sched: fix bug in balance_tasks()
[usb.git] / kernel / sched_rt.c
blob5b559e8c8aa6559a40c276dd268a5dcd35975b15
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
6 /*
7 * Update the current task's runtime statistics. Skip current tasks that
8 * are not in our scheduling class.
9 */
10 static inline void update_curr_rt(struct rq *rq, u64 now)
12 struct task_struct *curr = rq->curr;
13 u64 delta_exec;
15 if (!task_has_rt_policy(curr))
16 return;
18 delta_exec = now - curr->se.exec_start;
19 if (unlikely((s64)delta_exec < 0))
20 delta_exec = 0;
22 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
24 curr->se.sum_exec_runtime += delta_exec;
25 curr->se.exec_start = now;
28 static void
29 enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
31 struct rt_prio_array *array = &rq->rt.active;
33 list_add_tail(&p->run_list, array->queue + p->prio);
34 __set_bit(p->prio, array->bitmap);
38 * Adding/removing a task to/from a priority array:
40 static void
41 dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep, u64 now)
43 struct rt_prio_array *array = &rq->rt.active;
45 update_curr_rt(rq, now);
47 list_del(&p->run_list);
48 if (list_empty(array->queue + p->prio))
49 __clear_bit(p->prio, array->bitmap);
53 * Put task to the end of the run list without the overhead of dequeue
54 * followed by enqueue.
56 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
58 struct rt_prio_array *array = &rq->rt.active;
60 list_move_tail(&p->run_list, array->queue + p->prio);
63 static void
64 yield_task_rt(struct rq *rq, struct task_struct *p)
66 requeue_task_rt(rq, p);
70 * Preempt the current task with a newly woken task if needed:
72 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
74 if (p->prio < rq->curr->prio)
75 resched_task(rq->curr);
78 static struct task_struct *pick_next_task_rt(struct rq *rq, u64 now)
80 struct rt_prio_array *array = &rq->rt.active;
81 struct task_struct *next;
82 struct list_head *queue;
83 int idx;
85 idx = sched_find_first_bit(array->bitmap);
86 if (idx >= MAX_RT_PRIO)
87 return NULL;
89 queue = array->queue + idx;
90 next = list_entry(queue->next, struct task_struct, run_list);
92 next->se.exec_start = now;
94 return next;
97 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, u64 now)
99 update_curr_rt(rq, now);
100 p->se.exec_start = 0;
104 * Load-balancing iterator. Note: while the runqueue stays locked
105 * during the whole iteration, the current task might be
106 * dequeued so the iterator has to be dequeue-safe. Here we
107 * achieve that by always pre-iterating before returning
108 * the current task:
110 static struct task_struct *load_balance_start_rt(void *arg)
112 struct rq *rq = arg;
113 struct rt_prio_array *array = &rq->rt.active;
114 struct list_head *head, *curr;
115 struct task_struct *p;
116 int idx;
118 idx = sched_find_first_bit(array->bitmap);
119 if (idx >= MAX_RT_PRIO)
120 return NULL;
122 head = array->queue + idx;
123 curr = head->prev;
125 p = list_entry(curr, struct task_struct, run_list);
127 curr = curr->prev;
129 rq->rt.rt_load_balance_idx = idx;
130 rq->rt.rt_load_balance_head = head;
131 rq->rt.rt_load_balance_curr = curr;
133 return p;
136 static struct task_struct *load_balance_next_rt(void *arg)
138 struct rq *rq = arg;
139 struct rt_prio_array *array = &rq->rt.active;
140 struct list_head *head, *curr;
141 struct task_struct *p;
142 int idx;
144 idx = rq->rt.rt_load_balance_idx;
145 head = rq->rt.rt_load_balance_head;
146 curr = rq->rt.rt_load_balance_curr;
149 * If we arrived back to the head again then
150 * iterate to the next queue (if any):
152 if (unlikely(head == curr)) {
153 int next_idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
155 if (next_idx >= MAX_RT_PRIO)
156 return NULL;
158 idx = next_idx;
159 head = array->queue + idx;
160 curr = head->prev;
162 rq->rt.rt_load_balance_idx = idx;
163 rq->rt.rt_load_balance_head = head;
166 p = list_entry(curr, struct task_struct, run_list);
168 curr = curr->prev;
170 rq->rt.rt_load_balance_curr = curr;
172 return p;
175 static unsigned long
176 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
177 unsigned long max_nr_move, unsigned long max_load_move,
178 struct sched_domain *sd, enum cpu_idle_type idle,
179 int *all_pinned, int *this_best_prio)
181 int nr_moved;
182 struct rq_iterator rt_rq_iterator;
183 unsigned long load_moved;
185 rt_rq_iterator.start = load_balance_start_rt;
186 rt_rq_iterator.next = load_balance_next_rt;
187 /* pass 'busiest' rq argument into
188 * load_balance_[start|next]_rt iterators
190 rt_rq_iterator.arg = busiest;
192 nr_moved = balance_tasks(this_rq, this_cpu, busiest, max_nr_move,
193 max_load_move, sd, idle, all_pinned, &load_moved,
194 this_best_prio, &rt_rq_iterator);
196 return load_moved;
199 static void task_tick_rt(struct rq *rq, struct task_struct *p)
202 * RR tasks need a special form of timeslice management.
203 * FIFO tasks have no timeslices.
205 if (p->policy != SCHED_RR)
206 return;
208 if (--p->time_slice)
209 return;
211 p->time_slice = static_prio_timeslice(p->static_prio);
212 set_tsk_need_resched(p);
214 /* put it at the end of the queue: */
215 requeue_task_rt(rq, p);
218 static struct sched_class rt_sched_class __read_mostly = {
219 .enqueue_task = enqueue_task_rt,
220 .dequeue_task = dequeue_task_rt,
221 .yield_task = yield_task_rt,
223 .check_preempt_curr = check_preempt_curr_rt,
225 .pick_next_task = pick_next_task_rt,
226 .put_prev_task = put_prev_task_rt,
228 .load_balance = load_balance_rt,
230 .task_tick = task_tick_rt,