sched: fix bug in balance_tasks()
[usb.git] / kernel / sched.c
blob1fa07c14624ee9c04e195b907f0f3de29afa7973
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Per-runqueue clock, as finegrained as the platform can give us:
323 static unsigned long long __rq_clock(struct rq *rq)
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
331 * Protect against sched_clock() occasionally going backwards:
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
338 * Catch too large forward jumps too:
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
353 return clock;
356 static unsigned long long rq_clock(struct rq *rq)
358 int this_cpu = smp_processor_id();
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
363 return rq->clock;
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
385 unsigned long long cpu_clock(int cpu)
387 unsigned long long now;
388 unsigned long flags;
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
394 return now;
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct *p)
401 p->se.cfs_rq = &task_rq(p)->cfs;
403 #else
404 static inline void set_task_cfs_rq(struct task_struct *p)
407 #endif
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
411 #endif
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
414 #endif
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq *rq, struct task_struct *p)
419 return rq->curr == p;
422 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
426 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431 #endif
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439 spin_unlock_irq(&rq->lock);
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq *rq, struct task_struct *p)
445 #ifdef CONFIG_SMP
446 return p->oncpu;
447 #else
448 return rq->curr == p;
449 #endif
452 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 #ifdef CONFIG_SMP
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
460 next->oncpu = 1;
461 #endif
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464 #else
465 spin_unlock(&rq->lock);
466 #endif
469 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 #ifdef CONFIG_SMP
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
477 smp_wmb();
478 prev->oncpu = 0;
479 #endif
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
482 #endif
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
490 static inline struct rq *__task_rq_lock(struct task_struct *p)
491 __acquires(rq->lock)
493 struct rq *rq;
495 repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
502 return rq;
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
510 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
511 __acquires(rq->lock)
513 struct rq *rq;
515 repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
523 return rq;
526 static inline void __task_rq_unlock(struct rq *rq)
527 __releases(rq->lock)
529 spin_unlock(&rq->lock);
532 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
533 __releases(rq->lock)
535 spin_unlock_irqrestore(&rq->lock, *flags);
539 * this_rq_lock - lock this runqueue and disable interrupts.
541 static inline struct rq *this_rq_lock(void)
542 __acquires(rq->lock)
544 struct rq *rq;
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
550 return rq;
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 void sched_clock_unstable_event(void)
558 unsigned long flags;
559 struct rq *rq;
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
568 * resched_task - mark a task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
574 #ifdef CONFIG_SMP
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578 #endif
580 static void resched_task(struct task_struct *p)
582 int cpu;
584 assert_spin_locked(&task_rq(p)->lock);
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
601 static void resched_cpu(int cpu)
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
611 #else
612 static inline void resched_task(struct task_struct *p)
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
617 #endif
619 static u64 div64_likely32(u64 divident, unsigned long divisor)
621 #if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
626 return divident;
627 #else
628 return divident / divisor;
629 #endif
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
634 #else
635 # define WMULT_CONST (1UL << 32)
636 #endif
638 #define WMULT_SHIFT 32
640 static unsigned long
641 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
644 u64 tmp;
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
649 tmp = (u64)delta_exec * weight;
651 * Check whether we'd overflow the 64-bit multiplication:
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
669 static void update_load_add(struct load_weight *lw, unsigned long inc)
671 lw->weight += inc;
672 lw->inv_weight = 0;
675 static void update_load_sub(struct load_weight *lw, unsigned long dec)
677 lw->weight -= dec;
678 lw->inv_weight = 0;
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
687 * slice expiry etc.
690 #define WEIGHT_IDLEPRIO 2
691 #define WMULT_IDLEPRIO (1 << 31)
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
705 static const int prio_to_weight[40] = {
706 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708 /* 0 */ NICE_0_LOAD /* 1024 */,
709 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
720 static const u32 prio_to_wmult[40] = {
721 /* -20 */ 48356, 60446, 75558, 94446, 118058,
722 /* -15 */ 147573, 184467, 230589, 288233, 360285,
723 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
724 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
731 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
738 struct rq_iterator {
739 void *arg;
740 struct task_struct *(*start)(void *);
741 struct task_struct *(*next)(void *);
744 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
745 unsigned long max_nr_move, unsigned long max_load_move,
746 struct sched_domain *sd, enum cpu_idle_type idle,
747 int *all_pinned, unsigned long *load_moved,
748 int *this_best_prio, struct rq_iterator *iterator);
750 #include "sched_stats.h"
751 #include "sched_rt.c"
752 #include "sched_fair.c"
753 #include "sched_idletask.c"
754 #ifdef CONFIG_SCHED_DEBUG
755 # include "sched_debug.c"
756 #endif
758 #define sched_class_highest (&rt_sched_class)
760 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762 if (rq->curr != rq->idle && ls->load.weight) {
763 ls->delta_exec += ls->delta_stat;
764 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
765 ls->delta_stat = 0;
770 * Update delta_exec, delta_fair fields for rq.
772 * delta_fair clock advances at a rate inversely proportional to
773 * total load (rq->ls.load.weight) on the runqueue, while
774 * delta_exec advances at the same rate as wall-clock (provided
775 * cpu is not idle).
777 * delta_exec / delta_fair is a measure of the (smoothened) load on this
778 * runqueue over any given interval. This (smoothened) load is used
779 * during load balance.
781 * This function is called /before/ updating rq->ls.load
782 * and when switching tasks.
784 static void update_curr_load(struct rq *rq, u64 now)
786 struct load_stat *ls = &rq->ls;
787 u64 start;
789 start = ls->load_update_start;
790 ls->load_update_start = now;
791 ls->delta_stat += now - start;
793 * Stagger updates to ls->delta_fair. Very frequent updates
794 * can be expensive.
796 if (ls->delta_stat >= sysctl_sched_stat_granularity)
797 __update_curr_load(rq, ls);
800 static inline void
801 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
803 update_curr_load(rq, now);
804 update_load_add(&rq->ls.load, p->se.load.weight);
807 static inline void
808 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
810 update_curr_load(rq, now);
811 update_load_sub(&rq->ls.load, p->se.load.weight);
814 static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
816 rq->nr_running++;
817 inc_load(rq, p, now);
820 static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
822 rq->nr_running--;
823 dec_load(rq, p, now);
826 static void set_load_weight(struct task_struct *p)
828 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
829 p->se.wait_runtime = 0;
831 if (task_has_rt_policy(p)) {
832 p->se.load.weight = prio_to_weight[0] * 2;
833 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
834 return;
838 * SCHED_IDLE tasks get minimal weight:
840 if (p->policy == SCHED_IDLE) {
841 p->se.load.weight = WEIGHT_IDLEPRIO;
842 p->se.load.inv_weight = WMULT_IDLEPRIO;
843 return;
846 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
847 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
850 static void
851 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
853 sched_info_queued(p);
854 p->sched_class->enqueue_task(rq, p, wakeup, now);
855 p->se.on_rq = 1;
858 static void
859 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
861 p->sched_class->dequeue_task(rq, p, sleep, now);
862 p->se.on_rq = 0;
866 * __normal_prio - return the priority that is based on the static prio
868 static inline int __normal_prio(struct task_struct *p)
870 return p->static_prio;
874 * Calculate the expected normal priority: i.e. priority
875 * without taking RT-inheritance into account. Might be
876 * boosted by interactivity modifiers. Changes upon fork,
877 * setprio syscalls, and whenever the interactivity
878 * estimator recalculates.
880 static inline int normal_prio(struct task_struct *p)
882 int prio;
884 if (task_has_rt_policy(p))
885 prio = MAX_RT_PRIO-1 - p->rt_priority;
886 else
887 prio = __normal_prio(p);
888 return prio;
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
898 static int effective_prio(struct task_struct *p)
900 p->normal_prio = normal_prio(p);
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
906 if (!rt_prio(p->prio))
907 return p->normal_prio;
908 return p->prio;
912 * activate_task - move a task to the runqueue.
914 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
916 u64 now = rq_clock(rq);
918 if (p->state == TASK_UNINTERRUPTIBLE)
919 rq->nr_uninterruptible--;
921 enqueue_task(rq, p, wakeup, now);
922 inc_nr_running(p, rq, now);
926 * activate_idle_task - move idle task to the _front_ of runqueue.
928 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
930 u64 now = rq_clock(rq);
932 if (p->state == TASK_UNINTERRUPTIBLE)
933 rq->nr_uninterruptible--;
935 enqueue_task(rq, p, 0, now);
936 inc_nr_running(p, rq, now);
940 * deactivate_task - remove a task from the runqueue.
942 static void
943 deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
945 if (p->state == TASK_UNINTERRUPTIBLE)
946 rq->nr_uninterruptible++;
948 dequeue_task(rq, p, sleep, now);
949 dec_nr_running(p, rq, now);
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
956 inline int task_curr(const struct task_struct *p)
958 return cpu_curr(task_cpu(p)) == p;
961 /* Used instead of source_load when we know the type == 0 */
962 unsigned long weighted_cpuload(const int cpu)
964 return cpu_rq(cpu)->ls.load.weight;
967 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
969 #ifdef CONFIG_SMP
970 task_thread_info(p)->cpu = cpu;
971 set_task_cfs_rq(p);
972 #endif
975 #ifdef CONFIG_SMP
977 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 int old_cpu = task_cpu(p);
980 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
981 u64 clock_offset, fair_clock_offset;
983 clock_offset = old_rq->clock - new_rq->clock;
984 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
986 if (p->se.wait_start_fair)
987 p->se.wait_start_fair -= fair_clock_offset;
988 if (p->se.sleep_start_fair)
989 p->se.sleep_start_fair -= fair_clock_offset;
991 #ifdef CONFIG_SCHEDSTATS
992 if (p->se.wait_start)
993 p->se.wait_start -= clock_offset;
994 if (p->se.sleep_start)
995 p->se.sleep_start -= clock_offset;
996 if (p->se.block_start)
997 p->se.block_start -= clock_offset;
998 #endif
1000 __set_task_cpu(p, new_cpu);
1003 struct migration_req {
1004 struct list_head list;
1006 struct task_struct *task;
1007 int dest_cpu;
1009 struct completion done;
1013 * The task's runqueue lock must be held.
1014 * Returns true if you have to wait for migration thread.
1016 static int
1017 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1019 struct rq *rq = task_rq(p);
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1025 if (!p->se.on_rq && !task_running(rq, p)) {
1026 set_task_cpu(p, dest_cpu);
1027 return 0;
1030 init_completion(&req->done);
1031 req->task = p;
1032 req->dest_cpu = dest_cpu;
1033 list_add(&req->list, &rq->migration_queue);
1035 return 1;
1039 * wait_task_inactive - wait for a thread to unschedule.
1041 * The caller must ensure that the task *will* unschedule sometime soon,
1042 * else this function might spin for a *long* time. This function can't
1043 * be called with interrupts off, or it may introduce deadlock with
1044 * smp_call_function() if an IPI is sent by the same process we are
1045 * waiting to become inactive.
1047 void wait_task_inactive(struct task_struct *p)
1049 unsigned long flags;
1050 int running, on_rq;
1051 struct rq *rq;
1053 repeat:
1055 * We do the initial early heuristics without holding
1056 * any task-queue locks at all. We'll only try to get
1057 * the runqueue lock when things look like they will
1058 * work out!
1060 rq = task_rq(p);
1063 * If the task is actively running on another CPU
1064 * still, just relax and busy-wait without holding
1065 * any locks.
1067 * NOTE! Since we don't hold any locks, it's not
1068 * even sure that "rq" stays as the right runqueue!
1069 * But we don't care, since "task_running()" will
1070 * return false if the runqueue has changed and p
1071 * is actually now running somewhere else!
1073 while (task_running(rq, p))
1074 cpu_relax();
1077 * Ok, time to look more closely! We need the rq
1078 * lock now, to be *sure*. If we're wrong, we'll
1079 * just go back and repeat.
1081 rq = task_rq_lock(p, &flags);
1082 running = task_running(rq, p);
1083 on_rq = p->se.on_rq;
1084 task_rq_unlock(rq, &flags);
1087 * Was it really running after all now that we
1088 * checked with the proper locks actually held?
1090 * Oops. Go back and try again..
1092 if (unlikely(running)) {
1093 cpu_relax();
1094 goto repeat;
1098 * It's not enough that it's not actively running,
1099 * it must be off the runqueue _entirely_, and not
1100 * preempted!
1102 * So if it wa still runnable (but just not actively
1103 * running right now), it's preempted, and we should
1104 * yield - it could be a while.
1106 if (unlikely(on_rq)) {
1107 yield();
1108 goto repeat;
1112 * Ahh, all good. It wasn't running, and it wasn't
1113 * runnable, which means that it will never become
1114 * running in the future either. We're all done!
1118 /***
1119 * kick_process - kick a running thread to enter/exit the kernel
1120 * @p: the to-be-kicked thread
1122 * Cause a process which is running on another CPU to enter
1123 * kernel-mode, without any delay. (to get signals handled.)
1125 * NOTE: this function doesnt have to take the runqueue lock,
1126 * because all it wants to ensure is that the remote task enters
1127 * the kernel. If the IPI races and the task has been migrated
1128 * to another CPU then no harm is done and the purpose has been
1129 * achieved as well.
1131 void kick_process(struct task_struct *p)
1133 int cpu;
1135 preempt_disable();
1136 cpu = task_cpu(p);
1137 if ((cpu != smp_processor_id()) && task_curr(p))
1138 smp_send_reschedule(cpu);
1139 preempt_enable();
1143 * Return a low guess at the load of a migration-source cpu weighted
1144 * according to the scheduling class and "nice" value.
1146 * We want to under-estimate the load of migration sources, to
1147 * balance conservatively.
1149 static inline unsigned long source_load(int cpu, int type)
1151 struct rq *rq = cpu_rq(cpu);
1152 unsigned long total = weighted_cpuload(cpu);
1154 if (type == 0)
1155 return total;
1157 return min(rq->cpu_load[type-1], total);
1161 * Return a high guess at the load of a migration-target cpu weighted
1162 * according to the scheduling class and "nice" value.
1164 static inline unsigned long target_load(int cpu, int type)
1166 struct rq *rq = cpu_rq(cpu);
1167 unsigned long total = weighted_cpuload(cpu);
1169 if (type == 0)
1170 return total;
1172 return max(rq->cpu_load[type-1], total);
1176 * Return the average load per task on the cpu's run queue
1178 static inline unsigned long cpu_avg_load_per_task(int cpu)
1180 struct rq *rq = cpu_rq(cpu);
1181 unsigned long total = weighted_cpuload(cpu);
1182 unsigned long n = rq->nr_running;
1184 return n ? total / n : SCHED_LOAD_SCALE;
1188 * find_idlest_group finds and returns the least busy CPU group within the
1189 * domain.
1191 static struct sched_group *
1192 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1194 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1195 unsigned long min_load = ULONG_MAX, this_load = 0;
1196 int load_idx = sd->forkexec_idx;
1197 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1199 do {
1200 unsigned long load, avg_load;
1201 int local_group;
1202 int i;
1204 /* Skip over this group if it has no CPUs allowed */
1205 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1206 goto nextgroup;
1208 local_group = cpu_isset(this_cpu, group->cpumask);
1210 /* Tally up the load of all CPUs in the group */
1211 avg_load = 0;
1213 for_each_cpu_mask(i, group->cpumask) {
1214 /* Bias balancing toward cpus of our domain */
1215 if (local_group)
1216 load = source_load(i, load_idx);
1217 else
1218 load = target_load(i, load_idx);
1220 avg_load += load;
1223 /* Adjust by relative CPU power of the group */
1224 avg_load = sg_div_cpu_power(group,
1225 avg_load * SCHED_LOAD_SCALE);
1227 if (local_group) {
1228 this_load = avg_load;
1229 this = group;
1230 } else if (avg_load < min_load) {
1231 min_load = avg_load;
1232 idlest = group;
1234 nextgroup:
1235 group = group->next;
1236 } while (group != sd->groups);
1238 if (!idlest || 100*this_load < imbalance*min_load)
1239 return NULL;
1240 return idlest;
1244 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1246 static int
1247 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1249 cpumask_t tmp;
1250 unsigned long load, min_load = ULONG_MAX;
1251 int idlest = -1;
1252 int i;
1254 /* Traverse only the allowed CPUs */
1255 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1257 for_each_cpu_mask(i, tmp) {
1258 load = weighted_cpuload(i);
1260 if (load < min_load || (load == min_load && i == this_cpu)) {
1261 min_load = load;
1262 idlest = i;
1266 return idlest;
1270 * sched_balance_self: balance the current task (running on cpu) in domains
1271 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1272 * SD_BALANCE_EXEC.
1274 * Balance, ie. select the least loaded group.
1276 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 * preempt must be disabled.
1280 static int sched_balance_self(int cpu, int flag)
1282 struct task_struct *t = current;
1283 struct sched_domain *tmp, *sd = NULL;
1285 for_each_domain(cpu, tmp) {
1287 * If power savings logic is enabled for a domain, stop there.
1289 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1290 break;
1291 if (tmp->flags & flag)
1292 sd = tmp;
1295 while (sd) {
1296 cpumask_t span;
1297 struct sched_group *group;
1298 int new_cpu, weight;
1300 if (!(sd->flags & flag)) {
1301 sd = sd->child;
1302 continue;
1305 span = sd->span;
1306 group = find_idlest_group(sd, t, cpu);
1307 if (!group) {
1308 sd = sd->child;
1309 continue;
1312 new_cpu = find_idlest_cpu(group, t, cpu);
1313 if (new_cpu == -1 || new_cpu == cpu) {
1314 /* Now try balancing at a lower domain level of cpu */
1315 sd = sd->child;
1316 continue;
1319 /* Now try balancing at a lower domain level of new_cpu */
1320 cpu = new_cpu;
1321 sd = NULL;
1322 weight = cpus_weight(span);
1323 for_each_domain(cpu, tmp) {
1324 if (weight <= cpus_weight(tmp->span))
1325 break;
1326 if (tmp->flags & flag)
1327 sd = tmp;
1329 /* while loop will break here if sd == NULL */
1332 return cpu;
1335 #endif /* CONFIG_SMP */
1338 * wake_idle() will wake a task on an idle cpu if task->cpu is
1339 * not idle and an idle cpu is available. The span of cpus to
1340 * search starts with cpus closest then further out as needed,
1341 * so we always favor a closer, idle cpu.
1343 * Returns the CPU we should wake onto.
1345 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1346 static int wake_idle(int cpu, struct task_struct *p)
1348 cpumask_t tmp;
1349 struct sched_domain *sd;
1350 int i;
1353 * If it is idle, then it is the best cpu to run this task.
1355 * This cpu is also the best, if it has more than one task already.
1356 * Siblings must be also busy(in most cases) as they didn't already
1357 * pickup the extra load from this cpu and hence we need not check
1358 * sibling runqueue info. This will avoid the checks and cache miss
1359 * penalities associated with that.
1361 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1362 return cpu;
1364 for_each_domain(cpu, sd) {
1365 if (sd->flags & SD_WAKE_IDLE) {
1366 cpus_and(tmp, sd->span, p->cpus_allowed);
1367 for_each_cpu_mask(i, tmp) {
1368 if (idle_cpu(i))
1369 return i;
1371 } else {
1372 break;
1375 return cpu;
1377 #else
1378 static inline int wake_idle(int cpu, struct task_struct *p)
1380 return cpu;
1382 #endif
1384 /***
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1396 * returns failure only if the task is already active.
1398 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1400 int cpu, this_cpu, success = 0;
1401 unsigned long flags;
1402 long old_state;
1403 struct rq *rq;
1404 #ifdef CONFIG_SMP
1405 struct sched_domain *sd, *this_sd = NULL;
1406 unsigned long load, this_load;
1407 int new_cpu;
1408 #endif
1410 rq = task_rq_lock(p, &flags);
1411 old_state = p->state;
1412 if (!(old_state & state))
1413 goto out;
1415 if (p->se.on_rq)
1416 goto out_running;
1418 cpu = task_cpu(p);
1419 this_cpu = smp_processor_id();
1421 #ifdef CONFIG_SMP
1422 if (unlikely(task_running(rq, p)))
1423 goto out_activate;
1425 new_cpu = cpu;
1427 schedstat_inc(rq, ttwu_cnt);
1428 if (cpu == this_cpu) {
1429 schedstat_inc(rq, ttwu_local);
1430 goto out_set_cpu;
1433 for_each_domain(this_cpu, sd) {
1434 if (cpu_isset(cpu, sd->span)) {
1435 schedstat_inc(sd, ttwu_wake_remote);
1436 this_sd = sd;
1437 break;
1441 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1442 goto out_set_cpu;
1445 * Check for affine wakeup and passive balancing possibilities.
1447 if (this_sd) {
1448 int idx = this_sd->wake_idx;
1449 unsigned int imbalance;
1451 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453 load = source_load(cpu, idx);
1454 this_load = target_load(this_cpu, idx);
1456 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458 if (this_sd->flags & SD_WAKE_AFFINE) {
1459 unsigned long tl = this_load;
1460 unsigned long tl_per_task;
1462 tl_per_task = cpu_avg_load_per_task(this_cpu);
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1469 if (sync)
1470 tl -= current->se.load.weight;
1472 if ((tl <= load &&
1473 tl + target_load(cpu, idx) <= tl_per_task) ||
1474 100*(tl + p->se.load.weight) <= imbalance*load) {
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1480 schedstat_inc(this_sd, ttwu_move_affine);
1481 goto out_set_cpu;
1486 * Start passive balancing when half the imbalance_pct
1487 * limit is reached.
1489 if (this_sd->flags & SD_WAKE_BALANCE) {
1490 if (imbalance*this_load <= 100*load) {
1491 schedstat_inc(this_sd, ttwu_move_balance);
1492 goto out_set_cpu;
1497 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1498 out_set_cpu:
1499 new_cpu = wake_idle(new_cpu, p);
1500 if (new_cpu != cpu) {
1501 set_task_cpu(p, new_cpu);
1502 task_rq_unlock(rq, &flags);
1503 /* might preempt at this point */
1504 rq = task_rq_lock(p, &flags);
1505 old_state = p->state;
1506 if (!(old_state & state))
1507 goto out;
1508 if (p->se.on_rq)
1509 goto out_running;
1511 this_cpu = smp_processor_id();
1512 cpu = task_cpu(p);
1515 out_activate:
1516 #endif /* CONFIG_SMP */
1517 activate_task(rq, p, 1);
1519 * Sync wakeups (i.e. those types of wakeups where the waker
1520 * has indicated that it will leave the CPU in short order)
1521 * don't trigger a preemption, if the woken up task will run on
1522 * this cpu. (in this case the 'I will reschedule' promise of
1523 * the waker guarantees that the freshly woken up task is going
1524 * to be considered on this CPU.)
1526 if (!sync || cpu != this_cpu)
1527 check_preempt_curr(rq, p);
1528 success = 1;
1530 out_running:
1531 p->state = TASK_RUNNING;
1532 out:
1533 task_rq_unlock(rq, &flags);
1535 return success;
1538 int fastcall wake_up_process(struct task_struct *p)
1540 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1541 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1543 EXPORT_SYMBOL(wake_up_process);
1545 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1547 return try_to_wake_up(p, state, 0);
1551 * Perform scheduler related setup for a newly forked process p.
1552 * p is forked by current.
1554 * __sched_fork() is basic setup used by init_idle() too:
1556 static void __sched_fork(struct task_struct *p)
1558 p->se.wait_start_fair = 0;
1559 p->se.exec_start = 0;
1560 p->se.sum_exec_runtime = 0;
1561 p->se.delta_exec = 0;
1562 p->se.delta_fair_run = 0;
1563 p->se.delta_fair_sleep = 0;
1564 p->se.wait_runtime = 0;
1565 p->se.sleep_start_fair = 0;
1567 #ifdef CONFIG_SCHEDSTATS
1568 p->se.wait_start = 0;
1569 p->se.sum_wait_runtime = 0;
1570 p->se.sum_sleep_runtime = 0;
1571 p->se.sleep_start = 0;
1572 p->se.block_start = 0;
1573 p->se.sleep_max = 0;
1574 p->se.block_max = 0;
1575 p->se.exec_max = 0;
1576 p->se.wait_max = 0;
1577 p->se.wait_runtime_overruns = 0;
1578 p->se.wait_runtime_underruns = 0;
1579 #endif
1581 INIT_LIST_HEAD(&p->run_list);
1582 p->se.on_rq = 0;
1584 #ifdef CONFIG_PREEMPT_NOTIFIERS
1585 INIT_HLIST_HEAD(&p->preempt_notifiers);
1586 #endif
1589 * We mark the process as running here, but have not actually
1590 * inserted it onto the runqueue yet. This guarantees that
1591 * nobody will actually run it, and a signal or other external
1592 * event cannot wake it up and insert it on the runqueue either.
1594 p->state = TASK_RUNNING;
1598 * fork()/clone()-time setup:
1600 void sched_fork(struct task_struct *p, int clone_flags)
1602 int cpu = get_cpu();
1604 __sched_fork(p);
1606 #ifdef CONFIG_SMP
1607 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1608 #endif
1609 __set_task_cpu(p, cpu);
1612 * Make sure we do not leak PI boosting priority to the child:
1614 p->prio = current->normal_prio;
1616 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1617 if (likely(sched_info_on()))
1618 memset(&p->sched_info, 0, sizeof(p->sched_info));
1619 #endif
1620 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1621 p->oncpu = 0;
1622 #endif
1623 #ifdef CONFIG_PREEMPT
1624 /* Want to start with kernel preemption disabled. */
1625 task_thread_info(p)->preempt_count = 1;
1626 #endif
1627 put_cpu();
1631 * After fork, child runs first. (default) If set to 0 then
1632 * parent will (try to) run first.
1634 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1637 * wake_up_new_task - wake up a newly created task for the first time.
1639 * This function will do some initial scheduler statistics housekeeping
1640 * that must be done for every newly created context, then puts the task
1641 * on the runqueue and wakes it.
1643 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1645 unsigned long flags;
1646 struct rq *rq;
1647 int this_cpu;
1648 u64 now;
1650 rq = task_rq_lock(p, &flags);
1651 BUG_ON(p->state != TASK_RUNNING);
1652 this_cpu = smp_processor_id(); /* parent's CPU */
1653 now = rq_clock(rq);
1655 p->prio = effective_prio(p);
1657 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1658 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1659 !current->se.on_rq) {
1661 activate_task(rq, p, 0);
1662 } else {
1664 * Let the scheduling class do new task startup
1665 * management (if any):
1667 p->sched_class->task_new(rq, p, now);
1668 inc_nr_running(p, rq, now);
1670 check_preempt_curr(rq, p);
1671 task_rq_unlock(rq, &flags);
1674 #ifdef CONFIG_PREEMPT_NOTIFIERS
1677 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1678 * @notifier: notifier struct to register
1680 void preempt_notifier_register(struct preempt_notifier *notifier)
1682 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1684 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1687 * preempt_notifier_unregister - no longer interested in preemption notifications
1688 * @notifier: notifier struct to unregister
1690 * This is safe to call from within a preemption notifier.
1692 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1694 hlist_del(&notifier->link);
1696 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1698 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1700 struct preempt_notifier *notifier;
1701 struct hlist_node *node;
1703 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1704 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1707 static void
1708 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1709 struct task_struct *next)
1711 struct preempt_notifier *notifier;
1712 struct hlist_node *node;
1714 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1715 notifier->ops->sched_out(notifier, next);
1718 #else
1720 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1724 static void
1725 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1726 struct task_struct *next)
1730 #endif
1733 * prepare_task_switch - prepare to switch tasks
1734 * @rq: the runqueue preparing to switch
1735 * @prev: the current task that is being switched out
1736 * @next: the task we are going to switch to.
1738 * This is called with the rq lock held and interrupts off. It must
1739 * be paired with a subsequent finish_task_switch after the context
1740 * switch.
1742 * prepare_task_switch sets up locking and calls architecture specific
1743 * hooks.
1745 static inline void
1746 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1747 struct task_struct *next)
1749 fire_sched_out_preempt_notifiers(prev, next);
1750 prepare_lock_switch(rq, next);
1751 prepare_arch_switch(next);
1755 * finish_task_switch - clean up after a task-switch
1756 * @rq: runqueue associated with task-switch
1757 * @prev: the thread we just switched away from.
1759 * finish_task_switch must be called after the context switch, paired
1760 * with a prepare_task_switch call before the context switch.
1761 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1762 * and do any other architecture-specific cleanup actions.
1764 * Note that we may have delayed dropping an mm in context_switch(). If
1765 * so, we finish that here outside of the runqueue lock. (Doing it
1766 * with the lock held can cause deadlocks; see schedule() for
1767 * details.)
1769 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1770 __releases(rq->lock)
1772 struct mm_struct *mm = rq->prev_mm;
1773 long prev_state;
1775 rq->prev_mm = NULL;
1778 * A task struct has one reference for the use as "current".
1779 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1780 * schedule one last time. The schedule call will never return, and
1781 * the scheduled task must drop that reference.
1782 * The test for TASK_DEAD must occur while the runqueue locks are
1783 * still held, otherwise prev could be scheduled on another cpu, die
1784 * there before we look at prev->state, and then the reference would
1785 * be dropped twice.
1786 * Manfred Spraul <manfred@colorfullife.com>
1788 prev_state = prev->state;
1789 finish_arch_switch(prev);
1790 finish_lock_switch(rq, prev);
1791 fire_sched_in_preempt_notifiers(current);
1792 if (mm)
1793 mmdrop(mm);
1794 if (unlikely(prev_state == TASK_DEAD)) {
1796 * Remove function-return probe instances associated with this
1797 * task and put them back on the free list.
1799 kprobe_flush_task(prev);
1800 put_task_struct(prev);
1805 * schedule_tail - first thing a freshly forked thread must call.
1806 * @prev: the thread we just switched away from.
1808 asmlinkage void schedule_tail(struct task_struct *prev)
1809 __releases(rq->lock)
1811 struct rq *rq = this_rq();
1813 finish_task_switch(rq, prev);
1814 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1815 /* In this case, finish_task_switch does not reenable preemption */
1816 preempt_enable();
1817 #endif
1818 if (current->set_child_tid)
1819 put_user(current->pid, current->set_child_tid);
1823 * context_switch - switch to the new MM and the new
1824 * thread's register state.
1826 static inline void
1827 context_switch(struct rq *rq, struct task_struct *prev,
1828 struct task_struct *next)
1830 struct mm_struct *mm, *oldmm;
1832 prepare_task_switch(rq, prev, next);
1833 mm = next->mm;
1834 oldmm = prev->active_mm;
1836 * For paravirt, this is coupled with an exit in switch_to to
1837 * combine the page table reload and the switch backend into
1838 * one hypercall.
1840 arch_enter_lazy_cpu_mode();
1842 if (unlikely(!mm)) {
1843 next->active_mm = oldmm;
1844 atomic_inc(&oldmm->mm_count);
1845 enter_lazy_tlb(oldmm, next);
1846 } else
1847 switch_mm(oldmm, mm, next);
1849 if (unlikely(!prev->mm)) {
1850 prev->active_mm = NULL;
1851 rq->prev_mm = oldmm;
1854 * Since the runqueue lock will be released by the next
1855 * task (which is an invalid locking op but in the case
1856 * of the scheduler it's an obvious special-case), so we
1857 * do an early lockdep release here:
1859 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1860 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1861 #endif
1863 /* Here we just switch the register state and the stack. */
1864 switch_to(prev, next, prev);
1866 barrier();
1868 * this_rq must be evaluated again because prev may have moved
1869 * CPUs since it called schedule(), thus the 'rq' on its stack
1870 * frame will be invalid.
1872 finish_task_switch(this_rq(), prev);
1876 * nr_running, nr_uninterruptible and nr_context_switches:
1878 * externally visible scheduler statistics: current number of runnable
1879 * threads, current number of uninterruptible-sleeping threads, total
1880 * number of context switches performed since bootup.
1882 unsigned long nr_running(void)
1884 unsigned long i, sum = 0;
1886 for_each_online_cpu(i)
1887 sum += cpu_rq(i)->nr_running;
1889 return sum;
1892 unsigned long nr_uninterruptible(void)
1894 unsigned long i, sum = 0;
1896 for_each_possible_cpu(i)
1897 sum += cpu_rq(i)->nr_uninterruptible;
1900 * Since we read the counters lockless, it might be slightly
1901 * inaccurate. Do not allow it to go below zero though:
1903 if (unlikely((long)sum < 0))
1904 sum = 0;
1906 return sum;
1909 unsigned long long nr_context_switches(void)
1911 int i;
1912 unsigned long long sum = 0;
1914 for_each_possible_cpu(i)
1915 sum += cpu_rq(i)->nr_switches;
1917 return sum;
1920 unsigned long nr_iowait(void)
1922 unsigned long i, sum = 0;
1924 for_each_possible_cpu(i)
1925 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1927 return sum;
1930 unsigned long nr_active(void)
1932 unsigned long i, running = 0, uninterruptible = 0;
1934 for_each_online_cpu(i) {
1935 running += cpu_rq(i)->nr_running;
1936 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1939 if (unlikely((long)uninterruptible < 0))
1940 uninterruptible = 0;
1942 return running + uninterruptible;
1946 * Update rq->cpu_load[] statistics. This function is usually called every
1947 * scheduler tick (TICK_NSEC).
1949 static void update_cpu_load(struct rq *this_rq)
1951 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1952 unsigned long total_load = this_rq->ls.load.weight;
1953 unsigned long this_load = total_load;
1954 struct load_stat *ls = &this_rq->ls;
1955 u64 now = __rq_clock(this_rq);
1956 int i, scale;
1958 this_rq->nr_load_updates++;
1959 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1960 goto do_avg;
1962 /* Update delta_fair/delta_exec fields first */
1963 update_curr_load(this_rq, now);
1965 fair_delta64 = ls->delta_fair + 1;
1966 ls->delta_fair = 0;
1968 exec_delta64 = ls->delta_exec + 1;
1969 ls->delta_exec = 0;
1971 sample_interval64 = now - ls->load_update_last;
1972 ls->load_update_last = now;
1974 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1975 sample_interval64 = TICK_NSEC;
1977 if (exec_delta64 > sample_interval64)
1978 exec_delta64 = sample_interval64;
1980 idle_delta64 = sample_interval64 - exec_delta64;
1982 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1983 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1985 this_load = (unsigned long)tmp64;
1987 do_avg:
1989 /* Update our load: */
1990 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1991 unsigned long old_load, new_load;
1993 /* scale is effectively 1 << i now, and >> i divides by scale */
1995 old_load = this_rq->cpu_load[i];
1996 new_load = this_load;
1998 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2002 #ifdef CONFIG_SMP
2005 * double_rq_lock - safely lock two runqueues
2007 * Note this does not disable interrupts like task_rq_lock,
2008 * you need to do so manually before calling.
2010 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2011 __acquires(rq1->lock)
2012 __acquires(rq2->lock)
2014 BUG_ON(!irqs_disabled());
2015 if (rq1 == rq2) {
2016 spin_lock(&rq1->lock);
2017 __acquire(rq2->lock); /* Fake it out ;) */
2018 } else {
2019 if (rq1 < rq2) {
2020 spin_lock(&rq1->lock);
2021 spin_lock(&rq2->lock);
2022 } else {
2023 spin_lock(&rq2->lock);
2024 spin_lock(&rq1->lock);
2030 * double_rq_unlock - safely unlock two runqueues
2032 * Note this does not restore interrupts like task_rq_unlock,
2033 * you need to do so manually after calling.
2035 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2036 __releases(rq1->lock)
2037 __releases(rq2->lock)
2039 spin_unlock(&rq1->lock);
2040 if (rq1 != rq2)
2041 spin_unlock(&rq2->lock);
2042 else
2043 __release(rq2->lock);
2047 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2049 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2050 __releases(this_rq->lock)
2051 __acquires(busiest->lock)
2052 __acquires(this_rq->lock)
2054 if (unlikely(!irqs_disabled())) {
2055 /* printk() doesn't work good under rq->lock */
2056 spin_unlock(&this_rq->lock);
2057 BUG_ON(1);
2059 if (unlikely(!spin_trylock(&busiest->lock))) {
2060 if (busiest < this_rq) {
2061 spin_unlock(&this_rq->lock);
2062 spin_lock(&busiest->lock);
2063 spin_lock(&this_rq->lock);
2064 } else
2065 spin_lock(&busiest->lock);
2070 * If dest_cpu is allowed for this process, migrate the task to it.
2071 * This is accomplished by forcing the cpu_allowed mask to only
2072 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2073 * the cpu_allowed mask is restored.
2075 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2077 struct migration_req req;
2078 unsigned long flags;
2079 struct rq *rq;
2081 rq = task_rq_lock(p, &flags);
2082 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2083 || unlikely(cpu_is_offline(dest_cpu)))
2084 goto out;
2086 /* force the process onto the specified CPU */
2087 if (migrate_task(p, dest_cpu, &req)) {
2088 /* Need to wait for migration thread (might exit: take ref). */
2089 struct task_struct *mt = rq->migration_thread;
2091 get_task_struct(mt);
2092 task_rq_unlock(rq, &flags);
2093 wake_up_process(mt);
2094 put_task_struct(mt);
2095 wait_for_completion(&req.done);
2097 return;
2099 out:
2100 task_rq_unlock(rq, &flags);
2104 * sched_exec - execve() is a valuable balancing opportunity, because at
2105 * this point the task has the smallest effective memory and cache footprint.
2107 void sched_exec(void)
2109 int new_cpu, this_cpu = get_cpu();
2110 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2111 put_cpu();
2112 if (new_cpu != this_cpu)
2113 sched_migrate_task(current, new_cpu);
2117 * pull_task - move a task from a remote runqueue to the local runqueue.
2118 * Both runqueues must be locked.
2120 static void pull_task(struct rq *src_rq, struct task_struct *p,
2121 struct rq *this_rq, int this_cpu)
2123 deactivate_task(src_rq, p, 0, rq_clock(src_rq));
2124 set_task_cpu(p, this_cpu);
2125 activate_task(this_rq, p, 0);
2127 * Note that idle threads have a prio of MAX_PRIO, for this test
2128 * to be always true for them.
2130 check_preempt_curr(this_rq, p);
2134 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2136 static
2137 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2138 struct sched_domain *sd, enum cpu_idle_type idle,
2139 int *all_pinned)
2142 * We do not migrate tasks that are:
2143 * 1) running (obviously), or
2144 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2145 * 3) are cache-hot on their current CPU.
2147 if (!cpu_isset(this_cpu, p->cpus_allowed))
2148 return 0;
2149 *all_pinned = 0;
2151 if (task_running(rq, p))
2152 return 0;
2155 * Aggressive migration if too many balance attempts have failed:
2157 if (sd->nr_balance_failed > sd->cache_nice_tries)
2158 return 1;
2160 return 1;
2163 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2164 unsigned long max_nr_move, unsigned long max_load_move,
2165 struct sched_domain *sd, enum cpu_idle_type idle,
2166 int *all_pinned, unsigned long *load_moved,
2167 int *this_best_prio, struct rq_iterator *iterator)
2169 int pulled = 0, pinned = 0, skip_for_load;
2170 struct task_struct *p;
2171 long rem_load_move = max_load_move;
2173 if (max_nr_move == 0 || max_load_move == 0)
2174 goto out;
2176 pinned = 1;
2179 * Start the load-balancing iterator:
2181 p = iterator->start(iterator->arg);
2182 next:
2183 if (!p)
2184 goto out;
2186 * To help distribute high priority tasks accross CPUs we don't
2187 * skip a task if it will be the highest priority task (i.e. smallest
2188 * prio value) on its new queue regardless of its load weight
2190 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2191 SCHED_LOAD_SCALE_FUZZ;
2192 if ((skip_for_load && p->prio >= *this_best_prio) ||
2193 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2194 p = iterator->next(iterator->arg);
2195 goto next;
2198 pull_task(busiest, p, this_rq, this_cpu);
2199 pulled++;
2200 rem_load_move -= p->se.load.weight;
2203 * We only want to steal up to the prescribed number of tasks
2204 * and the prescribed amount of weighted load.
2206 if (pulled < max_nr_move && rem_load_move > 0) {
2207 if (p->prio < *this_best_prio)
2208 *this_best_prio = p->prio;
2209 p = iterator->next(iterator->arg);
2210 goto next;
2212 out:
2214 * Right now, this is the only place pull_task() is called,
2215 * so we can safely collect pull_task() stats here rather than
2216 * inside pull_task().
2218 schedstat_add(sd, lb_gained[idle], pulled);
2220 if (all_pinned)
2221 *all_pinned = pinned;
2222 *load_moved = max_load_move - rem_load_move;
2223 return pulled;
2227 * move_tasks tries to move up to max_load_move weighted load from busiest to
2228 * this_rq, as part of a balancing operation within domain "sd".
2229 * Returns 1 if successful and 0 otherwise.
2231 * Called with both runqueues locked.
2233 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2234 unsigned long max_load_move,
2235 struct sched_domain *sd, enum cpu_idle_type idle,
2236 int *all_pinned)
2238 struct sched_class *class = sched_class_highest;
2239 unsigned long total_load_moved = 0;
2240 int this_best_prio = this_rq->curr->prio;
2242 do {
2243 total_load_moved +=
2244 class->load_balance(this_rq, this_cpu, busiest,
2245 ULONG_MAX, max_load_move - total_load_moved,
2246 sd, idle, all_pinned, &this_best_prio);
2247 class = class->next;
2248 } while (class && max_load_move > total_load_moved);
2250 return total_load_moved > 0;
2254 * move_one_task tries to move exactly one task from busiest to this_rq, as
2255 * part of active balancing operations within "domain".
2256 * Returns 1 if successful and 0 otherwise.
2258 * Called with both runqueues locked.
2260 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2261 struct sched_domain *sd, enum cpu_idle_type idle)
2263 struct sched_class *class;
2264 int this_best_prio = MAX_PRIO;
2266 for (class = sched_class_highest; class; class = class->next)
2267 if (class->load_balance(this_rq, this_cpu, busiest,
2268 1, ULONG_MAX, sd, idle, NULL,
2269 &this_best_prio))
2270 return 1;
2272 return 0;
2276 * find_busiest_group finds and returns the busiest CPU group within the
2277 * domain. It calculates and returns the amount of weighted load which
2278 * should be moved to restore balance via the imbalance parameter.
2280 static struct sched_group *
2281 find_busiest_group(struct sched_domain *sd, int this_cpu,
2282 unsigned long *imbalance, enum cpu_idle_type idle,
2283 int *sd_idle, cpumask_t *cpus, int *balance)
2285 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2286 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2287 unsigned long max_pull;
2288 unsigned long busiest_load_per_task, busiest_nr_running;
2289 unsigned long this_load_per_task, this_nr_running;
2290 int load_idx;
2291 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2292 int power_savings_balance = 1;
2293 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2294 unsigned long min_nr_running = ULONG_MAX;
2295 struct sched_group *group_min = NULL, *group_leader = NULL;
2296 #endif
2298 max_load = this_load = total_load = total_pwr = 0;
2299 busiest_load_per_task = busiest_nr_running = 0;
2300 this_load_per_task = this_nr_running = 0;
2301 if (idle == CPU_NOT_IDLE)
2302 load_idx = sd->busy_idx;
2303 else if (idle == CPU_NEWLY_IDLE)
2304 load_idx = sd->newidle_idx;
2305 else
2306 load_idx = sd->idle_idx;
2308 do {
2309 unsigned long load, group_capacity;
2310 int local_group;
2311 int i;
2312 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2313 unsigned long sum_nr_running, sum_weighted_load;
2315 local_group = cpu_isset(this_cpu, group->cpumask);
2317 if (local_group)
2318 balance_cpu = first_cpu(group->cpumask);
2320 /* Tally up the load of all CPUs in the group */
2321 sum_weighted_load = sum_nr_running = avg_load = 0;
2323 for_each_cpu_mask(i, group->cpumask) {
2324 struct rq *rq;
2326 if (!cpu_isset(i, *cpus))
2327 continue;
2329 rq = cpu_rq(i);
2331 if (*sd_idle && rq->nr_running)
2332 *sd_idle = 0;
2334 /* Bias balancing toward cpus of our domain */
2335 if (local_group) {
2336 if (idle_cpu(i) && !first_idle_cpu) {
2337 first_idle_cpu = 1;
2338 balance_cpu = i;
2341 load = target_load(i, load_idx);
2342 } else
2343 load = source_load(i, load_idx);
2345 avg_load += load;
2346 sum_nr_running += rq->nr_running;
2347 sum_weighted_load += weighted_cpuload(i);
2351 * First idle cpu or the first cpu(busiest) in this sched group
2352 * is eligible for doing load balancing at this and above
2353 * domains. In the newly idle case, we will allow all the cpu's
2354 * to do the newly idle load balance.
2356 if (idle != CPU_NEWLY_IDLE && local_group &&
2357 balance_cpu != this_cpu && balance) {
2358 *balance = 0;
2359 goto ret;
2362 total_load += avg_load;
2363 total_pwr += group->__cpu_power;
2365 /* Adjust by relative CPU power of the group */
2366 avg_load = sg_div_cpu_power(group,
2367 avg_load * SCHED_LOAD_SCALE);
2369 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2371 if (local_group) {
2372 this_load = avg_load;
2373 this = group;
2374 this_nr_running = sum_nr_running;
2375 this_load_per_task = sum_weighted_load;
2376 } else if (avg_load > max_load &&
2377 sum_nr_running > group_capacity) {
2378 max_load = avg_load;
2379 busiest = group;
2380 busiest_nr_running = sum_nr_running;
2381 busiest_load_per_task = sum_weighted_load;
2384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2386 * Busy processors will not participate in power savings
2387 * balance.
2389 if (idle == CPU_NOT_IDLE ||
2390 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2391 goto group_next;
2394 * If the local group is idle or completely loaded
2395 * no need to do power savings balance at this domain
2397 if (local_group && (this_nr_running >= group_capacity ||
2398 !this_nr_running))
2399 power_savings_balance = 0;
2402 * If a group is already running at full capacity or idle,
2403 * don't include that group in power savings calculations
2405 if (!power_savings_balance || sum_nr_running >= group_capacity
2406 || !sum_nr_running)
2407 goto group_next;
2410 * Calculate the group which has the least non-idle load.
2411 * This is the group from where we need to pick up the load
2412 * for saving power
2414 if ((sum_nr_running < min_nr_running) ||
2415 (sum_nr_running == min_nr_running &&
2416 first_cpu(group->cpumask) <
2417 first_cpu(group_min->cpumask))) {
2418 group_min = group;
2419 min_nr_running = sum_nr_running;
2420 min_load_per_task = sum_weighted_load /
2421 sum_nr_running;
2425 * Calculate the group which is almost near its
2426 * capacity but still has some space to pick up some load
2427 * from other group and save more power
2429 if (sum_nr_running <= group_capacity - 1) {
2430 if (sum_nr_running > leader_nr_running ||
2431 (sum_nr_running == leader_nr_running &&
2432 first_cpu(group->cpumask) >
2433 first_cpu(group_leader->cpumask))) {
2434 group_leader = group;
2435 leader_nr_running = sum_nr_running;
2438 group_next:
2439 #endif
2440 group = group->next;
2441 } while (group != sd->groups);
2443 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2444 goto out_balanced;
2446 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2448 if (this_load >= avg_load ||
2449 100*max_load <= sd->imbalance_pct*this_load)
2450 goto out_balanced;
2452 busiest_load_per_task /= busiest_nr_running;
2454 * We're trying to get all the cpus to the average_load, so we don't
2455 * want to push ourselves above the average load, nor do we wish to
2456 * reduce the max loaded cpu below the average load, as either of these
2457 * actions would just result in more rebalancing later, and ping-pong
2458 * tasks around. Thus we look for the minimum possible imbalance.
2459 * Negative imbalances (*we* are more loaded than anyone else) will
2460 * be counted as no imbalance for these purposes -- we can't fix that
2461 * by pulling tasks to us. Be careful of negative numbers as they'll
2462 * appear as very large values with unsigned longs.
2464 if (max_load <= busiest_load_per_task)
2465 goto out_balanced;
2468 * In the presence of smp nice balancing, certain scenarios can have
2469 * max load less than avg load(as we skip the groups at or below
2470 * its cpu_power, while calculating max_load..)
2472 if (max_load < avg_load) {
2473 *imbalance = 0;
2474 goto small_imbalance;
2477 /* Don't want to pull so many tasks that a group would go idle */
2478 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2480 /* How much load to actually move to equalise the imbalance */
2481 *imbalance = min(max_pull * busiest->__cpu_power,
2482 (avg_load - this_load) * this->__cpu_power)
2483 / SCHED_LOAD_SCALE;
2486 * if *imbalance is less than the average load per runnable task
2487 * there is no gaurantee that any tasks will be moved so we'll have
2488 * a think about bumping its value to force at least one task to be
2489 * moved
2491 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2492 unsigned long tmp, pwr_now, pwr_move;
2493 unsigned int imbn;
2495 small_imbalance:
2496 pwr_move = pwr_now = 0;
2497 imbn = 2;
2498 if (this_nr_running) {
2499 this_load_per_task /= this_nr_running;
2500 if (busiest_load_per_task > this_load_per_task)
2501 imbn = 1;
2502 } else
2503 this_load_per_task = SCHED_LOAD_SCALE;
2505 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2506 busiest_load_per_task * imbn) {
2507 *imbalance = busiest_load_per_task;
2508 return busiest;
2512 * OK, we don't have enough imbalance to justify moving tasks,
2513 * however we may be able to increase total CPU power used by
2514 * moving them.
2517 pwr_now += busiest->__cpu_power *
2518 min(busiest_load_per_task, max_load);
2519 pwr_now += this->__cpu_power *
2520 min(this_load_per_task, this_load);
2521 pwr_now /= SCHED_LOAD_SCALE;
2523 /* Amount of load we'd subtract */
2524 tmp = sg_div_cpu_power(busiest,
2525 busiest_load_per_task * SCHED_LOAD_SCALE);
2526 if (max_load > tmp)
2527 pwr_move += busiest->__cpu_power *
2528 min(busiest_load_per_task, max_load - tmp);
2530 /* Amount of load we'd add */
2531 if (max_load * busiest->__cpu_power <
2532 busiest_load_per_task * SCHED_LOAD_SCALE)
2533 tmp = sg_div_cpu_power(this,
2534 max_load * busiest->__cpu_power);
2535 else
2536 tmp = sg_div_cpu_power(this,
2537 busiest_load_per_task * SCHED_LOAD_SCALE);
2538 pwr_move += this->__cpu_power *
2539 min(this_load_per_task, this_load + tmp);
2540 pwr_move /= SCHED_LOAD_SCALE;
2542 /* Move if we gain throughput */
2543 if (pwr_move <= pwr_now)
2544 goto out_balanced;
2546 *imbalance = busiest_load_per_task;
2549 return busiest;
2551 out_balanced:
2552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2553 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2554 goto ret;
2556 if (this == group_leader && group_leader != group_min) {
2557 *imbalance = min_load_per_task;
2558 return group_min;
2560 #endif
2561 ret:
2562 *imbalance = 0;
2563 return NULL;
2567 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2569 static struct rq *
2570 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2571 unsigned long imbalance, cpumask_t *cpus)
2573 struct rq *busiest = NULL, *rq;
2574 unsigned long max_load = 0;
2575 int i;
2577 for_each_cpu_mask(i, group->cpumask) {
2578 unsigned long wl;
2580 if (!cpu_isset(i, *cpus))
2581 continue;
2583 rq = cpu_rq(i);
2584 wl = weighted_cpuload(i);
2586 if (rq->nr_running == 1 && wl > imbalance)
2587 continue;
2589 if (wl > max_load) {
2590 max_load = wl;
2591 busiest = rq;
2595 return busiest;
2599 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2600 * so long as it is large enough.
2602 #define MAX_PINNED_INTERVAL 512
2605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2606 * tasks if there is an imbalance.
2608 static int load_balance(int this_cpu, struct rq *this_rq,
2609 struct sched_domain *sd, enum cpu_idle_type idle,
2610 int *balance)
2612 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2613 struct sched_group *group;
2614 unsigned long imbalance;
2615 struct rq *busiest;
2616 cpumask_t cpus = CPU_MASK_ALL;
2617 unsigned long flags;
2620 * When power savings policy is enabled for the parent domain, idle
2621 * sibling can pick up load irrespective of busy siblings. In this case,
2622 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2623 * portraying it as CPU_NOT_IDLE.
2625 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2626 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2627 sd_idle = 1;
2629 schedstat_inc(sd, lb_cnt[idle]);
2631 redo:
2632 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2633 &cpus, balance);
2635 if (*balance == 0)
2636 goto out_balanced;
2638 if (!group) {
2639 schedstat_inc(sd, lb_nobusyg[idle]);
2640 goto out_balanced;
2643 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2644 if (!busiest) {
2645 schedstat_inc(sd, lb_nobusyq[idle]);
2646 goto out_balanced;
2649 BUG_ON(busiest == this_rq);
2651 schedstat_add(sd, lb_imbalance[idle], imbalance);
2653 ld_moved = 0;
2654 if (busiest->nr_running > 1) {
2656 * Attempt to move tasks. If find_busiest_group has found
2657 * an imbalance but busiest->nr_running <= 1, the group is
2658 * still unbalanced. ld_moved simply stays zero, so it is
2659 * correctly treated as an imbalance.
2661 local_irq_save(flags);
2662 double_rq_lock(this_rq, busiest);
2663 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2664 imbalance, sd, idle, &all_pinned);
2665 double_rq_unlock(this_rq, busiest);
2666 local_irq_restore(flags);
2669 * some other cpu did the load balance for us.
2671 if (ld_moved && this_cpu != smp_processor_id())
2672 resched_cpu(this_cpu);
2674 /* All tasks on this runqueue were pinned by CPU affinity */
2675 if (unlikely(all_pinned)) {
2676 cpu_clear(cpu_of(busiest), cpus);
2677 if (!cpus_empty(cpus))
2678 goto redo;
2679 goto out_balanced;
2683 if (!ld_moved) {
2684 schedstat_inc(sd, lb_failed[idle]);
2685 sd->nr_balance_failed++;
2687 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2689 spin_lock_irqsave(&busiest->lock, flags);
2691 /* don't kick the migration_thread, if the curr
2692 * task on busiest cpu can't be moved to this_cpu
2694 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2695 spin_unlock_irqrestore(&busiest->lock, flags);
2696 all_pinned = 1;
2697 goto out_one_pinned;
2700 if (!busiest->active_balance) {
2701 busiest->active_balance = 1;
2702 busiest->push_cpu = this_cpu;
2703 active_balance = 1;
2705 spin_unlock_irqrestore(&busiest->lock, flags);
2706 if (active_balance)
2707 wake_up_process(busiest->migration_thread);
2710 * We've kicked active balancing, reset the failure
2711 * counter.
2713 sd->nr_balance_failed = sd->cache_nice_tries+1;
2715 } else
2716 sd->nr_balance_failed = 0;
2718 if (likely(!active_balance)) {
2719 /* We were unbalanced, so reset the balancing interval */
2720 sd->balance_interval = sd->min_interval;
2721 } else {
2723 * If we've begun active balancing, start to back off. This
2724 * case may not be covered by the all_pinned logic if there
2725 * is only 1 task on the busy runqueue (because we don't call
2726 * move_tasks).
2728 if (sd->balance_interval < sd->max_interval)
2729 sd->balance_interval *= 2;
2732 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2733 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2734 return -1;
2735 return ld_moved;
2737 out_balanced:
2738 schedstat_inc(sd, lb_balanced[idle]);
2740 sd->nr_balance_failed = 0;
2742 out_one_pinned:
2743 /* tune up the balancing interval */
2744 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2745 (sd->balance_interval < sd->max_interval))
2746 sd->balance_interval *= 2;
2748 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2749 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2750 return -1;
2751 return 0;
2755 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2756 * tasks if there is an imbalance.
2758 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2759 * this_rq is locked.
2761 static int
2762 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2764 struct sched_group *group;
2765 struct rq *busiest = NULL;
2766 unsigned long imbalance;
2767 int ld_moved = 0;
2768 int sd_idle = 0;
2769 int all_pinned = 0;
2770 cpumask_t cpus = CPU_MASK_ALL;
2773 * When power savings policy is enabled for the parent domain, idle
2774 * sibling can pick up load irrespective of busy siblings. In this case,
2775 * let the state of idle sibling percolate up as IDLE, instead of
2776 * portraying it as CPU_NOT_IDLE.
2778 if (sd->flags & SD_SHARE_CPUPOWER &&
2779 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2780 sd_idle = 1;
2782 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2783 redo:
2784 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2785 &sd_idle, &cpus, NULL);
2786 if (!group) {
2787 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2788 goto out_balanced;
2791 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2792 &cpus);
2793 if (!busiest) {
2794 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2795 goto out_balanced;
2798 BUG_ON(busiest == this_rq);
2800 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2802 ld_moved = 0;
2803 if (busiest->nr_running > 1) {
2804 /* Attempt to move tasks */
2805 double_lock_balance(this_rq, busiest);
2806 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2807 imbalance, sd, CPU_NEWLY_IDLE,
2808 &all_pinned);
2809 spin_unlock(&busiest->lock);
2811 if (unlikely(all_pinned)) {
2812 cpu_clear(cpu_of(busiest), cpus);
2813 if (!cpus_empty(cpus))
2814 goto redo;
2818 if (!ld_moved) {
2819 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2820 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2821 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2822 return -1;
2823 } else
2824 sd->nr_balance_failed = 0;
2826 return ld_moved;
2828 out_balanced:
2829 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2830 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2831 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2832 return -1;
2833 sd->nr_balance_failed = 0;
2835 return 0;
2839 * idle_balance is called by schedule() if this_cpu is about to become
2840 * idle. Attempts to pull tasks from other CPUs.
2842 static void idle_balance(int this_cpu, struct rq *this_rq)
2844 struct sched_domain *sd;
2845 int pulled_task = -1;
2846 unsigned long next_balance = jiffies + HZ;
2848 for_each_domain(this_cpu, sd) {
2849 unsigned long interval;
2851 if (!(sd->flags & SD_LOAD_BALANCE))
2852 continue;
2854 if (sd->flags & SD_BALANCE_NEWIDLE)
2855 /* If we've pulled tasks over stop searching: */
2856 pulled_task = load_balance_newidle(this_cpu,
2857 this_rq, sd);
2859 interval = msecs_to_jiffies(sd->balance_interval);
2860 if (time_after(next_balance, sd->last_balance + interval))
2861 next_balance = sd->last_balance + interval;
2862 if (pulled_task)
2863 break;
2865 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2867 * We are going idle. next_balance may be set based on
2868 * a busy processor. So reset next_balance.
2870 this_rq->next_balance = next_balance;
2875 * active_load_balance is run by migration threads. It pushes running tasks
2876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2877 * running on each physical CPU where possible, and avoids physical /
2878 * logical imbalances.
2880 * Called with busiest_rq locked.
2882 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2884 int target_cpu = busiest_rq->push_cpu;
2885 struct sched_domain *sd;
2886 struct rq *target_rq;
2888 /* Is there any task to move? */
2889 if (busiest_rq->nr_running <= 1)
2890 return;
2892 target_rq = cpu_rq(target_cpu);
2895 * This condition is "impossible", if it occurs
2896 * we need to fix it. Originally reported by
2897 * Bjorn Helgaas on a 128-cpu setup.
2899 BUG_ON(busiest_rq == target_rq);
2901 /* move a task from busiest_rq to target_rq */
2902 double_lock_balance(busiest_rq, target_rq);
2904 /* Search for an sd spanning us and the target CPU. */
2905 for_each_domain(target_cpu, sd) {
2906 if ((sd->flags & SD_LOAD_BALANCE) &&
2907 cpu_isset(busiest_cpu, sd->span))
2908 break;
2911 if (likely(sd)) {
2912 schedstat_inc(sd, alb_cnt);
2914 if (move_one_task(target_rq, target_cpu, busiest_rq,
2915 sd, CPU_IDLE))
2916 schedstat_inc(sd, alb_pushed);
2917 else
2918 schedstat_inc(sd, alb_failed);
2920 spin_unlock(&target_rq->lock);
2923 #ifdef CONFIG_NO_HZ
2924 static struct {
2925 atomic_t load_balancer;
2926 cpumask_t cpu_mask;
2927 } nohz ____cacheline_aligned = {
2928 .load_balancer = ATOMIC_INIT(-1),
2929 .cpu_mask = CPU_MASK_NONE,
2933 * This routine will try to nominate the ilb (idle load balancing)
2934 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2935 * load balancing on behalf of all those cpus. If all the cpus in the system
2936 * go into this tickless mode, then there will be no ilb owner (as there is
2937 * no need for one) and all the cpus will sleep till the next wakeup event
2938 * arrives...
2940 * For the ilb owner, tick is not stopped. And this tick will be used
2941 * for idle load balancing. ilb owner will still be part of
2942 * nohz.cpu_mask..
2944 * While stopping the tick, this cpu will become the ilb owner if there
2945 * is no other owner. And will be the owner till that cpu becomes busy
2946 * or if all cpus in the system stop their ticks at which point
2947 * there is no need for ilb owner.
2949 * When the ilb owner becomes busy, it nominates another owner, during the
2950 * next busy scheduler_tick()
2952 int select_nohz_load_balancer(int stop_tick)
2954 int cpu = smp_processor_id();
2956 if (stop_tick) {
2957 cpu_set(cpu, nohz.cpu_mask);
2958 cpu_rq(cpu)->in_nohz_recently = 1;
2961 * If we are going offline and still the leader, give up!
2963 if (cpu_is_offline(cpu) &&
2964 atomic_read(&nohz.load_balancer) == cpu) {
2965 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2966 BUG();
2967 return 0;
2970 /* time for ilb owner also to sleep */
2971 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2972 if (atomic_read(&nohz.load_balancer) == cpu)
2973 atomic_set(&nohz.load_balancer, -1);
2974 return 0;
2977 if (atomic_read(&nohz.load_balancer) == -1) {
2978 /* make me the ilb owner */
2979 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2980 return 1;
2981 } else if (atomic_read(&nohz.load_balancer) == cpu)
2982 return 1;
2983 } else {
2984 if (!cpu_isset(cpu, nohz.cpu_mask))
2985 return 0;
2987 cpu_clear(cpu, nohz.cpu_mask);
2989 if (atomic_read(&nohz.load_balancer) == cpu)
2990 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2991 BUG();
2993 return 0;
2995 #endif
2997 static DEFINE_SPINLOCK(balancing);
3000 * It checks each scheduling domain to see if it is due to be balanced,
3001 * and initiates a balancing operation if so.
3003 * Balancing parameters are set up in arch_init_sched_domains.
3005 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3007 int balance = 1;
3008 struct rq *rq = cpu_rq(cpu);
3009 unsigned long interval;
3010 struct sched_domain *sd;
3011 /* Earliest time when we have to do rebalance again */
3012 unsigned long next_balance = jiffies + 60*HZ;
3014 for_each_domain(cpu, sd) {
3015 if (!(sd->flags & SD_LOAD_BALANCE))
3016 continue;
3018 interval = sd->balance_interval;
3019 if (idle != CPU_IDLE)
3020 interval *= sd->busy_factor;
3022 /* scale ms to jiffies */
3023 interval = msecs_to_jiffies(interval);
3024 if (unlikely(!interval))
3025 interval = 1;
3026 if (interval > HZ*NR_CPUS/10)
3027 interval = HZ*NR_CPUS/10;
3030 if (sd->flags & SD_SERIALIZE) {
3031 if (!spin_trylock(&balancing))
3032 goto out;
3035 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3036 if (load_balance(cpu, rq, sd, idle, &balance)) {
3038 * We've pulled tasks over so either we're no
3039 * longer idle, or one of our SMT siblings is
3040 * not idle.
3042 idle = CPU_NOT_IDLE;
3044 sd->last_balance = jiffies;
3046 if (sd->flags & SD_SERIALIZE)
3047 spin_unlock(&balancing);
3048 out:
3049 if (time_after(next_balance, sd->last_balance + interval))
3050 next_balance = sd->last_balance + interval;
3053 * Stop the load balance at this level. There is another
3054 * CPU in our sched group which is doing load balancing more
3055 * actively.
3057 if (!balance)
3058 break;
3060 rq->next_balance = next_balance;
3064 * run_rebalance_domains is triggered when needed from the scheduler tick.
3065 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3066 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3068 static void run_rebalance_domains(struct softirq_action *h)
3070 int this_cpu = smp_processor_id();
3071 struct rq *this_rq = cpu_rq(this_cpu);
3072 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3073 CPU_IDLE : CPU_NOT_IDLE;
3075 rebalance_domains(this_cpu, idle);
3077 #ifdef CONFIG_NO_HZ
3079 * If this cpu is the owner for idle load balancing, then do the
3080 * balancing on behalf of the other idle cpus whose ticks are
3081 * stopped.
3083 if (this_rq->idle_at_tick &&
3084 atomic_read(&nohz.load_balancer) == this_cpu) {
3085 cpumask_t cpus = nohz.cpu_mask;
3086 struct rq *rq;
3087 int balance_cpu;
3089 cpu_clear(this_cpu, cpus);
3090 for_each_cpu_mask(balance_cpu, cpus) {
3092 * If this cpu gets work to do, stop the load balancing
3093 * work being done for other cpus. Next load
3094 * balancing owner will pick it up.
3096 if (need_resched())
3097 break;
3099 rebalance_domains(balance_cpu, SCHED_IDLE);
3101 rq = cpu_rq(balance_cpu);
3102 if (time_after(this_rq->next_balance, rq->next_balance))
3103 this_rq->next_balance = rq->next_balance;
3106 #endif
3110 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3112 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3113 * idle load balancing owner or decide to stop the periodic load balancing,
3114 * if the whole system is idle.
3116 static inline void trigger_load_balance(struct rq *rq, int cpu)
3118 #ifdef CONFIG_NO_HZ
3120 * If we were in the nohz mode recently and busy at the current
3121 * scheduler tick, then check if we need to nominate new idle
3122 * load balancer.
3124 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3125 rq->in_nohz_recently = 0;
3127 if (atomic_read(&nohz.load_balancer) == cpu) {
3128 cpu_clear(cpu, nohz.cpu_mask);
3129 atomic_set(&nohz.load_balancer, -1);
3132 if (atomic_read(&nohz.load_balancer) == -1) {
3134 * simple selection for now: Nominate the
3135 * first cpu in the nohz list to be the next
3136 * ilb owner.
3138 * TBD: Traverse the sched domains and nominate
3139 * the nearest cpu in the nohz.cpu_mask.
3141 int ilb = first_cpu(nohz.cpu_mask);
3143 if (ilb != NR_CPUS)
3144 resched_cpu(ilb);
3149 * If this cpu is idle and doing idle load balancing for all the
3150 * cpus with ticks stopped, is it time for that to stop?
3152 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3153 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3154 resched_cpu(cpu);
3155 return;
3159 * If this cpu is idle and the idle load balancing is done by
3160 * someone else, then no need raise the SCHED_SOFTIRQ
3162 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3163 cpu_isset(cpu, nohz.cpu_mask))
3164 return;
3165 #endif
3166 if (time_after_eq(jiffies, rq->next_balance))
3167 raise_softirq(SCHED_SOFTIRQ);
3170 #else /* CONFIG_SMP */
3173 * on UP we do not need to balance between CPUs:
3175 static inline void idle_balance(int cpu, struct rq *rq)
3179 /* Avoid "used but not defined" warning on UP */
3180 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3181 unsigned long max_nr_move, unsigned long max_load_move,
3182 struct sched_domain *sd, enum cpu_idle_type idle,
3183 int *all_pinned, unsigned long *load_moved,
3184 int *this_best_prio, struct rq_iterator *iterator)
3186 *load_moved = 0;
3188 return 0;
3191 #endif
3193 DEFINE_PER_CPU(struct kernel_stat, kstat);
3195 EXPORT_PER_CPU_SYMBOL(kstat);
3198 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3199 * that have not yet been banked in case the task is currently running.
3201 unsigned long long task_sched_runtime(struct task_struct *p)
3203 unsigned long flags;
3204 u64 ns, delta_exec;
3205 struct rq *rq;
3207 rq = task_rq_lock(p, &flags);
3208 ns = p->se.sum_exec_runtime;
3209 if (rq->curr == p) {
3210 delta_exec = rq_clock(rq) - p->se.exec_start;
3211 if ((s64)delta_exec > 0)
3212 ns += delta_exec;
3214 task_rq_unlock(rq, &flags);
3216 return ns;
3220 * Account user cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in user space since the last update
3225 void account_user_time(struct task_struct *p, cputime_t cputime)
3227 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3228 cputime64_t tmp;
3230 p->utime = cputime_add(p->utime, cputime);
3232 /* Add user time to cpustat. */
3233 tmp = cputime_to_cputime64(cputime);
3234 if (TASK_NICE(p) > 0)
3235 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3236 else
3237 cpustat->user = cputime64_add(cpustat->user, tmp);
3241 * Account system cpu time to a process.
3242 * @p: the process that the cpu time gets accounted to
3243 * @hardirq_offset: the offset to subtract from hardirq_count()
3244 * @cputime: the cpu time spent in kernel space since the last update
3246 void account_system_time(struct task_struct *p, int hardirq_offset,
3247 cputime_t cputime)
3249 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3250 struct rq *rq = this_rq();
3251 cputime64_t tmp;
3253 p->stime = cputime_add(p->stime, cputime);
3255 /* Add system time to cpustat. */
3256 tmp = cputime_to_cputime64(cputime);
3257 if (hardirq_count() - hardirq_offset)
3258 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3259 else if (softirq_count())
3260 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3261 else if (p != rq->idle)
3262 cpustat->system = cputime64_add(cpustat->system, tmp);
3263 else if (atomic_read(&rq->nr_iowait) > 0)
3264 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3265 else
3266 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3267 /* Account for system time used */
3268 acct_update_integrals(p);
3272 * Account for involuntary wait time.
3273 * @p: the process from which the cpu time has been stolen
3274 * @steal: the cpu time spent in involuntary wait
3276 void account_steal_time(struct task_struct *p, cputime_t steal)
3278 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3279 cputime64_t tmp = cputime_to_cputime64(steal);
3280 struct rq *rq = this_rq();
3282 if (p == rq->idle) {
3283 p->stime = cputime_add(p->stime, steal);
3284 if (atomic_read(&rq->nr_iowait) > 0)
3285 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3286 else
3287 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3288 } else
3289 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3293 * This function gets called by the timer code, with HZ frequency.
3294 * We call it with interrupts disabled.
3296 * It also gets called by the fork code, when changing the parent's
3297 * timeslices.
3299 void scheduler_tick(void)
3301 int cpu = smp_processor_id();
3302 struct rq *rq = cpu_rq(cpu);
3303 struct task_struct *curr = rq->curr;
3305 spin_lock(&rq->lock);
3306 update_cpu_load(rq);
3307 if (curr != rq->idle) /* FIXME: needed? */
3308 curr->sched_class->task_tick(rq, curr);
3309 spin_unlock(&rq->lock);
3311 #ifdef CONFIG_SMP
3312 rq->idle_at_tick = idle_cpu(cpu);
3313 trigger_load_balance(rq, cpu);
3314 #endif
3317 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3319 void fastcall add_preempt_count(int val)
3322 * Underflow?
3324 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3325 return;
3326 preempt_count() += val;
3328 * Spinlock count overflowing soon?
3330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3331 PREEMPT_MASK - 10);
3333 EXPORT_SYMBOL(add_preempt_count);
3335 void fastcall sub_preempt_count(int val)
3338 * Underflow?
3340 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3341 return;
3343 * Is the spinlock portion underflowing?
3345 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3346 !(preempt_count() & PREEMPT_MASK)))
3347 return;
3349 preempt_count() -= val;
3351 EXPORT_SYMBOL(sub_preempt_count);
3353 #endif
3356 * Print scheduling while atomic bug:
3358 static noinline void __schedule_bug(struct task_struct *prev)
3360 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3361 prev->comm, preempt_count(), prev->pid);
3362 debug_show_held_locks(prev);
3363 if (irqs_disabled())
3364 print_irqtrace_events(prev);
3365 dump_stack();
3369 * Various schedule()-time debugging checks and statistics:
3371 static inline void schedule_debug(struct task_struct *prev)
3374 * Test if we are atomic. Since do_exit() needs to call into
3375 * schedule() atomically, we ignore that path for now.
3376 * Otherwise, whine if we are scheduling when we should not be.
3378 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3379 __schedule_bug(prev);
3381 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3383 schedstat_inc(this_rq(), sched_cnt);
3387 * Pick up the highest-prio task:
3389 static inline struct task_struct *
3390 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3392 struct sched_class *class;
3393 struct task_struct *p;
3396 * Optimization: we know that if all tasks are in
3397 * the fair class we can call that function directly:
3399 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3400 p = fair_sched_class.pick_next_task(rq, now);
3401 if (likely(p))
3402 return p;
3405 class = sched_class_highest;
3406 for ( ; ; ) {
3407 p = class->pick_next_task(rq, now);
3408 if (p)
3409 return p;
3411 * Will never be NULL as the idle class always
3412 * returns a non-NULL p:
3414 class = class->next;
3419 * schedule() is the main scheduler function.
3421 asmlinkage void __sched schedule(void)
3423 struct task_struct *prev, *next;
3424 long *switch_count;
3425 struct rq *rq;
3426 u64 now;
3427 int cpu;
3429 need_resched:
3430 preempt_disable();
3431 cpu = smp_processor_id();
3432 rq = cpu_rq(cpu);
3433 rcu_qsctr_inc(cpu);
3434 prev = rq->curr;
3435 switch_count = &prev->nivcsw;
3437 release_kernel_lock(prev);
3438 need_resched_nonpreemptible:
3440 schedule_debug(prev);
3442 spin_lock_irq(&rq->lock);
3443 clear_tsk_need_resched(prev);
3444 now = __rq_clock(rq);
3446 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3447 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3448 unlikely(signal_pending(prev)))) {
3449 prev->state = TASK_RUNNING;
3450 } else {
3451 deactivate_task(rq, prev, 1, now);
3453 switch_count = &prev->nvcsw;
3456 if (unlikely(!rq->nr_running))
3457 idle_balance(cpu, rq);
3459 prev->sched_class->put_prev_task(rq, prev, now);
3460 next = pick_next_task(rq, prev, now);
3462 sched_info_switch(prev, next);
3464 if (likely(prev != next)) {
3465 rq->nr_switches++;
3466 rq->curr = next;
3467 ++*switch_count;
3469 context_switch(rq, prev, next); /* unlocks the rq */
3470 } else
3471 spin_unlock_irq(&rq->lock);
3473 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3474 cpu = smp_processor_id();
3475 rq = cpu_rq(cpu);
3476 goto need_resched_nonpreemptible;
3478 preempt_enable_no_resched();
3479 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3480 goto need_resched;
3482 EXPORT_SYMBOL(schedule);
3484 #ifdef CONFIG_PREEMPT
3486 * this is the entry point to schedule() from in-kernel preemption
3487 * off of preempt_enable. Kernel preemptions off return from interrupt
3488 * occur there and call schedule directly.
3490 asmlinkage void __sched preempt_schedule(void)
3492 struct thread_info *ti = current_thread_info();
3493 #ifdef CONFIG_PREEMPT_BKL
3494 struct task_struct *task = current;
3495 int saved_lock_depth;
3496 #endif
3498 * If there is a non-zero preempt_count or interrupts are disabled,
3499 * we do not want to preempt the current task. Just return..
3501 if (likely(ti->preempt_count || irqs_disabled()))
3502 return;
3504 need_resched:
3505 add_preempt_count(PREEMPT_ACTIVE);
3507 * We keep the big kernel semaphore locked, but we
3508 * clear ->lock_depth so that schedule() doesnt
3509 * auto-release the semaphore:
3511 #ifdef CONFIG_PREEMPT_BKL
3512 saved_lock_depth = task->lock_depth;
3513 task->lock_depth = -1;
3514 #endif
3515 schedule();
3516 #ifdef CONFIG_PREEMPT_BKL
3517 task->lock_depth = saved_lock_depth;
3518 #endif
3519 sub_preempt_count(PREEMPT_ACTIVE);
3521 /* we could miss a preemption opportunity between schedule and now */
3522 barrier();
3523 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3524 goto need_resched;
3526 EXPORT_SYMBOL(preempt_schedule);
3529 * this is the entry point to schedule() from kernel preemption
3530 * off of irq context.
3531 * Note, that this is called and return with irqs disabled. This will
3532 * protect us against recursive calling from irq.
3534 asmlinkage void __sched preempt_schedule_irq(void)
3536 struct thread_info *ti = current_thread_info();
3537 #ifdef CONFIG_PREEMPT_BKL
3538 struct task_struct *task = current;
3539 int saved_lock_depth;
3540 #endif
3541 /* Catch callers which need to be fixed */
3542 BUG_ON(ti->preempt_count || !irqs_disabled());
3544 need_resched:
3545 add_preempt_count(PREEMPT_ACTIVE);
3547 * We keep the big kernel semaphore locked, but we
3548 * clear ->lock_depth so that schedule() doesnt
3549 * auto-release the semaphore:
3551 #ifdef CONFIG_PREEMPT_BKL
3552 saved_lock_depth = task->lock_depth;
3553 task->lock_depth = -1;
3554 #endif
3555 local_irq_enable();
3556 schedule();
3557 local_irq_disable();
3558 #ifdef CONFIG_PREEMPT_BKL
3559 task->lock_depth = saved_lock_depth;
3560 #endif
3561 sub_preempt_count(PREEMPT_ACTIVE);
3563 /* we could miss a preemption opportunity between schedule and now */
3564 barrier();
3565 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3566 goto need_resched;
3569 #endif /* CONFIG_PREEMPT */
3571 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3572 void *key)
3574 return try_to_wake_up(curr->private, mode, sync);
3576 EXPORT_SYMBOL(default_wake_function);
3579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3581 * number) then we wake all the non-exclusive tasks and one exclusive task.
3583 * There are circumstances in which we can try to wake a task which has already
3584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3587 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3588 int nr_exclusive, int sync, void *key)
3590 struct list_head *tmp, *next;
3592 list_for_each_safe(tmp, next, &q->task_list) {
3593 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3594 unsigned flags = curr->flags;
3596 if (curr->func(curr, mode, sync, key) &&
3597 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3598 break;
3603 * __wake_up - wake up threads blocked on a waitqueue.
3604 * @q: the waitqueue
3605 * @mode: which threads
3606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3607 * @key: is directly passed to the wakeup function
3609 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3610 int nr_exclusive, void *key)
3612 unsigned long flags;
3614 spin_lock_irqsave(&q->lock, flags);
3615 __wake_up_common(q, mode, nr_exclusive, 0, key);
3616 spin_unlock_irqrestore(&q->lock, flags);
3618 EXPORT_SYMBOL(__wake_up);
3621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3623 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3625 __wake_up_common(q, mode, 1, 0, NULL);
3629 * __wake_up_sync - wake up threads blocked on a waitqueue.
3630 * @q: the waitqueue
3631 * @mode: which threads
3632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3634 * The sync wakeup differs that the waker knows that it will schedule
3635 * away soon, so while the target thread will be woken up, it will not
3636 * be migrated to another CPU - ie. the two threads are 'synchronized'
3637 * with each other. This can prevent needless bouncing between CPUs.
3639 * On UP it can prevent extra preemption.
3641 void fastcall
3642 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3644 unsigned long flags;
3645 int sync = 1;
3647 if (unlikely(!q))
3648 return;
3650 if (unlikely(!nr_exclusive))
3651 sync = 0;
3653 spin_lock_irqsave(&q->lock, flags);
3654 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3655 spin_unlock_irqrestore(&q->lock, flags);
3657 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3659 void fastcall complete(struct completion *x)
3661 unsigned long flags;
3663 spin_lock_irqsave(&x->wait.lock, flags);
3664 x->done++;
3665 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3666 1, 0, NULL);
3667 spin_unlock_irqrestore(&x->wait.lock, flags);
3669 EXPORT_SYMBOL(complete);
3671 void fastcall complete_all(struct completion *x)
3673 unsigned long flags;
3675 spin_lock_irqsave(&x->wait.lock, flags);
3676 x->done += UINT_MAX/2;
3677 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3678 0, 0, NULL);
3679 spin_unlock_irqrestore(&x->wait.lock, flags);
3681 EXPORT_SYMBOL(complete_all);
3683 void fastcall __sched wait_for_completion(struct completion *x)
3685 might_sleep();
3687 spin_lock_irq(&x->wait.lock);
3688 if (!x->done) {
3689 DECLARE_WAITQUEUE(wait, current);
3691 wait.flags |= WQ_FLAG_EXCLUSIVE;
3692 __add_wait_queue_tail(&x->wait, &wait);
3693 do {
3694 __set_current_state(TASK_UNINTERRUPTIBLE);
3695 spin_unlock_irq(&x->wait.lock);
3696 schedule();
3697 spin_lock_irq(&x->wait.lock);
3698 } while (!x->done);
3699 __remove_wait_queue(&x->wait, &wait);
3701 x->done--;
3702 spin_unlock_irq(&x->wait.lock);
3704 EXPORT_SYMBOL(wait_for_completion);
3706 unsigned long fastcall __sched
3707 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3709 might_sleep();
3711 spin_lock_irq(&x->wait.lock);
3712 if (!x->done) {
3713 DECLARE_WAITQUEUE(wait, current);
3715 wait.flags |= WQ_FLAG_EXCLUSIVE;
3716 __add_wait_queue_tail(&x->wait, &wait);
3717 do {
3718 __set_current_state(TASK_UNINTERRUPTIBLE);
3719 spin_unlock_irq(&x->wait.lock);
3720 timeout = schedule_timeout(timeout);
3721 spin_lock_irq(&x->wait.lock);
3722 if (!timeout) {
3723 __remove_wait_queue(&x->wait, &wait);
3724 goto out;
3726 } while (!x->done);
3727 __remove_wait_queue(&x->wait, &wait);
3729 x->done--;
3730 out:
3731 spin_unlock_irq(&x->wait.lock);
3732 return timeout;
3734 EXPORT_SYMBOL(wait_for_completion_timeout);
3736 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3738 int ret = 0;
3740 might_sleep();
3742 spin_lock_irq(&x->wait.lock);
3743 if (!x->done) {
3744 DECLARE_WAITQUEUE(wait, current);
3746 wait.flags |= WQ_FLAG_EXCLUSIVE;
3747 __add_wait_queue_tail(&x->wait, &wait);
3748 do {
3749 if (signal_pending(current)) {
3750 ret = -ERESTARTSYS;
3751 __remove_wait_queue(&x->wait, &wait);
3752 goto out;
3754 __set_current_state(TASK_INTERRUPTIBLE);
3755 spin_unlock_irq(&x->wait.lock);
3756 schedule();
3757 spin_lock_irq(&x->wait.lock);
3758 } while (!x->done);
3759 __remove_wait_queue(&x->wait, &wait);
3761 x->done--;
3762 out:
3763 spin_unlock_irq(&x->wait.lock);
3765 return ret;
3767 EXPORT_SYMBOL(wait_for_completion_interruptible);
3769 unsigned long fastcall __sched
3770 wait_for_completion_interruptible_timeout(struct completion *x,
3771 unsigned long timeout)
3773 might_sleep();
3775 spin_lock_irq(&x->wait.lock);
3776 if (!x->done) {
3777 DECLARE_WAITQUEUE(wait, current);
3779 wait.flags |= WQ_FLAG_EXCLUSIVE;
3780 __add_wait_queue_tail(&x->wait, &wait);
3781 do {
3782 if (signal_pending(current)) {
3783 timeout = -ERESTARTSYS;
3784 __remove_wait_queue(&x->wait, &wait);
3785 goto out;
3787 __set_current_state(TASK_INTERRUPTIBLE);
3788 spin_unlock_irq(&x->wait.lock);
3789 timeout = schedule_timeout(timeout);
3790 spin_lock_irq(&x->wait.lock);
3791 if (!timeout) {
3792 __remove_wait_queue(&x->wait, &wait);
3793 goto out;
3795 } while (!x->done);
3796 __remove_wait_queue(&x->wait, &wait);
3798 x->done--;
3799 out:
3800 spin_unlock_irq(&x->wait.lock);
3801 return timeout;
3803 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3805 static inline void
3806 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3808 spin_lock_irqsave(&q->lock, *flags);
3809 __add_wait_queue(q, wait);
3810 spin_unlock(&q->lock);
3813 static inline void
3814 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3816 spin_lock_irq(&q->lock);
3817 __remove_wait_queue(q, wait);
3818 spin_unlock_irqrestore(&q->lock, *flags);
3821 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3823 unsigned long flags;
3824 wait_queue_t wait;
3826 init_waitqueue_entry(&wait, current);
3828 current->state = TASK_INTERRUPTIBLE;
3830 sleep_on_head(q, &wait, &flags);
3831 schedule();
3832 sleep_on_tail(q, &wait, &flags);
3834 EXPORT_SYMBOL(interruptible_sleep_on);
3836 long __sched
3837 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3839 unsigned long flags;
3840 wait_queue_t wait;
3842 init_waitqueue_entry(&wait, current);
3844 current->state = TASK_INTERRUPTIBLE;
3846 sleep_on_head(q, &wait, &flags);
3847 timeout = schedule_timeout(timeout);
3848 sleep_on_tail(q, &wait, &flags);
3850 return timeout;
3852 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3854 void __sched sleep_on(wait_queue_head_t *q)
3856 unsigned long flags;
3857 wait_queue_t wait;
3859 init_waitqueue_entry(&wait, current);
3861 current->state = TASK_UNINTERRUPTIBLE;
3863 sleep_on_head(q, &wait, &flags);
3864 schedule();
3865 sleep_on_tail(q, &wait, &flags);
3867 EXPORT_SYMBOL(sleep_on);
3869 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3871 unsigned long flags;
3872 wait_queue_t wait;
3874 init_waitqueue_entry(&wait, current);
3876 current->state = TASK_UNINTERRUPTIBLE;
3878 sleep_on_head(q, &wait, &flags);
3879 timeout = schedule_timeout(timeout);
3880 sleep_on_tail(q, &wait, &flags);
3882 return timeout;
3884 EXPORT_SYMBOL(sleep_on_timeout);
3886 #ifdef CONFIG_RT_MUTEXES
3889 * rt_mutex_setprio - set the current priority of a task
3890 * @p: task
3891 * @prio: prio value (kernel-internal form)
3893 * This function changes the 'effective' priority of a task. It does
3894 * not touch ->normal_prio like __setscheduler().
3896 * Used by the rt_mutex code to implement priority inheritance logic.
3898 void rt_mutex_setprio(struct task_struct *p, int prio)
3900 unsigned long flags;
3901 int oldprio, on_rq;
3902 struct rq *rq;
3903 u64 now;
3905 BUG_ON(prio < 0 || prio > MAX_PRIO);
3907 rq = task_rq_lock(p, &flags);
3908 now = rq_clock(rq);
3910 oldprio = p->prio;
3911 on_rq = p->se.on_rq;
3912 if (on_rq)
3913 dequeue_task(rq, p, 0, now);
3915 if (rt_prio(prio))
3916 p->sched_class = &rt_sched_class;
3917 else
3918 p->sched_class = &fair_sched_class;
3920 p->prio = prio;
3922 if (on_rq) {
3923 enqueue_task(rq, p, 0, now);
3925 * Reschedule if we are currently running on this runqueue and
3926 * our priority decreased, or if we are not currently running on
3927 * this runqueue and our priority is higher than the current's
3929 if (task_running(rq, p)) {
3930 if (p->prio > oldprio)
3931 resched_task(rq->curr);
3932 } else {
3933 check_preempt_curr(rq, p);
3936 task_rq_unlock(rq, &flags);
3939 #endif
3941 void set_user_nice(struct task_struct *p, long nice)
3943 int old_prio, delta, on_rq;
3944 unsigned long flags;
3945 struct rq *rq;
3946 u64 now;
3948 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3949 return;
3951 * We have to be careful, if called from sys_setpriority(),
3952 * the task might be in the middle of scheduling on another CPU.
3954 rq = task_rq_lock(p, &flags);
3955 now = rq_clock(rq);
3957 * The RT priorities are set via sched_setscheduler(), but we still
3958 * allow the 'normal' nice value to be set - but as expected
3959 * it wont have any effect on scheduling until the task is
3960 * SCHED_FIFO/SCHED_RR:
3962 if (task_has_rt_policy(p)) {
3963 p->static_prio = NICE_TO_PRIO(nice);
3964 goto out_unlock;
3966 on_rq = p->se.on_rq;
3967 if (on_rq) {
3968 dequeue_task(rq, p, 0, now);
3969 dec_load(rq, p, now);
3972 p->static_prio = NICE_TO_PRIO(nice);
3973 set_load_weight(p);
3974 old_prio = p->prio;
3975 p->prio = effective_prio(p);
3976 delta = p->prio - old_prio;
3978 if (on_rq) {
3979 enqueue_task(rq, p, 0, now);
3980 inc_load(rq, p, now);
3982 * If the task increased its priority or is running and
3983 * lowered its priority, then reschedule its CPU:
3985 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3986 resched_task(rq->curr);
3988 out_unlock:
3989 task_rq_unlock(rq, &flags);
3991 EXPORT_SYMBOL(set_user_nice);
3994 * can_nice - check if a task can reduce its nice value
3995 * @p: task
3996 * @nice: nice value
3998 int can_nice(const struct task_struct *p, const int nice)
4000 /* convert nice value [19,-20] to rlimit style value [1,40] */
4001 int nice_rlim = 20 - nice;
4003 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4004 capable(CAP_SYS_NICE));
4007 #ifdef __ARCH_WANT_SYS_NICE
4010 * sys_nice - change the priority of the current process.
4011 * @increment: priority increment
4013 * sys_setpriority is a more generic, but much slower function that
4014 * does similar things.
4016 asmlinkage long sys_nice(int increment)
4018 long nice, retval;
4021 * Setpriority might change our priority at the same moment.
4022 * We don't have to worry. Conceptually one call occurs first
4023 * and we have a single winner.
4025 if (increment < -40)
4026 increment = -40;
4027 if (increment > 40)
4028 increment = 40;
4030 nice = PRIO_TO_NICE(current->static_prio) + increment;
4031 if (nice < -20)
4032 nice = -20;
4033 if (nice > 19)
4034 nice = 19;
4036 if (increment < 0 && !can_nice(current, nice))
4037 return -EPERM;
4039 retval = security_task_setnice(current, nice);
4040 if (retval)
4041 return retval;
4043 set_user_nice(current, nice);
4044 return 0;
4047 #endif
4050 * task_prio - return the priority value of a given task.
4051 * @p: the task in question.
4053 * This is the priority value as seen by users in /proc.
4054 * RT tasks are offset by -200. Normal tasks are centered
4055 * around 0, value goes from -16 to +15.
4057 int task_prio(const struct task_struct *p)
4059 return p->prio - MAX_RT_PRIO;
4063 * task_nice - return the nice value of a given task.
4064 * @p: the task in question.
4066 int task_nice(const struct task_struct *p)
4068 return TASK_NICE(p);
4070 EXPORT_SYMBOL_GPL(task_nice);
4073 * idle_cpu - is a given cpu idle currently?
4074 * @cpu: the processor in question.
4076 int idle_cpu(int cpu)
4078 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4082 * idle_task - return the idle task for a given cpu.
4083 * @cpu: the processor in question.
4085 struct task_struct *idle_task(int cpu)
4087 return cpu_rq(cpu)->idle;
4091 * find_process_by_pid - find a process with a matching PID value.
4092 * @pid: the pid in question.
4094 static inline struct task_struct *find_process_by_pid(pid_t pid)
4096 return pid ? find_task_by_pid(pid) : current;
4099 /* Actually do priority change: must hold rq lock. */
4100 static void
4101 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4103 BUG_ON(p->se.on_rq);
4105 p->policy = policy;
4106 switch (p->policy) {
4107 case SCHED_NORMAL:
4108 case SCHED_BATCH:
4109 case SCHED_IDLE:
4110 p->sched_class = &fair_sched_class;
4111 break;
4112 case SCHED_FIFO:
4113 case SCHED_RR:
4114 p->sched_class = &rt_sched_class;
4115 break;
4118 p->rt_priority = prio;
4119 p->normal_prio = normal_prio(p);
4120 /* we are holding p->pi_lock already */
4121 p->prio = rt_mutex_getprio(p);
4122 set_load_weight(p);
4126 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4127 * @p: the task in question.
4128 * @policy: new policy.
4129 * @param: structure containing the new RT priority.
4131 * NOTE that the task may be already dead.
4133 int sched_setscheduler(struct task_struct *p, int policy,
4134 struct sched_param *param)
4136 int retval, oldprio, oldpolicy = -1, on_rq;
4137 unsigned long flags;
4138 struct rq *rq;
4140 /* may grab non-irq protected spin_locks */
4141 BUG_ON(in_interrupt());
4142 recheck:
4143 /* double check policy once rq lock held */
4144 if (policy < 0)
4145 policy = oldpolicy = p->policy;
4146 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4147 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4148 policy != SCHED_IDLE)
4149 return -EINVAL;
4151 * Valid priorities for SCHED_FIFO and SCHED_RR are
4152 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4153 * SCHED_BATCH and SCHED_IDLE is 0.
4155 if (param->sched_priority < 0 ||
4156 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4157 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4158 return -EINVAL;
4159 if (rt_policy(policy) != (param->sched_priority != 0))
4160 return -EINVAL;
4163 * Allow unprivileged RT tasks to decrease priority:
4165 if (!capable(CAP_SYS_NICE)) {
4166 if (rt_policy(policy)) {
4167 unsigned long rlim_rtprio;
4169 if (!lock_task_sighand(p, &flags))
4170 return -ESRCH;
4171 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4172 unlock_task_sighand(p, &flags);
4174 /* can't set/change the rt policy */
4175 if (policy != p->policy && !rlim_rtprio)
4176 return -EPERM;
4178 /* can't increase priority */
4179 if (param->sched_priority > p->rt_priority &&
4180 param->sched_priority > rlim_rtprio)
4181 return -EPERM;
4184 * Like positive nice levels, dont allow tasks to
4185 * move out of SCHED_IDLE either:
4187 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4188 return -EPERM;
4190 /* can't change other user's priorities */
4191 if ((current->euid != p->euid) &&
4192 (current->euid != p->uid))
4193 return -EPERM;
4196 retval = security_task_setscheduler(p, policy, param);
4197 if (retval)
4198 return retval;
4200 * make sure no PI-waiters arrive (or leave) while we are
4201 * changing the priority of the task:
4203 spin_lock_irqsave(&p->pi_lock, flags);
4205 * To be able to change p->policy safely, the apropriate
4206 * runqueue lock must be held.
4208 rq = __task_rq_lock(p);
4209 /* recheck policy now with rq lock held */
4210 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4211 policy = oldpolicy = -1;
4212 __task_rq_unlock(rq);
4213 spin_unlock_irqrestore(&p->pi_lock, flags);
4214 goto recheck;
4216 on_rq = p->se.on_rq;
4217 if (on_rq)
4218 deactivate_task(rq, p, 0, rq_clock(rq));
4219 oldprio = p->prio;
4220 __setscheduler(rq, p, policy, param->sched_priority);
4221 if (on_rq) {
4222 activate_task(rq, p, 0);
4224 * Reschedule if we are currently running on this runqueue and
4225 * our priority decreased, or if we are not currently running on
4226 * this runqueue and our priority is higher than the current's
4228 if (task_running(rq, p)) {
4229 if (p->prio > oldprio)
4230 resched_task(rq->curr);
4231 } else {
4232 check_preempt_curr(rq, p);
4235 __task_rq_unlock(rq);
4236 spin_unlock_irqrestore(&p->pi_lock, flags);
4238 rt_mutex_adjust_pi(p);
4240 return 0;
4242 EXPORT_SYMBOL_GPL(sched_setscheduler);
4244 static int
4245 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4247 struct sched_param lparam;
4248 struct task_struct *p;
4249 int retval;
4251 if (!param || pid < 0)
4252 return -EINVAL;
4253 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4254 return -EFAULT;
4256 rcu_read_lock();
4257 retval = -ESRCH;
4258 p = find_process_by_pid(pid);
4259 if (p != NULL)
4260 retval = sched_setscheduler(p, policy, &lparam);
4261 rcu_read_unlock();
4263 return retval;
4267 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4268 * @pid: the pid in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4272 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4273 struct sched_param __user *param)
4275 /* negative values for policy are not valid */
4276 if (policy < 0)
4277 return -EINVAL;
4279 return do_sched_setscheduler(pid, policy, param);
4283 * sys_sched_setparam - set/change the RT priority of a thread
4284 * @pid: the pid in question.
4285 * @param: structure containing the new RT priority.
4287 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4289 return do_sched_setscheduler(pid, -1, param);
4293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4294 * @pid: the pid in question.
4296 asmlinkage long sys_sched_getscheduler(pid_t pid)
4298 struct task_struct *p;
4299 int retval = -EINVAL;
4301 if (pid < 0)
4302 goto out_nounlock;
4304 retval = -ESRCH;
4305 read_lock(&tasklist_lock);
4306 p = find_process_by_pid(pid);
4307 if (p) {
4308 retval = security_task_getscheduler(p);
4309 if (!retval)
4310 retval = p->policy;
4312 read_unlock(&tasklist_lock);
4314 out_nounlock:
4315 return retval;
4319 * sys_sched_getscheduler - get the RT priority of a thread
4320 * @pid: the pid in question.
4321 * @param: structure containing the RT priority.
4323 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4325 struct sched_param lp;
4326 struct task_struct *p;
4327 int retval = -EINVAL;
4329 if (!param || pid < 0)
4330 goto out_nounlock;
4332 read_lock(&tasklist_lock);
4333 p = find_process_by_pid(pid);
4334 retval = -ESRCH;
4335 if (!p)
4336 goto out_unlock;
4338 retval = security_task_getscheduler(p);
4339 if (retval)
4340 goto out_unlock;
4342 lp.sched_priority = p->rt_priority;
4343 read_unlock(&tasklist_lock);
4346 * This one might sleep, we cannot do it with a spinlock held ...
4348 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4350 out_nounlock:
4351 return retval;
4353 out_unlock:
4354 read_unlock(&tasklist_lock);
4355 return retval;
4358 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4360 cpumask_t cpus_allowed;
4361 struct task_struct *p;
4362 int retval;
4364 mutex_lock(&sched_hotcpu_mutex);
4365 read_lock(&tasklist_lock);
4367 p = find_process_by_pid(pid);
4368 if (!p) {
4369 read_unlock(&tasklist_lock);
4370 mutex_unlock(&sched_hotcpu_mutex);
4371 return -ESRCH;
4375 * It is not safe to call set_cpus_allowed with the
4376 * tasklist_lock held. We will bump the task_struct's
4377 * usage count and then drop tasklist_lock.
4379 get_task_struct(p);
4380 read_unlock(&tasklist_lock);
4382 retval = -EPERM;
4383 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4384 !capable(CAP_SYS_NICE))
4385 goto out_unlock;
4387 retval = security_task_setscheduler(p, 0, NULL);
4388 if (retval)
4389 goto out_unlock;
4391 cpus_allowed = cpuset_cpus_allowed(p);
4392 cpus_and(new_mask, new_mask, cpus_allowed);
4393 retval = set_cpus_allowed(p, new_mask);
4395 out_unlock:
4396 put_task_struct(p);
4397 mutex_unlock(&sched_hotcpu_mutex);
4398 return retval;
4401 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4402 cpumask_t *new_mask)
4404 if (len < sizeof(cpumask_t)) {
4405 memset(new_mask, 0, sizeof(cpumask_t));
4406 } else if (len > sizeof(cpumask_t)) {
4407 len = sizeof(cpumask_t);
4409 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4413 * sys_sched_setaffinity - set the cpu affinity of a process
4414 * @pid: pid of the process
4415 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4416 * @user_mask_ptr: user-space pointer to the new cpu mask
4418 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4419 unsigned long __user *user_mask_ptr)
4421 cpumask_t new_mask;
4422 int retval;
4424 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4425 if (retval)
4426 return retval;
4428 return sched_setaffinity(pid, new_mask);
4432 * Represents all cpu's present in the system
4433 * In systems capable of hotplug, this map could dynamically grow
4434 * as new cpu's are detected in the system via any platform specific
4435 * method, such as ACPI for e.g.
4438 cpumask_t cpu_present_map __read_mostly;
4439 EXPORT_SYMBOL(cpu_present_map);
4441 #ifndef CONFIG_SMP
4442 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4443 EXPORT_SYMBOL(cpu_online_map);
4445 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4446 EXPORT_SYMBOL(cpu_possible_map);
4447 #endif
4449 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4451 struct task_struct *p;
4452 int retval;
4454 mutex_lock(&sched_hotcpu_mutex);
4455 read_lock(&tasklist_lock);
4457 retval = -ESRCH;
4458 p = find_process_by_pid(pid);
4459 if (!p)
4460 goto out_unlock;
4462 retval = security_task_getscheduler(p);
4463 if (retval)
4464 goto out_unlock;
4466 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4468 out_unlock:
4469 read_unlock(&tasklist_lock);
4470 mutex_unlock(&sched_hotcpu_mutex);
4472 return retval;
4476 * sys_sched_getaffinity - get the cpu affinity of a process
4477 * @pid: pid of the process
4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4481 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4482 unsigned long __user *user_mask_ptr)
4484 int ret;
4485 cpumask_t mask;
4487 if (len < sizeof(cpumask_t))
4488 return -EINVAL;
4490 ret = sched_getaffinity(pid, &mask);
4491 if (ret < 0)
4492 return ret;
4494 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4495 return -EFAULT;
4497 return sizeof(cpumask_t);
4501 * sys_sched_yield - yield the current processor to other threads.
4503 * This function yields the current CPU to other tasks. If there are no
4504 * other threads running on this CPU then this function will return.
4506 asmlinkage long sys_sched_yield(void)
4508 struct rq *rq = this_rq_lock();
4510 schedstat_inc(rq, yld_cnt);
4511 if (unlikely(rq->nr_running == 1))
4512 schedstat_inc(rq, yld_act_empty);
4513 else
4514 current->sched_class->yield_task(rq, current);
4517 * Since we are going to call schedule() anyway, there's
4518 * no need to preempt or enable interrupts:
4520 __release(rq->lock);
4521 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4522 _raw_spin_unlock(&rq->lock);
4523 preempt_enable_no_resched();
4525 schedule();
4527 return 0;
4530 static void __cond_resched(void)
4532 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4533 __might_sleep(__FILE__, __LINE__);
4534 #endif
4536 * The BKS might be reacquired before we have dropped
4537 * PREEMPT_ACTIVE, which could trigger a second
4538 * cond_resched() call.
4540 do {
4541 add_preempt_count(PREEMPT_ACTIVE);
4542 schedule();
4543 sub_preempt_count(PREEMPT_ACTIVE);
4544 } while (need_resched());
4547 int __sched cond_resched(void)
4549 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4550 system_state == SYSTEM_RUNNING) {
4551 __cond_resched();
4552 return 1;
4554 return 0;
4556 EXPORT_SYMBOL(cond_resched);
4559 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4560 * call schedule, and on return reacquire the lock.
4562 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4563 * operations here to prevent schedule() from being called twice (once via
4564 * spin_unlock(), once by hand).
4566 int cond_resched_lock(spinlock_t *lock)
4568 int ret = 0;
4570 if (need_lockbreak(lock)) {
4571 spin_unlock(lock);
4572 cpu_relax();
4573 ret = 1;
4574 spin_lock(lock);
4576 if (need_resched() && system_state == SYSTEM_RUNNING) {
4577 spin_release(&lock->dep_map, 1, _THIS_IP_);
4578 _raw_spin_unlock(lock);
4579 preempt_enable_no_resched();
4580 __cond_resched();
4581 ret = 1;
4582 spin_lock(lock);
4584 return ret;
4586 EXPORT_SYMBOL(cond_resched_lock);
4588 int __sched cond_resched_softirq(void)
4590 BUG_ON(!in_softirq());
4592 if (need_resched() && system_state == SYSTEM_RUNNING) {
4593 local_bh_enable();
4594 __cond_resched();
4595 local_bh_disable();
4596 return 1;
4598 return 0;
4600 EXPORT_SYMBOL(cond_resched_softirq);
4603 * yield - yield the current processor to other threads.
4605 * This is a shortcut for kernel-space yielding - it marks the
4606 * thread runnable and calls sys_sched_yield().
4608 void __sched yield(void)
4610 set_current_state(TASK_RUNNING);
4611 sys_sched_yield();
4613 EXPORT_SYMBOL(yield);
4616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4617 * that process accounting knows that this is a task in IO wait state.
4619 * But don't do that if it is a deliberate, throttling IO wait (this task
4620 * has set its backing_dev_info: the queue against which it should throttle)
4622 void __sched io_schedule(void)
4624 struct rq *rq = &__raw_get_cpu_var(runqueues);
4626 delayacct_blkio_start();
4627 atomic_inc(&rq->nr_iowait);
4628 schedule();
4629 atomic_dec(&rq->nr_iowait);
4630 delayacct_blkio_end();
4632 EXPORT_SYMBOL(io_schedule);
4634 long __sched io_schedule_timeout(long timeout)
4636 struct rq *rq = &__raw_get_cpu_var(runqueues);
4637 long ret;
4639 delayacct_blkio_start();
4640 atomic_inc(&rq->nr_iowait);
4641 ret = schedule_timeout(timeout);
4642 atomic_dec(&rq->nr_iowait);
4643 delayacct_blkio_end();
4644 return ret;
4648 * sys_sched_get_priority_max - return maximum RT priority.
4649 * @policy: scheduling class.
4651 * this syscall returns the maximum rt_priority that can be used
4652 * by a given scheduling class.
4654 asmlinkage long sys_sched_get_priority_max(int policy)
4656 int ret = -EINVAL;
4658 switch (policy) {
4659 case SCHED_FIFO:
4660 case SCHED_RR:
4661 ret = MAX_USER_RT_PRIO-1;
4662 break;
4663 case SCHED_NORMAL:
4664 case SCHED_BATCH:
4665 case SCHED_IDLE:
4666 ret = 0;
4667 break;
4669 return ret;
4673 * sys_sched_get_priority_min - return minimum RT priority.
4674 * @policy: scheduling class.
4676 * this syscall returns the minimum rt_priority that can be used
4677 * by a given scheduling class.
4679 asmlinkage long sys_sched_get_priority_min(int policy)
4681 int ret = -EINVAL;
4683 switch (policy) {
4684 case SCHED_FIFO:
4685 case SCHED_RR:
4686 ret = 1;
4687 break;
4688 case SCHED_NORMAL:
4689 case SCHED_BATCH:
4690 case SCHED_IDLE:
4691 ret = 0;
4693 return ret;
4697 * sys_sched_rr_get_interval - return the default timeslice of a process.
4698 * @pid: pid of the process.
4699 * @interval: userspace pointer to the timeslice value.
4701 * this syscall writes the default timeslice value of a given process
4702 * into the user-space timespec buffer. A value of '0' means infinity.
4704 asmlinkage
4705 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4707 struct task_struct *p;
4708 int retval = -EINVAL;
4709 struct timespec t;
4711 if (pid < 0)
4712 goto out_nounlock;
4714 retval = -ESRCH;
4715 read_lock(&tasklist_lock);
4716 p = find_process_by_pid(pid);
4717 if (!p)
4718 goto out_unlock;
4720 retval = security_task_getscheduler(p);
4721 if (retval)
4722 goto out_unlock;
4724 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4725 0 : static_prio_timeslice(p->static_prio), &t);
4726 read_unlock(&tasklist_lock);
4727 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4728 out_nounlock:
4729 return retval;
4730 out_unlock:
4731 read_unlock(&tasklist_lock);
4732 return retval;
4735 static const char stat_nam[] = "RSDTtZX";
4737 static void show_task(struct task_struct *p)
4739 unsigned long free = 0;
4740 unsigned state;
4742 state = p->state ? __ffs(p->state) + 1 : 0;
4743 printk("%-13.13s %c", p->comm,
4744 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4745 #if BITS_PER_LONG == 32
4746 if (state == TASK_RUNNING)
4747 printk(" running ");
4748 else
4749 printk(" %08lx ", thread_saved_pc(p));
4750 #else
4751 if (state == TASK_RUNNING)
4752 printk(" running task ");
4753 else
4754 printk(" %016lx ", thread_saved_pc(p));
4755 #endif
4756 #ifdef CONFIG_DEBUG_STACK_USAGE
4758 unsigned long *n = end_of_stack(p);
4759 while (!*n)
4760 n++;
4761 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4763 #endif
4764 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4766 if (state != TASK_RUNNING)
4767 show_stack(p, NULL);
4770 void show_state_filter(unsigned long state_filter)
4772 struct task_struct *g, *p;
4774 #if BITS_PER_LONG == 32
4775 printk(KERN_INFO
4776 " task PC stack pid father\n");
4777 #else
4778 printk(KERN_INFO
4779 " task PC stack pid father\n");
4780 #endif
4781 read_lock(&tasklist_lock);
4782 do_each_thread(g, p) {
4784 * reset the NMI-timeout, listing all files on a slow
4785 * console might take alot of time:
4787 touch_nmi_watchdog();
4788 if (!state_filter || (p->state & state_filter))
4789 show_task(p);
4790 } while_each_thread(g, p);
4792 touch_all_softlockup_watchdogs();
4794 #ifdef CONFIG_SCHED_DEBUG
4795 sysrq_sched_debug_show();
4796 #endif
4797 read_unlock(&tasklist_lock);
4799 * Only show locks if all tasks are dumped:
4801 if (state_filter == -1)
4802 debug_show_all_locks();
4805 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4807 idle->sched_class = &idle_sched_class;
4811 * init_idle - set up an idle thread for a given CPU
4812 * @idle: task in question
4813 * @cpu: cpu the idle task belongs to
4815 * NOTE: this function does not set the idle thread's NEED_RESCHED
4816 * flag, to make booting more robust.
4818 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4820 struct rq *rq = cpu_rq(cpu);
4821 unsigned long flags;
4823 __sched_fork(idle);
4824 idle->se.exec_start = sched_clock();
4826 idle->prio = idle->normal_prio = MAX_PRIO;
4827 idle->cpus_allowed = cpumask_of_cpu(cpu);
4828 __set_task_cpu(idle, cpu);
4830 spin_lock_irqsave(&rq->lock, flags);
4831 rq->curr = rq->idle = idle;
4832 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4833 idle->oncpu = 1;
4834 #endif
4835 spin_unlock_irqrestore(&rq->lock, flags);
4837 /* Set the preempt count _outside_ the spinlocks! */
4838 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4839 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4840 #else
4841 task_thread_info(idle)->preempt_count = 0;
4842 #endif
4844 * The idle tasks have their own, simple scheduling class:
4846 idle->sched_class = &idle_sched_class;
4850 * In a system that switches off the HZ timer nohz_cpu_mask
4851 * indicates which cpus entered this state. This is used
4852 * in the rcu update to wait only for active cpus. For system
4853 * which do not switch off the HZ timer nohz_cpu_mask should
4854 * always be CPU_MASK_NONE.
4856 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4859 * Increase the granularity value when there are more CPUs,
4860 * because with more CPUs the 'effective latency' as visible
4861 * to users decreases. But the relationship is not linear,
4862 * so pick a second-best guess by going with the log2 of the
4863 * number of CPUs.
4865 * This idea comes from the SD scheduler of Con Kolivas:
4867 static inline void sched_init_granularity(void)
4869 unsigned int factor = 1 + ilog2(num_online_cpus());
4870 const unsigned long gran_limit = 100000000;
4872 sysctl_sched_granularity *= factor;
4873 if (sysctl_sched_granularity > gran_limit)
4874 sysctl_sched_granularity = gran_limit;
4876 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4877 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4880 #ifdef CONFIG_SMP
4882 * This is how migration works:
4884 * 1) we queue a struct migration_req structure in the source CPU's
4885 * runqueue and wake up that CPU's migration thread.
4886 * 2) we down() the locked semaphore => thread blocks.
4887 * 3) migration thread wakes up (implicitly it forces the migrated
4888 * thread off the CPU)
4889 * 4) it gets the migration request and checks whether the migrated
4890 * task is still in the wrong runqueue.
4891 * 5) if it's in the wrong runqueue then the migration thread removes
4892 * it and puts it into the right queue.
4893 * 6) migration thread up()s the semaphore.
4894 * 7) we wake up and the migration is done.
4898 * Change a given task's CPU affinity. Migrate the thread to a
4899 * proper CPU and schedule it away if the CPU it's executing on
4900 * is removed from the allowed bitmask.
4902 * NOTE: the caller must have a valid reference to the task, the
4903 * task must not exit() & deallocate itself prematurely. The
4904 * call is not atomic; no spinlocks may be held.
4906 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4908 struct migration_req req;
4909 unsigned long flags;
4910 struct rq *rq;
4911 int ret = 0;
4913 rq = task_rq_lock(p, &flags);
4914 if (!cpus_intersects(new_mask, cpu_online_map)) {
4915 ret = -EINVAL;
4916 goto out;
4919 p->cpus_allowed = new_mask;
4920 /* Can the task run on the task's current CPU? If so, we're done */
4921 if (cpu_isset(task_cpu(p), new_mask))
4922 goto out;
4924 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4925 /* Need help from migration thread: drop lock and wait. */
4926 task_rq_unlock(rq, &flags);
4927 wake_up_process(rq->migration_thread);
4928 wait_for_completion(&req.done);
4929 tlb_migrate_finish(p->mm);
4930 return 0;
4932 out:
4933 task_rq_unlock(rq, &flags);
4935 return ret;
4937 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4940 * Move (not current) task off this cpu, onto dest cpu. We're doing
4941 * this because either it can't run here any more (set_cpus_allowed()
4942 * away from this CPU, or CPU going down), or because we're
4943 * attempting to rebalance this task on exec (sched_exec).
4945 * So we race with normal scheduler movements, but that's OK, as long
4946 * as the task is no longer on this CPU.
4948 * Returns non-zero if task was successfully migrated.
4950 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4952 struct rq *rq_dest, *rq_src;
4953 int ret = 0, on_rq;
4955 if (unlikely(cpu_is_offline(dest_cpu)))
4956 return ret;
4958 rq_src = cpu_rq(src_cpu);
4959 rq_dest = cpu_rq(dest_cpu);
4961 double_rq_lock(rq_src, rq_dest);
4962 /* Already moved. */
4963 if (task_cpu(p) != src_cpu)
4964 goto out;
4965 /* Affinity changed (again). */
4966 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4967 goto out;
4969 on_rq = p->se.on_rq;
4970 if (on_rq)
4971 deactivate_task(rq_src, p, 0, rq_clock(rq_src));
4972 set_task_cpu(p, dest_cpu);
4973 if (on_rq) {
4974 activate_task(rq_dest, p, 0);
4975 check_preempt_curr(rq_dest, p);
4977 ret = 1;
4978 out:
4979 double_rq_unlock(rq_src, rq_dest);
4980 return ret;
4984 * migration_thread - this is a highprio system thread that performs
4985 * thread migration by bumping thread off CPU then 'pushing' onto
4986 * another runqueue.
4988 static int migration_thread(void *data)
4990 int cpu = (long)data;
4991 struct rq *rq;
4993 rq = cpu_rq(cpu);
4994 BUG_ON(rq->migration_thread != current);
4996 set_current_state(TASK_INTERRUPTIBLE);
4997 while (!kthread_should_stop()) {
4998 struct migration_req *req;
4999 struct list_head *head;
5001 spin_lock_irq(&rq->lock);
5003 if (cpu_is_offline(cpu)) {
5004 spin_unlock_irq(&rq->lock);
5005 goto wait_to_die;
5008 if (rq->active_balance) {
5009 active_load_balance(rq, cpu);
5010 rq->active_balance = 0;
5013 head = &rq->migration_queue;
5015 if (list_empty(head)) {
5016 spin_unlock_irq(&rq->lock);
5017 schedule();
5018 set_current_state(TASK_INTERRUPTIBLE);
5019 continue;
5021 req = list_entry(head->next, struct migration_req, list);
5022 list_del_init(head->next);
5024 spin_unlock(&rq->lock);
5025 __migrate_task(req->task, cpu, req->dest_cpu);
5026 local_irq_enable();
5028 complete(&req->done);
5030 __set_current_state(TASK_RUNNING);
5031 return 0;
5033 wait_to_die:
5034 /* Wait for kthread_stop */
5035 set_current_state(TASK_INTERRUPTIBLE);
5036 while (!kthread_should_stop()) {
5037 schedule();
5038 set_current_state(TASK_INTERRUPTIBLE);
5040 __set_current_state(TASK_RUNNING);
5041 return 0;
5044 #ifdef CONFIG_HOTPLUG_CPU
5046 * Figure out where task on dead CPU should go, use force if neccessary.
5047 * NOTE: interrupts should be disabled by the caller
5049 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5051 unsigned long flags;
5052 cpumask_t mask;
5053 struct rq *rq;
5054 int dest_cpu;
5056 restart:
5057 /* On same node? */
5058 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5059 cpus_and(mask, mask, p->cpus_allowed);
5060 dest_cpu = any_online_cpu(mask);
5062 /* On any allowed CPU? */
5063 if (dest_cpu == NR_CPUS)
5064 dest_cpu = any_online_cpu(p->cpus_allowed);
5066 /* No more Mr. Nice Guy. */
5067 if (dest_cpu == NR_CPUS) {
5068 rq = task_rq_lock(p, &flags);
5069 cpus_setall(p->cpus_allowed);
5070 dest_cpu = any_online_cpu(p->cpus_allowed);
5071 task_rq_unlock(rq, &flags);
5074 * Don't tell them about moving exiting tasks or
5075 * kernel threads (both mm NULL), since they never
5076 * leave kernel.
5078 if (p->mm && printk_ratelimit())
5079 printk(KERN_INFO "process %d (%s) no "
5080 "longer affine to cpu%d\n",
5081 p->pid, p->comm, dead_cpu);
5083 if (!__migrate_task(p, dead_cpu, dest_cpu))
5084 goto restart;
5088 * While a dead CPU has no uninterruptible tasks queued at this point,
5089 * it might still have a nonzero ->nr_uninterruptible counter, because
5090 * for performance reasons the counter is not stricly tracking tasks to
5091 * their home CPUs. So we just add the counter to another CPU's counter,
5092 * to keep the global sum constant after CPU-down:
5094 static void migrate_nr_uninterruptible(struct rq *rq_src)
5096 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5097 unsigned long flags;
5099 local_irq_save(flags);
5100 double_rq_lock(rq_src, rq_dest);
5101 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5102 rq_src->nr_uninterruptible = 0;
5103 double_rq_unlock(rq_src, rq_dest);
5104 local_irq_restore(flags);
5107 /* Run through task list and migrate tasks from the dead cpu. */
5108 static void migrate_live_tasks(int src_cpu)
5110 struct task_struct *p, *t;
5112 write_lock_irq(&tasklist_lock);
5114 do_each_thread(t, p) {
5115 if (p == current)
5116 continue;
5118 if (task_cpu(p) == src_cpu)
5119 move_task_off_dead_cpu(src_cpu, p);
5120 } while_each_thread(t, p);
5122 write_unlock_irq(&tasklist_lock);
5126 * Schedules idle task to be the next runnable task on current CPU.
5127 * It does so by boosting its priority to highest possible and adding it to
5128 * the _front_ of the runqueue. Used by CPU offline code.
5130 void sched_idle_next(void)
5132 int this_cpu = smp_processor_id();
5133 struct rq *rq = cpu_rq(this_cpu);
5134 struct task_struct *p = rq->idle;
5135 unsigned long flags;
5137 /* cpu has to be offline */
5138 BUG_ON(cpu_online(this_cpu));
5141 * Strictly not necessary since rest of the CPUs are stopped by now
5142 * and interrupts disabled on the current cpu.
5144 spin_lock_irqsave(&rq->lock, flags);
5146 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5148 /* Add idle task to the _front_ of its priority queue: */
5149 activate_idle_task(p, rq);
5151 spin_unlock_irqrestore(&rq->lock, flags);
5155 * Ensures that the idle task is using init_mm right before its cpu goes
5156 * offline.
5158 void idle_task_exit(void)
5160 struct mm_struct *mm = current->active_mm;
5162 BUG_ON(cpu_online(smp_processor_id()));
5164 if (mm != &init_mm)
5165 switch_mm(mm, &init_mm, current);
5166 mmdrop(mm);
5169 /* called under rq->lock with disabled interrupts */
5170 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5172 struct rq *rq = cpu_rq(dead_cpu);
5174 /* Must be exiting, otherwise would be on tasklist. */
5175 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5177 /* Cannot have done final schedule yet: would have vanished. */
5178 BUG_ON(p->state == TASK_DEAD);
5180 get_task_struct(p);
5183 * Drop lock around migration; if someone else moves it,
5184 * that's OK. No task can be added to this CPU, so iteration is
5185 * fine.
5186 * NOTE: interrupts should be left disabled --dev@
5188 spin_unlock(&rq->lock);
5189 move_task_off_dead_cpu(dead_cpu, p);
5190 spin_lock(&rq->lock);
5192 put_task_struct(p);
5195 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5196 static void migrate_dead_tasks(unsigned int dead_cpu)
5198 struct rq *rq = cpu_rq(dead_cpu);
5199 struct task_struct *next;
5201 for ( ; ; ) {
5202 if (!rq->nr_running)
5203 break;
5204 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5205 if (!next)
5206 break;
5207 migrate_dead(dead_cpu, next);
5211 #endif /* CONFIG_HOTPLUG_CPU */
5213 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5215 static struct ctl_table sd_ctl_dir[] = {
5217 .procname = "sched_domain",
5218 .mode = 0755,
5220 {0,},
5223 static struct ctl_table sd_ctl_root[] = {
5225 .procname = "kernel",
5226 .mode = 0755,
5227 .child = sd_ctl_dir,
5229 {0,},
5232 static struct ctl_table *sd_alloc_ctl_entry(int n)
5234 struct ctl_table *entry =
5235 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5237 BUG_ON(!entry);
5238 memset(entry, 0, n * sizeof(struct ctl_table));
5240 return entry;
5243 static void
5244 set_table_entry(struct ctl_table *entry,
5245 const char *procname, void *data, int maxlen,
5246 mode_t mode, proc_handler *proc_handler)
5248 entry->procname = procname;
5249 entry->data = data;
5250 entry->maxlen = maxlen;
5251 entry->mode = mode;
5252 entry->proc_handler = proc_handler;
5255 static struct ctl_table *
5256 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5258 struct ctl_table *table = sd_alloc_ctl_entry(14);
5260 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5261 sizeof(long), 0644, proc_doulongvec_minmax);
5262 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5263 sizeof(long), 0644, proc_doulongvec_minmax);
5264 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5269 sizeof(int), 0644, proc_dointvec_minmax);
5270 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5271 sizeof(int), 0644, proc_dointvec_minmax);
5272 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5273 sizeof(int), 0644, proc_dointvec_minmax);
5274 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5275 sizeof(int), 0644, proc_dointvec_minmax);
5276 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5277 sizeof(int), 0644, proc_dointvec_minmax);
5278 set_table_entry(&table[10], "cache_nice_tries",
5279 &sd->cache_nice_tries,
5280 sizeof(int), 0644, proc_dointvec_minmax);
5281 set_table_entry(&table[12], "flags", &sd->flags,
5282 sizeof(int), 0644, proc_dointvec_minmax);
5284 return table;
5287 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5289 struct ctl_table *entry, *table;
5290 struct sched_domain *sd;
5291 int domain_num = 0, i;
5292 char buf[32];
5294 for_each_domain(cpu, sd)
5295 domain_num++;
5296 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5298 i = 0;
5299 for_each_domain(cpu, sd) {
5300 snprintf(buf, 32, "domain%d", i);
5301 entry->procname = kstrdup(buf, GFP_KERNEL);
5302 entry->mode = 0755;
5303 entry->child = sd_alloc_ctl_domain_table(sd);
5304 entry++;
5305 i++;
5307 return table;
5310 static struct ctl_table_header *sd_sysctl_header;
5311 static void init_sched_domain_sysctl(void)
5313 int i, cpu_num = num_online_cpus();
5314 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5315 char buf[32];
5317 sd_ctl_dir[0].child = entry;
5319 for (i = 0; i < cpu_num; i++, entry++) {
5320 snprintf(buf, 32, "cpu%d", i);
5321 entry->procname = kstrdup(buf, GFP_KERNEL);
5322 entry->mode = 0755;
5323 entry->child = sd_alloc_ctl_cpu_table(i);
5325 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5327 #else
5328 static void init_sched_domain_sysctl(void)
5331 #endif
5334 * migration_call - callback that gets triggered when a CPU is added.
5335 * Here we can start up the necessary migration thread for the new CPU.
5337 static int __cpuinit
5338 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5340 struct task_struct *p;
5341 int cpu = (long)hcpu;
5342 unsigned long flags;
5343 struct rq *rq;
5345 switch (action) {
5346 case CPU_LOCK_ACQUIRE:
5347 mutex_lock(&sched_hotcpu_mutex);
5348 break;
5350 case CPU_UP_PREPARE:
5351 case CPU_UP_PREPARE_FROZEN:
5352 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5353 if (IS_ERR(p))
5354 return NOTIFY_BAD;
5355 kthread_bind(p, cpu);
5356 /* Must be high prio: stop_machine expects to yield to it. */
5357 rq = task_rq_lock(p, &flags);
5358 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5359 task_rq_unlock(rq, &flags);
5360 cpu_rq(cpu)->migration_thread = p;
5361 break;
5363 case CPU_ONLINE:
5364 case CPU_ONLINE_FROZEN:
5365 /* Strictly unneccessary, as first user will wake it. */
5366 wake_up_process(cpu_rq(cpu)->migration_thread);
5367 break;
5369 #ifdef CONFIG_HOTPLUG_CPU
5370 case CPU_UP_CANCELED:
5371 case CPU_UP_CANCELED_FROZEN:
5372 if (!cpu_rq(cpu)->migration_thread)
5373 break;
5374 /* Unbind it from offline cpu so it can run. Fall thru. */
5375 kthread_bind(cpu_rq(cpu)->migration_thread,
5376 any_online_cpu(cpu_online_map));
5377 kthread_stop(cpu_rq(cpu)->migration_thread);
5378 cpu_rq(cpu)->migration_thread = NULL;
5379 break;
5381 case CPU_DEAD:
5382 case CPU_DEAD_FROZEN:
5383 migrate_live_tasks(cpu);
5384 rq = cpu_rq(cpu);
5385 kthread_stop(rq->migration_thread);
5386 rq->migration_thread = NULL;
5387 /* Idle task back to normal (off runqueue, low prio) */
5388 rq = task_rq_lock(rq->idle, &flags);
5389 deactivate_task(rq, rq->idle, 0, rq_clock(rq));
5390 rq->idle->static_prio = MAX_PRIO;
5391 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5392 rq->idle->sched_class = &idle_sched_class;
5393 migrate_dead_tasks(cpu);
5394 task_rq_unlock(rq, &flags);
5395 migrate_nr_uninterruptible(rq);
5396 BUG_ON(rq->nr_running != 0);
5398 /* No need to migrate the tasks: it was best-effort if
5399 * they didn't take sched_hotcpu_mutex. Just wake up
5400 * the requestors. */
5401 spin_lock_irq(&rq->lock);
5402 while (!list_empty(&rq->migration_queue)) {
5403 struct migration_req *req;
5405 req = list_entry(rq->migration_queue.next,
5406 struct migration_req, list);
5407 list_del_init(&req->list);
5408 complete(&req->done);
5410 spin_unlock_irq(&rq->lock);
5411 break;
5412 #endif
5413 case CPU_LOCK_RELEASE:
5414 mutex_unlock(&sched_hotcpu_mutex);
5415 break;
5417 return NOTIFY_OK;
5420 /* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5423 static struct notifier_block __cpuinitdata migration_notifier = {
5424 .notifier_call = migration_call,
5425 .priority = 10
5428 int __init migration_init(void)
5430 void *cpu = (void *)(long)smp_processor_id();
5431 int err;
5433 /* Start one for the boot CPU: */
5434 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5435 BUG_ON(err == NOTIFY_BAD);
5436 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5437 register_cpu_notifier(&migration_notifier);
5439 return 0;
5441 #endif
5443 #ifdef CONFIG_SMP
5445 /* Number of possible processor ids */
5446 int nr_cpu_ids __read_mostly = NR_CPUS;
5447 EXPORT_SYMBOL(nr_cpu_ids);
5449 #undef SCHED_DOMAIN_DEBUG
5450 #ifdef SCHED_DOMAIN_DEBUG
5451 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5453 int level = 0;
5455 if (!sd) {
5456 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5457 return;
5460 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5462 do {
5463 int i;
5464 char str[NR_CPUS];
5465 struct sched_group *group = sd->groups;
5466 cpumask_t groupmask;
5468 cpumask_scnprintf(str, NR_CPUS, sd->span);
5469 cpus_clear(groupmask);
5471 printk(KERN_DEBUG);
5472 for (i = 0; i < level + 1; i++)
5473 printk(" ");
5474 printk("domain %d: ", level);
5476 if (!(sd->flags & SD_LOAD_BALANCE)) {
5477 printk("does not load-balance\n");
5478 if (sd->parent)
5479 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5480 " has parent");
5481 break;
5484 printk("span %s\n", str);
5486 if (!cpu_isset(cpu, sd->span))
5487 printk(KERN_ERR "ERROR: domain->span does not contain "
5488 "CPU%d\n", cpu);
5489 if (!cpu_isset(cpu, group->cpumask))
5490 printk(KERN_ERR "ERROR: domain->groups does not contain"
5491 " CPU%d\n", cpu);
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 2; i++)
5495 printk(" ");
5496 printk("groups:");
5497 do {
5498 if (!group) {
5499 printk("\n");
5500 printk(KERN_ERR "ERROR: group is NULL\n");
5501 break;
5504 if (!group->__cpu_power) {
5505 printk("\n");
5506 printk(KERN_ERR "ERROR: domain->cpu_power not "
5507 "set\n");
5510 if (!cpus_weight(group->cpumask)) {
5511 printk("\n");
5512 printk(KERN_ERR "ERROR: empty group\n");
5515 if (cpus_intersects(groupmask, group->cpumask)) {
5516 printk("\n");
5517 printk(KERN_ERR "ERROR: repeated CPUs\n");
5520 cpus_or(groupmask, groupmask, group->cpumask);
5522 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5523 printk(" %s", str);
5525 group = group->next;
5526 } while (group != sd->groups);
5527 printk("\n");
5529 if (!cpus_equal(sd->span, groupmask))
5530 printk(KERN_ERR "ERROR: groups don't span "
5531 "domain->span\n");
5533 level++;
5534 sd = sd->parent;
5535 if (!sd)
5536 continue;
5538 if (!cpus_subset(groupmask, sd->span))
5539 printk(KERN_ERR "ERROR: parent span is not a superset "
5540 "of domain->span\n");
5542 } while (sd);
5544 #else
5545 # define sched_domain_debug(sd, cpu) do { } while (0)
5546 #endif
5548 static int sd_degenerate(struct sched_domain *sd)
5550 if (cpus_weight(sd->span) == 1)
5551 return 1;
5553 /* Following flags need at least 2 groups */
5554 if (sd->flags & (SD_LOAD_BALANCE |
5555 SD_BALANCE_NEWIDLE |
5556 SD_BALANCE_FORK |
5557 SD_BALANCE_EXEC |
5558 SD_SHARE_CPUPOWER |
5559 SD_SHARE_PKG_RESOURCES)) {
5560 if (sd->groups != sd->groups->next)
5561 return 0;
5564 /* Following flags don't use groups */
5565 if (sd->flags & (SD_WAKE_IDLE |
5566 SD_WAKE_AFFINE |
5567 SD_WAKE_BALANCE))
5568 return 0;
5570 return 1;
5573 static int
5574 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5576 unsigned long cflags = sd->flags, pflags = parent->flags;
5578 if (sd_degenerate(parent))
5579 return 1;
5581 if (!cpus_equal(sd->span, parent->span))
5582 return 0;
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags & SD_WAKE_AFFINE)
5587 pflags &= ~SD_WAKE_BALANCE;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent->groups == parent->groups->next) {
5590 pflags &= ~(SD_LOAD_BALANCE |
5591 SD_BALANCE_NEWIDLE |
5592 SD_BALANCE_FORK |
5593 SD_BALANCE_EXEC |
5594 SD_SHARE_CPUPOWER |
5595 SD_SHARE_PKG_RESOURCES);
5597 if (~cflags & pflags)
5598 return 0;
5600 return 1;
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5607 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5609 struct rq *rq = cpu_rq(cpu);
5610 struct sched_domain *tmp;
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp = sd; tmp; tmp = tmp->parent) {
5614 struct sched_domain *parent = tmp->parent;
5615 if (!parent)
5616 break;
5617 if (sd_parent_degenerate(tmp, parent)) {
5618 tmp->parent = parent->parent;
5619 if (parent->parent)
5620 parent->parent->child = tmp;
5624 if (sd && sd_degenerate(sd)) {
5625 sd = sd->parent;
5626 if (sd)
5627 sd->child = NULL;
5630 sched_domain_debug(sd, cpu);
5632 rcu_assign_pointer(rq->sd, sd);
5635 /* cpus with isolated domains */
5636 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5638 /* Setup the mask of cpus configured for isolated domains */
5639 static int __init isolated_cpu_setup(char *str)
5641 int ints[NR_CPUS], i;
5643 str = get_options(str, ARRAY_SIZE(ints), ints);
5644 cpus_clear(cpu_isolated_map);
5645 for (i = 1; i <= ints[0]; i++)
5646 if (ints[i] < NR_CPUS)
5647 cpu_set(ints[i], cpu_isolated_map);
5648 return 1;
5651 __setup ("isolcpus=", isolated_cpu_setup);
5654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5663 static void
5664 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5665 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5666 struct sched_group **sg))
5668 struct sched_group *first = NULL, *last = NULL;
5669 cpumask_t covered = CPU_MASK_NONE;
5670 int i;
5672 for_each_cpu_mask(i, span) {
5673 struct sched_group *sg;
5674 int group = group_fn(i, cpu_map, &sg);
5675 int j;
5677 if (cpu_isset(i, covered))
5678 continue;
5680 sg->cpumask = CPU_MASK_NONE;
5681 sg->__cpu_power = 0;
5683 for_each_cpu_mask(j, span) {
5684 if (group_fn(j, cpu_map, NULL) != group)
5685 continue;
5687 cpu_set(j, covered);
5688 cpu_set(j, sg->cpumask);
5690 if (!first)
5691 first = sg;
5692 if (last)
5693 last->next = sg;
5694 last = sg;
5696 last->next = first;
5699 #define SD_NODES_PER_DOMAIN 16
5701 #ifdef CONFIG_NUMA
5704 * find_next_best_node - find the next node to include in a sched_domain
5705 * @node: node whose sched_domain we're building
5706 * @used_nodes: nodes already in the sched_domain
5708 * Find the next node to include in a given scheduling domain. Simply
5709 * finds the closest node not already in the @used_nodes map.
5711 * Should use nodemask_t.
5713 static int find_next_best_node(int node, unsigned long *used_nodes)
5715 int i, n, val, min_val, best_node = 0;
5717 min_val = INT_MAX;
5719 for (i = 0; i < MAX_NUMNODES; i++) {
5720 /* Start at @node */
5721 n = (node + i) % MAX_NUMNODES;
5723 if (!nr_cpus_node(n))
5724 continue;
5726 /* Skip already used nodes */
5727 if (test_bit(n, used_nodes))
5728 continue;
5730 /* Simple min distance search */
5731 val = node_distance(node, n);
5733 if (val < min_val) {
5734 min_val = val;
5735 best_node = n;
5739 set_bit(best_node, used_nodes);
5740 return best_node;
5744 * sched_domain_node_span - get a cpumask for a node's sched_domain
5745 * @node: node whose cpumask we're constructing
5746 * @size: number of nodes to include in this span
5748 * Given a node, construct a good cpumask for its sched_domain to span. It
5749 * should be one that prevents unnecessary balancing, but also spreads tasks
5750 * out optimally.
5752 static cpumask_t sched_domain_node_span(int node)
5754 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5755 cpumask_t span, nodemask;
5756 int i;
5758 cpus_clear(span);
5759 bitmap_zero(used_nodes, MAX_NUMNODES);
5761 nodemask = node_to_cpumask(node);
5762 cpus_or(span, span, nodemask);
5763 set_bit(node, used_nodes);
5765 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5766 int next_node = find_next_best_node(node, used_nodes);
5768 nodemask = node_to_cpumask(next_node);
5769 cpus_or(span, span, nodemask);
5772 return span;
5774 #endif
5776 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5779 * SMT sched-domains:
5781 #ifdef CONFIG_SCHED_SMT
5782 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5783 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5785 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5786 struct sched_group **sg)
5788 if (sg)
5789 *sg = &per_cpu(sched_group_cpus, cpu);
5790 return cpu;
5792 #endif
5795 * multi-core sched-domains:
5797 #ifdef CONFIG_SCHED_MC
5798 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5799 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5800 #endif
5802 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5803 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5804 struct sched_group **sg)
5806 int group;
5807 cpumask_t mask = cpu_sibling_map[cpu];
5808 cpus_and(mask, mask, *cpu_map);
5809 group = first_cpu(mask);
5810 if (sg)
5811 *sg = &per_cpu(sched_group_core, group);
5812 return group;
5814 #elif defined(CONFIG_SCHED_MC)
5815 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5816 struct sched_group **sg)
5818 if (sg)
5819 *sg = &per_cpu(sched_group_core, cpu);
5820 return cpu;
5822 #endif
5824 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5825 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5827 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5828 struct sched_group **sg)
5830 int group;
5831 #ifdef CONFIG_SCHED_MC
5832 cpumask_t mask = cpu_coregroup_map(cpu);
5833 cpus_and(mask, mask, *cpu_map);
5834 group = first_cpu(mask);
5835 #elif defined(CONFIG_SCHED_SMT)
5836 cpumask_t mask = cpu_sibling_map[cpu];
5837 cpus_and(mask, mask, *cpu_map);
5838 group = first_cpu(mask);
5839 #else
5840 group = cpu;
5841 #endif
5842 if (sg)
5843 *sg = &per_cpu(sched_group_phys, group);
5844 return group;
5847 #ifdef CONFIG_NUMA
5849 * The init_sched_build_groups can't handle what we want to do with node
5850 * groups, so roll our own. Now each node has its own list of groups which
5851 * gets dynamically allocated.
5853 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5854 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5856 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5857 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5859 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5860 struct sched_group **sg)
5862 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5863 int group;
5865 cpus_and(nodemask, nodemask, *cpu_map);
5866 group = first_cpu(nodemask);
5868 if (sg)
5869 *sg = &per_cpu(sched_group_allnodes, group);
5870 return group;
5873 static void init_numa_sched_groups_power(struct sched_group *group_head)
5875 struct sched_group *sg = group_head;
5876 int j;
5878 if (!sg)
5879 return;
5880 next_sg:
5881 for_each_cpu_mask(j, sg->cpumask) {
5882 struct sched_domain *sd;
5884 sd = &per_cpu(phys_domains, j);
5885 if (j != first_cpu(sd->groups->cpumask)) {
5887 * Only add "power" once for each
5888 * physical package.
5890 continue;
5893 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5895 sg = sg->next;
5896 if (sg != group_head)
5897 goto next_sg;
5899 #endif
5901 #ifdef CONFIG_NUMA
5902 /* Free memory allocated for various sched_group structures */
5903 static void free_sched_groups(const cpumask_t *cpu_map)
5905 int cpu, i;
5907 for_each_cpu_mask(cpu, *cpu_map) {
5908 struct sched_group **sched_group_nodes
5909 = sched_group_nodes_bycpu[cpu];
5911 if (!sched_group_nodes)
5912 continue;
5914 for (i = 0; i < MAX_NUMNODES; i++) {
5915 cpumask_t nodemask = node_to_cpumask(i);
5916 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5918 cpus_and(nodemask, nodemask, *cpu_map);
5919 if (cpus_empty(nodemask))
5920 continue;
5922 if (sg == NULL)
5923 continue;
5924 sg = sg->next;
5925 next_sg:
5926 oldsg = sg;
5927 sg = sg->next;
5928 kfree(oldsg);
5929 if (oldsg != sched_group_nodes[i])
5930 goto next_sg;
5932 kfree(sched_group_nodes);
5933 sched_group_nodes_bycpu[cpu] = NULL;
5936 #else
5937 static void free_sched_groups(const cpumask_t *cpu_map)
5940 #endif
5943 * Initialize sched groups cpu_power.
5945 * cpu_power indicates the capacity of sched group, which is used while
5946 * distributing the load between different sched groups in a sched domain.
5947 * Typically cpu_power for all the groups in a sched domain will be same unless
5948 * there are asymmetries in the topology. If there are asymmetries, group
5949 * having more cpu_power will pickup more load compared to the group having
5950 * less cpu_power.
5952 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5953 * the maximum number of tasks a group can handle in the presence of other idle
5954 * or lightly loaded groups in the same sched domain.
5956 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5958 struct sched_domain *child;
5959 struct sched_group *group;
5961 WARN_ON(!sd || !sd->groups);
5963 if (cpu != first_cpu(sd->groups->cpumask))
5964 return;
5966 child = sd->child;
5968 sd->groups->__cpu_power = 0;
5971 * For perf policy, if the groups in child domain share resources
5972 * (for example cores sharing some portions of the cache hierarchy
5973 * or SMT), then set this domain groups cpu_power such that each group
5974 * can handle only one task, when there are other idle groups in the
5975 * same sched domain.
5977 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5978 (child->flags &
5979 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5980 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5981 return;
5985 * add cpu_power of each child group to this groups cpu_power
5987 group = child->groups;
5988 do {
5989 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5990 group = group->next;
5991 } while (group != child->groups);
5995 * Build sched domains for a given set of cpus and attach the sched domains
5996 * to the individual cpus
5998 static int build_sched_domains(const cpumask_t *cpu_map)
6000 int i;
6001 #ifdef CONFIG_NUMA
6002 struct sched_group **sched_group_nodes = NULL;
6003 int sd_allnodes = 0;
6006 * Allocate the per-node list of sched groups
6008 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6009 GFP_KERNEL);
6010 if (!sched_group_nodes) {
6011 printk(KERN_WARNING "Can not alloc sched group node list\n");
6012 return -ENOMEM;
6014 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6015 #endif
6018 * Set up domains for cpus specified by the cpu_map.
6020 for_each_cpu_mask(i, *cpu_map) {
6021 struct sched_domain *sd = NULL, *p;
6022 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6024 cpus_and(nodemask, nodemask, *cpu_map);
6026 #ifdef CONFIG_NUMA
6027 if (cpus_weight(*cpu_map) >
6028 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6029 sd = &per_cpu(allnodes_domains, i);
6030 *sd = SD_ALLNODES_INIT;
6031 sd->span = *cpu_map;
6032 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6033 p = sd;
6034 sd_allnodes = 1;
6035 } else
6036 p = NULL;
6038 sd = &per_cpu(node_domains, i);
6039 *sd = SD_NODE_INIT;
6040 sd->span = sched_domain_node_span(cpu_to_node(i));
6041 sd->parent = p;
6042 if (p)
6043 p->child = sd;
6044 cpus_and(sd->span, sd->span, *cpu_map);
6045 #endif
6047 p = sd;
6048 sd = &per_cpu(phys_domains, i);
6049 *sd = SD_CPU_INIT;
6050 sd->span = nodemask;
6051 sd->parent = p;
6052 if (p)
6053 p->child = sd;
6054 cpu_to_phys_group(i, cpu_map, &sd->groups);
6056 #ifdef CONFIG_SCHED_MC
6057 p = sd;
6058 sd = &per_cpu(core_domains, i);
6059 *sd = SD_MC_INIT;
6060 sd->span = cpu_coregroup_map(i);
6061 cpus_and(sd->span, sd->span, *cpu_map);
6062 sd->parent = p;
6063 p->child = sd;
6064 cpu_to_core_group(i, cpu_map, &sd->groups);
6065 #endif
6067 #ifdef CONFIG_SCHED_SMT
6068 p = sd;
6069 sd = &per_cpu(cpu_domains, i);
6070 *sd = SD_SIBLING_INIT;
6071 sd->span = cpu_sibling_map[i];
6072 cpus_and(sd->span, sd->span, *cpu_map);
6073 sd->parent = p;
6074 p->child = sd;
6075 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6076 #endif
6079 #ifdef CONFIG_SCHED_SMT
6080 /* Set up CPU (sibling) groups */
6081 for_each_cpu_mask(i, *cpu_map) {
6082 cpumask_t this_sibling_map = cpu_sibling_map[i];
6083 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6084 if (i != first_cpu(this_sibling_map))
6085 continue;
6087 init_sched_build_groups(this_sibling_map, cpu_map,
6088 &cpu_to_cpu_group);
6090 #endif
6092 #ifdef CONFIG_SCHED_MC
6093 /* Set up multi-core groups */
6094 for_each_cpu_mask(i, *cpu_map) {
6095 cpumask_t this_core_map = cpu_coregroup_map(i);
6096 cpus_and(this_core_map, this_core_map, *cpu_map);
6097 if (i != first_cpu(this_core_map))
6098 continue;
6099 init_sched_build_groups(this_core_map, cpu_map,
6100 &cpu_to_core_group);
6102 #endif
6104 /* Set up physical groups */
6105 for (i = 0; i < MAX_NUMNODES; i++) {
6106 cpumask_t nodemask = node_to_cpumask(i);
6108 cpus_and(nodemask, nodemask, *cpu_map);
6109 if (cpus_empty(nodemask))
6110 continue;
6112 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6115 #ifdef CONFIG_NUMA
6116 /* Set up node groups */
6117 if (sd_allnodes)
6118 init_sched_build_groups(*cpu_map, cpu_map,
6119 &cpu_to_allnodes_group);
6121 for (i = 0; i < MAX_NUMNODES; i++) {
6122 /* Set up node groups */
6123 struct sched_group *sg, *prev;
6124 cpumask_t nodemask = node_to_cpumask(i);
6125 cpumask_t domainspan;
6126 cpumask_t covered = CPU_MASK_NONE;
6127 int j;
6129 cpus_and(nodemask, nodemask, *cpu_map);
6130 if (cpus_empty(nodemask)) {
6131 sched_group_nodes[i] = NULL;
6132 continue;
6135 domainspan = sched_domain_node_span(i);
6136 cpus_and(domainspan, domainspan, *cpu_map);
6138 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6139 if (!sg) {
6140 printk(KERN_WARNING "Can not alloc domain group for "
6141 "node %d\n", i);
6142 goto error;
6144 sched_group_nodes[i] = sg;
6145 for_each_cpu_mask(j, nodemask) {
6146 struct sched_domain *sd;
6148 sd = &per_cpu(node_domains, j);
6149 sd->groups = sg;
6151 sg->__cpu_power = 0;
6152 sg->cpumask = nodemask;
6153 sg->next = sg;
6154 cpus_or(covered, covered, nodemask);
6155 prev = sg;
6157 for (j = 0; j < MAX_NUMNODES; j++) {
6158 cpumask_t tmp, notcovered;
6159 int n = (i + j) % MAX_NUMNODES;
6161 cpus_complement(notcovered, covered);
6162 cpus_and(tmp, notcovered, *cpu_map);
6163 cpus_and(tmp, tmp, domainspan);
6164 if (cpus_empty(tmp))
6165 break;
6167 nodemask = node_to_cpumask(n);
6168 cpus_and(tmp, tmp, nodemask);
6169 if (cpus_empty(tmp))
6170 continue;
6172 sg = kmalloc_node(sizeof(struct sched_group),
6173 GFP_KERNEL, i);
6174 if (!sg) {
6175 printk(KERN_WARNING
6176 "Can not alloc domain group for node %d\n", j);
6177 goto error;
6179 sg->__cpu_power = 0;
6180 sg->cpumask = tmp;
6181 sg->next = prev->next;
6182 cpus_or(covered, covered, tmp);
6183 prev->next = sg;
6184 prev = sg;
6187 #endif
6189 /* Calculate CPU power for physical packages and nodes */
6190 #ifdef CONFIG_SCHED_SMT
6191 for_each_cpu_mask(i, *cpu_map) {
6192 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6194 init_sched_groups_power(i, sd);
6196 #endif
6197 #ifdef CONFIG_SCHED_MC
6198 for_each_cpu_mask(i, *cpu_map) {
6199 struct sched_domain *sd = &per_cpu(core_domains, i);
6201 init_sched_groups_power(i, sd);
6203 #endif
6205 for_each_cpu_mask(i, *cpu_map) {
6206 struct sched_domain *sd = &per_cpu(phys_domains, i);
6208 init_sched_groups_power(i, sd);
6211 #ifdef CONFIG_NUMA
6212 for (i = 0; i < MAX_NUMNODES; i++)
6213 init_numa_sched_groups_power(sched_group_nodes[i]);
6215 if (sd_allnodes) {
6216 struct sched_group *sg;
6218 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6219 init_numa_sched_groups_power(sg);
6221 #endif
6223 /* Attach the domains */
6224 for_each_cpu_mask(i, *cpu_map) {
6225 struct sched_domain *sd;
6226 #ifdef CONFIG_SCHED_SMT
6227 sd = &per_cpu(cpu_domains, i);
6228 #elif defined(CONFIG_SCHED_MC)
6229 sd = &per_cpu(core_domains, i);
6230 #else
6231 sd = &per_cpu(phys_domains, i);
6232 #endif
6233 cpu_attach_domain(sd, i);
6236 return 0;
6238 #ifdef CONFIG_NUMA
6239 error:
6240 free_sched_groups(cpu_map);
6241 return -ENOMEM;
6242 #endif
6245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6247 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6249 cpumask_t cpu_default_map;
6250 int err;
6253 * Setup mask for cpus without special case scheduling requirements.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6257 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6259 err = build_sched_domains(&cpu_default_map);
6261 return err;
6264 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6266 free_sched_groups(cpu_map);
6270 * Detach sched domains from a group of cpus specified in cpu_map
6271 * These cpus will now be attached to the NULL domain
6273 static void detach_destroy_domains(const cpumask_t *cpu_map)
6275 int i;
6277 for_each_cpu_mask(i, *cpu_map)
6278 cpu_attach_domain(NULL, i);
6279 synchronize_sched();
6280 arch_destroy_sched_domains(cpu_map);
6284 * Partition sched domains as specified by the cpumasks below.
6285 * This attaches all cpus from the cpumasks to the NULL domain,
6286 * waits for a RCU quiescent period, recalculates sched
6287 * domain information and then attaches them back to the
6288 * correct sched domains
6289 * Call with hotplug lock held
6291 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6293 cpumask_t change_map;
6294 int err = 0;
6296 cpus_and(*partition1, *partition1, cpu_online_map);
6297 cpus_and(*partition2, *partition2, cpu_online_map);
6298 cpus_or(change_map, *partition1, *partition2);
6300 /* Detach sched domains from all of the affected cpus */
6301 detach_destroy_domains(&change_map);
6302 if (!cpus_empty(*partition1))
6303 err = build_sched_domains(partition1);
6304 if (!err && !cpus_empty(*partition2))
6305 err = build_sched_domains(partition2);
6307 return err;
6310 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6311 int arch_reinit_sched_domains(void)
6313 int err;
6315 mutex_lock(&sched_hotcpu_mutex);
6316 detach_destroy_domains(&cpu_online_map);
6317 err = arch_init_sched_domains(&cpu_online_map);
6318 mutex_unlock(&sched_hotcpu_mutex);
6320 return err;
6323 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6325 int ret;
6327 if (buf[0] != '0' && buf[0] != '1')
6328 return -EINVAL;
6330 if (smt)
6331 sched_smt_power_savings = (buf[0] == '1');
6332 else
6333 sched_mc_power_savings = (buf[0] == '1');
6335 ret = arch_reinit_sched_domains();
6337 return ret ? ret : count;
6340 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6342 int err = 0;
6344 #ifdef CONFIG_SCHED_SMT
6345 if (smt_capable())
6346 err = sysfs_create_file(&cls->kset.kobj,
6347 &attr_sched_smt_power_savings.attr);
6348 #endif
6349 #ifdef CONFIG_SCHED_MC
6350 if (!err && mc_capable())
6351 err = sysfs_create_file(&cls->kset.kobj,
6352 &attr_sched_mc_power_savings.attr);
6353 #endif
6354 return err;
6356 #endif
6358 #ifdef CONFIG_SCHED_MC
6359 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6361 return sprintf(page, "%u\n", sched_mc_power_savings);
6363 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6364 const char *buf, size_t count)
6366 return sched_power_savings_store(buf, count, 0);
6368 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6369 sched_mc_power_savings_store);
6370 #endif
6372 #ifdef CONFIG_SCHED_SMT
6373 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6375 return sprintf(page, "%u\n", sched_smt_power_savings);
6377 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6378 const char *buf, size_t count)
6380 return sched_power_savings_store(buf, count, 1);
6382 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6383 sched_smt_power_savings_store);
6384 #endif
6387 * Force a reinitialization of the sched domains hierarchy. The domains
6388 * and groups cannot be updated in place without racing with the balancing
6389 * code, so we temporarily attach all running cpus to the NULL domain
6390 * which will prevent rebalancing while the sched domains are recalculated.
6392 static int update_sched_domains(struct notifier_block *nfb,
6393 unsigned long action, void *hcpu)
6395 switch (action) {
6396 case CPU_UP_PREPARE:
6397 case CPU_UP_PREPARE_FROZEN:
6398 case CPU_DOWN_PREPARE:
6399 case CPU_DOWN_PREPARE_FROZEN:
6400 detach_destroy_domains(&cpu_online_map);
6401 return NOTIFY_OK;
6403 case CPU_UP_CANCELED:
6404 case CPU_UP_CANCELED_FROZEN:
6405 case CPU_DOWN_FAILED:
6406 case CPU_DOWN_FAILED_FROZEN:
6407 case CPU_ONLINE:
6408 case CPU_ONLINE_FROZEN:
6409 case CPU_DEAD:
6410 case CPU_DEAD_FROZEN:
6412 * Fall through and re-initialise the domains.
6414 break;
6415 default:
6416 return NOTIFY_DONE;
6419 /* The hotplug lock is already held by cpu_up/cpu_down */
6420 arch_init_sched_domains(&cpu_online_map);
6422 return NOTIFY_OK;
6425 void __init sched_init_smp(void)
6427 cpumask_t non_isolated_cpus;
6429 mutex_lock(&sched_hotcpu_mutex);
6430 arch_init_sched_domains(&cpu_online_map);
6431 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6432 if (cpus_empty(non_isolated_cpus))
6433 cpu_set(smp_processor_id(), non_isolated_cpus);
6434 mutex_unlock(&sched_hotcpu_mutex);
6435 /* XXX: Theoretical race here - CPU may be hotplugged now */
6436 hotcpu_notifier(update_sched_domains, 0);
6438 init_sched_domain_sysctl();
6440 /* Move init over to a non-isolated CPU */
6441 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6442 BUG();
6443 sched_init_granularity();
6445 #else
6446 void __init sched_init_smp(void)
6448 sched_init_granularity();
6450 #endif /* CONFIG_SMP */
6452 int in_sched_functions(unsigned long addr)
6454 /* Linker adds these: start and end of __sched functions */
6455 extern char __sched_text_start[], __sched_text_end[];
6457 return in_lock_functions(addr) ||
6458 (addr >= (unsigned long)__sched_text_start
6459 && addr < (unsigned long)__sched_text_end);
6462 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6464 cfs_rq->tasks_timeline = RB_ROOT;
6465 cfs_rq->fair_clock = 1;
6466 #ifdef CONFIG_FAIR_GROUP_SCHED
6467 cfs_rq->rq = rq;
6468 #endif
6471 void __init sched_init(void)
6473 u64 now = sched_clock();
6474 int highest_cpu = 0;
6475 int i, j;
6478 * Link up the scheduling class hierarchy:
6480 rt_sched_class.next = &fair_sched_class;
6481 fair_sched_class.next = &idle_sched_class;
6482 idle_sched_class.next = NULL;
6484 for_each_possible_cpu(i) {
6485 struct rt_prio_array *array;
6486 struct rq *rq;
6488 rq = cpu_rq(i);
6489 spin_lock_init(&rq->lock);
6490 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6491 rq->nr_running = 0;
6492 rq->clock = 1;
6493 init_cfs_rq(&rq->cfs, rq);
6494 #ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6496 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6497 #endif
6498 rq->ls.load_update_last = now;
6499 rq->ls.load_update_start = now;
6501 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6502 rq->cpu_load[j] = 0;
6503 #ifdef CONFIG_SMP
6504 rq->sd = NULL;
6505 rq->active_balance = 0;
6506 rq->next_balance = jiffies;
6507 rq->push_cpu = 0;
6508 rq->cpu = i;
6509 rq->migration_thread = NULL;
6510 INIT_LIST_HEAD(&rq->migration_queue);
6511 #endif
6512 atomic_set(&rq->nr_iowait, 0);
6514 array = &rq->rt.active;
6515 for (j = 0; j < MAX_RT_PRIO; j++) {
6516 INIT_LIST_HEAD(array->queue + j);
6517 __clear_bit(j, array->bitmap);
6519 highest_cpu = i;
6520 /* delimiter for bitsearch: */
6521 __set_bit(MAX_RT_PRIO, array->bitmap);
6524 set_load_weight(&init_task);
6526 #ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6528 #endif
6530 #ifdef CONFIG_SMP
6531 nr_cpu_ids = highest_cpu + 1;
6532 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6533 #endif
6535 #ifdef CONFIG_RT_MUTEXES
6536 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6537 #endif
6540 * The boot idle thread does lazy MMU switching as well:
6542 atomic_inc(&init_mm.mm_count);
6543 enter_lazy_tlb(&init_mm, current);
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6551 init_idle(current, smp_processor_id());
6553 * During early bootup we pretend to be a normal task:
6555 current->sched_class = &fair_sched_class;
6558 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6559 void __might_sleep(char *file, int line)
6561 #ifdef in_atomic
6562 static unsigned long prev_jiffy; /* ratelimiting */
6564 if ((in_atomic() || irqs_disabled()) &&
6565 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6566 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6567 return;
6568 prev_jiffy = jiffies;
6569 printk(KERN_ERR "BUG: sleeping function called from invalid"
6570 " context at %s:%d\n", file, line);
6571 printk("in_atomic():%d, irqs_disabled():%d\n",
6572 in_atomic(), irqs_disabled());
6573 debug_show_held_locks(current);
6574 if (irqs_disabled())
6575 print_irqtrace_events(current);
6576 dump_stack();
6578 #endif
6580 EXPORT_SYMBOL(__might_sleep);
6581 #endif
6583 #ifdef CONFIG_MAGIC_SYSRQ
6584 void normalize_rt_tasks(void)
6586 struct task_struct *g, *p;
6587 unsigned long flags;
6588 struct rq *rq;
6589 int on_rq;
6591 read_lock_irq(&tasklist_lock);
6592 do_each_thread(g, p) {
6593 p->se.fair_key = 0;
6594 p->se.wait_runtime = 0;
6595 p->se.exec_start = 0;
6596 p->se.wait_start_fair = 0;
6597 p->se.sleep_start_fair = 0;
6598 #ifdef CONFIG_SCHEDSTATS
6599 p->se.wait_start = 0;
6600 p->se.sleep_start = 0;
6601 p->se.block_start = 0;
6602 #endif
6603 task_rq(p)->cfs.fair_clock = 0;
6604 task_rq(p)->clock = 0;
6606 if (!rt_task(p)) {
6608 * Renice negative nice level userspace
6609 * tasks back to 0:
6611 if (TASK_NICE(p) < 0 && p->mm)
6612 set_user_nice(p, 0);
6613 continue;
6616 spin_lock_irqsave(&p->pi_lock, flags);
6617 rq = __task_rq_lock(p);
6618 #ifdef CONFIG_SMP
6620 * Do not touch the migration thread:
6622 if (p == rq->migration_thread)
6623 goto out_unlock;
6624 #endif
6626 on_rq = p->se.on_rq;
6627 if (on_rq)
6628 deactivate_task(task_rq(p), p, 0, rq_clock(task_rq(p)));
6629 __setscheduler(rq, p, SCHED_NORMAL, 0);
6630 if (on_rq) {
6631 activate_task(task_rq(p), p, 0);
6632 resched_task(rq->curr);
6634 #ifdef CONFIG_SMP
6635 out_unlock:
6636 #endif
6637 __task_rq_unlock(rq);
6638 spin_unlock_irqrestore(&p->pi_lock, flags);
6639 } while_each_thread(g, p);
6641 read_unlock_irq(&tasklist_lock);
6644 #endif /* CONFIG_MAGIC_SYSRQ */
6646 #ifdef CONFIG_IA64
6648 * These functions are only useful for the IA64 MCA handling.
6650 * They can only be called when the whole system has been
6651 * stopped - every CPU needs to be quiescent, and no scheduling
6652 * activity can take place. Using them for anything else would
6653 * be a serious bug, and as a result, they aren't even visible
6654 * under any other configuration.
6658 * curr_task - return the current task for a given cpu.
6659 * @cpu: the processor in question.
6661 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6663 struct task_struct *curr_task(int cpu)
6665 return cpu_curr(cpu);
6669 * set_curr_task - set the current task for a given cpu.
6670 * @cpu: the processor in question.
6671 * @p: the task pointer to set.
6673 * Description: This function must only be used when non-maskable interrupts
6674 * are serviced on a separate stack. It allows the architecture to switch the
6675 * notion of the current task on a cpu in a non-blocking manner. This function
6676 * must be called with all CPU's synchronized, and interrupts disabled, the
6677 * and caller must save the original value of the current task (see
6678 * curr_task() above) and restore that value before reenabling interrupts and
6679 * re-starting the system.
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6683 void set_curr_task(int cpu, struct task_struct *p)
6685 cpu_curr(cpu) = p;
6688 #endif