rq, rq->idle, 0, rq->clock);
5421 rq->idle->static_prio = MAX_PRIO;
5422 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5423 rq->idle->sched_class = &idle_sched_class;
5424 migrate_dead_tasks(cpu);
5425 task_rq_unlock(rq, &flags);
5426 migrate_nr_uninterruptible(rq);
5427 BUG_ON(rq->nr_running != 0);
5429 /* No need to migrate the tasks: it was best-effort if
5430 * they didn't take sched_hotcpu_mutex. Just wake up
5431 * the requestors. */
5432 spin_lock_irq(&rq->lock);
5433 while (!list_empty(&rq->migration_queue)) {
5434 struct migration_req *req;
5436 req = list_entry(rq->migration_queue.next,
5437 struct migration_req, list);
5438 list_del_init(&req->list);
5439 complete(&req->done);
5441 spin_unlock_irq(&rq->lock);
5442 break;
5443 #endif
5444 case CPU_LOCK_RELEASE:
5445 mutex_unlock(&sched_hotcpu_mutex);
5446 break;
5448 return NOTIFY_OK;
5451 /* Register at highest priority so that task migration (migrate_all_tasks)
5452 * happens before everything else.
5454 static struct notifier_block __cpuinitdata migration_notifier = {
5455 .notifier_call = migration_call,
5456 .priority = 10
5459 int __init migration_init(void)
5461 void *cpu = (void *)(long)smp_processor_id();
5462 int err;
5464 /* Start one for the boot CPU: */
5465 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5466 BUG_ON(err == NOTIFY_BAD);
5467 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5468 register_cpu_notifier(&migration_notifier);
5470 return 0;
5472 #endif
5474 #ifdef CONFIG_SMP
5476 /* Number of possible processor ids */
5477 int nr_cpu_ids __read_mostly = NR_CPUS;
5478 EXPORT_SYMBOL(nr_cpu_ids);
5480 #undef SCHED_DOMAIN_DEBUG
5481 #ifdef SCHED_DOMAIN_DEBUG
5482 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5484 int level = 0;
5486 if (!sd) {
5487 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5488 return;
5491 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5493 do {
5494 int i;
5495 char str[NR_CPUS];
5496 struct sched_group *group = sd->groups;
5497 cpumask_t groupmask;
5499 cpumask_scnprintf(str, NR_CPUS, sd->span);
5500 cpus_clear(groupmask);
5502 printk(KERN_DEBUG);
5503 for (i = 0; i < level + 1; i++)
5504 printk(" ");
5505 printk("domain %d: ", level);
5507 if (!(sd->flags & SD_LOAD_BALANCE)) {
5508 printk("does not load-balance\n");
5509 if (sd->parent)
5510 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5511 " has parent");
5512 break;
5515 printk("span %s\n", str);
5517 if (!cpu_isset(cpu, sd->span))
5518 printk(KERN_ERR "ERROR: domain->span does not contain "
5519 "CPU%d\n", cpu);
5520 if (!cpu_isset(cpu, group->cpumask))
5521 printk(KERN_ERR "ERROR: domain->groups does not contain"
5522 " CPU%d\n", cpu);
5524 printk(KERN_DEBUG);
5525 for (i = 0; i < level + 2; i++)
5526 printk(" ");
5527 printk("groups:");
5528 do {
5529 if (!group) {
5530 printk("\n");
5531 printk(KERN_ERR "ERROR: group is NULL\n");
5532 break;
5535 if (!group->__cpu_power) {
5536 printk("\n");
5537 printk(KERN_ERR "ERROR: domain->cpu_power not "
5538 "set\n");
5541 if (!cpus_weight(group->cpumask)) {
5542 printk("\n");
5543 printk(KERN_ERR "ERROR: empty group\n");
5546 if (cpus_intersects(groupmask, group->cpumask)) {
5547 printk("\n");
5548 printk(KERN_ERR "ERROR: repeated CPUs\n");
5551 cpus_or(groupmask, groupmask, group->cpumask);
5553 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5554 printk(" %s", str);
5556 group = group->next;
5557 } while (group != sd->groups);
5558 printk("\n");
5560 if (!cpus_equal(sd->span, groupmask))
5561 printk(KERN_ERR "ERROR: groups don't span "
5562 "domain->span\n");
5564 level++;
5565 sd = sd->parent;
5566 if (!sd)
5567 continue;
5569 if (!cpus_subset(groupmask, sd->span))
5570 printk(KERN_ERR "ERROR: parent span is not a superset "
5571 "of domain->span\n");
5573 } while (sd);
5575 #else
5576 # define sched_domain_debug(sd, cpu) do { } while (0)
5577 #endif
5579 static int sd_degenerate(struct sched_domain *sd)
5581 if (cpus_weight(sd->span) == 1)
5582 return 1;
5584 /* Following flags need at least 2 groups */
5585 if (sd->flags & (SD_LOAD_BALANCE |
5586 SD_BALANCE_NEWIDLE |
5587 SD_BALANCE_FORK |
5588 SD_BALANCE_EXEC |
5589 SD_SHARE_CPUPOWER |
5590 SD_SHARE_PKG_RESOURCES)) {
5591 if (sd->groups != sd->groups->next)
5592 return 0;
5595 /* Following flags don't use groups */
5596 if (sd->flags & (SD_WAKE_IDLE |
5597 SD_WAKE_AFFINE |
5598 SD_WAKE_BALANCE))
5599 return 0;
5601 return 1;
5604 static int
5605 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5607 unsigned long cflags = sd->flags, pflags = parent->flags;
5609 if (sd_degenerate(parent))
5610 return 1;
5612 if (!cpus_equal(sd->span, parent->span))
5613 return 0;
5615 /* Does parent contain flags not in child? */
5616 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5617 if (cflags & SD_WAKE_AFFINE)
5618 pflags &= ~SD_WAKE_BALANCE;
5619 /* Flags needing groups don't count if only 1 group in parent */
5620 if (parent->groups == parent->groups->next) {
5621 pflags &= ~(SD_LOAD_BALANCE |
5622 SD_BALANCE_NEWIDLE |
5623 SD_BALANCE_FORK |
5624 SD_BALANCE_EXEC |
5625 SD_SHARE_CPUPOWER |
5626 SD_SHARE_PKG_RESOURCES);
5628 if (~cflags & pflags)
5629 return 0;
5631 return 1;
5635 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5636 * hold the hotplug lock.
5638 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5640 struct rq *rq = cpu_rq(cpu);
5641 struct sched_domain *tmp;
5643 /* Remove the sched domains which do not contribute to scheduling. */
5644 for (tmp = sd; tmp; tmp = tmp->parent) {
5645 struct sched_domain *parent = tmp->parent;
5646 if (!parent)
5647 break;
5648 if (sd_parent_degenerate(tmp, parent)) {
5649 tmp->parent = parent->parent;
5650 if (parent->parent)
5651 parent->parent->child = tmp;
5655 if (sd && sd_degenerate(sd)) {
5656 sd = sd->parent;
5657 if (sd)
5658 sd->child = NULL;
5661 sched_domain_debug(sd, cpu);
5663 rcu_assign_pointer(rq->sd, sd);
5666 /* cpus with isolated domains */
5667 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5669 /* Setup the mask of cpus configured for isolated domains */
5670 static int __init isolated_cpu_setup(char *str)
5672 int ints[NR_CPUS], i;
5674 str = get_options(str, ARRAY_SIZE(ints), ints);
5675 cpus_clear(cpu_isolated_map);
5676 for (i = 1; i <= ints[0]; i++)
5677 if (ints[i] < NR_CPUS)
5678 cpu_set(ints[i], cpu_isolated_map);
5679 return 1;
5682 __setup ("isolcpus=", isolated_cpu_setup);
5685 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5686 * to a function which identifies what group(along with sched group) a CPU
5687 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5688 * (due to the fact that we keep track of groups covered with a cpumask_t).
5690 * init_sched_build_groups will build a circular linked list of the groups
5691 * covered by the given span, and will set each group's ->cpumask correctly,
5692 * and ->cpu_power to 0.
5694 static void
5695 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5696 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5697 struct sched_group **sg))
5699 struct sched_group *first = NULL, *last = NULL;
5700 cpumask_t covered = CPU_MASK_NONE;
5701 int i;
5703 for_each_cpu_mask(i, span) {
5704 struct sched_group *sg;
5705 int group = group_fn(i, cpu_map, &sg);
5706 int j;
5708 if (cpu_isset(i, covered))
5709 continue;
5711 sg->cpumask = CPU_MASK_NONE;
5712 sg->__cpu_power = 0;
5714 for_each_cpu_mask(j, span) {
5715 if (group_fn(j, cpu_map, NULL) != group)
5716 continue;
5718 cpu_set(j, covered);
5719 cpu_set(j, sg->cpumask);
5721 if (!first)
5722 first = sg;
5723 if (last)
5724 last->next = sg;
5725 last = sg;
5727 last->next = first;
5730 #define SD_NODES_PER_DOMAIN 16
5732 #ifdef CONFIG_NUMA
5735 * find_next_best_node - find the next node to include in a sched_domain
5736 * @node: node whose sched_domain we're building
5737 * @used_nodes: nodes already in the sched_domain
5739 * Find the next node to include in a given scheduling domain. Simply
5740 * finds the closest node not already in the @used_nodes map.
5742 * Should use nodemask_t.
5744 static int find_next_best_node(int node, unsigned long *used_nodes)
5746 int i, n, val, min_val, best_node = 0;
5748 min_val = INT_MAX;
5750 for (i = 0; i < MAX_NUMNODES; i++) {
5751 /* Start at @node */
5752 n = (node + i) % MAX_NUMNODES;
5754 if (!nr_cpus_node(n))
5755 continue;
5757 /* Skip already used nodes */
5758 if (test_bit(n, used_nodes))
5759 continue;
5761 /* Simple min distance search */
5762 val = node_distance(node, n);
5764 if (val < min_val) {
5765 min_val = val;
5766 best_node = n;
5770 set_bit(best_node, used_nodes);
5771 return best_node;
5775 * sched_domain_node_span - get a cpumask for a node's sched_domain
5776 * @node: node whose cpumask we're constructing
5777 * @size: number of nodes to include in this span
5779 * Given a node, construct a good cpumask for its sched_domain to span. It
5780 * should be one that prevents unnecessary balancing, but also spreads tasks
5781 * out optimally.
5783 static cpumask_t sched_domain_node_span(int node)
5785 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5786 cpumask_t span, nodemask;
5787 int i;
5789 cpus_clear(span);
5790 bitmap_zero(used_nodes, MAX_NUMNODES);
5792 nodemask = node_to_cpumask(node);
5793 cpus_or(span, span, nodemask);
5794 set_bit(node, used_nodes);
5796 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5797 int next_node = find_next_best_node(node, used_nodes);
5799 nodemask = node_to_cpumask(next_node);
5800 cpus_or(span, span, nodemask);
5803 return span;
5805 #endif
5807 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5810 * SMT sched-domains:
5812 #ifdef CONFIG_SCHED_SMT
5813 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5814 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5816 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5817 struct sched_group **sg)
5819 if (sg)
5820 *sg = &per_cpu(sched_group_cpus, cpu);
5821 return cpu;
5823 #endif
5826 * multi-core sched-domains:
5828 #ifdef CONFIG_SCHED_MC
5829 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5830 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5831 #endif
5833 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5834 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5835 struct sched_group **sg)
5837 int group;
5838 cpumask_t mask = cpu_sibling_map[cpu];
5839 cpus_and(mask, mask, *cpu_map);
5840 group = first_cpu(mask);
5841 if (sg)
5842 *sg = &per_cpu(sched_group_core, group);
5843 return group;
5845 #elif defined(CONFIG_SCHED_MC)
5846 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5847 struct sched_group **sg)
5849 if (sg)
5850 *sg = &per_cpu(sched_group_core, cpu);
5851 return cpu;
5853 #endif
5855 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5856 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5858 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5859 struct sched_group **sg)
5861 int group;
5862 #ifdef CONFIG_SCHED_MC
5863 cpumask_t mask = cpu_coregroup_map(cpu);
5864 cpus_and(mask, mask, *cpu_map);
5865 group = first_cpu(mask);
5866 #elif defined(CONFIG_SCHED_SMT)
5867 cpumask_t mask = cpu_sibling_map[cpu];
5868 cpus_and(mask, mask, *cpu_map);
5869 group = first_cpu(mask);
5870 #else
5871 group = cpu;
5872 #endif
5873 if (sg)
5874 *sg = &per_cpu(sched_group_phys, group);
5875 return group;
5878 #ifdef CONFIG_NUMA
5880 * The init_sched_build_groups can't handle what we want to do with node
5881 * groups, so roll our own. Now each node has its own list of groups which
5882 * gets dynamically allocated.
5884 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5885 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5887 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5888 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5890 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5891 struct sched_group **sg)
5893 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5894 int group;
5896 cpus_and(nodemask, nodemask, *cpu_map);
5897 group = first_cpu(nodemask);
5899 if (sg)
5900 *sg = &per_cpu(sched_group_allnodes, group);
5901 return group;
5904 static void init_numa_sched_groups_power(struct sched_group *group_head)
5906 struct sched_group *sg = group_head;
5907 int j;
5909 if (!sg)
5910 return;
5911 next_sg:
5912 for_each_cpu_mask(j, sg->cpumask) {
5913 struct sched_domain *sd;
5915 sd = &per_cpu(phys_domains, j);
5916 if (j != first_cpu(sd->groups->cpumask)) {
5918 * Only add "power" once for each
5919 * physical package.
5921 continue;
5924 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5926 sg = sg->next;
5927 if (sg != group_head)
5928 goto next_sg;
5930 #endif
5932 #ifdef CONFIG_NUMA
5933 /* Free memory allocated for various sched_group structures */
5934 static void free_sched_groups(const cpumask_t *cpu_map)
5936 int cpu, i;
5938 for_each_cpu_mask(cpu, *cpu_map) {
5939 struct sched_group **sched_group_nodes
5940 = sched_group_nodes_bycpu[cpu];
5942 if (!sched_group_nodes)
5943 continue;
5945 for (i = 0; i < MAX_NUMNODES; i++) {
5946 cpumask_t nodemask = node_to_cpumask(i);
5947 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5949 cpus_and(nodemask, nodemask, *cpu_map);
5950 if (cpus_empty(nodemask))
5951 continue;
5953 if (sg == NULL)
5954 continue;
5955 sg = sg->next;
5956 next_sg:
5957 oldsg = sg;
5958 sg = sg->next;
5959 kfree(oldsg);
5960 if (oldsg != sched_group_nodes[i])
5961 goto next_sg;
5963 kfree(sched_group_nodes);
5964 sched_group_nodes_bycpu[cpu] = NULL;
5967 #else
5968 static void free_sched_groups(const cpumask_t *cpu_map)
5971 #endif
5974 * Initialize sched groups cpu_power.
5976 * cpu_power indicates the capacity of sched group, which is used while
5977 * distributing the load between different sched groups in a sched domain.
5978 * Typically cpu_power for all the groups in a sched domain will be same unless
5979 * there are asymmetries in the topology. If there are asymmetries, group
5980 * having more cpu_power will pickup more load compared to the group having
5981 * less cpu_power.
5983 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5984 * the maximum number of tasks a group can handle in the presence of other idle
5985 * or lightly loaded groups in the same sched domain.
5987 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5989 struct sched_domain *child;
5990 struct sched_group *group;
5992 WARN_ON(!sd || !sd->groups);
5994 if (cpu != first_cpu(sd->groups->cpumask))
5995 return;
5997 child = sd->child;
5999 sd->groups->__cpu_power = 0;
6002 * For perf policy, if the groups in child domain share resources
6003 * (for example cores sharing some portions of the cache hierarchy
6004 * or SMT), then set this domain groups cpu_power such that each group
6005 * can handle only one task, when there are other idle groups in the
6006 * same sched domain.
6008 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6009 (child->flags &
6010 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6011 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6012 return;
6016 * add cpu_power of each child group to this groups cpu_power
6018 group = child->groups;
6019 do {
6020 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6021 group = group->next;
6022 } while (group != child->groups);
6026 * Build sched domains for a given set of cpus and attach the sched domains
6027 * to the individual cpus
6029 static int build_sched_domains(const cpumask_t *cpu_map)
6031 int i;
6032 #ifdef CONFIG_NUMA
6033 struct sched_group **sched_group_nodes = NULL;
6034 int sd_allnodes = 0;
6037 * Allocate the per-node list of sched groups
6039 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6040 GFP_KERNEL);
6041 if (!sched_group_nodes) {
6042 printk(KERN_WARNING "Can not alloc sched group node list\n");
6043 return -ENOMEM;
6045 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6046 #endif
6049 * Set up domains for cpus specified by the cpu_map.
6051 for_each_cpu_mask(i, *cpu_map) {
6052 struct sched_domain *sd = NULL, *p;
6053 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6055 cpus_and(nodemask, nodemask, *cpu_map);
6057 #ifdef CONFIG_NUMA
6058 if (cpus_weight(*cpu_map) >
6059 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6060 sd = &per_cpu(allnodes_domains, i);
6061 *sd = SD_ALLNODES_INIT;
6062 sd->span = *cpu_map;
6063 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6064 p = sd;
6065 sd_allnodes = 1;
6066 } else
6067 p = NULL;
6069 sd = &per_cpu(node_domains, i);
6070 *sd = SD_NODE_INIT;
6071 sd->span = sched_domain_node_span(cpu_to_node(i));
6072 sd->parent = p;
6073 if (p)
6074 p->child = sd;
6075 cpus_and(sd->span, sd->span, *cpu_map);
6076 #endif
6078 p = sd;
6079 sd = &per_cpu(phys_domains, i);
6080 *sd = SD_CPU_INIT;
6081 sd->span = nodemask;
6082 sd->parent = p;
6083 if (p)
6084 p->child = sd;
6085 cpu_to_phys_group(i, cpu_map, &sd->groups);
6087 #ifdef CONFIG_SCHED_MC
6088 p = sd;
6089 sd = &per_cpu(core_domains, i);
6090 *sd = SD_MC_INIT;
6091 sd->span = cpu_coregroup_map(i);
6092 cpus_and(sd->span, sd->span, *cpu_map);
6093 sd->parent = p;
6094 p->child = sd;
6095 cpu_to_core_group(i, cpu_map, &sd->groups);
6096 #endif
6098 #ifdef CONFIG_SCHED_SMT
6099 p = sd;
6100 sd = &per_cpu(cpu_domains, i);
6101 *sd = SD_SIBLING_INIT;
6102 sd->span = cpu_sibling_map[i];
6103 cpus_and(sd->span, sd->span, *cpu_map);
6104 sd->parent = p;
6105 p->child = sd;
6106 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6107 #endif
6110 #ifdef CONFIG_SCHED_SMT
6111 /* Set up CPU (sibling) groups */
6112 for_each_cpu_mask(i, *cpu_map) {
6113 cpumask_t this_sibling_map = cpu_sibling_map[i];
6114 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6115 if (i != first_cpu(this_sibling_map))
6116 continue;
6118 init_sched_build_groups(this_sibling_map, cpu_map,
6119 &cpu_to_cpu_group);
6121 #endif
6123 #ifdef CONFIG_SCHED_MC
6124 /* Set up multi-core groups */
6125 for_each_cpu_mask(i, *cpu_map) {
6126 cpumask_t this_core_map = cpu_coregroup_map(i);
6127 cpus_and(this_core_map, this_core_map, *cpu_map);
6128 if (i != first_cpu(this_core_map))
6129 continue;
6130 init_sched_build_groups(this_core_map, cpu_map,
6131 &cpu_to_core_group);
6133 #endif
6135 /* Set up physical groups */
6136 for (i = 0; i < MAX_NUMNODES; i++) {
6137 cpumask_t nodemask = node_to_cpumask(i);
6139 cpus_and(nodemask, nodemask, *cpu_map);
6140 if (cpus_empty(nodemask))
6141 continue;
6143 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6146 #ifdef CONFIG_NUMA
6147 /* Set up node groups */
6148 if (sd_allnodes)
6149 init_sched_build_groups(*cpu_map, cpu_map,
6150 &cpu_to_allnodes_group);
6152 for (i = 0; i < MAX_NUMNODES; i++) {
6153 /* Set up node groups */
6154 struct sched_group *sg, *prev;
6155 cpumask_t nodemask = node_to_cpumask(i);
6156 cpumask_t domainspan;
6157 cpumask_t covered = CPU_MASK_NONE;
6158 int j;
6160 cpus_and(nodemask, nodemask, *cpu_map);
6161 if (cpus_empty(nodemask)) {
6162 sched_group_nodes[i] = NULL;
6163 continue;
6166 domainspan = sched_domain_node_span(i);
6167 cpus_and(domainspan, domainspan, *cpu_map);
6169 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6170 if (!sg) {
6171 printk(KERN_WARNING "Can not alloc domain group for "
6172 "node %d\n", i);
6173 goto error;
6175 sched_group_nodes[i] = sg;
6176 for_each_cpu_mask(j, nodemask) {
6177 struct sched_domain *sd;
6179 sd = &per_cpu(node_domains, j);
6180 sd->groups = sg;
6182 sg->__cpu_power = 0;
6183 sg->cpumask = nodemask;
6184 sg->next = sg;
6185 cpus_or(covered, covered, nodemask);
6186 prev = sg;
6188 for (j = 0; j < MAX_NUMNODES; j++) {
6189 cpumask_t tmp, notcovered;
6190 int n = (i + j) % MAX_NUMNODES;
6192 cpus_complement(notcovered, covered);
6193 cpus_and(tmp, notcovered, *cpu_map);
6194 cpus_and(tmp, tmp, domainspan);
6195 if (cpus_empty(tmp))
6196 break;
6198 nodemask = node_to_cpumask(n);
6199 cpus_and(tmp, tmp, nodemask);
6200 if (cpus_empty(tmp))
6201 continue;
6203 sg = kmalloc_node(sizeof(struct sched_group),
6204 GFP_KERNEL, i);
6205 if (!sg) {
6206 printk(KERN_WARNING
6207 "Can not alloc domain group for node %d\n", j);
6208 goto error;
6210 sg->__cpu_power = 0;
6211 sg->cpumask = tmp;
6212 sg->next = prev->next;
6213 cpus_or(covered, covered, tmp);
6214 prev->next = sg;
6215 prev = sg;
6218 #endif
6220 /* Calculate CPU power for physical packages and nodes */
6221 #ifdef CONFIG_SCHED_SMT
6222 for_each_cpu_mask(i, *cpu_map) {
6223 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6225 init_sched_groups_power(i, sd);
6227 #endif
6228 #ifdef CONFIG_SCHED_MC
6229 for_each_cpu_mask(i, *cpu_map) {
6230 struct sched_domain *sd = &per_cpu(core_domains, i);
6232 init_sched_groups_power(i, sd);
6234 #endif
6236 for_each_cpu_mask(i, *cpu_map) {
6237 struct sched_domain *sd = &per_cpu(phys_domains, i);
6239 init_sched_groups_power(i, sd);
6242 #ifdef CONFIG_NUMA
6243 for (i = 0; i < MAX_NUMNODES; i++)
6244 init_numa_sched_groups_power(sched_group_nodes[i]);
6246 if (sd_allnodes) {
6247 struct sched_group *sg;
6249 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6250 init_numa_sched_groups_power(sg);
6252 #endif
6254 /* Attach the domains */
6255 for_each_cpu_mask(i, *cpu_map) {
6256 struct sched_domain *sd;
6257 #ifdef CONFIG_SCHED_SMT
6258 sd = &per_cpu(cpu_domains, i);
6259 #elif defined(CONFIG_SCHED_MC)
6260 sd = &per_cpu(core_domains, i);
6261 #else
6262 sd = &per_cpu(phys_domains, i);
6263 #endif
6264 cpu_attach_domain(sd, i);
6267 return 0;
6269 #ifdef CONFIG_NUMA
6270 error:
6271 free_sched_groups(cpu_map);
6272 return -ENOMEM;
6273 #endif
6276 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6278 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6280 cpumask_t cpu_default_map;
6281 int err;
6284 * Setup mask for cpus without special case scheduling requirements.
6285 * For now this just excludes isolated cpus, but could be used to
6286 * exclude other special cases in the future.
6288 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6290 err = build_sched_domains(&cpu_default_map);
6292 return err;
6295 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6297 free_sched_groups(cpu_map);
6301 * Detach sched domains from a group of cpus specified in cpu_map
6302 * These cpus will now be attached to the NULL domain
6304 static void detach_destroy_domains(const cpumask_t *cpu_map)
6306 int i;
6308 for_each_cpu_mask(i, *cpu_map)
6309 cpu_attach_domain(NULL, i);
6310 synchronize_sched();
6311 arch_destroy_sched_domains(cpu_map);
6315 * Partition sched domains as specified by the cpumasks below.
6316 * This attaches all cpus from the cpumasks to the NULL domain,
6317 * waits for a RCU quiescent period, recalculates sched
6318 * domain information and then attaches them back to the
6319 * correct sched domains
6320 * Call with hotplug lock held
6322 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6324 cpumask_t change_map;
6325 int err = 0;
6327 cpus_and(*partition1, *partition1, cpu_online_map);
6328 cpus_and(*partition2, *partition2, cpu_online_map);
6329 cpus_or(change_map, *partition1, *partition2);
6331 /* Detach sched domains from all of the affected cpus */
6332 detach_destroy_domains(&change_map);
6333 if (!cpus_empty(*partition1))
6334 err = build_sched_domains(partition1);
6335 if (!err && !cpus_empty(*partition2))
6336 err = build_sched_domains(partition2);
6338 return err;
6341 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6342 int arch_reinit_sched_domains(void)
6344 int err;
6346 mutex_lock(&sched_hotcpu_mutex);
6347 detach_destroy_domains(&cpu_online_map);
6348 err = arch_init_sched_domains(&cpu_online_map);
6349 mutex_unlock(&sched_hotcpu_mutex);
6351 return err;
6354 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6356 int ret;
6358 if (buf[0] != '0' && buf[0] != '1')
6359 return -EINVAL;
6361 if (smt)
6362 sched_smt_power_savings = (buf[0] == '1');
6363 else
6364 sched_mc_power_savings = (buf[0] == '1');
6366 ret = arch_reinit_sched_domains();
6368 return ret ? ret : count;
6371 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6373 int err = 0;
6375 #ifdef CONFIG_SCHED_SMT
6376 if (smt_capable())
6377 err = sysfs_create_file(&cls->kset.kobj,
6378 &attr_sched_smt_power_savings.attr);
6379 #endif
6380 #ifdef CONFIG_SCHED_MC
6381 if (!err && mc_capable())
6382 err = sysfs_create_file(&cls->kset.kobj,
6383 &attr_sched_mc_power_savings.attr);
6384 #endif
6385 return err;
6387 #endif
6389 #ifdef CONFIG_SCHED_MC
6390 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6392 return sprintf(page, "%u\n", sched_mc_power_savings);
6394 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6395 const char *buf, size_t count)
6397 return sched_power_savings_store(buf, count, 0);
6399 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6400 sched_mc_power_savings_store);
6401 #endif
6403 #ifdef CONFIG_SCHED_SMT
6404 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6406 return sprintf(page, "%u\n", sched_smt_power_savings);
6408 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6409 const char *buf, size_t count)
6411 return sched_power_savings_store(buf, count, 1);
6413 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6414 sched_smt_power_savings_store);
6415 #endif
6418 * Force a reinitialization of the sched domains hierarchy. The domains
6419 * and groups cannot be updated in place without racing with the balancing
6420 * code, so we temporarily attach all running cpus to the NULL domain
6421 * which will prevent rebalancing while the sched domains are recalculated.
6423 static int update_sched_domains(struct notifier_block *nfb,
6424 unsigned long action, void *hcpu)
6426 switch (action) {
6427 case CPU_UP_PREPARE:
6428 case CPU_UP_PREPARE_FROZEN:
6429 case CPU_DOWN_PREPARE:
6430 case CPU_DOWN_PREPARE_FROZEN:
6431 detach_destroy_domains(&cpu_online_map);
6432 return NOTIFY_OK;
6434 case CPU_UP_CANCELED:
6435 case CPU_UP_CANCELED_FROZEN:
6436 case CPU_DOWN_FAILED:
6437 case CPU_DOWN_FAILED_FROZEN:
6438 case CPU_ONLINE:
6439 case CPU_ONLINE_FROZEN:
6440 case CPU_DEAD:
6441 case CPU_DEAD_FROZEN:
6443 * Fall through and re-initialise the domains.
6445 break;
6446 default:
6447 return NOTIFY_DONE;
6450 /* The hotplug lock is already held by cpu_up/cpu_down */
6451 arch_init_sched_domains(&cpu_online_map);
6453 return NOTIFY_OK;
6456 void __init sched_init_smp(void)
6458 cpumask_t non_isolated_cpus;
6460 mutex_lock(&sched_hotcpu_mutex);
6461 arch_init_sched_domains(&cpu_online_map);
6462 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6463 if (cpus_empty(non_isolated_cpus))
6464 cpu_set(smp_processor_id(), non_isolated_cpus);
6465 mutex_unlock(&sched_hotcpu_mutex);
6466 /* XXX: Theoretical race here - CPU may be hotplugged now */
6467 hotcpu_notifier(update_sched_domains, 0);
6469 init_sched_domain_sysctl();
6471 /* Move init over to a non-isolated CPU */
6472 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6473 BUG();
6474 sched_init_granularity();
6476 #else
6477 void __init sched_init_smp(void)
6479 sched_init_granularity();
6481 #endif /* CONFIG_SMP */
6483 int in_sched_functions(unsigned long addr)
6485 /* Linker adds these: start and end of __sched functions */
6486 extern char __sched_text_start[], __sched_text_end[];
6488 return in_lock_functions(addr) ||
6489 (addr >= (unsigned long)__sched_text_start
6490 && addr < (unsigned long)__sched_text_end);
6493 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6495 cfs_rq->tasks_timeline = RB_ROOT;
6496 cfs_rq->fair_clock = 1;
6497 #ifdef CONFIG_FAIR_GROUP_SCHED
6498 cfs_rq->rq = rq;
6499 #endif
6502 void __init sched_init(void)
6504 u64 now = sched_clock();
6505 int highest_cpu = 0;
6506 int i, j;
6509 * Link up the scheduling class hierarchy:
6511 rt_sched_class.next = &fair_sched_class;
6512 fair_sched_class.next = &idle_sched_class;
6513 idle_sched_class.next = NULL;
6515 for_each_possible_cpu(i) {
6516 struct rt_prio_array *array;
6517 struct rq *rq;
6519 rq = cpu_rq(i);
6520 spin_lock_init(&rq->lock);
6521 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6522 rq->nr_running = 0;
6523 rq->clock = 1;
6524 init_cfs_rq(&rq->cfs, rq);
6525 #ifdef CONFIG_FAIR_GROUP_SCHED
6526 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6527 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6528 #endif
6529 rq->ls.load_update_last = now;
6530 rq->ls.load_update_start = now;
6532 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6533 rq->cpu_load[j] = 0;
6534 #ifdef CONFIG_SMP
6535 rq->sd = NULL;
6536 rq->active_balance = 0;
6537 rq->next_balance = jiffies;
6538 rq->push_cpu = 0;
6539 rq->cpu = i;
6540 rq->migration_thread = NULL;
6541 INIT_LIST_HEAD(&rq->migration_queue);
6542 #endif
6543 atomic_set(&rq->nr_iowait, 0);
6545 array = &rq->rt.active;
6546 for (j = 0; j < MAX_RT_PRIO; j++) {
6547 INIT_LIST_HEAD(array->queue + j);
6548 __clear_bit(j, array->bitmap);
6550 highest_cpu = i;
6551 /* delimiter for bitsearch: */
6552 __set_bit(MAX_RT_PRIO, array->bitmap);
6555 set_load_weight(&init_task);
6557 #ifdef CONFIG_PREEMPT_NOTIFIERS
6558 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6559 #endif
6561 #ifdef CONFIG_SMP
6562 nr_cpu_ids = highest_cpu + 1;
6563 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6564 #endif
6566 #ifdef CONFIG_RT_MUTEXES
6567 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6568 #endif
6571 * The boot idle thread does lazy MMU switching as well:
6573 atomic_inc(&init_mm.mm_count);
6574 enter_lazy_tlb(&init_mm, current);
6577 * Make us the idle thread. Technically, schedule() should not be
6578 * called from this thread, however somewhere below it might be,
6579 * but because we are the idle thread, we just pick up running again
6580 * when this runqueue becomes "idle".
6582 init_idle(current, smp_processor_id());
6584 * During early bootup we pretend to be a normal task:
6586 current->sched_class = &fair_sched_class;
6589 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6590 void __might_sleep(char *file, int line)
6592 #ifdef in_atomic
6593 static unsigned long prev_jiffy; /* ratelimiting */
6595 if ((in_atomic() || irqs_disabled()) &&
6596 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6597 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6598 return;
6599 prev_jiffy = jiffies;
6600 printk(KERN_ERR "BUG: sleeping function called from invalid"
6601 " context at %s:%d\n", file, line);
6602 printk("in_atomic():%d, irqs_disabled():%d\n",
6603 in_atomic(), irqs_disabled());
6604 debug_show_held_locks(current);
6605 if (irqs_disabled())
6606 print_irqtrace_events(current);
6607 dump_stack();
6609 #endif
6611 EXPORT_SYMBOL(__might_sleep);
6612 #endif
6614 #ifdef CONFIG_MAGIC_SYSRQ
6615 void normalize_rt_tasks(void)
6617 struct task_struct *g, *p;
6618 unsigned long flags;
6619 struct rq *rq;
6620 int on_rq;
6622 read_lock_irq(&tasklist_lock);
6623 do_each_thread(g, p) {
6624 p->se.fair_key = 0;
6625 p->se.wait_runtime = 0;
6626 p->se.exec_start = 0;
6627 p->se.wait_start_fair = 0;
6628 p->se.sleep_start_fair = 0;
6629 #ifdef CONFIG_SCHEDSTATS
6630 p->se.wait_start = 0;
6631 p->se.sleep_start = 0;
6632 p->se.block_start = 0;
6633 #endif
6634 task_rq(p)->cfs.fair_clock = 0;
6635 task_rq(p)->clock = 0;
6637 if (!rt_task(p)) {
6639 * Renice negative nice level userspace
6640 * tasks back to 0:
6642 if (TASK_NICE(p) < 0 && p->mm)
6643 set_user_nice(p, 0);
6644 continue;
6647 spin_lock_irqsave(&p->pi_lock, flags);
6648 rq = __task_rq_lock(p);
6649 #ifdef CONFIG_SMP
6651 * Do not touch the migration thread:
6653 if (p == rq->migration_thread)
6654 goto out_unlock;
6655 #endif
6657 on_rq = p->se.on_rq;
6658 if (on_rq) {
6659 update_rq_clock(task_rq(p));
6660 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6662 __setscheduler(rq, p, SCHED_NORMAL, 0);
6663 if (on_rq) {
6664 activate_task(task_rq(p), p, 0);
6665 resched_task(rq->curr);
6667 #ifdef CONFIG_SMP
6668 out_unlock:
6669 #endif
6670 __task_rq_unlock(rq);
6671 spin_unlock_irqrestore(&p->pi_lock, flags);
6672 } while_each_thread(g, p);
6674 read_unlock_irq(&tasklist_lock);
6677 #endif /* CONFIG_MAGIC_SYSRQ */
6679 #ifdef CONFIG_IA64
6681 * These functions are only useful for the IA64 MCA handling.
6683 * They can only be called when the whole system has been
6684 * stopped - every CPU needs to be quiescent, and no scheduling
6685 * activity can take place. Using them for anything else would
6686 * be a serious bug, and as a result, they aren't even visible
6687 * under any other configuration.
6691 * curr_task - return the current task for a given cpu.
6692 * @cpu: the processor in question.
6694 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6696 struct task_struct *curr_task(int cpu)
6698 return cpu_curr(cpu);
6702 * set_curr_task - set the current task for a given cpu.
6703 * @cpu: the processor in question.
6704 * @p: the task pointer to set.
6706 * Description: This function must only be used when non-maskable interrupts
6707 * are serviced on a separate stack. It allows the architecture to switch the
6708 * notion of the current task on a cpu in a non-blocking manner. This function
6709 * must be called with all CPU's synchronized, and interrupts disabled, the
6710 * and caller must save the original value of the current task (see
6711 * curr_task() above) and restore that value before reenabling interrupts and
6712 * re-starting the system.
6714 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6716 void set_curr_task(int cpu, struct task_struct *p)
6718 cpu_curr(cpu) = p;
6721 #endif