4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak
)) sched_clock(void)
74 return (unsigned long long)jiffies
* (1000000000 / HZ
);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32
sg_div_cpu_power(const struct sched_group
*sg
, u32 load
)
121 return reciprocal_divide(load
, sg
->reciprocal_cpu_power
);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group
*sg
, u32 val
)
130 sg
->__cpu_power
+= val
;
131 sg
->reciprocal_cpu_power
= reciprocal_value(sg
->__cpu_power
);
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio
)
144 if (static_prio
== NICE_TO_PRIO(19))
147 if (static_prio
< NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE
* 4, static_prio
);
150 return SCALE_PRIO(DEF_TIMESLICE
, static_prio
);
153 static inline int rt_policy(int policy
)
155 if (unlikely(policy
== SCHED_FIFO
) || unlikely(policy
== SCHED_RR
))
160 static inline int task_has_rt_policy(struct task_struct
*p
)
162 return rt_policy(p
->policy
);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array
{
169 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
170 struct list_head queue
[MAX_RT_PRIO
];
174 struct load_weight load
;
175 u64 load_update_start
, load_update_last
;
176 unsigned long delta_fair
, delta_exec
, delta_stat
;
179 /* CFS-related fields in a runqueue */
181 struct load_weight load
;
182 unsigned long nr_running
;
188 unsigned long wait_runtime_overruns
, wait_runtime_underruns
;
190 struct rb_root tasks_timeline
;
191 struct rb_node
*rb_leftmost
;
192 struct rb_node
*rb_load_balance_curr
;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity
*curr
;
198 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list
; /* Better name : task_cfs_rq_list? */
211 /* Real-Time classes' related field in a runqueue: */
213 struct rt_prio_array active
;
214 int rt_load_balance_idx
;
215 struct list_head
*rt_load_balance_head
, *rt_load_balance_curr
;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
226 spinlock_t lock
; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running
;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
235 unsigned char idle_at_tick
;
237 unsigned char in_nohz_recently
;
239 struct load_stat ls
; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates
;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list
; /* list of leaf cfs_rq on this cpu */
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible
;
257 struct task_struct
*curr
, *idle
;
258 unsigned long next_balance
;
259 struct mm_struct
*prev_mm
;
261 u64 clock
, prev_clock_raw
;
264 unsigned int clock_warps
, clock_overflows
;
265 unsigned int clock_unstable_events
;
270 struct sched_domain
*sd
;
272 /* For active balancing */
275 int cpu
; /* cpu of this runqueue */
277 struct task_struct
*migration_thread
;
278 struct list_head migration_queue
;
281 #ifdef CONFIG_SCHEDSTATS
283 struct sched_info rq_sched_info
;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty
;
287 unsigned long yld_act_empty
;
288 unsigned long yld_both_empty
;
289 unsigned long yld_cnt
;
291 /* schedule() stats */
292 unsigned long sched_switch
;
293 unsigned long sched_cnt
;
294 unsigned long sched_goidle
;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt
;
298 unsigned long ttwu_local
;
300 struct lock_class_key rq_lock_key
;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
304 static DEFINE_MUTEX(sched_hotcpu_mutex
);
306 static inline void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
)
308 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
);
311 static inline int cpu_of(struct rq
*rq
)
321 * Per-runqueue clock, as finegrained as the platform can give us:
323 static unsigned long long __rq_clock(struct rq
*rq
)
325 u64 prev_raw
= rq
->prev_clock_raw
;
326 u64 now
= sched_clock();
327 s64 delta
= now
- prev_raw
;
328 u64 clock
= rq
->clock
;
331 * Protect against sched_clock() occasionally going backwards:
333 if (unlikely(delta
< 0)) {
338 * Catch too large forward jumps too:
340 if (unlikely(delta
> 2*TICK_NSEC
)) {
342 rq
->clock_overflows
++;
344 if (unlikely(delta
> rq
->clock_max_delta
))
345 rq
->clock_max_delta
= delta
;
350 rq
->prev_clock_raw
= now
;
356 static unsigned long long rq_clock(struct rq
*rq
)
358 int this_cpu
= smp_processor_id();
360 if (this_cpu
== cpu_of(rq
))
361 return __rq_clock(rq
);
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
385 unsigned long long cpu_clock(int cpu
)
387 unsigned long long now
;
390 local_irq_save(flags
);
391 now
= rq_clock(cpu_rq(cpu
));
392 local_irq_restore(flags
);
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct
*p
)
401 p
->se
.cfs_rq
= &task_rq(p
)->cfs
;
404 static inline void set_task_cfs_rq(struct task_struct
*p
)
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
419 return rq
->curr
== p
;
422 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
426 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq
->lock
.owner
= current
;
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
437 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
439 spin_unlock_irq(&rq
->lock
);
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
448 return rq
->curr
== p
;
452 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq
->lock
);
465 spin_unlock(&rq
->lock
);
469 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
490 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
497 spin_lock(&rq
->lock
);
498 if (unlikely(rq
!= task_rq(p
))) {
499 spin_unlock(&rq
->lock
);
500 goto repeat_lock_task
;
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
510 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
516 local_irq_save(*flags
);
518 spin_lock(&rq
->lock
);
519 if (unlikely(rq
!= task_rq(p
))) {
520 spin_unlock_irqrestore(&rq
->lock
, *flags
);
521 goto repeat_lock_task
;
526 static inline void __task_rq_unlock(struct rq
*rq
)
529 spin_unlock(&rq
->lock
);
532 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
535 spin_unlock_irqrestore(&rq
->lock
, *flags
);
539 * this_rq_lock - lock this runqueue and disable interrupts.
541 static inline struct rq
*this_rq_lock(void)
548 spin_lock(&rq
->lock
);
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 void sched_clock_unstable_event(void)
561 rq
= task_rq_lock(current
, &flags
);
562 rq
->prev_clock_raw
= sched_clock();
563 rq
->clock_unstable_events
++;
564 task_rq_unlock(rq
, &flags
);
568 * resched_task - mark a task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
580 static void resched_task(struct task_struct
*p
)
584 assert_spin_locked(&task_rq(p
)->lock
);
586 if (unlikely(test_tsk_thread_flag(p
, TIF_NEED_RESCHED
)))
589 set_tsk_thread_flag(p
, TIF_NEED_RESCHED
);
592 if (cpu
== smp_processor_id())
595 /* NEED_RESCHED must be visible before we test polling */
597 if (!tsk_is_polling(p
))
598 smp_send_reschedule(cpu
);
601 static void resched_cpu(int cpu
)
603 struct rq
*rq
= cpu_rq(cpu
);
606 if (!spin_trylock_irqsave(&rq
->lock
, flags
))
608 resched_task(cpu_curr(cpu
));
609 spin_unlock_irqrestore(&rq
->lock
, flags
);
612 static inline void resched_task(struct task_struct
*p
)
614 assert_spin_locked(&task_rq(p
)->lock
);
615 set_tsk_need_resched(p
);
619 static u64
div64_likely32(u64 divident
, unsigned long divisor
)
621 #if BITS_PER_LONG == 32
622 if (likely(divident
<= 0xffffffffULL
))
623 return (u32
)divident
/ divisor
;
624 do_div(divident
, divisor
);
628 return divident
/ divisor
;
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
635 # define WMULT_CONST (1UL << 32)
638 #define WMULT_SHIFT 32
641 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
642 struct load_weight
*lw
)
646 if (unlikely(!lw
->inv_weight
))
647 lw
->inv_weight
= WMULT_CONST
/ lw
->weight
;
649 tmp
= (u64
)delta_exec
* weight
;
651 * Check whether we'd overflow the 64-bit multiplication:
653 if (unlikely(tmp
> WMULT_CONST
)) {
654 tmp
= ((tmp
>> WMULT_SHIFT
/2) * lw
->inv_weight
)
657 tmp
= (tmp
* lw
->inv_weight
) >> WMULT_SHIFT
;
660 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec
, struct load_weight
*lw
)
666 return calc_delta_mine(delta_exec
, NICE_0_LOAD
, lw
);
669 static void update_load_add(struct load_weight
*lw
, unsigned long inc
)
675 static void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
690 #define WEIGHT_IDLEPRIO 2
691 #define WMULT_IDLEPRIO (1 << 31)
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
705 static const int prio_to_weight
[40] = {
706 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708 /* 0 */ NICE_0_LOAD
/* 1024 */,
709 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
720 static const u32 prio_to_wmult
[40] = {
721 /* -20 */ 48356, 60446, 75558, 94446, 118058,
722 /* -15 */ 147573, 184467, 230589, 288233, 360285,
723 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
724 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
731 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
);
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
740 struct task_struct
*(*start
)(void *);
741 struct task_struct
*(*next
)(void *);
744 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
745 unsigned long max_nr_move
, unsigned long max_load_move
,
746 struct sched_domain
*sd
, enum cpu_idle_type idle
,
747 int *all_pinned
, unsigned long *load_moved
,
748 int *this_best_prio
, struct rq_iterator
*iterator
);
750 #include "sched_stats.h"
751 #include "sched_rt.c"
752 #include "sched_fair.c"
753 #include "sched_idletask.c"
754 #ifdef CONFIG_SCHED_DEBUG
755 # include "sched_debug.c"
758 #define sched_class_highest (&rt_sched_class)
760 static void __update_curr_load(struct rq
*rq
, struct load_stat
*ls
)
762 if (rq
->curr
!= rq
->idle
&& ls
->load
.weight
) {
763 ls
->delta_exec
+= ls
->delta_stat
;
764 ls
->delta_fair
+= calc_delta_fair(ls
->delta_stat
, &ls
->load
);
770 * Update delta_exec, delta_fair fields for rq.
772 * delta_fair clock advances at a rate inversely proportional to
773 * total load (rq->ls.load.weight) on the runqueue, while
774 * delta_exec advances at the same rate as wall-clock (provided
777 * delta_exec / delta_fair is a measure of the (smoothened) load on this
778 * runqueue over any given interval. This (smoothened) load is used
779 * during load balance.
781 * This function is called /before/ updating rq->ls.load
782 * and when switching tasks.
784 static void update_curr_load(struct rq
*rq
, u64 now
)
786 struct load_stat
*ls
= &rq
->ls
;
789 start
= ls
->load_update_start
;
790 ls
->load_update_start
= now
;
791 ls
->delta_stat
+= now
- start
;
793 * Stagger updates to ls->delta_fair. Very frequent updates
796 if (ls
->delta_stat
>= sysctl_sched_stat_granularity
)
797 __update_curr_load(rq
, ls
);
801 inc_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
803 update_curr_load(rq
, now
);
804 update_load_add(&rq
->ls
.load
, p
->se
.load
.weight
);
808 dec_load(struct rq
*rq
, const struct task_struct
*p
, u64 now
)
810 update_curr_load(rq
, now
);
811 update_load_sub(&rq
->ls
.load
, p
->se
.load
.weight
);
814 static void inc_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
817 inc_load(rq
, p
, now
);
820 static void dec_nr_running(struct task_struct
*p
, struct rq
*rq
, u64 now
)
823 dec_load(rq
, p
, now
);
826 static void set_load_weight(struct task_struct
*p
)
828 task_rq(p
)->cfs
.wait_runtime
-= p
->se
.wait_runtime
;
829 p
->se
.wait_runtime
= 0;
831 if (task_has_rt_policy(p
)) {
832 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
833 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
838 * SCHED_IDLE tasks get minimal weight:
840 if (p
->policy
== SCHED_IDLE
) {
841 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
842 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
846 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
847 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
851 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, u64 now
)
853 sched_info_queued(p
);
854 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, now
);
859 dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
, u64 now
)
861 p
->sched_class
->dequeue_task(rq
, p
, sleep
, now
);
866 * __normal_prio - return the priority that is based on the static prio
868 static inline int __normal_prio(struct task_struct
*p
)
870 return p
->static_prio
;
874 * Calculate the expected normal priority: i.e. priority
875 * without taking RT-inheritance into account. Might be
876 * boosted by interactivity modifiers. Changes upon fork,
877 * setprio syscalls, and whenever the interactivity
878 * estimator recalculates.
880 static inline int normal_prio(struct task_struct
*p
)
884 if (task_has_rt_policy(p
))
885 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
887 prio
= __normal_prio(p
);
892 * Calculate the current priority, i.e. the priority
893 * taken into account by the scheduler. This value might
894 * be boosted by RT tasks, or might be boosted by
895 * interactivity modifiers. Will be RT if the task got
896 * RT-boosted. If not then it returns p->normal_prio.
898 static int effective_prio(struct task_struct
*p
)
900 p
->normal_prio
= normal_prio(p
);
902 * If we are RT tasks or we were boosted to RT priority,
903 * keep the priority unchanged. Otherwise, update priority
904 * to the normal priority:
906 if (!rt_prio(p
->prio
))
907 return p
->normal_prio
;
912 * activate_task - move a task to the runqueue.
914 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
916 u64 now
= rq_clock(rq
);
918 if (p
->state
== TASK_UNINTERRUPTIBLE
)
919 rq
->nr_uninterruptible
--;
921 enqueue_task(rq
, p
, wakeup
, now
);
922 inc_nr_running(p
, rq
, now
);
926 * activate_idle_task - move idle task to the _front_ of runqueue.
928 static inline void activate_idle_task(struct task_struct
*p
, struct rq
*rq
)
930 u64 now
= rq_clock(rq
);
932 if (p
->state
== TASK_UNINTERRUPTIBLE
)
933 rq
->nr_uninterruptible
--;
935 enqueue_task(rq
, p
, 0, now
);
936 inc_nr_running(p
, rq
, now
);
940 * deactivate_task - remove a task from the runqueue.
943 deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
, u64 now
)
945 if (p
->state
== TASK_UNINTERRUPTIBLE
)
946 rq
->nr_uninterruptible
++;
948 dequeue_task(rq
, p
, sleep
, now
);
949 dec_nr_running(p
, rq
, now
);
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
956 inline int task_curr(const struct task_struct
*p
)
958 return cpu_curr(task_cpu(p
)) == p
;
961 /* Used instead of source_load when we know the type == 0 */
962 unsigned long weighted_cpuload(const int cpu
)
964 return cpu_rq(cpu
)->ls
.load
.weight
;
967 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
970 task_thread_info(p
)->cpu
= cpu
;
977 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
979 int old_cpu
= task_cpu(p
);
980 struct rq
*old_rq
= cpu_rq(old_cpu
), *new_rq
= cpu_rq(new_cpu
);
981 u64 clock_offset
, fair_clock_offset
;
983 clock_offset
= old_rq
->clock
- new_rq
->clock
;
984 fair_clock_offset
= old_rq
->cfs
.fair_clock
- new_rq
->cfs
.fair_clock
;
986 if (p
->se
.wait_start_fair
)
987 p
->se
.wait_start_fair
-= fair_clock_offset
;
988 if (p
->se
.sleep_start_fair
)
989 p
->se
.sleep_start_fair
-= fair_clock_offset
;
991 #ifdef CONFIG_SCHEDSTATS
992 if (p
->se
.wait_start
)
993 p
->se
.wait_start
-= clock_offset
;
994 if (p
->se
.sleep_start
)
995 p
->se
.sleep_start
-= clock_offset
;
996 if (p
->se
.block_start
)
997 p
->se
.block_start
-= clock_offset
;
1000 __set_task_cpu(p
, new_cpu
);
1003 struct migration_req
{
1004 struct list_head list
;
1006 struct task_struct
*task
;
1009 struct completion done
;
1013 * The task's runqueue lock must be held.
1014 * Returns true if you have to wait for migration thread.
1017 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
1019 struct rq
*rq
= task_rq(p
);
1022 * If the task is not on a runqueue (and not running), then
1023 * it is sufficient to simply update the task's cpu field.
1025 if (!p
->se
.on_rq
&& !task_running(rq
, p
)) {
1026 set_task_cpu(p
, dest_cpu
);
1030 init_completion(&req
->done
);
1032 req
->dest_cpu
= dest_cpu
;
1033 list_add(&req
->list
, &rq
->migration_queue
);
1039 * wait_task_inactive - wait for a thread to unschedule.
1041 * The caller must ensure that the task *will* unschedule sometime soon,
1042 * else this function might spin for a *long* time. This function can't
1043 * be called with interrupts off, or it may introduce deadlock with
1044 * smp_call_function() if an IPI is sent by the same process we are
1045 * waiting to become inactive.
1047 void wait_task_inactive(struct task_struct
*p
)
1049 unsigned long flags
;
1055 * We do the initial early heuristics without holding
1056 * any task-queue locks at all. We'll only try to get
1057 * the runqueue lock when things look like they will
1063 * If the task is actively running on another CPU
1064 * still, just relax and busy-wait without holding
1067 * NOTE! Since we don't hold any locks, it's not
1068 * even sure that "rq" stays as the right runqueue!
1069 * But we don't care, since "task_running()" will
1070 * return false if the runqueue has changed and p
1071 * is actually now running somewhere else!
1073 while (task_running(rq
, p
))
1077 * Ok, time to look more closely! We need the rq
1078 * lock now, to be *sure*. If we're wrong, we'll
1079 * just go back and repeat.
1081 rq
= task_rq_lock(p
, &flags
);
1082 running
= task_running(rq
, p
);
1083 on_rq
= p
->se
.on_rq
;
1084 task_rq_unlock(rq
, &flags
);
1087 * Was it really running after all now that we
1088 * checked with the proper locks actually held?
1090 * Oops. Go back and try again..
1092 if (unlikely(running
)) {
1098 * It's not enough that it's not actively running,
1099 * it must be off the runqueue _entirely_, and not
1102 * So if it wa still runnable (but just not actively
1103 * running right now), it's preempted, and we should
1104 * yield - it could be a while.
1106 if (unlikely(on_rq
)) {
1112 * Ahh, all good. It wasn't running, and it wasn't
1113 * runnable, which means that it will never become
1114 * running in the future either. We're all done!
1119 * kick_process - kick a running thread to enter/exit the kernel
1120 * @p: the to-be-kicked thread
1122 * Cause a process which is running on another CPU to enter
1123 * kernel-mode, without any delay. (to get signals handled.)
1125 * NOTE: this function doesnt have to take the runqueue lock,
1126 * because all it wants to ensure is that the remote task enters
1127 * the kernel. If the IPI races and the task has been migrated
1128 * to another CPU then no harm is done and the purpose has been
1131 void kick_process(struct task_struct
*p
)
1137 if ((cpu
!= smp_processor_id()) && task_curr(p
))
1138 smp_send_reschedule(cpu
);
1143 * Return a low guess at the load of a migration-source cpu weighted
1144 * according to the scheduling class and "nice" value.
1146 * We want to under-estimate the load of migration sources, to
1147 * balance conservatively.
1149 static inline unsigned long source_load(int cpu
, int type
)
1151 struct rq
*rq
= cpu_rq(cpu
);
1152 unsigned long total
= weighted_cpuload(cpu
);
1157 return min(rq
->cpu_load
[type
-1], total
);
1161 * Return a high guess at the load of a migration-target cpu weighted
1162 * according to the scheduling class and "nice" value.
1164 static inline unsigned long target_load(int cpu
, int type
)
1166 struct rq
*rq
= cpu_rq(cpu
);
1167 unsigned long total
= weighted_cpuload(cpu
);
1172 return max(rq
->cpu_load
[type
-1], total
);
1176 * Return the average load per task on the cpu's run queue
1178 static inline unsigned long cpu_avg_load_per_task(int cpu
)
1180 struct rq
*rq
= cpu_rq(cpu
);
1181 unsigned long total
= weighted_cpuload(cpu
);
1182 unsigned long n
= rq
->nr_running
;
1184 return n
? total
/ n
: SCHED_LOAD_SCALE
;
1188 * find_idlest_group finds and returns the least busy CPU group within the
1191 static struct sched_group
*
1192 find_idlest_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
1194 struct sched_group
*idlest
= NULL
, *this = NULL
, *group
= sd
->groups
;
1195 unsigned long min_load
= ULONG_MAX
, this_load
= 0;
1196 int load_idx
= sd
->forkexec_idx
;
1197 int imbalance
= 100 + (sd
->imbalance_pct
-100)/2;
1200 unsigned long load
, avg_load
;
1204 /* Skip over this group if it has no CPUs allowed */
1205 if (!cpus_intersects(group
->cpumask
, p
->cpus_allowed
))
1208 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
1210 /* Tally up the load of all CPUs in the group */
1213 for_each_cpu_mask(i
, group
->cpumask
) {
1214 /* Bias balancing toward cpus of our domain */
1216 load
= source_load(i
, load_idx
);
1218 load
= target_load(i
, load_idx
);
1223 /* Adjust by relative CPU power of the group */
1224 avg_load
= sg_div_cpu_power(group
,
1225 avg_load
* SCHED_LOAD_SCALE
);
1228 this_load
= avg_load
;
1230 } else if (avg_load
< min_load
) {
1231 min_load
= avg_load
;
1235 group
= group
->next
;
1236 } while (group
!= sd
->groups
);
1238 if (!idlest
|| 100*this_load
< imbalance
*min_load
)
1244 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1247 find_idlest_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
1250 unsigned long load
, min_load
= ULONG_MAX
;
1254 /* Traverse only the allowed CPUs */
1255 cpus_and(tmp
, group
->cpumask
, p
->cpus_allowed
);
1257 for_each_cpu_mask(i
, tmp
) {
1258 load
= weighted_cpuload(i
);
1260 if (load
< min_load
|| (load
== min_load
&& i
== this_cpu
)) {
1270 * sched_balance_self: balance the current task (running on cpu) in domains
1271 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * Balance, ie. select the least loaded group.
1276 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 * preempt must be disabled.
1280 static int sched_balance_self(int cpu
, int flag
)
1282 struct task_struct
*t
= current
;
1283 struct sched_domain
*tmp
, *sd
= NULL
;
1285 for_each_domain(cpu
, tmp
) {
1287 * If power savings logic is enabled for a domain, stop there.
1289 if (tmp
->flags
& SD_POWERSAVINGS_BALANCE
)
1291 if (tmp
->flags
& flag
)
1297 struct sched_group
*group
;
1298 int new_cpu
, weight
;
1300 if (!(sd
->flags
& flag
)) {
1306 group
= find_idlest_group(sd
, t
, cpu
);
1312 new_cpu
= find_idlest_cpu(group
, t
, cpu
);
1313 if (new_cpu
== -1 || new_cpu
== cpu
) {
1314 /* Now try balancing at a lower domain level of cpu */
1319 /* Now try balancing at a lower domain level of new_cpu */
1322 weight
= cpus_weight(span
);
1323 for_each_domain(cpu
, tmp
) {
1324 if (weight
<= cpus_weight(tmp
->span
))
1326 if (tmp
->flags
& flag
)
1329 /* while loop will break here if sd == NULL */
1335 #endif /* CONFIG_SMP */
1338 * wake_idle() will wake a task on an idle cpu if task->cpu is
1339 * not idle and an idle cpu is available. The span of cpus to
1340 * search starts with cpus closest then further out as needed,
1341 * so we always favor a closer, idle cpu.
1343 * Returns the CPU we should wake onto.
1345 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1346 static int wake_idle(int cpu
, struct task_struct
*p
)
1349 struct sched_domain
*sd
;
1353 * If it is idle, then it is the best cpu to run this task.
1355 * This cpu is also the best, if it has more than one task already.
1356 * Siblings must be also busy(in most cases) as they didn't already
1357 * pickup the extra load from this cpu and hence we need not check
1358 * sibling runqueue info. This will avoid the checks and cache miss
1359 * penalities associated with that.
1361 if (idle_cpu(cpu
) || cpu_rq(cpu
)->nr_running
> 1)
1364 for_each_domain(cpu
, sd
) {
1365 if (sd
->flags
& SD_WAKE_IDLE
) {
1366 cpus_and(tmp
, sd
->span
, p
->cpus_allowed
);
1367 for_each_cpu_mask(i
, tmp
) {
1378 static inline int wake_idle(int cpu
, struct task_struct
*p
)
1385 * try_to_wake_up - wake up a thread
1386 * @p: the to-be-woken-up thread
1387 * @state: the mask of task states that can be woken
1388 * @sync: do a synchronous wakeup?
1390 * Put it on the run-queue if it's not already there. The "current"
1391 * thread is always on the run-queue (except when the actual
1392 * re-schedule is in progress), and as such you're allowed to do
1393 * the simpler "current->state = TASK_RUNNING" to mark yourself
1394 * runnable without the overhead of this.
1396 * returns failure only if the task is already active.
1398 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
, int sync
)
1400 int cpu
, this_cpu
, success
= 0;
1401 unsigned long flags
;
1405 struct sched_domain
*sd
, *this_sd
= NULL
;
1406 unsigned long load
, this_load
;
1410 rq
= task_rq_lock(p
, &flags
);
1411 old_state
= p
->state
;
1412 if (!(old_state
& state
))
1419 this_cpu
= smp_processor_id();
1422 if (unlikely(task_running(rq
, p
)))
1427 schedstat_inc(rq
, ttwu_cnt
);
1428 if (cpu
== this_cpu
) {
1429 schedstat_inc(rq
, ttwu_local
);
1433 for_each_domain(this_cpu
, sd
) {
1434 if (cpu_isset(cpu
, sd
->span
)) {
1435 schedstat_inc(sd
, ttwu_wake_remote
);
1441 if (unlikely(!cpu_isset(this_cpu
, p
->cpus_allowed
)))
1445 * Check for affine wakeup and passive balancing possibilities.
1448 int idx
= this_sd
->wake_idx
;
1449 unsigned int imbalance
;
1451 imbalance
= 100 + (this_sd
->imbalance_pct
- 100) / 2;
1453 load
= source_load(cpu
, idx
);
1454 this_load
= target_load(this_cpu
, idx
);
1456 new_cpu
= this_cpu
; /* Wake to this CPU if we can */
1458 if (this_sd
->flags
& SD_WAKE_AFFINE
) {
1459 unsigned long tl
= this_load
;
1460 unsigned long tl_per_task
;
1462 tl_per_task
= cpu_avg_load_per_task(this_cpu
);
1465 * If sync wakeup then subtract the (maximum possible)
1466 * effect of the currently running task from the load
1467 * of the current CPU:
1470 tl
-= current
->se
.load
.weight
;
1473 tl
+ target_load(cpu
, idx
) <= tl_per_task
) ||
1474 100*(tl
+ p
->se
.load
.weight
) <= imbalance
*load
) {
1476 * This domain has SD_WAKE_AFFINE and
1477 * p is cache cold in this domain, and
1478 * there is no bad imbalance.
1480 schedstat_inc(this_sd
, ttwu_move_affine
);
1486 * Start passive balancing when half the imbalance_pct
1489 if (this_sd
->flags
& SD_WAKE_BALANCE
) {
1490 if (imbalance
*this_load
<= 100*load
) {
1491 schedstat_inc(this_sd
, ttwu_move_balance
);
1497 new_cpu
= cpu
; /* Could not wake to this_cpu. Wake to cpu instead */
1499 new_cpu
= wake_idle(new_cpu
, p
);
1500 if (new_cpu
!= cpu
) {
1501 set_task_cpu(p
, new_cpu
);
1502 task_rq_unlock(rq
, &flags
);
1503 /* might preempt at this point */
1504 rq
= task_rq_lock(p
, &flags
);
1505 old_state
= p
->state
;
1506 if (!(old_state
& state
))
1511 this_cpu
= smp_processor_id();
1516 #endif /* CONFIG_SMP */
1517 activate_task(rq
, p
, 1);
1519 * Sync wakeups (i.e. those types of wakeups where the waker
1520 * has indicated that it will leave the CPU in short order)
1521 * don't trigger a preemption, if the woken up task will run on
1522 * this cpu. (in this case the 'I will reschedule' promise of
1523 * the waker guarantees that the freshly woken up task is going
1524 * to be considered on this CPU.)
1526 if (!sync
|| cpu
!= this_cpu
)
1527 check_preempt_curr(rq
, p
);
1531 p
->state
= TASK_RUNNING
;
1533 task_rq_unlock(rq
, &flags
);
1538 int fastcall
wake_up_process(struct task_struct
*p
)
1540 return try_to_wake_up(p
, TASK_STOPPED
| TASK_TRACED
|
1541 TASK_INTERRUPTIBLE
| TASK_UNINTERRUPTIBLE
, 0);
1543 EXPORT_SYMBOL(wake_up_process
);
1545 int fastcall
wake_up_state(struct task_struct
*p
, unsigned int state
)
1547 return try_to_wake_up(p
, state
, 0);
1551 * Perform scheduler related setup for a newly forked process p.
1552 * p is forked by current.
1554 * __sched_fork() is basic setup used by init_idle() too:
1556 static void __sched_fork(struct task_struct
*p
)
1558 p
->se
.wait_start_fair
= 0;
1559 p
->se
.exec_start
= 0;
1560 p
->se
.sum_exec_runtime
= 0;
1561 p
->se
.delta_exec
= 0;
1562 p
->se
.delta_fair_run
= 0;
1563 p
->se
.delta_fair_sleep
= 0;
1564 p
->se
.wait_runtime
= 0;
1565 p
->se
.sleep_start_fair
= 0;
1567 #ifdef CONFIG_SCHEDSTATS
1568 p
->se
.wait_start
= 0;
1569 p
->se
.sum_wait_runtime
= 0;
1570 p
->se
.sum_sleep_runtime
= 0;
1571 p
->se
.sleep_start
= 0;
1572 p
->se
.block_start
= 0;
1573 p
->se
.sleep_max
= 0;
1574 p
->se
.block_max
= 0;
1577 p
->se
.wait_runtime_overruns
= 0;
1578 p
->se
.wait_runtime_underruns
= 0;
1581 INIT_LIST_HEAD(&p
->run_list
);
1584 #ifdef CONFIG_PREEMPT_NOTIFIERS
1585 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
1589 * We mark the process as running here, but have not actually
1590 * inserted it onto the runqueue yet. This guarantees that
1591 * nobody will actually run it, and a signal or other external
1592 * event cannot wake it up and insert it on the runqueue either.
1594 p
->state
= TASK_RUNNING
;
1598 * fork()/clone()-time setup:
1600 void sched_fork(struct task_struct
*p
, int clone_flags
)
1602 int cpu
= get_cpu();
1607 cpu
= sched_balance_self(cpu
, SD_BALANCE_FORK
);
1609 __set_task_cpu(p
, cpu
);
1612 * Make sure we do not leak PI boosting priority to the child:
1614 p
->prio
= current
->normal_prio
;
1616 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1617 if (likely(sched_info_on()))
1618 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
1620 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 #ifdef CONFIG_PREEMPT
1624 /* Want to start with kernel preemption disabled. */
1625 task_thread_info(p
)->preempt_count
= 1;
1631 * After fork, child runs first. (default) If set to 0 then
1632 * parent will (try to) run first.
1634 unsigned int __read_mostly sysctl_sched_child_runs_first
= 1;
1637 * wake_up_new_task - wake up a newly created task for the first time.
1639 * This function will do some initial scheduler statistics housekeeping
1640 * that must be done for every newly created context, then puts the task
1641 * on the runqueue and wakes it.
1643 void fastcall
wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
1645 unsigned long flags
;
1650 rq
= task_rq_lock(p
, &flags
);
1651 BUG_ON(p
->state
!= TASK_RUNNING
);
1652 this_cpu
= smp_processor_id(); /* parent's CPU */
1655 p
->prio
= effective_prio(p
);
1657 if (!p
->sched_class
->task_new
|| !sysctl_sched_child_runs_first
||
1658 (clone_flags
& CLONE_VM
) || task_cpu(p
) != this_cpu
||
1659 !current
->se
.on_rq
) {
1661 activate_task(rq
, p
, 0);
1664 * Let the scheduling class do new task startup
1665 * management (if any):
1667 p
->sched_class
->task_new(rq
, p
, now
);
1668 inc_nr_running(p
, rq
, now
);
1670 check_preempt_curr(rq
, p
);
1671 task_rq_unlock(rq
, &flags
);
1674 #ifdef CONFIG_PREEMPT_NOTIFIERS
1677 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1678 * @notifier: notifier struct to register
1680 void preempt_notifier_register(struct preempt_notifier
*notifier
)
1682 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
1684 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
1687 * preempt_notifier_unregister - no longer interested in preemption notifications
1688 * @notifier: notifier struct to unregister
1690 * This is safe to call from within a preemption notifier.
1692 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
1694 hlist_del(¬ifier
->link
);
1696 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
1698 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1700 struct preempt_notifier
*notifier
;
1701 struct hlist_node
*node
;
1703 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1704 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
1708 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1709 struct task_struct
*next
)
1711 struct preempt_notifier
*notifier
;
1712 struct hlist_node
*node
;
1714 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
1715 notifier
->ops
->sched_out(notifier
, next
);
1720 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
1725 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
1726 struct task_struct
*next
)
1733 * prepare_task_switch - prepare to switch tasks
1734 * @rq: the runqueue preparing to switch
1735 * @prev: the current task that is being switched out
1736 * @next: the task we are going to switch to.
1738 * This is called with the rq lock held and interrupts off. It must
1739 * be paired with a subsequent finish_task_switch after the context
1742 * prepare_task_switch sets up locking and calls architecture specific
1746 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
1747 struct task_struct
*next
)
1749 fire_sched_out_preempt_notifiers(prev
, next
);
1750 prepare_lock_switch(rq
, next
);
1751 prepare_arch_switch(next
);
1755 * finish_task_switch - clean up after a task-switch
1756 * @rq: runqueue associated with task-switch
1757 * @prev: the thread we just switched away from.
1759 * finish_task_switch must be called after the context switch, paired
1760 * with a prepare_task_switch call before the context switch.
1761 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1762 * and do any other architecture-specific cleanup actions.
1764 * Note that we may have delayed dropping an mm in context_switch(). If
1765 * so, we finish that here outside of the runqueue lock. (Doing it
1766 * with the lock held can cause deadlocks; see schedule() for
1769 static inline void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
1770 __releases(rq
->lock
)
1772 struct mm_struct
*mm
= rq
->prev_mm
;
1778 * A task struct has one reference for the use as "current".
1779 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1780 * schedule one last time. The schedule call will never return, and
1781 * the scheduled task must drop that reference.
1782 * The test for TASK_DEAD must occur while the runqueue locks are
1783 * still held, otherwise prev could be scheduled on another cpu, die
1784 * there before we look at prev->state, and then the reference would
1786 * Manfred Spraul <manfred@colorfullife.com>
1788 prev_state
= prev
->state
;
1789 finish_arch_switch(prev
);
1790 finish_lock_switch(rq
, prev
);
1791 fire_sched_in_preempt_notifiers(current
);
1794 if (unlikely(prev_state
== TASK_DEAD
)) {
1796 * Remove function-return probe instances associated with this
1797 * task and put them back on the free list.
1799 kprobe_flush_task(prev
);
1800 put_task_struct(prev
);
1805 * schedule_tail - first thing a freshly forked thread must call.
1806 * @prev: the thread we just switched away from.
1808 asmlinkage
void schedule_tail(struct task_struct
*prev
)
1809 __releases(rq
->lock
)
1811 struct rq
*rq
= this_rq();
1813 finish_task_switch(rq
, prev
);
1814 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1815 /* In this case, finish_task_switch does not reenable preemption */
1818 if (current
->set_child_tid
)
1819 put_user(current
->pid
, current
->set_child_tid
);
1823 * context_switch - switch to the new MM and the new
1824 * thread's register state.
1827 context_switch(struct rq
*rq
, struct task_struct
*prev
,
1828 struct task_struct
*next
)
1830 struct mm_struct
*mm
, *oldmm
;
1832 prepare_task_switch(rq
, prev
, next
);
1834 oldmm
= prev
->active_mm
;
1836 * For paravirt, this is coupled with an exit in switch_to to
1837 * combine the page table reload and the switch backend into
1840 arch_enter_lazy_cpu_mode();
1842 if (unlikely(!mm
)) {
1843 next
->active_mm
= oldmm
;
1844 atomic_inc(&oldmm
->mm_count
);
1845 enter_lazy_tlb(oldmm
, next
);
1847 switch_mm(oldmm
, mm
, next
);
1849 if (unlikely(!prev
->mm
)) {
1850 prev
->active_mm
= NULL
;
1851 rq
->prev_mm
= oldmm
;
1854 * Since the runqueue lock will be released by the next
1855 * task (which is an invalid locking op but in the case
1856 * of the scheduler it's an obvious special-case), so we
1857 * do an early lockdep release here:
1859 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1860 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
1863 /* Here we just switch the register state and the stack. */
1864 switch_to(prev
, next
, prev
);
1868 * this_rq must be evaluated again because prev may have moved
1869 * CPUs since it called schedule(), thus the 'rq' on its stack
1870 * frame will be invalid.
1872 finish_task_switch(this_rq(), prev
);
1876 * nr_running, nr_uninterruptible and nr_context_switches:
1878 * externally visible scheduler statistics: current number of runnable
1879 * threads, current number of uninterruptible-sleeping threads, total
1880 * number of context switches performed since bootup.
1882 unsigned long nr_running(void)
1884 unsigned long i
, sum
= 0;
1886 for_each_online_cpu(i
)
1887 sum
+= cpu_rq(i
)->nr_running
;
1892 unsigned long nr_uninterruptible(void)
1894 unsigned long i
, sum
= 0;
1896 for_each_possible_cpu(i
)
1897 sum
+= cpu_rq(i
)->nr_uninterruptible
;
1900 * Since we read the counters lockless, it might be slightly
1901 * inaccurate. Do not allow it to go below zero though:
1903 if (unlikely((long)sum
< 0))
1909 unsigned long long nr_context_switches(void)
1912 unsigned long long sum
= 0;
1914 for_each_possible_cpu(i
)
1915 sum
+= cpu_rq(i
)->nr_switches
;
1920 unsigned long nr_iowait(void)
1922 unsigned long i
, sum
= 0;
1924 for_each_possible_cpu(i
)
1925 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
1930 unsigned long nr_active(void)
1932 unsigned long i
, running
= 0, uninterruptible
= 0;
1934 for_each_online_cpu(i
) {
1935 running
+= cpu_rq(i
)->nr_running
;
1936 uninterruptible
+= cpu_rq(i
)->nr_uninterruptible
;
1939 if (unlikely((long)uninterruptible
< 0))
1940 uninterruptible
= 0;
1942 return running
+ uninterruptible
;
1946 * Update rq->cpu_load[] statistics. This function is usually called every
1947 * scheduler tick (TICK_NSEC).
1949 static void update_cpu_load(struct rq
*this_rq
)
1951 u64 fair_delta64
, exec_delta64
, idle_delta64
, sample_interval64
, tmp64
;
1952 unsigned long total_load
= this_rq
->ls
.load
.weight
;
1953 unsigned long this_load
= total_load
;
1954 struct load_stat
*ls
= &this_rq
->ls
;
1955 u64 now
= __rq_clock(this_rq
);
1958 this_rq
->nr_load_updates
++;
1959 if (unlikely(!(sysctl_sched_features
& SCHED_FEAT_PRECISE_CPU_LOAD
)))
1962 /* Update delta_fair/delta_exec fields first */
1963 update_curr_load(this_rq
, now
);
1965 fair_delta64
= ls
->delta_fair
+ 1;
1968 exec_delta64
= ls
->delta_exec
+ 1;
1971 sample_interval64
= now
- ls
->load_update_last
;
1972 ls
->load_update_last
= now
;
1974 if ((s64
)sample_interval64
< (s64
)TICK_NSEC
)
1975 sample_interval64
= TICK_NSEC
;
1977 if (exec_delta64
> sample_interval64
)
1978 exec_delta64
= sample_interval64
;
1980 idle_delta64
= sample_interval64
- exec_delta64
;
1982 tmp64
= div64_64(SCHED_LOAD_SCALE
* exec_delta64
, fair_delta64
);
1983 tmp64
= div64_64(tmp64
* exec_delta64
, sample_interval64
);
1985 this_load
= (unsigned long)tmp64
;
1989 /* Update our load: */
1990 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
1991 unsigned long old_load
, new_load
;
1993 /* scale is effectively 1 << i now, and >> i divides by scale */
1995 old_load
= this_rq
->cpu_load
[i
];
1996 new_load
= this_load
;
1998 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
2005 * double_rq_lock - safely lock two runqueues
2007 * Note this does not disable interrupts like task_rq_lock,
2008 * you need to do so manually before calling.
2010 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
2011 __acquires(rq1
->lock
)
2012 __acquires(rq2
->lock
)
2014 BUG_ON(!irqs_disabled());
2016 spin_lock(&rq1
->lock
);
2017 __acquire(rq2
->lock
); /* Fake it out ;) */
2020 spin_lock(&rq1
->lock
);
2021 spin_lock(&rq2
->lock
);
2023 spin_lock(&rq2
->lock
);
2024 spin_lock(&rq1
->lock
);
2030 * double_rq_unlock - safely unlock two runqueues
2032 * Note this does not restore interrupts like task_rq_unlock,
2033 * you need to do so manually after calling.
2035 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
2036 __releases(rq1
->lock
)
2037 __releases(rq2
->lock
)
2039 spin_unlock(&rq1
->lock
);
2041 spin_unlock(&rq2
->lock
);
2043 __release(rq2
->lock
);
2047 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2049 static void double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
2050 __releases(this_rq
->lock
)
2051 __acquires(busiest
->lock
)
2052 __acquires(this_rq
->lock
)
2054 if (unlikely(!irqs_disabled())) {
2055 /* printk() doesn't work good under rq->lock */
2056 spin_unlock(&this_rq
->lock
);
2059 if (unlikely(!spin_trylock(&busiest
->lock
))) {
2060 if (busiest
< this_rq
) {
2061 spin_unlock(&this_rq
->lock
);
2062 spin_lock(&busiest
->lock
);
2063 spin_lock(&this_rq
->lock
);
2065 spin_lock(&busiest
->lock
);
2070 * If dest_cpu is allowed for this process, migrate the task to it.
2071 * This is accomplished by forcing the cpu_allowed mask to only
2072 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2073 * the cpu_allowed mask is restored.
2075 static void sched_migrate_task(struct task_struct
*p
, int dest_cpu
)
2077 struct migration_req req
;
2078 unsigned long flags
;
2081 rq
= task_rq_lock(p
, &flags
);
2082 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
)
2083 || unlikely(cpu_is_offline(dest_cpu
)))
2086 /* force the process onto the specified CPU */
2087 if (migrate_task(p
, dest_cpu
, &req
)) {
2088 /* Need to wait for migration thread (might exit: take ref). */
2089 struct task_struct
*mt
= rq
->migration_thread
;
2091 get_task_struct(mt
);
2092 task_rq_unlock(rq
, &flags
);
2093 wake_up_process(mt
);
2094 put_task_struct(mt
);
2095 wait_for_completion(&req
.done
);
2100 task_rq_unlock(rq
, &flags
);
2104 * sched_exec - execve() is a valuable balancing opportunity, because at
2105 * this point the task has the smallest effective memory and cache footprint.
2107 void sched_exec(void)
2109 int new_cpu
, this_cpu
= get_cpu();
2110 new_cpu
= sched_balance_self(this_cpu
, SD_BALANCE_EXEC
);
2112 if (new_cpu
!= this_cpu
)
2113 sched_migrate_task(current
, new_cpu
);
2117 * pull_task - move a task from a remote runqueue to the local runqueue.
2118 * Both runqueues must be locked.
2120 static void pull_task(struct rq
*src_rq
, struct task_struct
*p
,
2121 struct rq
*this_rq
, int this_cpu
)
2123 deactivate_task(src_rq
, p
, 0, rq_clock(src_rq
));
2124 set_task_cpu(p
, this_cpu
);
2125 activate_task(this_rq
, p
, 0);
2127 * Note that idle threads have a prio of MAX_PRIO, for this test
2128 * to be always true for them.
2130 check_preempt_curr(this_rq
, p
);
2134 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2137 int can_migrate_task(struct task_struct
*p
, struct rq
*rq
, int this_cpu
,
2138 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2142 * We do not migrate tasks that are:
2143 * 1) running (obviously), or
2144 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2145 * 3) are cache-hot on their current CPU.
2147 if (!cpu_isset(this_cpu
, p
->cpus_allowed
))
2151 if (task_running(rq
, p
))
2155 * Aggressive migration if too many balance attempts have failed:
2157 if (sd
->nr_balance_failed
> sd
->cache_nice_tries
)
2163 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2164 unsigned long max_nr_move
, unsigned long max_load_move
,
2165 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2166 int *all_pinned
, unsigned long *load_moved
,
2167 int *this_best_prio
, struct rq_iterator
*iterator
)
2169 int pulled
= 0, pinned
= 0, skip_for_load
;
2170 struct task_struct
*p
;
2171 long rem_load_move
= max_load_move
;
2173 if (max_nr_move
== 0 || max_load_move
== 0)
2179 * Start the load-balancing iterator:
2181 p
= iterator
->start(iterator
->arg
);
2186 * To help distribute high priority tasks accross CPUs we don't
2187 * skip a task if it will be the highest priority task (i.e. smallest
2188 * prio value) on its new queue regardless of its load weight
2190 skip_for_load
= (p
->se
.load
.weight
>> 1) > rem_load_move
+
2191 SCHED_LOAD_SCALE_FUZZ
;
2192 if ((skip_for_load
&& p
->prio
>= *this_best_prio
) ||
2193 !can_migrate_task(p
, busiest
, this_cpu
, sd
, idle
, &pinned
)) {
2194 p
= iterator
->next(iterator
->arg
);
2198 pull_task(busiest
, p
, this_rq
, this_cpu
);
2200 rem_load_move
-= p
->se
.load
.weight
;
2203 * We only want to steal up to the prescribed number of tasks
2204 * and the prescribed amount of weighted load.
2206 if (pulled
< max_nr_move
&& rem_load_move
> 0) {
2207 if (p
->prio
< *this_best_prio
)
2208 *this_best_prio
= p
->prio
;
2209 p
= iterator
->next(iterator
->arg
);
2214 * Right now, this is the only place pull_task() is called,
2215 * so we can safely collect pull_task() stats here rather than
2216 * inside pull_task().
2218 schedstat_add(sd
, lb_gained
[idle
], pulled
);
2221 *all_pinned
= pinned
;
2222 *load_moved
= max_load_move
- rem_load_move
;
2227 * move_tasks tries to move up to max_load_move weighted load from busiest to
2228 * this_rq, as part of a balancing operation within domain "sd".
2229 * Returns 1 if successful and 0 otherwise.
2231 * Called with both runqueues locked.
2233 static int move_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2234 unsigned long max_load_move
,
2235 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2238 struct sched_class
*class = sched_class_highest
;
2239 unsigned long total_load_moved
= 0;
2240 int this_best_prio
= this_rq
->curr
->prio
;
2244 class->load_balance(this_rq
, this_cpu
, busiest
,
2245 ULONG_MAX
, max_load_move
- total_load_moved
,
2246 sd
, idle
, all_pinned
, &this_best_prio
);
2247 class = class->next
;
2248 } while (class && max_load_move
> total_load_moved
);
2250 return total_load_moved
> 0;
2254 * move_one_task tries to move exactly one task from busiest to this_rq, as
2255 * part of active balancing operations within "domain".
2256 * Returns 1 if successful and 0 otherwise.
2258 * Called with both runqueues locked.
2260 static int move_one_task(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
2261 struct sched_domain
*sd
, enum cpu_idle_type idle
)
2263 struct sched_class
*class;
2264 int this_best_prio
= MAX_PRIO
;
2266 for (class = sched_class_highest
; class; class = class->next
)
2267 if (class->load_balance(this_rq
, this_cpu
, busiest
,
2268 1, ULONG_MAX
, sd
, idle
, NULL
,
2276 * find_busiest_group finds and returns the busiest CPU group within the
2277 * domain. It calculates and returns the amount of weighted load which
2278 * should be moved to restore balance via the imbalance parameter.
2280 static struct sched_group
*
2281 find_busiest_group(struct sched_domain
*sd
, int this_cpu
,
2282 unsigned long *imbalance
, enum cpu_idle_type idle
,
2283 int *sd_idle
, cpumask_t
*cpus
, int *balance
)
2285 struct sched_group
*busiest
= NULL
, *this = NULL
, *group
= sd
->groups
;
2286 unsigned long max_load
, avg_load
, total_load
, this_load
, total_pwr
;
2287 unsigned long max_pull
;
2288 unsigned long busiest_load_per_task
, busiest_nr_running
;
2289 unsigned long this_load_per_task
, this_nr_running
;
2291 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2292 int power_savings_balance
= 1;
2293 unsigned long leader_nr_running
= 0, min_load_per_task
= 0;
2294 unsigned long min_nr_running
= ULONG_MAX
;
2295 struct sched_group
*group_min
= NULL
, *group_leader
= NULL
;
2298 max_load
= this_load
= total_load
= total_pwr
= 0;
2299 busiest_load_per_task
= busiest_nr_running
= 0;
2300 this_load_per_task
= this_nr_running
= 0;
2301 if (idle
== CPU_NOT_IDLE
)
2302 load_idx
= sd
->busy_idx
;
2303 else if (idle
== CPU_NEWLY_IDLE
)
2304 load_idx
= sd
->newidle_idx
;
2306 load_idx
= sd
->idle_idx
;
2309 unsigned long load
, group_capacity
;
2312 unsigned int balance_cpu
= -1, first_idle_cpu
= 0;
2313 unsigned long sum_nr_running
, sum_weighted_load
;
2315 local_group
= cpu_isset(this_cpu
, group
->cpumask
);
2318 balance_cpu
= first_cpu(group
->cpumask
);
2320 /* Tally up the load of all CPUs in the group */
2321 sum_weighted_load
= sum_nr_running
= avg_load
= 0;
2323 for_each_cpu_mask(i
, group
->cpumask
) {
2326 if (!cpu_isset(i
, *cpus
))
2331 if (*sd_idle
&& rq
->nr_running
)
2334 /* Bias balancing toward cpus of our domain */
2336 if (idle_cpu(i
) && !first_idle_cpu
) {
2341 load
= target_load(i
, load_idx
);
2343 load
= source_load(i
, load_idx
);
2346 sum_nr_running
+= rq
->nr_running
;
2347 sum_weighted_load
+= weighted_cpuload(i
);
2351 * First idle cpu or the first cpu(busiest) in this sched group
2352 * is eligible for doing load balancing at this and above
2353 * domains. In the newly idle case, we will allow all the cpu's
2354 * to do the newly idle load balance.
2356 if (idle
!= CPU_NEWLY_IDLE
&& local_group
&&
2357 balance_cpu
!= this_cpu
&& balance
) {
2362 total_load
+= avg_load
;
2363 total_pwr
+= group
->__cpu_power
;
2365 /* Adjust by relative CPU power of the group */
2366 avg_load
= sg_div_cpu_power(group
,
2367 avg_load
* SCHED_LOAD_SCALE
);
2369 group_capacity
= group
->__cpu_power
/ SCHED_LOAD_SCALE
;
2372 this_load
= avg_load
;
2374 this_nr_running
= sum_nr_running
;
2375 this_load_per_task
= sum_weighted_load
;
2376 } else if (avg_load
> max_load
&&
2377 sum_nr_running
> group_capacity
) {
2378 max_load
= avg_load
;
2380 busiest_nr_running
= sum_nr_running
;
2381 busiest_load_per_task
= sum_weighted_load
;
2384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2386 * Busy processors will not participate in power savings
2389 if (idle
== CPU_NOT_IDLE
||
2390 !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2394 * If the local group is idle or completely loaded
2395 * no need to do power savings balance at this domain
2397 if (local_group
&& (this_nr_running
>= group_capacity
||
2399 power_savings_balance
= 0;
2402 * If a group is already running at full capacity or idle,
2403 * don't include that group in power savings calculations
2405 if (!power_savings_balance
|| sum_nr_running
>= group_capacity
2410 * Calculate the group which has the least non-idle load.
2411 * This is the group from where we need to pick up the load
2414 if ((sum_nr_running
< min_nr_running
) ||
2415 (sum_nr_running
== min_nr_running
&&
2416 first_cpu(group
->cpumask
) <
2417 first_cpu(group_min
->cpumask
))) {
2419 min_nr_running
= sum_nr_running
;
2420 min_load_per_task
= sum_weighted_load
/
2425 * Calculate the group which is almost near its
2426 * capacity but still has some space to pick up some load
2427 * from other group and save more power
2429 if (sum_nr_running
<= group_capacity
- 1) {
2430 if (sum_nr_running
> leader_nr_running
||
2431 (sum_nr_running
== leader_nr_running
&&
2432 first_cpu(group
->cpumask
) >
2433 first_cpu(group_leader
->cpumask
))) {
2434 group_leader
= group
;
2435 leader_nr_running
= sum_nr_running
;
2440 group
= group
->next
;
2441 } while (group
!= sd
->groups
);
2443 if (!busiest
|| this_load
>= max_load
|| busiest_nr_running
== 0)
2446 avg_load
= (SCHED_LOAD_SCALE
* total_load
) / total_pwr
;
2448 if (this_load
>= avg_load
||
2449 100*max_load
<= sd
->imbalance_pct
*this_load
)
2452 busiest_load_per_task
/= busiest_nr_running
;
2454 * We're trying to get all the cpus to the average_load, so we don't
2455 * want to push ourselves above the average load, nor do we wish to
2456 * reduce the max loaded cpu below the average load, as either of these
2457 * actions would just result in more rebalancing later, and ping-pong
2458 * tasks around. Thus we look for the minimum possible imbalance.
2459 * Negative imbalances (*we* are more loaded than anyone else) will
2460 * be counted as no imbalance for these purposes -- we can't fix that
2461 * by pulling tasks to us. Be careful of negative numbers as they'll
2462 * appear as very large values with unsigned longs.
2464 if (max_load
<= busiest_load_per_task
)
2468 * In the presence of smp nice balancing, certain scenarios can have
2469 * max load less than avg load(as we skip the groups at or below
2470 * its cpu_power, while calculating max_load..)
2472 if (max_load
< avg_load
) {
2474 goto small_imbalance
;
2477 /* Don't want to pull so many tasks that a group would go idle */
2478 max_pull
= min(max_load
- avg_load
, max_load
- busiest_load_per_task
);
2480 /* How much load to actually move to equalise the imbalance */
2481 *imbalance
= min(max_pull
* busiest
->__cpu_power
,
2482 (avg_load
- this_load
) * this->__cpu_power
)
2486 * if *imbalance is less than the average load per runnable task
2487 * there is no gaurantee that any tasks will be moved so we'll have
2488 * a think about bumping its value to force at least one task to be
2491 if (*imbalance
+ SCHED_LOAD_SCALE_FUZZ
< busiest_load_per_task
/2) {
2492 unsigned long tmp
, pwr_now
, pwr_move
;
2496 pwr_move
= pwr_now
= 0;
2498 if (this_nr_running
) {
2499 this_load_per_task
/= this_nr_running
;
2500 if (busiest_load_per_task
> this_load_per_task
)
2503 this_load_per_task
= SCHED_LOAD_SCALE
;
2505 if (max_load
- this_load
+ SCHED_LOAD_SCALE_FUZZ
>=
2506 busiest_load_per_task
* imbn
) {
2507 *imbalance
= busiest_load_per_task
;
2512 * OK, we don't have enough imbalance to justify moving tasks,
2513 * however we may be able to increase total CPU power used by
2517 pwr_now
+= busiest
->__cpu_power
*
2518 min(busiest_load_per_task
, max_load
);
2519 pwr_now
+= this->__cpu_power
*
2520 min(this_load_per_task
, this_load
);
2521 pwr_now
/= SCHED_LOAD_SCALE
;
2523 /* Amount of load we'd subtract */
2524 tmp
= sg_div_cpu_power(busiest
,
2525 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2527 pwr_move
+= busiest
->__cpu_power
*
2528 min(busiest_load_per_task
, max_load
- tmp
);
2530 /* Amount of load we'd add */
2531 if (max_load
* busiest
->__cpu_power
<
2532 busiest_load_per_task
* SCHED_LOAD_SCALE
)
2533 tmp
= sg_div_cpu_power(this,
2534 max_load
* busiest
->__cpu_power
);
2536 tmp
= sg_div_cpu_power(this,
2537 busiest_load_per_task
* SCHED_LOAD_SCALE
);
2538 pwr_move
+= this->__cpu_power
*
2539 min(this_load_per_task
, this_load
+ tmp
);
2540 pwr_move
/= SCHED_LOAD_SCALE
;
2542 /* Move if we gain throughput */
2543 if (pwr_move
<= pwr_now
)
2546 *imbalance
= busiest_load_per_task
;
2552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2553 if (idle
== CPU_NOT_IDLE
|| !(sd
->flags
& SD_POWERSAVINGS_BALANCE
))
2556 if (this == group_leader
&& group_leader
!= group_min
) {
2557 *imbalance
= min_load_per_task
;
2567 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2570 find_busiest_queue(struct sched_group
*group
, enum cpu_idle_type idle
,
2571 unsigned long imbalance
, cpumask_t
*cpus
)
2573 struct rq
*busiest
= NULL
, *rq
;
2574 unsigned long max_load
= 0;
2577 for_each_cpu_mask(i
, group
->cpumask
) {
2580 if (!cpu_isset(i
, *cpus
))
2584 wl
= weighted_cpuload(i
);
2586 if (rq
->nr_running
== 1 && wl
> imbalance
)
2589 if (wl
> max_load
) {
2599 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2600 * so long as it is large enough.
2602 #define MAX_PINNED_INTERVAL 512
2605 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2606 * tasks if there is an imbalance.
2608 static int load_balance(int this_cpu
, struct rq
*this_rq
,
2609 struct sched_domain
*sd
, enum cpu_idle_type idle
,
2612 int ld_moved
, all_pinned
= 0, active_balance
= 0, sd_idle
= 0;
2613 struct sched_group
*group
;
2614 unsigned long imbalance
;
2616 cpumask_t cpus
= CPU_MASK_ALL
;
2617 unsigned long flags
;
2620 * When power savings policy is enabled for the parent domain, idle
2621 * sibling can pick up load irrespective of busy siblings. In this case,
2622 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2623 * portraying it as CPU_NOT_IDLE.
2625 if (idle
!= CPU_NOT_IDLE
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2626 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2629 schedstat_inc(sd
, lb_cnt
[idle
]);
2632 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, idle
, &sd_idle
,
2639 schedstat_inc(sd
, lb_nobusyg
[idle
]);
2643 busiest
= find_busiest_queue(group
, idle
, imbalance
, &cpus
);
2645 schedstat_inc(sd
, lb_nobusyq
[idle
]);
2649 BUG_ON(busiest
== this_rq
);
2651 schedstat_add(sd
, lb_imbalance
[idle
], imbalance
);
2654 if (busiest
->nr_running
> 1) {
2656 * Attempt to move tasks. If find_busiest_group has found
2657 * an imbalance but busiest->nr_running <= 1, the group is
2658 * still unbalanced. ld_moved simply stays zero, so it is
2659 * correctly treated as an imbalance.
2661 local_irq_save(flags
);
2662 double_rq_lock(this_rq
, busiest
);
2663 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2664 imbalance
, sd
, idle
, &all_pinned
);
2665 double_rq_unlock(this_rq
, busiest
);
2666 local_irq_restore(flags
);
2669 * some other cpu did the load balance for us.
2671 if (ld_moved
&& this_cpu
!= smp_processor_id())
2672 resched_cpu(this_cpu
);
2674 /* All tasks on this runqueue were pinned by CPU affinity */
2675 if (unlikely(all_pinned
)) {
2676 cpu_clear(cpu_of(busiest
), cpus
);
2677 if (!cpus_empty(cpus
))
2684 schedstat_inc(sd
, lb_failed
[idle
]);
2685 sd
->nr_balance_failed
++;
2687 if (unlikely(sd
->nr_balance_failed
> sd
->cache_nice_tries
+2)) {
2689 spin_lock_irqsave(&busiest
->lock
, flags
);
2691 /* don't kick the migration_thread, if the curr
2692 * task on busiest cpu can't be moved to this_cpu
2694 if (!cpu_isset(this_cpu
, busiest
->curr
->cpus_allowed
)) {
2695 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2697 goto out_one_pinned
;
2700 if (!busiest
->active_balance
) {
2701 busiest
->active_balance
= 1;
2702 busiest
->push_cpu
= this_cpu
;
2705 spin_unlock_irqrestore(&busiest
->lock
, flags
);
2707 wake_up_process(busiest
->migration_thread
);
2710 * We've kicked active balancing, reset the failure
2713 sd
->nr_balance_failed
= sd
->cache_nice_tries
+1;
2716 sd
->nr_balance_failed
= 0;
2718 if (likely(!active_balance
)) {
2719 /* We were unbalanced, so reset the balancing interval */
2720 sd
->balance_interval
= sd
->min_interval
;
2723 * If we've begun active balancing, start to back off. This
2724 * case may not be covered by the all_pinned logic if there
2725 * is only 1 task on the busy runqueue (because we don't call
2728 if (sd
->balance_interval
< sd
->max_interval
)
2729 sd
->balance_interval
*= 2;
2732 if (!ld_moved
&& !sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2733 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2738 schedstat_inc(sd
, lb_balanced
[idle
]);
2740 sd
->nr_balance_failed
= 0;
2743 /* tune up the balancing interval */
2744 if ((all_pinned
&& sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
2745 (sd
->balance_interval
< sd
->max_interval
))
2746 sd
->balance_interval
*= 2;
2748 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2749 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2755 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2756 * tasks if there is an imbalance.
2758 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2759 * this_rq is locked.
2762 load_balance_newidle(int this_cpu
, struct rq
*this_rq
, struct sched_domain
*sd
)
2764 struct sched_group
*group
;
2765 struct rq
*busiest
= NULL
;
2766 unsigned long imbalance
;
2770 cpumask_t cpus
= CPU_MASK_ALL
;
2773 * When power savings policy is enabled for the parent domain, idle
2774 * sibling can pick up load irrespective of busy siblings. In this case,
2775 * let the state of idle sibling percolate up as IDLE, instead of
2776 * portraying it as CPU_NOT_IDLE.
2778 if (sd
->flags
& SD_SHARE_CPUPOWER
&&
2779 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2782 schedstat_inc(sd
, lb_cnt
[CPU_NEWLY_IDLE
]);
2784 group
= find_busiest_group(sd
, this_cpu
, &imbalance
, CPU_NEWLY_IDLE
,
2785 &sd_idle
, &cpus
, NULL
);
2787 schedstat_inc(sd
, lb_nobusyg
[CPU_NEWLY_IDLE
]);
2791 busiest
= find_busiest_queue(group
, CPU_NEWLY_IDLE
, imbalance
,
2794 schedstat_inc(sd
, lb_nobusyq
[CPU_NEWLY_IDLE
]);
2798 BUG_ON(busiest
== this_rq
);
2800 schedstat_add(sd
, lb_imbalance
[CPU_NEWLY_IDLE
], imbalance
);
2803 if (busiest
->nr_running
> 1) {
2804 /* Attempt to move tasks */
2805 double_lock_balance(this_rq
, busiest
);
2806 ld_moved
= move_tasks(this_rq
, this_cpu
, busiest
,
2807 imbalance
, sd
, CPU_NEWLY_IDLE
,
2809 spin_unlock(&busiest
->lock
);
2811 if (unlikely(all_pinned
)) {
2812 cpu_clear(cpu_of(busiest
), cpus
);
2813 if (!cpus_empty(cpus
))
2819 schedstat_inc(sd
, lb_failed
[CPU_NEWLY_IDLE
]);
2820 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2821 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2824 sd
->nr_balance_failed
= 0;
2829 schedstat_inc(sd
, lb_balanced
[CPU_NEWLY_IDLE
]);
2830 if (!sd_idle
&& sd
->flags
& SD_SHARE_CPUPOWER
&&
2831 !test_sd_parent(sd
, SD_POWERSAVINGS_BALANCE
))
2833 sd
->nr_balance_failed
= 0;
2839 * idle_balance is called by schedule() if this_cpu is about to become
2840 * idle. Attempts to pull tasks from other CPUs.
2842 static void idle_balance(int this_cpu
, struct rq
*this_rq
)
2844 struct sched_domain
*sd
;
2845 int pulled_task
= -1;
2846 unsigned long next_balance
= jiffies
+ HZ
;
2848 for_each_domain(this_cpu
, sd
) {
2849 unsigned long interval
;
2851 if (!(sd
->flags
& SD_LOAD_BALANCE
))
2854 if (sd
->flags
& SD_BALANCE_NEWIDLE
)
2855 /* If we've pulled tasks over stop searching: */
2856 pulled_task
= load_balance_newidle(this_cpu
,
2859 interval
= msecs_to_jiffies(sd
->balance_interval
);
2860 if (time_after(next_balance
, sd
->last_balance
+ interval
))
2861 next_balance
= sd
->last_balance
+ interval
;
2865 if (pulled_task
|| time_after(jiffies
, this_rq
->next_balance
)) {
2867 * We are going idle. next_balance may be set based on
2868 * a busy processor. So reset next_balance.
2870 this_rq
->next_balance
= next_balance
;
2875 * active_load_balance is run by migration threads. It pushes running tasks
2876 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2877 * running on each physical CPU where possible, and avoids physical /
2878 * logical imbalances.
2880 * Called with busiest_rq locked.
2882 static void active_load_balance(struct rq
*busiest_rq
, int busiest_cpu
)
2884 int target_cpu
= busiest_rq
->push_cpu
;
2885 struct sched_domain
*sd
;
2886 struct rq
*target_rq
;
2888 /* Is there any task to move? */
2889 if (busiest_rq
->nr_running
<= 1)
2892 target_rq
= cpu_rq(target_cpu
);
2895 * This condition is "impossible", if it occurs
2896 * we need to fix it. Originally reported by
2897 * Bjorn Helgaas on a 128-cpu setup.
2899 BUG_ON(busiest_rq
== target_rq
);
2901 /* move a task from busiest_rq to target_rq */
2902 double_lock_balance(busiest_rq
, target_rq
);
2904 /* Search for an sd spanning us and the target CPU. */
2905 for_each_domain(target_cpu
, sd
) {
2906 if ((sd
->flags
& SD_LOAD_BALANCE
) &&
2907 cpu_isset(busiest_cpu
, sd
->span
))
2912 schedstat_inc(sd
, alb_cnt
);
2914 if (move_one_task(target_rq
, target_cpu
, busiest_rq
,
2916 schedstat_inc(sd
, alb_pushed
);
2918 schedstat_inc(sd
, alb_failed
);
2920 spin_unlock(&target_rq
->lock
);
2925 atomic_t load_balancer
;
2927 } nohz ____cacheline_aligned
= {
2928 .load_balancer
= ATOMIC_INIT(-1),
2929 .cpu_mask
= CPU_MASK_NONE
,
2933 * This routine will try to nominate the ilb (idle load balancing)
2934 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2935 * load balancing on behalf of all those cpus. If all the cpus in the system
2936 * go into this tickless mode, then there will be no ilb owner (as there is
2937 * no need for one) and all the cpus will sleep till the next wakeup event
2940 * For the ilb owner, tick is not stopped. And this tick will be used
2941 * for idle load balancing. ilb owner will still be part of
2944 * While stopping the tick, this cpu will become the ilb owner if there
2945 * is no other owner. And will be the owner till that cpu becomes busy
2946 * or if all cpus in the system stop their ticks at which point
2947 * there is no need for ilb owner.
2949 * When the ilb owner becomes busy, it nominates another owner, during the
2950 * next busy scheduler_tick()
2952 int select_nohz_load_balancer(int stop_tick
)
2954 int cpu
= smp_processor_id();
2957 cpu_set(cpu
, nohz
.cpu_mask
);
2958 cpu_rq(cpu
)->in_nohz_recently
= 1;
2961 * If we are going offline and still the leader, give up!
2963 if (cpu_is_offline(cpu
) &&
2964 atomic_read(&nohz
.load_balancer
) == cpu
) {
2965 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2970 /* time for ilb owner also to sleep */
2971 if (cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
2972 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2973 atomic_set(&nohz
.load_balancer
, -1);
2977 if (atomic_read(&nohz
.load_balancer
) == -1) {
2978 /* make me the ilb owner */
2979 if (atomic_cmpxchg(&nohz
.load_balancer
, -1, cpu
) == -1)
2981 } else if (atomic_read(&nohz
.load_balancer
) == cpu
)
2984 if (!cpu_isset(cpu
, nohz
.cpu_mask
))
2987 cpu_clear(cpu
, nohz
.cpu_mask
);
2989 if (atomic_read(&nohz
.load_balancer
) == cpu
)
2990 if (atomic_cmpxchg(&nohz
.load_balancer
, cpu
, -1) != cpu
)
2997 static DEFINE_SPINLOCK(balancing
);
3000 * It checks each scheduling domain to see if it is due to be balanced,
3001 * and initiates a balancing operation if so.
3003 * Balancing parameters are set up in arch_init_sched_domains.
3005 static inline void rebalance_domains(int cpu
, enum cpu_idle_type idle
)
3008 struct rq
*rq
= cpu_rq(cpu
);
3009 unsigned long interval
;
3010 struct sched_domain
*sd
;
3011 /* Earliest time when we have to do rebalance again */
3012 unsigned long next_balance
= jiffies
+ 60*HZ
;
3014 for_each_domain(cpu
, sd
) {
3015 if (!(sd
->flags
& SD_LOAD_BALANCE
))
3018 interval
= sd
->balance_interval
;
3019 if (idle
!= CPU_IDLE
)
3020 interval
*= sd
->busy_factor
;
3022 /* scale ms to jiffies */
3023 interval
= msecs_to_jiffies(interval
);
3024 if (unlikely(!interval
))
3026 if (interval
> HZ
*NR_CPUS
/10)
3027 interval
= HZ
*NR_CPUS
/10;
3030 if (sd
->flags
& SD_SERIALIZE
) {
3031 if (!spin_trylock(&balancing
))
3035 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
3036 if (load_balance(cpu
, rq
, sd
, idle
, &balance
)) {
3038 * We've pulled tasks over so either we're no
3039 * longer idle, or one of our SMT siblings is
3042 idle
= CPU_NOT_IDLE
;
3044 sd
->last_balance
= jiffies
;
3046 if (sd
->flags
& SD_SERIALIZE
)
3047 spin_unlock(&balancing
);
3049 if (time_after(next_balance
, sd
->last_balance
+ interval
))
3050 next_balance
= sd
->last_balance
+ interval
;
3053 * Stop the load balance at this level. There is another
3054 * CPU in our sched group which is doing load balancing more
3060 rq
->next_balance
= next_balance
;
3064 * run_rebalance_domains is triggered when needed from the scheduler tick.
3065 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3066 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3068 static void run_rebalance_domains(struct softirq_action
*h
)
3070 int this_cpu
= smp_processor_id();
3071 struct rq
*this_rq
= cpu_rq(this_cpu
);
3072 enum cpu_idle_type idle
= this_rq
->idle_at_tick
?
3073 CPU_IDLE
: CPU_NOT_IDLE
;
3075 rebalance_domains(this_cpu
, idle
);
3079 * If this cpu is the owner for idle load balancing, then do the
3080 * balancing on behalf of the other idle cpus whose ticks are
3083 if (this_rq
->idle_at_tick
&&
3084 atomic_read(&nohz
.load_balancer
) == this_cpu
) {
3085 cpumask_t cpus
= nohz
.cpu_mask
;
3089 cpu_clear(this_cpu
, cpus
);
3090 for_each_cpu_mask(balance_cpu
, cpus
) {
3092 * If this cpu gets work to do, stop the load balancing
3093 * work being done for other cpus. Next load
3094 * balancing owner will pick it up.
3099 rebalance_domains(balance_cpu
, SCHED_IDLE
);
3101 rq
= cpu_rq(balance_cpu
);
3102 if (time_after(this_rq
->next_balance
, rq
->next_balance
))
3103 this_rq
->next_balance
= rq
->next_balance
;
3110 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3112 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3113 * idle load balancing owner or decide to stop the periodic load balancing,
3114 * if the whole system is idle.
3116 static inline void trigger_load_balance(struct rq
*rq
, int cpu
)
3120 * If we were in the nohz mode recently and busy at the current
3121 * scheduler tick, then check if we need to nominate new idle
3124 if (rq
->in_nohz_recently
&& !rq
->idle_at_tick
) {
3125 rq
->in_nohz_recently
= 0;
3127 if (atomic_read(&nohz
.load_balancer
) == cpu
) {
3128 cpu_clear(cpu
, nohz
.cpu_mask
);
3129 atomic_set(&nohz
.load_balancer
, -1);
3132 if (atomic_read(&nohz
.load_balancer
) == -1) {
3134 * simple selection for now: Nominate the
3135 * first cpu in the nohz list to be the next
3138 * TBD: Traverse the sched domains and nominate
3139 * the nearest cpu in the nohz.cpu_mask.
3141 int ilb
= first_cpu(nohz
.cpu_mask
);
3149 * If this cpu is idle and doing idle load balancing for all the
3150 * cpus with ticks stopped, is it time for that to stop?
3152 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) == cpu
&&
3153 cpus_weight(nohz
.cpu_mask
) == num_online_cpus()) {
3159 * If this cpu is idle and the idle load balancing is done by
3160 * someone else, then no need raise the SCHED_SOFTIRQ
3162 if (rq
->idle_at_tick
&& atomic_read(&nohz
.load_balancer
) != cpu
&&
3163 cpu_isset(cpu
, nohz
.cpu_mask
))
3166 if (time_after_eq(jiffies
, rq
->next_balance
))
3167 raise_softirq(SCHED_SOFTIRQ
);
3170 #else /* CONFIG_SMP */
3173 * on UP we do not need to balance between CPUs:
3175 static inline void idle_balance(int cpu
, struct rq
*rq
)
3179 /* Avoid "used but not defined" warning on UP */
3180 static int balance_tasks(struct rq
*this_rq
, int this_cpu
, struct rq
*busiest
,
3181 unsigned long max_nr_move
, unsigned long max_load_move
,
3182 struct sched_domain
*sd
, enum cpu_idle_type idle
,
3183 int *all_pinned
, unsigned long *load_moved
,
3184 int *this_best_prio
, struct rq_iterator
*iterator
)
3193 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3195 EXPORT_PER_CPU_SYMBOL(kstat
);
3198 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3199 * that have not yet been banked in case the task is currently running.
3201 unsigned long long task_sched_runtime(struct task_struct
*p
)
3203 unsigned long flags
;
3207 rq
= task_rq_lock(p
, &flags
);
3208 ns
= p
->se
.sum_exec_runtime
;
3209 if (rq
->curr
== p
) {
3210 delta_exec
= rq_clock(rq
) - p
->se
.exec_start
;
3211 if ((s64
)delta_exec
> 0)
3214 task_rq_unlock(rq
, &flags
);
3220 * Account user cpu time to a process.
3221 * @p: the process that the cpu time gets accounted to
3222 * @hardirq_offset: the offset to subtract from hardirq_count()
3223 * @cputime: the cpu time spent in user space since the last update
3225 void account_user_time(struct task_struct
*p
, cputime_t cputime
)
3227 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3230 p
->utime
= cputime_add(p
->utime
, cputime
);
3232 /* Add user time to cpustat. */
3233 tmp
= cputime_to_cputime64(cputime
);
3234 if (TASK_NICE(p
) > 0)
3235 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3237 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3241 * Account system cpu time to a process.
3242 * @p: the process that the cpu time gets accounted to
3243 * @hardirq_offset: the offset to subtract from hardirq_count()
3244 * @cputime: the cpu time spent in kernel space since the last update
3246 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3249 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3250 struct rq
*rq
= this_rq();
3253 p
->stime
= cputime_add(p
->stime
, cputime
);
3255 /* Add system time to cpustat. */
3256 tmp
= cputime_to_cputime64(cputime
);
3257 if (hardirq_count() - hardirq_offset
)
3258 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3259 else if (softirq_count())
3260 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3261 else if (p
!= rq
->idle
)
3262 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3263 else if (atomic_read(&rq
->nr_iowait
) > 0)
3264 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3266 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3267 /* Account for system time used */
3268 acct_update_integrals(p
);
3272 * Account for involuntary wait time.
3273 * @p: the process from which the cpu time has been stolen
3274 * @steal: the cpu time spent in involuntary wait
3276 void account_steal_time(struct task_struct
*p
, cputime_t steal
)
3278 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3279 cputime64_t tmp
= cputime_to_cputime64(steal
);
3280 struct rq
*rq
= this_rq();
3282 if (p
== rq
->idle
) {
3283 p
->stime
= cputime_add(p
->stime
, steal
);
3284 if (atomic_read(&rq
->nr_iowait
) > 0)
3285 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, tmp
);
3287 cpustat
->idle
= cputime64_add(cpustat
->idle
, tmp
);
3289 cpustat
->steal
= cputime64_add(cpustat
->steal
, tmp
);
3293 * This function gets called by the timer code, with HZ frequency.
3294 * We call it with interrupts disabled.
3296 * It also gets called by the fork code, when changing the parent's
3299 void scheduler_tick(void)
3301 int cpu
= smp_processor_id();
3302 struct rq
*rq
= cpu_rq(cpu
);
3303 struct task_struct
*curr
= rq
->curr
;
3305 spin_lock(&rq
->lock
);
3306 update_cpu_load(rq
);
3307 if (curr
!= rq
->idle
) /* FIXME: needed? */
3308 curr
->sched_class
->task_tick(rq
, curr
);
3309 spin_unlock(&rq
->lock
);
3312 rq
->idle_at_tick
= idle_cpu(cpu
);
3313 trigger_load_balance(rq
, cpu
);
3317 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3319 void fastcall
add_preempt_count(int val
)
3324 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3326 preempt_count() += val
;
3328 * Spinlock count overflowing soon?
3330 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3333 EXPORT_SYMBOL(add_preempt_count
);
3335 void fastcall
sub_preempt_count(int val
)
3340 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3343 * Is the spinlock portion underflowing?
3345 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3346 !(preempt_count() & PREEMPT_MASK
)))
3349 preempt_count() -= val
;
3351 EXPORT_SYMBOL(sub_preempt_count
);
3356 * Print scheduling while atomic bug:
3358 static noinline
void __schedule_bug(struct task_struct
*prev
)
3360 printk(KERN_ERR
"BUG: scheduling while atomic: %s/0x%08x/%d\n",
3361 prev
->comm
, preempt_count(), prev
->pid
);
3362 debug_show_held_locks(prev
);
3363 if (irqs_disabled())
3364 print_irqtrace_events(prev
);
3369 * Various schedule()-time debugging checks and statistics:
3371 static inline void schedule_debug(struct task_struct
*prev
)
3374 * Test if we are atomic. Since do_exit() needs to call into
3375 * schedule() atomically, we ignore that path for now.
3376 * Otherwise, whine if we are scheduling when we should not be.
3378 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev
->exit_state
))
3379 __schedule_bug(prev
);
3381 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3383 schedstat_inc(this_rq(), sched_cnt
);
3387 * Pick up the highest-prio task:
3389 static inline struct task_struct
*
3390 pick_next_task(struct rq
*rq
, struct task_struct
*prev
, u64 now
)
3392 struct sched_class
*class;
3393 struct task_struct
*p
;
3396 * Optimization: we know that if all tasks are in
3397 * the fair class we can call that function directly:
3399 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3400 p
= fair_sched_class
.pick_next_task(rq
, now
);
3405 class = sched_class_highest
;
3407 p
= class->pick_next_task(rq
, now
);
3411 * Will never be NULL as the idle class always
3412 * returns a non-NULL p:
3414 class = class->next
;
3419 * schedule() is the main scheduler function.
3421 asmlinkage
void __sched
schedule(void)
3423 struct task_struct
*prev
, *next
;
3431 cpu
= smp_processor_id();
3435 switch_count
= &prev
->nivcsw
;
3437 release_kernel_lock(prev
);
3438 need_resched_nonpreemptible
:
3440 schedule_debug(prev
);
3442 spin_lock_irq(&rq
->lock
);
3443 clear_tsk_need_resched(prev
);
3444 now
= __rq_clock(rq
);
3446 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3447 if (unlikely((prev
->state
& TASK_INTERRUPTIBLE
) &&
3448 unlikely(signal_pending(prev
)))) {
3449 prev
->state
= TASK_RUNNING
;
3451 deactivate_task(rq
, prev
, 1, now
);
3453 switch_count
= &prev
->nvcsw
;
3456 if (unlikely(!rq
->nr_running
))
3457 idle_balance(cpu
, rq
);
3459 prev
->sched_class
->put_prev_task(rq
, prev
, now
);
3460 next
= pick_next_task(rq
, prev
, now
);
3462 sched_info_switch(prev
, next
);
3464 if (likely(prev
!= next
)) {
3469 context_switch(rq
, prev
, next
); /* unlocks the rq */
3471 spin_unlock_irq(&rq
->lock
);
3473 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3474 cpu
= smp_processor_id();
3476 goto need_resched_nonpreemptible
;
3478 preempt_enable_no_resched();
3479 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3482 EXPORT_SYMBOL(schedule
);
3484 #ifdef CONFIG_PREEMPT
3486 * this is the entry point to schedule() from in-kernel preemption
3487 * off of preempt_enable. Kernel preemptions off return from interrupt
3488 * occur there and call schedule directly.
3490 asmlinkage
void __sched
preempt_schedule(void)
3492 struct thread_info
*ti
= current_thread_info();
3493 #ifdef CONFIG_PREEMPT_BKL
3494 struct task_struct
*task
= current
;
3495 int saved_lock_depth
;
3498 * If there is a non-zero preempt_count or interrupts are disabled,
3499 * we do not want to preempt the current task. Just return..
3501 if (likely(ti
->preempt_count
|| irqs_disabled()))
3505 add_preempt_count(PREEMPT_ACTIVE
);
3507 * We keep the big kernel semaphore locked, but we
3508 * clear ->lock_depth so that schedule() doesnt
3509 * auto-release the semaphore:
3511 #ifdef CONFIG_PREEMPT_BKL
3512 saved_lock_depth
= task
->lock_depth
;
3513 task
->lock_depth
= -1;
3516 #ifdef CONFIG_PREEMPT_BKL
3517 task
->lock_depth
= saved_lock_depth
;
3519 sub_preempt_count(PREEMPT_ACTIVE
);
3521 /* we could miss a preemption opportunity between schedule and now */
3523 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3526 EXPORT_SYMBOL(preempt_schedule
);
3529 * this is the entry point to schedule() from kernel preemption
3530 * off of irq context.
3531 * Note, that this is called and return with irqs disabled. This will
3532 * protect us against recursive calling from irq.
3534 asmlinkage
void __sched
preempt_schedule_irq(void)
3536 struct thread_info
*ti
= current_thread_info();
3537 #ifdef CONFIG_PREEMPT_BKL
3538 struct task_struct
*task
= current
;
3539 int saved_lock_depth
;
3541 /* Catch callers which need to be fixed */
3542 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3545 add_preempt_count(PREEMPT_ACTIVE
);
3547 * We keep the big kernel semaphore locked, but we
3548 * clear ->lock_depth so that schedule() doesnt
3549 * auto-release the semaphore:
3551 #ifdef CONFIG_PREEMPT_BKL
3552 saved_lock_depth
= task
->lock_depth
;
3553 task
->lock_depth
= -1;
3557 local_irq_disable();
3558 #ifdef CONFIG_PREEMPT_BKL
3559 task
->lock_depth
= saved_lock_depth
;
3561 sub_preempt_count(PREEMPT_ACTIVE
);
3563 /* we could miss a preemption opportunity between schedule and now */
3565 if (unlikely(test_thread_flag(TIF_NEED_RESCHED
)))
3569 #endif /* CONFIG_PREEMPT */
3571 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int sync
,
3574 return try_to_wake_up(curr
->private, mode
, sync
);
3576 EXPORT_SYMBOL(default_wake_function
);
3579 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3580 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3581 * number) then we wake all the non-exclusive tasks and one exclusive task.
3583 * There are circumstances in which we can try to wake a task which has already
3584 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3585 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3587 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3588 int nr_exclusive
, int sync
, void *key
)
3590 struct list_head
*tmp
, *next
;
3592 list_for_each_safe(tmp
, next
, &q
->task_list
) {
3593 wait_queue_t
*curr
= list_entry(tmp
, wait_queue_t
, task_list
);
3594 unsigned flags
= curr
->flags
;
3596 if (curr
->func(curr
, mode
, sync
, key
) &&
3597 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3603 * __wake_up - wake up threads blocked on a waitqueue.
3605 * @mode: which threads
3606 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3607 * @key: is directly passed to the wakeup function
3609 void fastcall
__wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3610 int nr_exclusive
, void *key
)
3612 unsigned long flags
;
3614 spin_lock_irqsave(&q
->lock
, flags
);
3615 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3616 spin_unlock_irqrestore(&q
->lock
, flags
);
3618 EXPORT_SYMBOL(__wake_up
);
3621 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3623 void fastcall
__wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3625 __wake_up_common(q
, mode
, 1, 0, NULL
);
3629 * __wake_up_sync - wake up threads blocked on a waitqueue.
3631 * @mode: which threads
3632 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3634 * The sync wakeup differs that the waker knows that it will schedule
3635 * away soon, so while the target thread will be woken up, it will not
3636 * be migrated to another CPU - ie. the two threads are 'synchronized'
3637 * with each other. This can prevent needless bouncing between CPUs.
3639 * On UP it can prevent extra preemption.
3642 __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3644 unsigned long flags
;
3650 if (unlikely(!nr_exclusive
))
3653 spin_lock_irqsave(&q
->lock
, flags
);
3654 __wake_up_common(q
, mode
, nr_exclusive
, sync
, NULL
);
3655 spin_unlock_irqrestore(&q
->lock
, flags
);
3657 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3659 void fastcall
complete(struct completion
*x
)
3661 unsigned long flags
;
3663 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3665 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3667 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3669 EXPORT_SYMBOL(complete
);
3671 void fastcall
complete_all(struct completion
*x
)
3673 unsigned long flags
;
3675 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3676 x
->done
+= UINT_MAX
/2;
3677 __wake_up_common(&x
->wait
, TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
3679 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3681 EXPORT_SYMBOL(complete_all
);
3683 void fastcall __sched
wait_for_completion(struct completion
*x
)
3687 spin_lock_irq(&x
->wait
.lock
);
3689 DECLARE_WAITQUEUE(wait
, current
);
3691 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3692 __add_wait_queue_tail(&x
->wait
, &wait
);
3694 __set_current_state(TASK_UNINTERRUPTIBLE
);
3695 spin_unlock_irq(&x
->wait
.lock
);
3697 spin_lock_irq(&x
->wait
.lock
);
3699 __remove_wait_queue(&x
->wait
, &wait
);
3702 spin_unlock_irq(&x
->wait
.lock
);
3704 EXPORT_SYMBOL(wait_for_completion
);
3706 unsigned long fastcall __sched
3707 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
3711 spin_lock_irq(&x
->wait
.lock
);
3713 DECLARE_WAITQUEUE(wait
, current
);
3715 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3716 __add_wait_queue_tail(&x
->wait
, &wait
);
3718 __set_current_state(TASK_UNINTERRUPTIBLE
);
3719 spin_unlock_irq(&x
->wait
.lock
);
3720 timeout
= schedule_timeout(timeout
);
3721 spin_lock_irq(&x
->wait
.lock
);
3723 __remove_wait_queue(&x
->wait
, &wait
);
3727 __remove_wait_queue(&x
->wait
, &wait
);
3731 spin_unlock_irq(&x
->wait
.lock
);
3734 EXPORT_SYMBOL(wait_for_completion_timeout
);
3736 int fastcall __sched
wait_for_completion_interruptible(struct completion
*x
)
3742 spin_lock_irq(&x
->wait
.lock
);
3744 DECLARE_WAITQUEUE(wait
, current
);
3746 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3747 __add_wait_queue_tail(&x
->wait
, &wait
);
3749 if (signal_pending(current
)) {
3751 __remove_wait_queue(&x
->wait
, &wait
);
3754 __set_current_state(TASK_INTERRUPTIBLE
);
3755 spin_unlock_irq(&x
->wait
.lock
);
3757 spin_lock_irq(&x
->wait
.lock
);
3759 __remove_wait_queue(&x
->wait
, &wait
);
3763 spin_unlock_irq(&x
->wait
.lock
);
3767 EXPORT_SYMBOL(wait_for_completion_interruptible
);
3769 unsigned long fastcall __sched
3770 wait_for_completion_interruptible_timeout(struct completion
*x
,
3771 unsigned long timeout
)
3775 spin_lock_irq(&x
->wait
.lock
);
3777 DECLARE_WAITQUEUE(wait
, current
);
3779 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3780 __add_wait_queue_tail(&x
->wait
, &wait
);
3782 if (signal_pending(current
)) {
3783 timeout
= -ERESTARTSYS
;
3784 __remove_wait_queue(&x
->wait
, &wait
);
3787 __set_current_state(TASK_INTERRUPTIBLE
);
3788 spin_unlock_irq(&x
->wait
.lock
);
3789 timeout
= schedule_timeout(timeout
);
3790 spin_lock_irq(&x
->wait
.lock
);
3792 __remove_wait_queue(&x
->wait
, &wait
);
3796 __remove_wait_queue(&x
->wait
, &wait
);
3800 spin_unlock_irq(&x
->wait
.lock
);
3803 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
3806 sleep_on_head(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3808 spin_lock_irqsave(&q
->lock
, *flags
);
3809 __add_wait_queue(q
, wait
);
3810 spin_unlock(&q
->lock
);
3814 sleep_on_tail(wait_queue_head_t
*q
, wait_queue_t
*wait
, unsigned long *flags
)
3816 spin_lock_irq(&q
->lock
);
3817 __remove_wait_queue(q
, wait
);
3818 spin_unlock_irqrestore(&q
->lock
, *flags
);
3821 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
3823 unsigned long flags
;
3826 init_waitqueue_entry(&wait
, current
);
3828 current
->state
= TASK_INTERRUPTIBLE
;
3830 sleep_on_head(q
, &wait
, &flags
);
3832 sleep_on_tail(q
, &wait
, &flags
);
3834 EXPORT_SYMBOL(interruptible_sleep_on
);
3837 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3839 unsigned long flags
;
3842 init_waitqueue_entry(&wait
, current
);
3844 current
->state
= TASK_INTERRUPTIBLE
;
3846 sleep_on_head(q
, &wait
, &flags
);
3847 timeout
= schedule_timeout(timeout
);
3848 sleep_on_tail(q
, &wait
, &flags
);
3852 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
3854 void __sched
sleep_on(wait_queue_head_t
*q
)
3856 unsigned long flags
;
3859 init_waitqueue_entry(&wait
, current
);
3861 current
->state
= TASK_UNINTERRUPTIBLE
;
3863 sleep_on_head(q
, &wait
, &flags
);
3865 sleep_on_tail(q
, &wait
, &flags
);
3867 EXPORT_SYMBOL(sleep_on
);
3869 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
3871 unsigned long flags
;
3874 init_waitqueue_entry(&wait
, current
);
3876 current
->state
= TASK_UNINTERRUPTIBLE
;
3878 sleep_on_head(q
, &wait
, &flags
);
3879 timeout
= schedule_timeout(timeout
);
3880 sleep_on_tail(q
, &wait
, &flags
);
3884 EXPORT_SYMBOL(sleep_on_timeout
);
3886 #ifdef CONFIG_RT_MUTEXES
3889 * rt_mutex_setprio - set the current priority of a task
3891 * @prio: prio value (kernel-internal form)
3893 * This function changes the 'effective' priority of a task. It does
3894 * not touch ->normal_prio like __setscheduler().
3896 * Used by the rt_mutex code to implement priority inheritance logic.
3898 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
3900 unsigned long flags
;
3905 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
3907 rq
= task_rq_lock(p
, &flags
);
3911 on_rq
= p
->se
.on_rq
;
3913 dequeue_task(rq
, p
, 0, now
);
3916 p
->sched_class
= &rt_sched_class
;
3918 p
->sched_class
= &fair_sched_class
;
3923 enqueue_task(rq
, p
, 0, now
);
3925 * Reschedule if we are currently running on this runqueue and
3926 * our priority decreased, or if we are not currently running on
3927 * this runqueue and our priority is higher than the current's
3929 if (task_running(rq
, p
)) {
3930 if (p
->prio
> oldprio
)
3931 resched_task(rq
->curr
);
3933 check_preempt_curr(rq
, p
);
3936 task_rq_unlock(rq
, &flags
);
3941 void set_user_nice(struct task_struct
*p
, long nice
)
3943 int old_prio
, delta
, on_rq
;
3944 unsigned long flags
;
3948 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
3951 * We have to be careful, if called from sys_setpriority(),
3952 * the task might be in the middle of scheduling on another CPU.
3954 rq
= task_rq_lock(p
, &flags
);
3957 * The RT priorities are set via sched_setscheduler(), but we still
3958 * allow the 'normal' nice value to be set - but as expected
3959 * it wont have any effect on scheduling until the task is
3960 * SCHED_FIFO/SCHED_RR:
3962 if (task_has_rt_policy(p
)) {
3963 p
->static_prio
= NICE_TO_PRIO(nice
);
3966 on_rq
= p
->se
.on_rq
;
3968 dequeue_task(rq
, p
, 0, now
);
3969 dec_load(rq
, p
, now
);
3972 p
->static_prio
= NICE_TO_PRIO(nice
);
3975 p
->prio
= effective_prio(p
);
3976 delta
= p
->prio
- old_prio
;
3979 enqueue_task(rq
, p
, 0, now
);
3980 inc_load(rq
, p
, now
);
3982 * If the task increased its priority or is running and
3983 * lowered its priority, then reschedule its CPU:
3985 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
3986 resched_task(rq
->curr
);
3989 task_rq_unlock(rq
, &flags
);
3991 EXPORT_SYMBOL(set_user_nice
);
3994 * can_nice - check if a task can reduce its nice value
3998 int can_nice(const struct task_struct
*p
, const int nice
)
4000 /* convert nice value [19,-20] to rlimit style value [1,40] */
4001 int nice_rlim
= 20 - nice
;
4003 return (nice_rlim
<= p
->signal
->rlim
[RLIMIT_NICE
].rlim_cur
||
4004 capable(CAP_SYS_NICE
));
4007 #ifdef __ARCH_WANT_SYS_NICE
4010 * sys_nice - change the priority of the current process.
4011 * @increment: priority increment
4013 * sys_setpriority is a more generic, but much slower function that
4014 * does similar things.
4016 asmlinkage
long sys_nice(int increment
)
4021 * Setpriority might change our priority at the same moment.
4022 * We don't have to worry. Conceptually one call occurs first
4023 * and we have a single winner.
4025 if (increment
< -40)
4030 nice
= PRIO_TO_NICE(current
->static_prio
) + increment
;
4036 if (increment
< 0 && !can_nice(current
, nice
))
4039 retval
= security_task_setnice(current
, nice
);
4043 set_user_nice(current
, nice
);
4050 * task_prio - return the priority value of a given task.
4051 * @p: the task in question.
4053 * This is the priority value as seen by users in /proc.
4054 * RT tasks are offset by -200. Normal tasks are centered
4055 * around 0, value goes from -16 to +15.
4057 int task_prio(const struct task_struct
*p
)
4059 return p
->prio
- MAX_RT_PRIO
;
4063 * task_nice - return the nice value of a given task.
4064 * @p: the task in question.
4066 int task_nice(const struct task_struct
*p
)
4068 return TASK_NICE(p
);
4070 EXPORT_SYMBOL_GPL(task_nice
);
4073 * idle_cpu - is a given cpu idle currently?
4074 * @cpu: the processor in question.
4076 int idle_cpu(int cpu
)
4078 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4082 * idle_task - return the idle task for a given cpu.
4083 * @cpu: the processor in question.
4085 struct task_struct
*idle_task(int cpu
)
4087 return cpu_rq(cpu
)->idle
;
4091 * find_process_by_pid - find a process with a matching PID value.
4092 * @pid: the pid in question.
4094 static inline struct task_struct
*find_process_by_pid(pid_t pid
)
4096 return pid
? find_task_by_pid(pid
) : current
;
4099 /* Actually do priority change: must hold rq lock. */
4101 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4103 BUG_ON(p
->se
.on_rq
);
4106 switch (p
->policy
) {
4110 p
->sched_class
= &fair_sched_class
;
4114 p
->sched_class
= &rt_sched_class
;
4118 p
->rt_priority
= prio
;
4119 p
->normal_prio
= normal_prio(p
);
4120 /* we are holding p->pi_lock already */
4121 p
->prio
= rt_mutex_getprio(p
);
4126 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4127 * @p: the task in question.
4128 * @policy: new policy.
4129 * @param: structure containing the new RT priority.
4131 * NOTE that the task may be already dead.
4133 int sched_setscheduler(struct task_struct
*p
, int policy
,
4134 struct sched_param
*param
)
4136 int retval
, oldprio
, oldpolicy
= -1, on_rq
;
4137 unsigned long flags
;
4140 /* may grab non-irq protected spin_locks */
4141 BUG_ON(in_interrupt());
4143 /* double check policy once rq lock held */
4145 policy
= oldpolicy
= p
->policy
;
4146 else if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4147 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4148 policy
!= SCHED_IDLE
)
4151 * Valid priorities for SCHED_FIFO and SCHED_RR are
4152 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4153 * SCHED_BATCH and SCHED_IDLE is 0.
4155 if (param
->sched_priority
< 0 ||
4156 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4157 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4159 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4163 * Allow unprivileged RT tasks to decrease priority:
4165 if (!capable(CAP_SYS_NICE
)) {
4166 if (rt_policy(policy
)) {
4167 unsigned long rlim_rtprio
;
4169 if (!lock_task_sighand(p
, &flags
))
4171 rlim_rtprio
= p
->signal
->rlim
[RLIMIT_RTPRIO
].rlim_cur
;
4172 unlock_task_sighand(p
, &flags
);
4174 /* can't set/change the rt policy */
4175 if (policy
!= p
->policy
&& !rlim_rtprio
)
4178 /* can't increase priority */
4179 if (param
->sched_priority
> p
->rt_priority
&&
4180 param
->sched_priority
> rlim_rtprio
)
4184 * Like positive nice levels, dont allow tasks to
4185 * move out of SCHED_IDLE either:
4187 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4190 /* can't change other user's priorities */
4191 if ((current
->euid
!= p
->euid
) &&
4192 (current
->euid
!= p
->uid
))
4196 retval
= security_task_setscheduler(p
, policy
, param
);
4200 * make sure no PI-waiters arrive (or leave) while we are
4201 * changing the priority of the task:
4203 spin_lock_irqsave(&p
->pi_lock
, flags
);
4205 * To be able to change p->policy safely, the apropriate
4206 * runqueue lock must be held.
4208 rq
= __task_rq_lock(p
);
4209 /* recheck policy now with rq lock held */
4210 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4211 policy
= oldpolicy
= -1;
4212 __task_rq_unlock(rq
);
4213 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4216 on_rq
= p
->se
.on_rq
;
4218 deactivate_task(rq
, p
, 0, rq_clock(rq
));
4220 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4222 activate_task(rq
, p
, 0);
4224 * Reschedule if we are currently running on this runqueue and
4225 * our priority decreased, or if we are not currently running on
4226 * this runqueue and our priority is higher than the current's
4228 if (task_running(rq
, p
)) {
4229 if (p
->prio
> oldprio
)
4230 resched_task(rq
->curr
);
4232 check_preempt_curr(rq
, p
);
4235 __task_rq_unlock(rq
);
4236 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4238 rt_mutex_adjust_pi(p
);
4242 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4245 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4247 struct sched_param lparam
;
4248 struct task_struct
*p
;
4251 if (!param
|| pid
< 0)
4253 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4258 p
= find_process_by_pid(pid
);
4260 retval
= sched_setscheduler(p
, policy
, &lparam
);
4267 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4268 * @pid: the pid in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4272 asmlinkage
long sys_sched_setscheduler(pid_t pid
, int policy
,
4273 struct sched_param __user
*param
)
4275 /* negative values for policy are not valid */
4279 return do_sched_setscheduler(pid
, policy
, param
);
4283 * sys_sched_setparam - set/change the RT priority of a thread
4284 * @pid: the pid in question.
4285 * @param: structure containing the new RT priority.
4287 asmlinkage
long sys_sched_setparam(pid_t pid
, struct sched_param __user
*param
)
4289 return do_sched_setscheduler(pid
, -1, param
);
4293 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4294 * @pid: the pid in question.
4296 asmlinkage
long sys_sched_getscheduler(pid_t pid
)
4298 struct task_struct
*p
;
4299 int retval
= -EINVAL
;
4305 read_lock(&tasklist_lock
);
4306 p
= find_process_by_pid(pid
);
4308 retval
= security_task_getscheduler(p
);
4312 read_unlock(&tasklist_lock
);
4319 * sys_sched_getscheduler - get the RT priority of a thread
4320 * @pid: the pid in question.
4321 * @param: structure containing the RT priority.
4323 asmlinkage
long sys_sched_getparam(pid_t pid
, struct sched_param __user
*param
)
4325 struct sched_param lp
;
4326 struct task_struct
*p
;
4327 int retval
= -EINVAL
;
4329 if (!param
|| pid
< 0)
4332 read_lock(&tasklist_lock
);
4333 p
= find_process_by_pid(pid
);
4338 retval
= security_task_getscheduler(p
);
4342 lp
.sched_priority
= p
->rt_priority
;
4343 read_unlock(&tasklist_lock
);
4346 * This one might sleep, we cannot do it with a spinlock held ...
4348 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4354 read_unlock(&tasklist_lock
);
4358 long sched_setaffinity(pid_t pid
, cpumask_t new_mask
)
4360 cpumask_t cpus_allowed
;
4361 struct task_struct
*p
;
4364 mutex_lock(&sched_hotcpu_mutex
);
4365 read_lock(&tasklist_lock
);
4367 p
= find_process_by_pid(pid
);
4369 read_unlock(&tasklist_lock
);
4370 mutex_unlock(&sched_hotcpu_mutex
);
4375 * It is not safe to call set_cpus_allowed with the
4376 * tasklist_lock held. We will bump the task_struct's
4377 * usage count and then drop tasklist_lock.
4380 read_unlock(&tasklist_lock
);
4383 if ((current
->euid
!= p
->euid
) && (current
->euid
!= p
->uid
) &&
4384 !capable(CAP_SYS_NICE
))
4387 retval
= security_task_setscheduler(p
, 0, NULL
);
4391 cpus_allowed
= cpuset_cpus_allowed(p
);
4392 cpus_and(new_mask
, new_mask
, cpus_allowed
);
4393 retval
= set_cpus_allowed(p
, new_mask
);
4397 mutex_unlock(&sched_hotcpu_mutex
);
4401 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4402 cpumask_t
*new_mask
)
4404 if (len
< sizeof(cpumask_t
)) {
4405 memset(new_mask
, 0, sizeof(cpumask_t
));
4406 } else if (len
> sizeof(cpumask_t
)) {
4407 len
= sizeof(cpumask_t
);
4409 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4413 * sys_sched_setaffinity - set the cpu affinity of a process
4414 * @pid: pid of the process
4415 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4416 * @user_mask_ptr: user-space pointer to the new cpu mask
4418 asmlinkage
long sys_sched_setaffinity(pid_t pid
, unsigned int len
,
4419 unsigned long __user
*user_mask_ptr
)
4424 retval
= get_user_cpu_mask(user_mask_ptr
, len
, &new_mask
);
4428 return sched_setaffinity(pid
, new_mask
);
4432 * Represents all cpu's present in the system
4433 * In systems capable of hotplug, this map could dynamically grow
4434 * as new cpu's are detected in the system via any platform specific
4435 * method, such as ACPI for e.g.
4438 cpumask_t cpu_present_map __read_mostly
;
4439 EXPORT_SYMBOL(cpu_present_map
);
4442 cpumask_t cpu_online_map __read_mostly
= CPU_MASK_ALL
;
4443 EXPORT_SYMBOL(cpu_online_map
);
4445 cpumask_t cpu_possible_map __read_mostly
= CPU_MASK_ALL
;
4446 EXPORT_SYMBOL(cpu_possible_map
);
4449 long sched_getaffinity(pid_t pid
, cpumask_t
*mask
)
4451 struct task_struct
*p
;
4454 mutex_lock(&sched_hotcpu_mutex
);
4455 read_lock(&tasklist_lock
);
4458 p
= find_process_by_pid(pid
);
4462 retval
= security_task_getscheduler(p
);
4466 cpus_and(*mask
, p
->cpus_allowed
, cpu_online_map
);
4469 read_unlock(&tasklist_lock
);
4470 mutex_unlock(&sched_hotcpu_mutex
);
4476 * sys_sched_getaffinity - get the cpu affinity of a process
4477 * @pid: pid of the process
4478 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4479 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4481 asmlinkage
long sys_sched_getaffinity(pid_t pid
, unsigned int len
,
4482 unsigned long __user
*user_mask_ptr
)
4487 if (len
< sizeof(cpumask_t
))
4490 ret
= sched_getaffinity(pid
, &mask
);
4494 if (copy_to_user(user_mask_ptr
, &mask
, sizeof(cpumask_t
)))
4497 return sizeof(cpumask_t
);
4501 * sys_sched_yield - yield the current processor to other threads.
4503 * This function yields the current CPU to other tasks. If there are no
4504 * other threads running on this CPU then this function will return.
4506 asmlinkage
long sys_sched_yield(void)
4508 struct rq
*rq
= this_rq_lock();
4510 schedstat_inc(rq
, yld_cnt
);
4511 if (unlikely(rq
->nr_running
== 1))
4512 schedstat_inc(rq
, yld_act_empty
);
4514 current
->sched_class
->yield_task(rq
, current
);
4517 * Since we are going to call schedule() anyway, there's
4518 * no need to preempt or enable interrupts:
4520 __release(rq
->lock
);
4521 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4522 _raw_spin_unlock(&rq
->lock
);
4523 preempt_enable_no_resched();
4530 static void __cond_resched(void)
4532 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4533 __might_sleep(__FILE__
, __LINE__
);
4536 * The BKS might be reacquired before we have dropped
4537 * PREEMPT_ACTIVE, which could trigger a second
4538 * cond_resched() call.
4541 add_preempt_count(PREEMPT_ACTIVE
);
4543 sub_preempt_count(PREEMPT_ACTIVE
);
4544 } while (need_resched());
4547 int __sched
cond_resched(void)
4549 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE
) &&
4550 system_state
== SYSTEM_RUNNING
) {
4556 EXPORT_SYMBOL(cond_resched
);
4559 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4560 * call schedule, and on return reacquire the lock.
4562 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4563 * operations here to prevent schedule() from being called twice (once via
4564 * spin_unlock(), once by hand).
4566 int cond_resched_lock(spinlock_t
*lock
)
4570 if (need_lockbreak(lock
)) {
4576 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4577 spin_release(&lock
->dep_map
, 1, _THIS_IP_
);
4578 _raw_spin_unlock(lock
);
4579 preempt_enable_no_resched();
4586 EXPORT_SYMBOL(cond_resched_lock
);
4588 int __sched
cond_resched_softirq(void)
4590 BUG_ON(!in_softirq());
4592 if (need_resched() && system_state
== SYSTEM_RUNNING
) {
4600 EXPORT_SYMBOL(cond_resched_softirq
);
4603 * yield - yield the current processor to other threads.
4605 * This is a shortcut for kernel-space yielding - it marks the
4606 * thread runnable and calls sys_sched_yield().
4608 void __sched
yield(void)
4610 set_current_state(TASK_RUNNING
);
4613 EXPORT_SYMBOL(yield
);
4616 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4617 * that process accounting knows that this is a task in IO wait state.
4619 * But don't do that if it is a deliberate, throttling IO wait (this task
4620 * has set its backing_dev_info: the queue against which it should throttle)
4622 void __sched
io_schedule(void)
4624 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4626 delayacct_blkio_start();
4627 atomic_inc(&rq
->nr_iowait
);
4629 atomic_dec(&rq
->nr_iowait
);
4630 delayacct_blkio_end();
4632 EXPORT_SYMBOL(io_schedule
);
4634 long __sched
io_schedule_timeout(long timeout
)
4636 struct rq
*rq
= &__raw_get_cpu_var(runqueues
);
4639 delayacct_blkio_start();
4640 atomic_inc(&rq
->nr_iowait
);
4641 ret
= schedule_timeout(timeout
);
4642 atomic_dec(&rq
->nr_iowait
);
4643 delayacct_blkio_end();
4648 * sys_sched_get_priority_max - return maximum RT priority.
4649 * @policy: scheduling class.
4651 * this syscall returns the maximum rt_priority that can be used
4652 * by a given scheduling class.
4654 asmlinkage
long sys_sched_get_priority_max(int policy
)
4661 ret
= MAX_USER_RT_PRIO
-1;
4673 * sys_sched_get_priority_min - return minimum RT priority.
4674 * @policy: scheduling class.
4676 * this syscall returns the minimum rt_priority that can be used
4677 * by a given scheduling class.
4679 asmlinkage
long sys_sched_get_priority_min(int policy
)
4697 * sys_sched_rr_get_interval - return the default timeslice of a process.
4698 * @pid: pid of the process.
4699 * @interval: userspace pointer to the timeslice value.
4701 * this syscall writes the default timeslice value of a given process
4702 * into the user-space timespec buffer. A value of '0' means infinity.
4705 long sys_sched_rr_get_interval(pid_t pid
, struct timespec __user
*interval
)
4707 struct task_struct
*p
;
4708 int retval
= -EINVAL
;
4715 read_lock(&tasklist_lock
);
4716 p
= find_process_by_pid(pid
);
4720 retval
= security_task_getscheduler(p
);
4724 jiffies_to_timespec(p
->policy
== SCHED_FIFO
?
4725 0 : static_prio_timeslice(p
->static_prio
), &t
);
4726 read_unlock(&tasklist_lock
);
4727 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
4731 read_unlock(&tasklist_lock
);
4735 static const char stat_nam
[] = "RSDTtZX";
4737 static void show_task(struct task_struct
*p
)
4739 unsigned long free
= 0;
4742 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
4743 printk("%-13.13s %c", p
->comm
,
4744 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
4745 #if BITS_PER_LONG == 32
4746 if (state
== TASK_RUNNING
)
4747 printk(" running ");
4749 printk(" %08lx ", thread_saved_pc(p
));
4751 if (state
== TASK_RUNNING
)
4752 printk(" running task ");
4754 printk(" %016lx ", thread_saved_pc(p
));
4756 #ifdef CONFIG_DEBUG_STACK_USAGE
4758 unsigned long *n
= end_of_stack(p
);
4761 free
= (unsigned long)n
- (unsigned long)end_of_stack(p
);
4764 printk("%5lu %5d %6d\n", free
, p
->pid
, p
->parent
->pid
);
4766 if (state
!= TASK_RUNNING
)
4767 show_stack(p
, NULL
);
4770 void show_state_filter(unsigned long state_filter
)
4772 struct task_struct
*g
, *p
;
4774 #if BITS_PER_LONG == 32
4776 " task PC stack pid father\n");
4779 " task PC stack pid father\n");
4781 read_lock(&tasklist_lock
);
4782 do_each_thread(g
, p
) {
4784 * reset the NMI-timeout, listing all files on a slow
4785 * console might take alot of time:
4787 touch_nmi_watchdog();
4788 if (!state_filter
|| (p
->state
& state_filter
))
4790 } while_each_thread(g
, p
);
4792 touch_all_softlockup_watchdogs();
4794 #ifdef CONFIG_SCHED_DEBUG
4795 sysrq_sched_debug_show();
4797 read_unlock(&tasklist_lock
);
4799 * Only show locks if all tasks are dumped:
4801 if (state_filter
== -1)
4802 debug_show_all_locks();
4805 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
4807 idle
->sched_class
= &idle_sched_class
;
4811 * init_idle - set up an idle thread for a given CPU
4812 * @idle: task in question
4813 * @cpu: cpu the idle task belongs to
4815 * NOTE: this function does not set the idle thread's NEED_RESCHED
4816 * flag, to make booting more robust.
4818 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
4820 struct rq
*rq
= cpu_rq(cpu
);
4821 unsigned long flags
;
4824 idle
->se
.exec_start
= sched_clock();
4826 idle
->prio
= idle
->normal_prio
= MAX_PRIO
;
4827 idle
->cpus_allowed
= cpumask_of_cpu(cpu
);
4828 __set_task_cpu(idle
, cpu
);
4830 spin_lock_irqsave(&rq
->lock
, flags
);
4831 rq
->curr
= rq
->idle
= idle
;
4832 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4835 spin_unlock_irqrestore(&rq
->lock
, flags
);
4837 /* Set the preempt count _outside_ the spinlocks! */
4838 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4839 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
4841 task_thread_info(idle
)->preempt_count
= 0;
4844 * The idle tasks have their own, simple scheduling class:
4846 idle
->sched_class
= &idle_sched_class
;
4850 * In a system that switches off the HZ timer nohz_cpu_mask
4851 * indicates which cpus entered this state. This is used
4852 * in the rcu update to wait only for active cpus. For system
4853 * which do not switch off the HZ timer nohz_cpu_mask should
4854 * always be CPU_MASK_NONE.
4856 cpumask_t nohz_cpu_mask
= CPU_MASK_NONE
;
4859 * Increase the granularity value when there are more CPUs,
4860 * because with more CPUs the 'effective latency' as visible
4861 * to users decreases. But the relationship is not linear,
4862 * so pick a second-best guess by going with the log2 of the
4865 * This idea comes from the SD scheduler of Con Kolivas:
4867 static inline void sched_init_granularity(void)
4869 unsigned int factor
= 1 + ilog2(num_online_cpus());
4870 const unsigned long gran_limit
= 100000000;
4872 sysctl_sched_granularity
*= factor
;
4873 if (sysctl_sched_granularity
> gran_limit
)
4874 sysctl_sched_granularity
= gran_limit
;
4876 sysctl_sched_runtime_limit
= sysctl_sched_granularity
* 4;
4877 sysctl_sched_wakeup_granularity
= sysctl_sched_granularity
/ 2;
4882 * This is how migration works:
4884 * 1) we queue a struct migration_req structure in the source CPU's
4885 * runqueue and wake up that CPU's migration thread.
4886 * 2) we down() the locked semaphore => thread blocks.
4887 * 3) migration thread wakes up (implicitly it forces the migrated
4888 * thread off the CPU)
4889 * 4) it gets the migration request and checks whether the migrated
4890 * task is still in the wrong runqueue.
4891 * 5) if it's in the wrong runqueue then the migration thread removes
4892 * it and puts it into the right queue.
4893 * 6) migration thread up()s the semaphore.
4894 * 7) we wake up and the migration is done.
4898 * Change a given task's CPU affinity. Migrate the thread to a
4899 * proper CPU and schedule it away if the CPU it's executing on
4900 * is removed from the allowed bitmask.
4902 * NOTE: the caller must have a valid reference to the task, the
4903 * task must not exit() & deallocate itself prematurely. The
4904 * call is not atomic; no spinlocks may be held.
4906 int set_cpus_allowed(struct task_struct
*p
, cpumask_t new_mask
)
4908 struct migration_req req
;
4909 unsigned long flags
;
4913 rq
= task_rq_lock(p
, &flags
);
4914 if (!cpus_intersects(new_mask
, cpu_online_map
)) {
4919 p
->cpus_allowed
= new_mask
;
4920 /* Can the task run on the task's current CPU? If so, we're done */
4921 if (cpu_isset(task_cpu(p
), new_mask
))
4924 if (migrate_task(p
, any_online_cpu(new_mask
), &req
)) {
4925 /* Need help from migration thread: drop lock and wait. */
4926 task_rq_unlock(rq
, &flags
);
4927 wake_up_process(rq
->migration_thread
);
4928 wait_for_completion(&req
.done
);
4929 tlb_migrate_finish(p
->mm
);
4933 task_rq_unlock(rq
, &flags
);
4937 EXPORT_SYMBOL_GPL(set_cpus_allowed
);
4940 * Move (not current) task off this cpu, onto dest cpu. We're doing
4941 * this because either it can't run here any more (set_cpus_allowed()
4942 * away from this CPU, or CPU going down), or because we're
4943 * attempting to rebalance this task on exec (sched_exec).
4945 * So we race with normal scheduler movements, but that's OK, as long
4946 * as the task is no longer on this CPU.
4948 * Returns non-zero if task was successfully migrated.
4950 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
4952 struct rq
*rq_dest
, *rq_src
;
4955 if (unlikely(cpu_is_offline(dest_cpu
)))
4958 rq_src
= cpu_rq(src_cpu
);
4959 rq_dest
= cpu_rq(dest_cpu
);
4961 double_rq_lock(rq_src
, rq_dest
);
4962 /* Already moved. */
4963 if (task_cpu(p
) != src_cpu
)
4965 /* Affinity changed (again). */
4966 if (!cpu_isset(dest_cpu
, p
->cpus_allowed
))
4969 on_rq
= p
->se
.on_rq
;
4971 deactivate_task(rq_src
, p
, 0, rq_clock(rq_src
));
4972 set_task_cpu(p
, dest_cpu
);
4974 activate_task(rq_dest
, p
, 0);
4975 check_preempt_curr(rq_dest
, p
);
4979 double_rq_unlock(rq_src
, rq_dest
);
4984 * migration_thread - this is a highprio system thread that performs
4985 * thread migration by bumping thread off CPU then 'pushing' onto
4988 static int migration_thread(void *data
)
4990 int cpu
= (long)data
;
4994 BUG_ON(rq
->migration_thread
!= current
);
4996 set_current_state(TASK_INTERRUPTIBLE
);
4997 while (!kthread_should_stop()) {
4998 struct migration_req
*req
;
4999 struct list_head
*head
;
5001 spin_lock_irq(&rq
->lock
);
5003 if (cpu_is_offline(cpu
)) {
5004 spin_unlock_irq(&rq
->lock
);
5008 if (rq
->active_balance
) {
5009 active_load_balance(rq
, cpu
);
5010 rq
->active_balance
= 0;
5013 head
= &rq
->migration_queue
;
5015 if (list_empty(head
)) {
5016 spin_unlock_irq(&rq
->lock
);
5018 set_current_state(TASK_INTERRUPTIBLE
);
5021 req
= list_entry(head
->next
, struct migration_req
, list
);
5022 list_del_init(head
->next
);
5024 spin_unlock(&rq
->lock
);
5025 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5028 complete(&req
->done
);
5030 __set_current_state(TASK_RUNNING
);
5034 /* Wait for kthread_stop */
5035 set_current_state(TASK_INTERRUPTIBLE
);
5036 while (!kthread_should_stop()) {
5038 set_current_state(TASK_INTERRUPTIBLE
);
5040 __set_current_state(TASK_RUNNING
);
5044 #ifdef CONFIG_HOTPLUG_CPU
5046 * Figure out where task on dead CPU should go, use force if neccessary.
5047 * NOTE: interrupts should be disabled by the caller
5049 static void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5051 unsigned long flags
;
5058 mask
= node_to_cpumask(cpu_to_node(dead_cpu
));
5059 cpus_and(mask
, mask
, p
->cpus_allowed
);
5060 dest_cpu
= any_online_cpu(mask
);
5062 /* On any allowed CPU? */
5063 if (dest_cpu
== NR_CPUS
)
5064 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5066 /* No more Mr. Nice Guy. */
5067 if (dest_cpu
== NR_CPUS
) {
5068 rq
= task_rq_lock(p
, &flags
);
5069 cpus_setall(p
->cpus_allowed
);
5070 dest_cpu
= any_online_cpu(p
->cpus_allowed
);
5071 task_rq_unlock(rq
, &flags
);
5074 * Don't tell them about moving exiting tasks or
5075 * kernel threads (both mm NULL), since they never
5078 if (p
->mm
&& printk_ratelimit())
5079 printk(KERN_INFO
"process %d (%s) no "
5080 "longer affine to cpu%d\n",
5081 p
->pid
, p
->comm
, dead_cpu
);
5083 if (!__migrate_task(p
, dead_cpu
, dest_cpu
))
5088 * While a dead CPU has no uninterruptible tasks queued at this point,
5089 * it might still have a nonzero ->nr_uninterruptible counter, because
5090 * for performance reasons the counter is not stricly tracking tasks to
5091 * their home CPUs. So we just add the counter to another CPU's counter,
5092 * to keep the global sum constant after CPU-down:
5094 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5096 struct rq
*rq_dest
= cpu_rq(any_online_cpu(CPU_MASK_ALL
));
5097 unsigned long flags
;
5099 local_irq_save(flags
);
5100 double_rq_lock(rq_src
, rq_dest
);
5101 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5102 rq_src
->nr_uninterruptible
= 0;
5103 double_rq_unlock(rq_src
, rq_dest
);
5104 local_irq_restore(flags
);
5107 /* Run through task list and migrate tasks from the dead cpu. */
5108 static void migrate_live_tasks(int src_cpu
)
5110 struct task_struct
*p
, *t
;
5112 write_lock_irq(&tasklist_lock
);
5114 do_each_thread(t
, p
) {
5118 if (task_cpu(p
) == src_cpu
)
5119 move_task_off_dead_cpu(src_cpu
, p
);
5120 } while_each_thread(t
, p
);
5122 write_unlock_irq(&tasklist_lock
);
5126 * Schedules idle task to be the next runnable task on current CPU.
5127 * It does so by boosting its priority to highest possible and adding it to
5128 * the _front_ of the runqueue. Used by CPU offline code.
5130 void sched_idle_next(void)
5132 int this_cpu
= smp_processor_id();
5133 struct rq
*rq
= cpu_rq(this_cpu
);
5134 struct task_struct
*p
= rq
->idle
;
5135 unsigned long flags
;
5137 /* cpu has to be offline */
5138 BUG_ON(cpu_online(this_cpu
));
5141 * Strictly not necessary since rest of the CPUs are stopped by now
5142 * and interrupts disabled on the current cpu.
5144 spin_lock_irqsave(&rq
->lock
, flags
);
5146 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5148 /* Add idle task to the _front_ of its priority queue: */
5149 activate_idle_task(p
, rq
);
5151 spin_unlock_irqrestore(&rq
->lock
, flags
);
5155 * Ensures that the idle task is using init_mm right before its cpu goes
5158 void idle_task_exit(void)
5160 struct mm_struct
*mm
= current
->active_mm
;
5162 BUG_ON(cpu_online(smp_processor_id()));
5165 switch_mm(mm
, &init_mm
, current
);
5169 /* called under rq->lock with disabled interrupts */
5170 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5172 struct rq
*rq
= cpu_rq(dead_cpu
);
5174 /* Must be exiting, otherwise would be on tasklist. */
5175 BUG_ON(p
->exit_state
!= EXIT_ZOMBIE
&& p
->exit_state
!= EXIT_DEAD
);
5177 /* Cannot have done final schedule yet: would have vanished. */
5178 BUG_ON(p
->state
== TASK_DEAD
);
5183 * Drop lock around migration; if someone else moves it,
5184 * that's OK. No task can be added to this CPU, so iteration is
5186 * NOTE: interrupts should be left disabled --dev@
5188 spin_unlock(&rq
->lock
);
5189 move_task_off_dead_cpu(dead_cpu
, p
);
5190 spin_lock(&rq
->lock
);
5195 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5196 static void migrate_dead_tasks(unsigned int dead_cpu
)
5198 struct rq
*rq
= cpu_rq(dead_cpu
);
5199 struct task_struct
*next
;
5202 if (!rq
->nr_running
)
5204 next
= pick_next_task(rq
, rq
->curr
, rq_clock(rq
));
5207 migrate_dead(dead_cpu
, next
);
5211 #endif /* CONFIG_HOTPLUG_CPU */
5213 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5215 static struct ctl_table sd_ctl_dir
[] = {
5217 .procname
= "sched_domain",
5223 static struct ctl_table sd_ctl_root
[] = {
5225 .procname
= "kernel",
5227 .child
= sd_ctl_dir
,
5232 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5234 struct ctl_table
*entry
=
5235 kmalloc(n
* sizeof(struct ctl_table
), GFP_KERNEL
);
5238 memset(entry
, 0, n
* sizeof(struct ctl_table
));
5244 set_table_entry(struct ctl_table
*entry
,
5245 const char *procname
, void *data
, int maxlen
,
5246 mode_t mode
, proc_handler
*proc_handler
)
5248 entry
->procname
= procname
;
5250 entry
->maxlen
= maxlen
;
5252 entry
->proc_handler
= proc_handler
;
5255 static struct ctl_table
*
5256 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5258 struct ctl_table
*table
= sd_alloc_ctl_entry(14);
5260 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5261 sizeof(long), 0644, proc_doulongvec_minmax
);
5262 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5263 sizeof(long), 0644, proc_doulongvec_minmax
);
5264 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5265 sizeof(int), 0644, proc_dointvec_minmax
);
5266 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5267 sizeof(int), 0644, proc_dointvec_minmax
);
5268 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5269 sizeof(int), 0644, proc_dointvec_minmax
);
5270 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5271 sizeof(int), 0644, proc_dointvec_minmax
);
5272 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5273 sizeof(int), 0644, proc_dointvec_minmax
);
5274 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5275 sizeof(int), 0644, proc_dointvec_minmax
);
5276 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5277 sizeof(int), 0644, proc_dointvec_minmax
);
5278 set_table_entry(&table
[10], "cache_nice_tries",
5279 &sd
->cache_nice_tries
,
5280 sizeof(int), 0644, proc_dointvec_minmax
);
5281 set_table_entry(&table
[12], "flags", &sd
->flags
,
5282 sizeof(int), 0644, proc_dointvec_minmax
);
5287 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5289 struct ctl_table
*entry
, *table
;
5290 struct sched_domain
*sd
;
5291 int domain_num
= 0, i
;
5294 for_each_domain(cpu
, sd
)
5296 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5299 for_each_domain(cpu
, sd
) {
5300 snprintf(buf
, 32, "domain%d", i
);
5301 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5303 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5310 static struct ctl_table_header
*sd_sysctl_header
;
5311 static void init_sched_domain_sysctl(void)
5313 int i
, cpu_num
= num_online_cpus();
5314 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5317 sd_ctl_dir
[0].child
= entry
;
5319 for (i
= 0; i
< cpu_num
; i
++, entry
++) {
5320 snprintf(buf
, 32, "cpu%d", i
);
5321 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5323 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5325 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5328 static void init_sched_domain_sysctl(void)
5334 * migration_call - callback that gets triggered when a CPU is added.
5335 * Here we can start up the necessary migration thread for the new CPU.
5337 static int __cpuinit
5338 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5340 struct task_struct
*p
;
5341 int cpu
= (long)hcpu
;
5342 unsigned long flags
;
5346 case CPU_LOCK_ACQUIRE
:
5347 mutex_lock(&sched_hotcpu_mutex
);
5350 case CPU_UP_PREPARE
:
5351 case CPU_UP_PREPARE_FROZEN
:
5352 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5355 kthread_bind(p
, cpu
);
5356 /* Must be high prio: stop_machine expects to yield to it. */
5357 rq
= task_rq_lock(p
, &flags
);
5358 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5359 task_rq_unlock(rq
, &flags
);
5360 cpu_rq(cpu
)->migration_thread
= p
;
5364 case CPU_ONLINE_FROZEN
:
5365 /* Strictly unneccessary, as first user will wake it. */
5366 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5369 #ifdef CONFIG_HOTPLUG_CPU
5370 case CPU_UP_CANCELED
:
5371 case CPU_UP_CANCELED_FROZEN
:
5372 if (!cpu_rq(cpu
)->migration_thread
)
5374 /* Unbind it from offline cpu so it can run. Fall thru. */
5375 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5376 any_online_cpu(cpu_online_map
));
5377 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5378 cpu_rq(cpu
)->migration_thread
= NULL
;
5382 case CPU_DEAD_FROZEN
:
5383 migrate_live_tasks(cpu
);
5385 kthread_stop(rq
->migration_thread
);
5386 rq
->migration_thread
= NULL
;
5387 /* Idle task back to normal (off runqueue, low prio) */
5388 rq
= task_rq_lock(rq
->idle
, &flags
);
5389 deactivate_task(rq
, rq
->idle
, 0, rq_clock(rq
));
5390 rq
->idle
->static_prio
= MAX_PRIO
;
5391 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5392 rq
->idle
->sched_class
= &idle_sched_class
;
5393 migrate_dead_tasks(cpu
);
5394 task_rq_unlock(rq
, &flags
);
5395 migrate_nr_uninterruptible(rq
);
5396 BUG_ON(rq
->nr_running
!= 0);
5398 /* No need to migrate the tasks: it was best-effort if
5399 * they didn't take sched_hotcpu_mutex. Just wake up
5400 * the requestors. */
5401 spin_lock_irq(&rq
->lock
);
5402 while (!list_empty(&rq
->migration_queue
)) {
5403 struct migration_req
*req
;
5405 req
= list_entry(rq
->migration_queue
.next
,
5406 struct migration_req
, list
);
5407 list_del_init(&req
->list
);
5408 complete(&req
->done
);
5410 spin_unlock_irq(&rq
->lock
);
5413 case CPU_LOCK_RELEASE
:
5414 mutex_unlock(&sched_hotcpu_mutex
);
5420 /* Register at highest priority so that task migration (migrate_all_tasks)
5421 * happens before everything else.
5423 static struct notifier_block __cpuinitdata migration_notifier
= {
5424 .notifier_call
= migration_call
,
5428 int __init
migration_init(void)
5430 void *cpu
= (void *)(long)smp_processor_id();
5433 /* Start one for the boot CPU: */
5434 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5435 BUG_ON(err
== NOTIFY_BAD
);
5436 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5437 register_cpu_notifier(&migration_notifier
);
5445 /* Number of possible processor ids */
5446 int nr_cpu_ids __read_mostly
= NR_CPUS
;
5447 EXPORT_SYMBOL(nr_cpu_ids
);
5449 #undef SCHED_DOMAIN_DEBUG
5450 #ifdef SCHED_DOMAIN_DEBUG
5451 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
5456 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
5460 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
5465 struct sched_group
*group
= sd
->groups
;
5466 cpumask_t groupmask
;
5468 cpumask_scnprintf(str
, NR_CPUS
, sd
->span
);
5469 cpus_clear(groupmask
);
5472 for (i
= 0; i
< level
+ 1; i
++)
5474 printk("domain %d: ", level
);
5476 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5477 printk("does not load-balance\n");
5479 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5484 printk("span %s\n", str
);
5486 if (!cpu_isset(cpu
, sd
->span
))
5487 printk(KERN_ERR
"ERROR: domain->span does not contain "
5489 if (!cpu_isset(cpu
, group
->cpumask
))
5490 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5494 for (i
= 0; i
< level
+ 2; i
++)
5500 printk(KERN_ERR
"ERROR: group is NULL\n");
5504 if (!group
->__cpu_power
) {
5506 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5510 if (!cpus_weight(group
->cpumask
)) {
5512 printk(KERN_ERR
"ERROR: empty group\n");
5515 if (cpus_intersects(groupmask
, group
->cpumask
)) {
5517 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5520 cpus_or(groupmask
, groupmask
, group
->cpumask
);
5522 cpumask_scnprintf(str
, NR_CPUS
, group
->cpumask
);
5525 group
= group
->next
;
5526 } while (group
!= sd
->groups
);
5529 if (!cpus_equal(sd
->span
, groupmask
))
5530 printk(KERN_ERR
"ERROR: groups don't span "
5538 if (!cpus_subset(groupmask
, sd
->span
))
5539 printk(KERN_ERR
"ERROR: parent span is not a superset "
5540 "of domain->span\n");
5545 # define sched_domain_debug(sd, cpu) do { } while (0)
5548 static int sd_degenerate(struct sched_domain
*sd
)
5550 if (cpus_weight(sd
->span
) == 1)
5553 /* Following flags need at least 2 groups */
5554 if (sd
->flags
& (SD_LOAD_BALANCE
|
5555 SD_BALANCE_NEWIDLE
|
5559 SD_SHARE_PKG_RESOURCES
)) {
5560 if (sd
->groups
!= sd
->groups
->next
)
5564 /* Following flags don't use groups */
5565 if (sd
->flags
& (SD_WAKE_IDLE
|
5574 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
5576 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
5578 if (sd_degenerate(parent
))
5581 if (!cpus_equal(sd
->span
, parent
->span
))
5584 /* Does parent contain flags not in child? */
5585 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5586 if (cflags
& SD_WAKE_AFFINE
)
5587 pflags
&= ~SD_WAKE_BALANCE
;
5588 /* Flags needing groups don't count if only 1 group in parent */
5589 if (parent
->groups
== parent
->groups
->next
) {
5590 pflags
&= ~(SD_LOAD_BALANCE
|
5591 SD_BALANCE_NEWIDLE
|
5595 SD_SHARE_PKG_RESOURCES
);
5597 if (~cflags
& pflags
)
5604 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5605 * hold the hotplug lock.
5607 static void cpu_attach_domain(struct sched_domain
*sd
, int cpu
)
5609 struct rq
*rq
= cpu_rq(cpu
);
5610 struct sched_domain
*tmp
;
5612 /* Remove the sched domains which do not contribute to scheduling. */
5613 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
) {
5614 struct sched_domain
*parent
= tmp
->parent
;
5617 if (sd_parent_degenerate(tmp
, parent
)) {
5618 tmp
->parent
= parent
->parent
;
5620 parent
->parent
->child
= tmp
;
5624 if (sd
&& sd_degenerate(sd
)) {
5630 sched_domain_debug(sd
, cpu
);
5632 rcu_assign_pointer(rq
->sd
, sd
);
5635 /* cpus with isolated domains */
5636 static cpumask_t cpu_isolated_map
= CPU_MASK_NONE
;
5638 /* Setup the mask of cpus configured for isolated domains */
5639 static int __init
isolated_cpu_setup(char *str
)
5641 int ints
[NR_CPUS
], i
;
5643 str
= get_options(str
, ARRAY_SIZE(ints
), ints
);
5644 cpus_clear(cpu_isolated_map
);
5645 for (i
= 1; i
<= ints
[0]; i
++)
5646 if (ints
[i
] < NR_CPUS
)
5647 cpu_set(ints
[i
], cpu_isolated_map
);
5651 __setup ("isolcpus=", isolated_cpu_setup
);
5654 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5655 * to a function which identifies what group(along with sched group) a CPU
5656 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5657 * (due to the fact that we keep track of groups covered with a cpumask_t).
5659 * init_sched_build_groups will build a circular linked list of the groups
5660 * covered by the given span, and will set each group's ->cpumask correctly,
5661 * and ->cpu_power to 0.
5664 init_sched_build_groups(cpumask_t span
, const cpumask_t
*cpu_map
,
5665 int (*group_fn
)(int cpu
, const cpumask_t
*cpu_map
,
5666 struct sched_group
**sg
))
5668 struct sched_group
*first
= NULL
, *last
= NULL
;
5669 cpumask_t covered
= CPU_MASK_NONE
;
5672 for_each_cpu_mask(i
, span
) {
5673 struct sched_group
*sg
;
5674 int group
= group_fn(i
, cpu_map
, &sg
);
5677 if (cpu_isset(i
, covered
))
5680 sg
->cpumask
= CPU_MASK_NONE
;
5681 sg
->__cpu_power
= 0;
5683 for_each_cpu_mask(j
, span
) {
5684 if (group_fn(j
, cpu_map
, NULL
) != group
)
5687 cpu_set(j
, covered
);
5688 cpu_set(j
, sg
->cpumask
);
5699 #define SD_NODES_PER_DOMAIN 16
5704 * find_next_best_node - find the next node to include in a sched_domain
5705 * @node: node whose sched_domain we're building
5706 * @used_nodes: nodes already in the sched_domain
5708 * Find the next node to include in a given scheduling domain. Simply
5709 * finds the closest node not already in the @used_nodes map.
5711 * Should use nodemask_t.
5713 static int find_next_best_node(int node
, unsigned long *used_nodes
)
5715 int i
, n
, val
, min_val
, best_node
= 0;
5719 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5720 /* Start at @node */
5721 n
= (node
+ i
) % MAX_NUMNODES
;
5723 if (!nr_cpus_node(n
))
5726 /* Skip already used nodes */
5727 if (test_bit(n
, used_nodes
))
5730 /* Simple min distance search */
5731 val
= node_distance(node
, n
);
5733 if (val
< min_val
) {
5739 set_bit(best_node
, used_nodes
);
5744 * sched_domain_node_span - get a cpumask for a node's sched_domain
5745 * @node: node whose cpumask we're constructing
5746 * @size: number of nodes to include in this span
5748 * Given a node, construct a good cpumask for its sched_domain to span. It
5749 * should be one that prevents unnecessary balancing, but also spreads tasks
5752 static cpumask_t
sched_domain_node_span(int node
)
5754 DECLARE_BITMAP(used_nodes
, MAX_NUMNODES
);
5755 cpumask_t span
, nodemask
;
5759 bitmap_zero(used_nodes
, MAX_NUMNODES
);
5761 nodemask
= node_to_cpumask(node
);
5762 cpus_or(span
, span
, nodemask
);
5763 set_bit(node
, used_nodes
);
5765 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
5766 int next_node
= find_next_best_node(node
, used_nodes
);
5768 nodemask
= node_to_cpumask(next_node
);
5769 cpus_or(span
, span
, nodemask
);
5776 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
5779 * SMT sched-domains:
5781 #ifdef CONFIG_SCHED_SMT
5782 static DEFINE_PER_CPU(struct sched_domain
, cpu_domains
);
5783 static DEFINE_PER_CPU(struct sched_group
, sched_group_cpus
);
5785 static int cpu_to_cpu_group(int cpu
, const cpumask_t
*cpu_map
,
5786 struct sched_group
**sg
)
5789 *sg
= &per_cpu(sched_group_cpus
, cpu
);
5795 * multi-core sched-domains:
5797 #ifdef CONFIG_SCHED_MC
5798 static DEFINE_PER_CPU(struct sched_domain
, core_domains
);
5799 static DEFINE_PER_CPU(struct sched_group
, sched_group_core
);
5802 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5803 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5804 struct sched_group
**sg
)
5807 cpumask_t mask
= cpu_sibling_map
[cpu
];
5808 cpus_and(mask
, mask
, *cpu_map
);
5809 group
= first_cpu(mask
);
5811 *sg
= &per_cpu(sched_group_core
, group
);
5814 #elif defined(CONFIG_SCHED_MC)
5815 static int cpu_to_core_group(int cpu
, const cpumask_t
*cpu_map
,
5816 struct sched_group
**sg
)
5819 *sg
= &per_cpu(sched_group_core
, cpu
);
5824 static DEFINE_PER_CPU(struct sched_domain
, phys_domains
);
5825 static DEFINE_PER_CPU(struct sched_group
, sched_group_phys
);
5827 static int cpu_to_phys_group(int cpu
, const cpumask_t
*cpu_map
,
5828 struct sched_group
**sg
)
5831 #ifdef CONFIG_SCHED_MC
5832 cpumask_t mask
= cpu_coregroup_map(cpu
);
5833 cpus_and(mask
, mask
, *cpu_map
);
5834 group
= first_cpu(mask
);
5835 #elif defined(CONFIG_SCHED_SMT)
5836 cpumask_t mask
= cpu_sibling_map
[cpu
];
5837 cpus_and(mask
, mask
, *cpu_map
);
5838 group
= first_cpu(mask
);
5843 *sg
= &per_cpu(sched_group_phys
, group
);
5849 * The init_sched_build_groups can't handle what we want to do with node
5850 * groups, so roll our own. Now each node has its own list of groups which
5851 * gets dynamically allocated.
5853 static DEFINE_PER_CPU(struct sched_domain
, node_domains
);
5854 static struct sched_group
**sched_group_nodes_bycpu
[NR_CPUS
];
5856 static DEFINE_PER_CPU(struct sched_domain
, allnodes_domains
);
5857 static DEFINE_PER_CPU(struct sched_group
, sched_group_allnodes
);
5859 static int cpu_to_allnodes_group(int cpu
, const cpumask_t
*cpu_map
,
5860 struct sched_group
**sg
)
5862 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(cpu
));
5865 cpus_and(nodemask
, nodemask
, *cpu_map
);
5866 group
= first_cpu(nodemask
);
5869 *sg
= &per_cpu(sched_group_allnodes
, group
);
5873 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
5875 struct sched_group
*sg
= group_head
;
5881 for_each_cpu_mask(j
, sg
->cpumask
) {
5882 struct sched_domain
*sd
;
5884 sd
= &per_cpu(phys_domains
, j
);
5885 if (j
!= first_cpu(sd
->groups
->cpumask
)) {
5887 * Only add "power" once for each
5893 sg_inc_cpu_power(sg
, sd
->groups
->__cpu_power
);
5896 if (sg
!= group_head
)
5902 /* Free memory allocated for various sched_group structures */
5903 static void free_sched_groups(const cpumask_t
*cpu_map
)
5907 for_each_cpu_mask(cpu
, *cpu_map
) {
5908 struct sched_group
**sched_group_nodes
5909 = sched_group_nodes_bycpu
[cpu
];
5911 if (!sched_group_nodes
)
5914 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
5915 cpumask_t nodemask
= node_to_cpumask(i
);
5916 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
5918 cpus_and(nodemask
, nodemask
, *cpu_map
);
5919 if (cpus_empty(nodemask
))
5929 if (oldsg
!= sched_group_nodes
[i
])
5932 kfree(sched_group_nodes
);
5933 sched_group_nodes_bycpu
[cpu
] = NULL
;
5937 static void free_sched_groups(const cpumask_t
*cpu_map
)
5943 * Initialize sched groups cpu_power.
5945 * cpu_power indicates the capacity of sched group, which is used while
5946 * distributing the load between different sched groups in a sched domain.
5947 * Typically cpu_power for all the groups in a sched domain will be same unless
5948 * there are asymmetries in the topology. If there are asymmetries, group
5949 * having more cpu_power will pickup more load compared to the group having
5952 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5953 * the maximum number of tasks a group can handle in the presence of other idle
5954 * or lightly loaded groups in the same sched domain.
5956 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
5958 struct sched_domain
*child
;
5959 struct sched_group
*group
;
5961 WARN_ON(!sd
|| !sd
->groups
);
5963 if (cpu
!= first_cpu(sd
->groups
->cpumask
))
5968 sd
->groups
->__cpu_power
= 0;
5971 * For perf policy, if the groups in child domain share resources
5972 * (for example cores sharing some portions of the cache hierarchy
5973 * or SMT), then set this domain groups cpu_power such that each group
5974 * can handle only one task, when there are other idle groups in the
5975 * same sched domain.
5977 if (!child
|| (!(sd
->flags
& SD_POWERSAVINGS_BALANCE
) &&
5979 (SD_SHARE_CPUPOWER
| SD_SHARE_PKG_RESOURCES
)))) {
5980 sg_inc_cpu_power(sd
->groups
, SCHED_LOAD_SCALE
);
5985 * add cpu_power of each child group to this groups cpu_power
5987 group
= child
->groups
;
5989 sg_inc_cpu_power(sd
->groups
, group
->__cpu_power
);
5990 group
= group
->next
;
5991 } while (group
!= child
->groups
);
5995 * Build sched domains for a given set of cpus and attach the sched domains
5996 * to the individual cpus
5998 static int build_sched_domains(const cpumask_t
*cpu_map
)
6002 struct sched_group
**sched_group_nodes
= NULL
;
6003 int sd_allnodes
= 0;
6006 * Allocate the per-node list of sched groups
6008 sched_group_nodes
= kzalloc(sizeof(struct sched_group
*)*MAX_NUMNODES
,
6010 if (!sched_group_nodes
) {
6011 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6014 sched_group_nodes_bycpu
[first_cpu(*cpu_map
)] = sched_group_nodes
;
6018 * Set up domains for cpus specified by the cpu_map.
6020 for_each_cpu_mask(i
, *cpu_map
) {
6021 struct sched_domain
*sd
= NULL
, *p
;
6022 cpumask_t nodemask
= node_to_cpumask(cpu_to_node(i
));
6024 cpus_and(nodemask
, nodemask
, *cpu_map
);
6027 if (cpus_weight(*cpu_map
) >
6028 SD_NODES_PER_DOMAIN
*cpus_weight(nodemask
)) {
6029 sd
= &per_cpu(allnodes_domains
, i
);
6030 *sd
= SD_ALLNODES_INIT
;
6031 sd
->span
= *cpu_map
;
6032 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
);
6038 sd
= &per_cpu(node_domains
, i
);
6040 sd
->span
= sched_domain_node_span(cpu_to_node(i
));
6044 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6048 sd
= &per_cpu(phys_domains
, i
);
6050 sd
->span
= nodemask
;
6054 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
);
6056 #ifdef CONFIG_SCHED_MC
6058 sd
= &per_cpu(core_domains
, i
);
6060 sd
->span
= cpu_coregroup_map(i
);
6061 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6064 cpu_to_core_group(i
, cpu_map
, &sd
->groups
);
6067 #ifdef CONFIG_SCHED_SMT
6069 sd
= &per_cpu(cpu_domains
, i
);
6070 *sd
= SD_SIBLING_INIT
;
6071 sd
->span
= cpu_sibling_map
[i
];
6072 cpus_and(sd
->span
, sd
->span
, *cpu_map
);
6075 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
);
6079 #ifdef CONFIG_SCHED_SMT
6080 /* Set up CPU (sibling) groups */
6081 for_each_cpu_mask(i
, *cpu_map
) {
6082 cpumask_t this_sibling_map
= cpu_sibling_map
[i
];
6083 cpus_and(this_sibling_map
, this_sibling_map
, *cpu_map
);
6084 if (i
!= first_cpu(this_sibling_map
))
6087 init_sched_build_groups(this_sibling_map
, cpu_map
,
6092 #ifdef CONFIG_SCHED_MC
6093 /* Set up multi-core groups */
6094 for_each_cpu_mask(i
, *cpu_map
) {
6095 cpumask_t this_core_map
= cpu_coregroup_map(i
);
6096 cpus_and(this_core_map
, this_core_map
, *cpu_map
);
6097 if (i
!= first_cpu(this_core_map
))
6099 init_sched_build_groups(this_core_map
, cpu_map
,
6100 &cpu_to_core_group
);
6104 /* Set up physical groups */
6105 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6106 cpumask_t nodemask
= node_to_cpumask(i
);
6108 cpus_and(nodemask
, nodemask
, *cpu_map
);
6109 if (cpus_empty(nodemask
))
6112 init_sched_build_groups(nodemask
, cpu_map
, &cpu_to_phys_group
);
6116 /* Set up node groups */
6118 init_sched_build_groups(*cpu_map
, cpu_map
,
6119 &cpu_to_allnodes_group
);
6121 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6122 /* Set up node groups */
6123 struct sched_group
*sg
, *prev
;
6124 cpumask_t nodemask
= node_to_cpumask(i
);
6125 cpumask_t domainspan
;
6126 cpumask_t covered
= CPU_MASK_NONE
;
6129 cpus_and(nodemask
, nodemask
, *cpu_map
);
6130 if (cpus_empty(nodemask
)) {
6131 sched_group_nodes
[i
] = NULL
;
6135 domainspan
= sched_domain_node_span(i
);
6136 cpus_and(domainspan
, domainspan
, *cpu_map
);
6138 sg
= kmalloc_node(sizeof(struct sched_group
), GFP_KERNEL
, i
);
6140 printk(KERN_WARNING
"Can not alloc domain group for "
6144 sched_group_nodes
[i
] = sg
;
6145 for_each_cpu_mask(j
, nodemask
) {
6146 struct sched_domain
*sd
;
6148 sd
= &per_cpu(node_domains
, j
);
6151 sg
->__cpu_power
= 0;
6152 sg
->cpumask
= nodemask
;
6154 cpus_or(covered
, covered
, nodemask
);
6157 for (j
= 0; j
< MAX_NUMNODES
; j
++) {
6158 cpumask_t tmp
, notcovered
;
6159 int n
= (i
+ j
) % MAX_NUMNODES
;
6161 cpus_complement(notcovered
, covered
);
6162 cpus_and(tmp
, notcovered
, *cpu_map
);
6163 cpus_and(tmp
, tmp
, domainspan
);
6164 if (cpus_empty(tmp
))
6167 nodemask
= node_to_cpumask(n
);
6168 cpus_and(tmp
, tmp
, nodemask
);
6169 if (cpus_empty(tmp
))
6172 sg
= kmalloc_node(sizeof(struct sched_group
),
6176 "Can not alloc domain group for node %d\n", j
);
6179 sg
->__cpu_power
= 0;
6181 sg
->next
= prev
->next
;
6182 cpus_or(covered
, covered
, tmp
);
6189 /* Calculate CPU power for physical packages and nodes */
6190 #ifdef CONFIG_SCHED_SMT
6191 for_each_cpu_mask(i
, *cpu_map
) {
6192 struct sched_domain
*sd
= &per_cpu(cpu_domains
, i
);
6194 init_sched_groups_power(i
, sd
);
6197 #ifdef CONFIG_SCHED_MC
6198 for_each_cpu_mask(i
, *cpu_map
) {
6199 struct sched_domain
*sd
= &per_cpu(core_domains
, i
);
6201 init_sched_groups_power(i
, sd
);
6205 for_each_cpu_mask(i
, *cpu_map
) {
6206 struct sched_domain
*sd
= &per_cpu(phys_domains
, i
);
6208 init_sched_groups_power(i
, sd
);
6212 for (i
= 0; i
< MAX_NUMNODES
; i
++)
6213 init_numa_sched_groups_power(sched_group_nodes
[i
]);
6216 struct sched_group
*sg
;
6218 cpu_to_allnodes_group(first_cpu(*cpu_map
), cpu_map
, &sg
);
6219 init_numa_sched_groups_power(sg
);
6223 /* Attach the domains */
6224 for_each_cpu_mask(i
, *cpu_map
) {
6225 struct sched_domain
*sd
;
6226 #ifdef CONFIG_SCHED_SMT
6227 sd
= &per_cpu(cpu_domains
, i
);
6228 #elif defined(CONFIG_SCHED_MC)
6229 sd
= &per_cpu(core_domains
, i
);
6231 sd
= &per_cpu(phys_domains
, i
);
6233 cpu_attach_domain(sd
, i
);
6240 free_sched_groups(cpu_map
);
6245 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6247 static int arch_init_sched_domains(const cpumask_t
*cpu_map
)
6249 cpumask_t cpu_default_map
;
6253 * Setup mask for cpus without special case scheduling requirements.
6254 * For now this just excludes isolated cpus, but could be used to
6255 * exclude other special cases in the future.
6257 cpus_andnot(cpu_default_map
, *cpu_map
, cpu_isolated_map
);
6259 err
= build_sched_domains(&cpu_default_map
);
6264 static void arch_destroy_sched_domains(const cpumask_t
*cpu_map
)
6266 free_sched_groups(cpu_map
);
6270 * Detach sched domains from a group of cpus specified in cpu_map
6271 * These cpus will now be attached to the NULL domain
6273 static void detach_destroy_domains(const cpumask_t
*cpu_map
)
6277 for_each_cpu_mask(i
, *cpu_map
)
6278 cpu_attach_domain(NULL
, i
);
6279 synchronize_sched();
6280 arch_destroy_sched_domains(cpu_map
);
6284 * Partition sched domains as specified by the cpumasks below.
6285 * This attaches all cpus from the cpumasks to the NULL domain,
6286 * waits for a RCU quiescent period, recalculates sched
6287 * domain information and then attaches them back to the
6288 * correct sched domains
6289 * Call with hotplug lock held
6291 int partition_sched_domains(cpumask_t
*partition1
, cpumask_t
*partition2
)
6293 cpumask_t change_map
;
6296 cpus_and(*partition1
, *partition1
, cpu_online_map
);
6297 cpus_and(*partition2
, *partition2
, cpu_online_map
);
6298 cpus_or(change_map
, *partition1
, *partition2
);
6300 /* Detach sched domains from all of the affected cpus */
6301 detach_destroy_domains(&change_map
);
6302 if (!cpus_empty(*partition1
))
6303 err
= build_sched_domains(partition1
);
6304 if (!err
&& !cpus_empty(*partition2
))
6305 err
= build_sched_domains(partition2
);
6310 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6311 int arch_reinit_sched_domains(void)
6315 mutex_lock(&sched_hotcpu_mutex
);
6316 detach_destroy_domains(&cpu_online_map
);
6317 err
= arch_init_sched_domains(&cpu_online_map
);
6318 mutex_unlock(&sched_hotcpu_mutex
);
6323 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
6327 if (buf
[0] != '0' && buf
[0] != '1')
6331 sched_smt_power_savings
= (buf
[0] == '1');
6333 sched_mc_power_savings
= (buf
[0] == '1');
6335 ret
= arch_reinit_sched_domains();
6337 return ret
? ret
: count
;
6340 int sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
6344 #ifdef CONFIG_SCHED_SMT
6346 err
= sysfs_create_file(&cls
->kset
.kobj
,
6347 &attr_sched_smt_power_savings
.attr
);
6349 #ifdef CONFIG_SCHED_MC
6350 if (!err
&& mc_capable())
6351 err
= sysfs_create_file(&cls
->kset
.kobj
,
6352 &attr_sched_mc_power_savings
.attr
);
6358 #ifdef CONFIG_SCHED_MC
6359 static ssize_t
sched_mc_power_savings_show(struct sys_device
*dev
, char *page
)
6361 return sprintf(page
, "%u\n", sched_mc_power_savings
);
6363 static ssize_t
sched_mc_power_savings_store(struct sys_device
*dev
,
6364 const char *buf
, size_t count
)
6366 return sched_power_savings_store(buf
, count
, 0);
6368 SYSDEV_ATTR(sched_mc_power_savings
, 0644, sched_mc_power_savings_show
,
6369 sched_mc_power_savings_store
);
6372 #ifdef CONFIG_SCHED_SMT
6373 static ssize_t
sched_smt_power_savings_show(struct sys_device
*dev
, char *page
)
6375 return sprintf(page
, "%u\n", sched_smt_power_savings
);
6377 static ssize_t
sched_smt_power_savings_store(struct sys_device
*dev
,
6378 const char *buf
, size_t count
)
6380 return sched_power_savings_store(buf
, count
, 1);
6382 SYSDEV_ATTR(sched_smt_power_savings
, 0644, sched_smt_power_savings_show
,
6383 sched_smt_power_savings_store
);
6387 * Force a reinitialization of the sched domains hierarchy. The domains
6388 * and groups cannot be updated in place without racing with the balancing
6389 * code, so we temporarily attach all running cpus to the NULL domain
6390 * which will prevent rebalancing while the sched domains are recalculated.
6392 static int update_sched_domains(struct notifier_block
*nfb
,
6393 unsigned long action
, void *hcpu
)
6396 case CPU_UP_PREPARE
:
6397 case CPU_UP_PREPARE_FROZEN
:
6398 case CPU_DOWN_PREPARE
:
6399 case CPU_DOWN_PREPARE_FROZEN
:
6400 detach_destroy_domains(&cpu_online_map
);
6403 case CPU_UP_CANCELED
:
6404 case CPU_UP_CANCELED_FROZEN
:
6405 case CPU_DOWN_FAILED
:
6406 case CPU_DOWN_FAILED_FROZEN
:
6408 case CPU_ONLINE_FROZEN
:
6410 case CPU_DEAD_FROZEN
:
6412 * Fall through and re-initialise the domains.
6419 /* The hotplug lock is already held by cpu_up/cpu_down */
6420 arch_init_sched_domains(&cpu_online_map
);
6425 void __init
sched_init_smp(void)
6427 cpumask_t non_isolated_cpus
;
6429 mutex_lock(&sched_hotcpu_mutex
);
6430 arch_init_sched_domains(&cpu_online_map
);
6431 cpus_andnot(non_isolated_cpus
, cpu_possible_map
, cpu_isolated_map
);
6432 if (cpus_empty(non_isolated_cpus
))
6433 cpu_set(smp_processor_id(), non_isolated_cpus
);
6434 mutex_unlock(&sched_hotcpu_mutex
);
6435 /* XXX: Theoretical race here - CPU may be hotplugged now */
6436 hotcpu_notifier(update_sched_domains
, 0);
6438 init_sched_domain_sysctl();
6440 /* Move init over to a non-isolated CPU */
6441 if (set_cpus_allowed(current
, non_isolated_cpus
) < 0)
6443 sched_init_granularity();
6446 void __init
sched_init_smp(void)
6448 sched_init_granularity();
6450 #endif /* CONFIG_SMP */
6452 int in_sched_functions(unsigned long addr
)
6454 /* Linker adds these: start and end of __sched functions */
6455 extern char __sched_text_start
[], __sched_text_end
[];
6457 return in_lock_functions(addr
) ||
6458 (addr
>= (unsigned long)__sched_text_start
6459 && addr
< (unsigned long)__sched_text_end
);
6462 static inline void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
6464 cfs_rq
->tasks_timeline
= RB_ROOT
;
6465 cfs_rq
->fair_clock
= 1;
6466 #ifdef CONFIG_FAIR_GROUP_SCHED
6471 void __init
sched_init(void)
6473 u64 now
= sched_clock();
6474 int highest_cpu
= 0;
6478 * Link up the scheduling class hierarchy:
6480 rt_sched_class
.next
= &fair_sched_class
;
6481 fair_sched_class
.next
= &idle_sched_class
;
6482 idle_sched_class
.next
= NULL
;
6484 for_each_possible_cpu(i
) {
6485 struct rt_prio_array
*array
;
6489 spin_lock_init(&rq
->lock
);
6490 lockdep_set_class(&rq
->lock
, &rq
->rq_lock_key
);
6493 init_cfs_rq(&rq
->cfs
, rq
);
6494 #ifdef CONFIG_FAIR_GROUP_SCHED
6495 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
6496 list_add(&rq
->cfs
.leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
6498 rq
->ls
.load_update_last
= now
;
6499 rq
->ls
.load_update_start
= now
;
6501 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
6502 rq
->cpu_load
[j
] = 0;
6505 rq
->active_balance
= 0;
6506 rq
->next_balance
= jiffies
;
6509 rq
->migration_thread
= NULL
;
6510 INIT_LIST_HEAD(&rq
->migration_queue
);
6512 atomic_set(&rq
->nr_iowait
, 0);
6514 array
= &rq
->rt
.active
;
6515 for (j
= 0; j
< MAX_RT_PRIO
; j
++) {
6516 INIT_LIST_HEAD(array
->queue
+ j
);
6517 __clear_bit(j
, array
->bitmap
);
6520 /* delimiter for bitsearch: */
6521 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
6524 set_load_weight(&init_task
);
6526 #ifdef CONFIG_PREEMPT_NOTIFIERS
6527 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
6531 nr_cpu_ids
= highest_cpu
+ 1;
6532 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
, NULL
);
6535 #ifdef CONFIG_RT_MUTEXES
6536 plist_head_init(&init_task
.pi_waiters
, &init_task
.pi_lock
);
6540 * The boot idle thread does lazy MMU switching as well:
6542 atomic_inc(&init_mm
.mm_count
);
6543 enter_lazy_tlb(&init_mm
, current
);
6546 * Make us the idle thread. Technically, schedule() should not be
6547 * called from this thread, however somewhere below it might be,
6548 * but because we are the idle thread, we just pick up running again
6549 * when this runqueue becomes "idle".
6551 init_idle(current
, smp_processor_id());
6553 * During early bootup we pretend to be a normal task:
6555 current
->sched_class
= &fair_sched_class
;
6558 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6559 void __might_sleep(char *file
, int line
)
6562 static unsigned long prev_jiffy
; /* ratelimiting */
6564 if ((in_atomic() || irqs_disabled()) &&
6565 system_state
== SYSTEM_RUNNING
&& !oops_in_progress
) {
6566 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
6568 prev_jiffy
= jiffies
;
6569 printk(KERN_ERR
"BUG: sleeping function called from invalid"
6570 " context at %s:%d\n", file
, line
);
6571 printk("in_atomic():%d, irqs_disabled():%d\n",
6572 in_atomic(), irqs_disabled());
6573 debug_show_held_locks(current
);
6574 if (irqs_disabled())
6575 print_irqtrace_events(current
);
6580 EXPORT_SYMBOL(__might_sleep
);
6583 #ifdef CONFIG_MAGIC_SYSRQ
6584 void normalize_rt_tasks(void)
6586 struct task_struct
*g
, *p
;
6587 unsigned long flags
;
6591 read_lock_irq(&tasklist_lock
);
6592 do_each_thread(g
, p
) {
6594 p
->se
.wait_runtime
= 0;
6595 p
->se
.exec_start
= 0;
6596 p
->se
.wait_start_fair
= 0;
6597 p
->se
.sleep_start_fair
= 0;
6598 #ifdef CONFIG_SCHEDSTATS
6599 p
->se
.wait_start
= 0;
6600 p
->se
.sleep_start
= 0;
6601 p
->se
.block_start
= 0;
6603 task_rq(p
)->cfs
.fair_clock
= 0;
6604 task_rq(p
)->clock
= 0;
6608 * Renice negative nice level userspace
6611 if (TASK_NICE(p
) < 0 && p
->mm
)
6612 set_user_nice(p
, 0);
6616 spin_lock_irqsave(&p
->pi_lock
, flags
);
6617 rq
= __task_rq_lock(p
);
6620 * Do not touch the migration thread:
6622 if (p
== rq
->migration_thread
)
6626 on_rq
= p
->se
.on_rq
;
6628 deactivate_task(task_rq(p
), p
, 0, rq_clock(task_rq(p
)));
6629 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
6631 activate_task(task_rq(p
), p
, 0);
6632 resched_task(rq
->curr
);
6637 __task_rq_unlock(rq
);
6638 spin_unlock_irqrestore(&p
->pi_lock
, flags
);
6639 } while_each_thread(g
, p
);
6641 read_unlock_irq(&tasklist_lock
);
6644 #endif /* CONFIG_MAGIC_SYSRQ */
6648 * These functions are only useful for the IA64 MCA handling.
6650 * They can only be called when the whole system has been
6651 * stopped - every CPU needs to be quiescent, and no scheduling
6652 * activity can take place. Using them for anything else would
6653 * be a serious bug, and as a result, they aren't even visible
6654 * under any other configuration.
6658 * curr_task - return the current task for a given cpu.
6659 * @cpu: the processor in question.
6661 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6663 struct task_struct
*curr_task(int cpu
)
6665 return cpu_curr(cpu
);
6669 * set_curr_task - set the current task for a given cpu.
6670 * @cpu: the processor in question.
6671 * @p: the task pointer to set.
6673 * Description: This function must only be used when non-maskable interrupts
6674 * are serviced on a separate stack. It allows the architecture to switch the
6675 * notion of the current task on a cpu in a non-blocking manner. This function
6676 * must be called with all CPU's synchronized, and interrupts disabled, the
6677 * and caller must save the original value of the current task (see
6678 * curr_task() above) and restore that value before reenabling interrupts and
6679 * re-starting the system.
6681 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6683 void set_curr_task(int cpu
, struct task_struct
*p
)