[PATCH] per-task-delay-accounting: documentation
[usb.git] / kernel / signal.c
blob7fe874d12faeb4dba5cb6cfa30b376c045831f4b
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
33 * SLAB caches for signal bits.
36 static kmem_cache_t *sigqueue_cachep;
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
166 return 0;
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
173 if (sigismember(&t->blocked, sig))
174 return 0;
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 unsigned long ready;
189 long i;
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 return ready != 0;
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
236 int sig = 0;
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
247 break;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
263 return sig;
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
278 } else {
279 INIT_LIST_HEAD(&q->list);
280 q->flags = 0;
281 q->user = get_uid(t->user);
283 return(q);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
289 return;
290 atomic_dec(&q->user->sigpending);
291 free_uid(q->user);
292 kmem_cache_free(sigqueue_cachep, q);
295 void flush_sigqueue(struct sigpending *queue)
297 struct sigqueue *q;
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
303 __sigqueue_free(q);
308 * Flush all pending signals for a task.
310 void flush_signals(struct task_struct *t)
312 unsigned long flags;
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
322 * Flush all handlers for a task.
325 void
326 flush_signal_handlers(struct task_struct *t, int force_default)
328 int i;
329 struct k_sigaction *ka = &t->sighand->action[0];
330 for (i = _NSIG ; i != 0 ; i--) {
331 if (force_default || ka->sa.sa_handler != SIG_IGN)
332 ka->sa.sa_handler = SIG_DFL;
333 ka->sa.sa_flags = 0;
334 sigemptyset(&ka->sa.sa_mask);
335 ka++;
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
348 void
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
351 unsigned long flags;
353 spin_lock_irqsave(&current->sighand->siglock, flags);
354 current->notifier_mask = mask;
355 current->notifier_data = priv;
356 current->notifier = notifier;
357 spin_unlock_irqrestore(&current->sighand->siglock, flags);
360 /* Notify the system that blocking has ended. */
362 void
363 unblock_all_signals(void)
365 unsigned long flags;
367 spin_lock_irqsave(&current->sighand->siglock, flags);
368 current->notifier = NULL;
369 current->notifier_data = NULL;
370 recalc_sigpending();
371 spin_unlock_irqrestore(&current->sighand->siglock, flags);
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 struct sigqueue *q, *first = NULL;
377 int still_pending = 0;
379 if (unlikely(!sigismember(&list->signal, sig)))
380 return 0;
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
386 list_for_each_entry(q, &list->list, list) {
387 if (q->info.si_signo == sig) {
388 if (first) {
389 still_pending = 1;
390 break;
392 first = q;
395 if (first) {
396 list_del_init(&first->list);
397 copy_siginfo(info, &first->info);
398 __sigqueue_free(first);
399 if (!still_pending)
400 sigdelset(&list->signal, sig);
401 } else {
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
407 sigdelset(&list->signal, sig);
408 info->si_signo = sig;
409 info->si_errno = 0;
410 info->si_code = 0;
411 info->si_pid = 0;
412 info->si_uid = 0;
414 return 1;
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
418 siginfo_t *info)
420 int sig = 0;
422 sig = next_signal(pending, mask);
423 if (sig) {
424 if (current->notifier) {
425 if (sigismember(current->notifier_mask, sig)) {
426 if (!(current->notifier)(current->notifier_data)) {
427 clear_thread_flag(TIF_SIGPENDING);
428 return 0;
433 if (!collect_signal(sig, pending, info))
434 sig = 0;
437 recalc_sigpending();
439 return sig;
443 * Dequeue a signal and return the element to the caller, which is
444 * expected to free it.
446 * All callers have to hold the siglock.
448 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
450 int signr = __dequeue_signal(&tsk->pending, mask, info);
451 if (!signr)
452 signr = __dequeue_signal(&tsk->signal->shared_pending,
453 mask, info);
454 if (signr && unlikely(sig_kernel_stop(signr))) {
456 * Set a marker that we have dequeued a stop signal. Our
457 * caller might release the siglock and then the pending
458 * stop signal it is about to process is no longer in the
459 * pending bitmasks, but must still be cleared by a SIGCONT
460 * (and overruled by a SIGKILL). So those cases clear this
461 * shared flag after we've set it. Note that this flag may
462 * remain set after the signal we return is ignored or
463 * handled. That doesn't matter because its only purpose
464 * is to alert stop-signal processing code when another
465 * processor has come along and cleared the flag.
467 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
468 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
470 if ( signr &&
471 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
472 info->si_sys_private){
474 * Release the siglock to ensure proper locking order
475 * of timer locks outside of siglocks. Note, we leave
476 * irqs disabled here, since the posix-timers code is
477 * about to disable them again anyway.
479 spin_unlock(&tsk->sighand->siglock);
480 do_schedule_next_timer(info);
481 spin_lock(&tsk->sighand->siglock);
483 return signr;
487 * Tell a process that it has a new active signal..
489 * NOTE! we rely on the previous spin_lock to
490 * lock interrupts for us! We can only be called with
491 * "siglock" held, and the local interrupt must
492 * have been disabled when that got acquired!
494 * No need to set need_resched since signal event passing
495 * goes through ->blocked
497 void signal_wake_up(struct task_struct *t, int resume)
499 unsigned int mask;
501 set_tsk_thread_flag(t, TIF_SIGPENDING);
504 * For SIGKILL, we want to wake it up in the stopped/traced case.
505 * We don't check t->state here because there is a race with it
506 * executing another processor and just now entering stopped state.
507 * By using wake_up_state, we ensure the process will wake up and
508 * handle its death signal.
510 mask = TASK_INTERRUPTIBLE;
511 if (resume)
512 mask |= TASK_STOPPED | TASK_TRACED;
513 if (!wake_up_state(t, mask))
514 kick_process(t);
518 * Remove signals in mask from the pending set and queue.
519 * Returns 1 if any signals were found.
521 * All callers must be holding the siglock.
523 * This version takes a sigset mask and looks at all signals,
524 * not just those in the first mask word.
526 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
528 struct sigqueue *q, *n;
529 sigset_t m;
531 sigandsets(&m, mask, &s->signal);
532 if (sigisemptyset(&m))
533 return 0;
535 signandsets(&s->signal, &s->signal, mask);
536 list_for_each_entry_safe(q, n, &s->list, list) {
537 if (sigismember(mask, q->info.si_signo)) {
538 list_del_init(&q->list);
539 __sigqueue_free(q);
542 return 1;
545 * Remove signals in mask from the pending set and queue.
546 * Returns 1 if any signals were found.
548 * All callers must be holding the siglock.
550 static int rm_from_queue(unsigned long mask, struct sigpending *s)
552 struct sigqueue *q, *n;
554 if (!sigtestsetmask(&s->signal, mask))
555 return 0;
557 sigdelsetmask(&s->signal, mask);
558 list_for_each_entry_safe(q, n, &s->list, list) {
559 if (q->info.si_signo < SIGRTMIN &&
560 (mask & sigmask(q->info.si_signo))) {
561 list_del_init(&q->list);
562 __sigqueue_free(q);
565 return 1;
569 * Bad permissions for sending the signal
571 static int check_kill_permission(int sig, struct siginfo *info,
572 struct task_struct *t)
574 int error = -EINVAL;
575 if (!valid_signal(sig))
576 return error;
577 error = -EPERM;
578 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
579 && ((sig != SIGCONT) ||
580 (current->signal->session != t->signal->session))
581 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
582 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
583 && !capable(CAP_KILL))
584 return error;
586 error = security_task_kill(t, info, sig, 0);
587 if (!error)
588 audit_signal_info(sig, t); /* Let audit system see the signal */
589 return error;
592 /* forward decl */
593 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
596 * Handle magic process-wide effects of stop/continue signals.
597 * Unlike the signal actions, these happen immediately at signal-generation
598 * time regardless of blocking, ignoring, or handling. This does the
599 * actual continuing for SIGCONT, but not the actual stopping for stop
600 * signals. The process stop is done as a signal action for SIG_DFL.
602 static void handle_stop_signal(int sig, struct task_struct *p)
604 struct task_struct *t;
606 if (p->signal->flags & SIGNAL_GROUP_EXIT)
608 * The process is in the middle of dying already.
610 return;
612 if (sig_kernel_stop(sig)) {
614 * This is a stop signal. Remove SIGCONT from all queues.
616 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
617 t = p;
618 do {
619 rm_from_queue(sigmask(SIGCONT), &t->pending);
620 t = next_thread(t);
621 } while (t != p);
622 } else if (sig == SIGCONT) {
624 * Remove all stop signals from all queues,
625 * and wake all threads.
627 if (unlikely(p->signal->group_stop_count > 0)) {
629 * There was a group stop in progress. We'll
630 * pretend it finished before we got here. We are
631 * obliged to report it to the parent: if the
632 * SIGSTOP happened "after" this SIGCONT, then it
633 * would have cleared this pending SIGCONT. If it
634 * happened "before" this SIGCONT, then the parent
635 * got the SIGCHLD about the stop finishing before
636 * the continue happened. We do the notification
637 * now, and it's as if the stop had finished and
638 * the SIGCHLD was pending on entry to this kill.
640 p->signal->group_stop_count = 0;
641 p->signal->flags = SIGNAL_STOP_CONTINUED;
642 spin_unlock(&p->sighand->siglock);
643 do_notify_parent_cldstop(p, CLD_STOPPED);
644 spin_lock(&p->sighand->siglock);
646 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
647 t = p;
648 do {
649 unsigned int state;
650 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
653 * If there is a handler for SIGCONT, we must make
654 * sure that no thread returns to user mode before
655 * we post the signal, in case it was the only
656 * thread eligible to run the signal handler--then
657 * it must not do anything between resuming and
658 * running the handler. With the TIF_SIGPENDING
659 * flag set, the thread will pause and acquire the
660 * siglock that we hold now and until we've queued
661 * the pending signal.
663 * Wake up the stopped thread _after_ setting
664 * TIF_SIGPENDING
666 state = TASK_STOPPED;
667 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
668 set_tsk_thread_flag(t, TIF_SIGPENDING);
669 state |= TASK_INTERRUPTIBLE;
671 wake_up_state(t, state);
673 t = next_thread(t);
674 } while (t != p);
676 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
678 * We were in fact stopped, and are now continued.
679 * Notify the parent with CLD_CONTINUED.
681 p->signal->flags = SIGNAL_STOP_CONTINUED;
682 p->signal->group_exit_code = 0;
683 spin_unlock(&p->sighand->siglock);
684 do_notify_parent_cldstop(p, CLD_CONTINUED);
685 spin_lock(&p->sighand->siglock);
686 } else {
688 * We are not stopped, but there could be a stop
689 * signal in the middle of being processed after
690 * being removed from the queue. Clear that too.
692 p->signal->flags = 0;
694 } else if (sig == SIGKILL) {
696 * Make sure that any pending stop signal already dequeued
697 * is undone by the wakeup for SIGKILL.
699 p->signal->flags = 0;
703 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
704 struct sigpending *signals)
706 struct sigqueue * q = NULL;
707 int ret = 0;
710 * fast-pathed signals for kernel-internal things like SIGSTOP
711 * or SIGKILL.
713 if (info == SEND_SIG_FORCED)
714 goto out_set;
716 /* Real-time signals must be queued if sent by sigqueue, or
717 some other real-time mechanism. It is implementation
718 defined whether kill() does so. We attempt to do so, on
719 the principle of least surprise, but since kill is not
720 allowed to fail with EAGAIN when low on memory we just
721 make sure at least one signal gets delivered and don't
722 pass on the info struct. */
724 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
725 (is_si_special(info) ||
726 info->si_code >= 0)));
727 if (q) {
728 list_add_tail(&q->list, &signals->list);
729 switch ((unsigned long) info) {
730 case (unsigned long) SEND_SIG_NOINFO:
731 q->info.si_signo = sig;
732 q->info.si_errno = 0;
733 q->info.si_code = SI_USER;
734 q->info.si_pid = current->pid;
735 q->info.si_uid = current->uid;
736 break;
737 case (unsigned long) SEND_SIG_PRIV:
738 q->info.si_signo = sig;
739 q->info.si_errno = 0;
740 q->info.si_code = SI_KERNEL;
741 q->info.si_pid = 0;
742 q->info.si_uid = 0;
743 break;
744 default:
745 copy_siginfo(&q->info, info);
746 break;
748 } else if (!is_si_special(info)) {
749 if (sig >= SIGRTMIN && info->si_code != SI_USER)
751 * Queue overflow, abort. We may abort if the signal was rt
752 * and sent by user using something other than kill().
754 return -EAGAIN;
757 out_set:
758 sigaddset(&signals->signal, sig);
759 return ret;
762 #define LEGACY_QUEUE(sigptr, sig) \
763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
766 static int
767 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 int ret = 0;
771 BUG_ON(!irqs_disabled());
772 assert_spin_locked(&t->sighand->siglock);
774 /* Short-circuit ignored signals. */
775 if (sig_ignored(t, sig))
776 goto out;
778 /* Support queueing exactly one non-rt signal, so that we
779 can get more detailed information about the cause of
780 the signal. */
781 if (LEGACY_QUEUE(&t->pending, sig))
782 goto out;
784 ret = send_signal(sig, info, t, &t->pending);
785 if (!ret && !sigismember(&t->blocked, sig))
786 signal_wake_up(t, sig == SIGKILL);
787 out:
788 return ret;
792 * Force a signal that the process can't ignore: if necessary
793 * we unblock the signal and change any SIG_IGN to SIG_DFL.
797 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
799 unsigned long int flags;
800 int ret;
802 spin_lock_irqsave(&t->sighand->siglock, flags);
803 if (t->sighand->action[sig-1].sa.sa_handler == SIG_IGN) {
804 t->sighand->action[sig-1].sa.sa_handler = SIG_DFL;
806 if (sigismember(&t->blocked, sig)) {
807 sigdelset(&t->blocked, sig);
809 recalc_sigpending_tsk(t);
810 ret = specific_send_sig_info(sig, info, t);
811 spin_unlock_irqrestore(&t->sighand->siglock, flags);
813 return ret;
816 void
817 force_sig_specific(int sig, struct task_struct *t)
819 force_sig_info(sig, SEND_SIG_FORCED, t);
823 * Test if P wants to take SIG. After we've checked all threads with this,
824 * it's equivalent to finding no threads not blocking SIG. Any threads not
825 * blocking SIG were ruled out because they are not running and already
826 * have pending signals. Such threads will dequeue from the shared queue
827 * as soon as they're available, so putting the signal on the shared queue
828 * will be equivalent to sending it to one such thread.
830 static inline int wants_signal(int sig, struct task_struct *p)
832 if (sigismember(&p->blocked, sig))
833 return 0;
834 if (p->flags & PF_EXITING)
835 return 0;
836 if (sig == SIGKILL)
837 return 1;
838 if (p->state & (TASK_STOPPED | TASK_TRACED))
839 return 0;
840 return task_curr(p) || !signal_pending(p);
843 static void
844 __group_complete_signal(int sig, struct task_struct *p)
846 struct task_struct *t;
849 * Now find a thread we can wake up to take the signal off the queue.
851 * If the main thread wants the signal, it gets first crack.
852 * Probably the least surprising to the average bear.
854 if (wants_signal(sig, p))
855 t = p;
856 else if (thread_group_empty(p))
858 * There is just one thread and it does not need to be woken.
859 * It will dequeue unblocked signals before it runs again.
861 return;
862 else {
864 * Otherwise try to find a suitable thread.
866 t = p->signal->curr_target;
867 if (t == NULL)
868 /* restart balancing at this thread */
869 t = p->signal->curr_target = p;
871 while (!wants_signal(sig, t)) {
872 t = next_thread(t);
873 if (t == p->signal->curr_target)
875 * No thread needs to be woken.
876 * Any eligible threads will see
877 * the signal in the queue soon.
879 return;
881 p->signal->curr_target = t;
885 * Found a killable thread. If the signal will be fatal,
886 * then start taking the whole group down immediately.
888 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
889 !sigismember(&t->real_blocked, sig) &&
890 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
892 * This signal will be fatal to the whole group.
894 if (!sig_kernel_coredump(sig)) {
896 * Start a group exit and wake everybody up.
897 * This way we don't have other threads
898 * running and doing things after a slower
899 * thread has the fatal signal pending.
901 p->signal->flags = SIGNAL_GROUP_EXIT;
902 p->signal->group_exit_code = sig;
903 p->signal->group_stop_count = 0;
904 t = p;
905 do {
906 sigaddset(&t->pending.signal, SIGKILL);
907 signal_wake_up(t, 1);
908 t = next_thread(t);
909 } while (t != p);
910 return;
914 * There will be a core dump. We make all threads other
915 * than the chosen one go into a group stop so that nothing
916 * happens until it gets scheduled, takes the signal off
917 * the shared queue, and does the core dump. This is a
918 * little more complicated than strictly necessary, but it
919 * keeps the signal state that winds up in the core dump
920 * unchanged from the death state, e.g. which thread had
921 * the core-dump signal unblocked.
923 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
924 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
925 p->signal->group_stop_count = 0;
926 p->signal->group_exit_task = t;
927 t = p;
928 do {
929 p->signal->group_stop_count++;
930 signal_wake_up(t, 0);
931 t = next_thread(t);
932 } while (t != p);
933 wake_up_process(p->signal->group_exit_task);
934 return;
938 * The signal is already in the shared-pending queue.
939 * Tell the chosen thread to wake up and dequeue it.
941 signal_wake_up(t, sig == SIGKILL);
942 return;
946 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
948 int ret = 0;
950 assert_spin_locked(&p->sighand->siglock);
951 handle_stop_signal(sig, p);
953 /* Short-circuit ignored signals. */
954 if (sig_ignored(p, sig))
955 return ret;
957 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
958 /* This is a non-RT signal and we already have one queued. */
959 return ret;
962 * Put this signal on the shared-pending queue, or fail with EAGAIN.
963 * We always use the shared queue for process-wide signals,
964 * to avoid several races.
966 ret = send_signal(sig, info, p, &p->signal->shared_pending);
967 if (unlikely(ret))
968 return ret;
970 __group_complete_signal(sig, p);
971 return 0;
975 * Nuke all other threads in the group.
977 void zap_other_threads(struct task_struct *p)
979 struct task_struct *t;
981 p->signal->flags = SIGNAL_GROUP_EXIT;
982 p->signal->group_stop_count = 0;
984 if (thread_group_empty(p))
985 return;
987 for (t = next_thread(p); t != p; t = next_thread(t)) {
989 * Don't bother with already dead threads
991 if (t->exit_state)
992 continue;
995 * We don't want to notify the parent, since we are
996 * killed as part of a thread group due to another
997 * thread doing an execve() or similar. So set the
998 * exit signal to -1 to allow immediate reaping of
999 * the process. But don't detach the thread group
1000 * leader.
1002 if (t != p->group_leader)
1003 t->exit_signal = -1;
1005 /* SIGKILL will be handled before any pending SIGSTOP */
1006 sigaddset(&t->pending.signal, SIGKILL);
1007 signal_wake_up(t, 1);
1012 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1014 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1016 struct sighand_struct *sighand;
1018 for (;;) {
1019 sighand = rcu_dereference(tsk->sighand);
1020 if (unlikely(sighand == NULL))
1021 break;
1023 spin_lock_irqsave(&sighand->siglock, *flags);
1024 if (likely(sighand == tsk->sighand))
1025 break;
1026 spin_unlock_irqrestore(&sighand->siglock, *flags);
1029 return sighand;
1032 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1034 unsigned long flags;
1035 int ret;
1037 ret = check_kill_permission(sig, info, p);
1039 if (!ret && sig) {
1040 ret = -ESRCH;
1041 if (lock_task_sighand(p, &flags)) {
1042 ret = __group_send_sig_info(sig, info, p);
1043 unlock_task_sighand(p, &flags);
1047 return ret;
1051 * kill_pg_info() sends a signal to a process group: this is what the tty
1052 * control characters do (^C, ^Z etc)
1055 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1057 struct task_struct *p = NULL;
1058 int retval, success;
1060 if (pgrp <= 0)
1061 return -EINVAL;
1063 success = 0;
1064 retval = -ESRCH;
1065 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1066 int err = group_send_sig_info(sig, info, p);
1067 success |= !err;
1068 retval = err;
1069 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1070 return success ? 0 : retval;
1074 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1076 int retval;
1078 read_lock(&tasklist_lock);
1079 retval = __kill_pg_info(sig, info, pgrp);
1080 read_unlock(&tasklist_lock);
1082 return retval;
1086 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1088 int error;
1089 int acquired_tasklist_lock = 0;
1090 struct task_struct *p;
1092 rcu_read_lock();
1093 if (unlikely(sig_needs_tasklist(sig))) {
1094 read_lock(&tasklist_lock);
1095 acquired_tasklist_lock = 1;
1097 p = find_task_by_pid(pid);
1098 error = -ESRCH;
1099 if (p)
1100 error = group_send_sig_info(sig, info, p);
1101 if (unlikely(acquired_tasklist_lock))
1102 read_unlock(&tasklist_lock);
1103 rcu_read_unlock();
1104 return error;
1107 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1108 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1109 uid_t uid, uid_t euid, u32 secid)
1111 int ret = -EINVAL;
1112 struct task_struct *p;
1114 if (!valid_signal(sig))
1115 return ret;
1117 read_lock(&tasklist_lock);
1118 p = find_task_by_pid(pid);
1119 if (!p) {
1120 ret = -ESRCH;
1121 goto out_unlock;
1123 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1124 && (euid != p->suid) && (euid != p->uid)
1125 && (uid != p->suid) && (uid != p->uid)) {
1126 ret = -EPERM;
1127 goto out_unlock;
1129 ret = security_task_kill(p, info, sig, secid);
1130 if (ret)
1131 goto out_unlock;
1132 if (sig && p->sighand) {
1133 unsigned long flags;
1134 spin_lock_irqsave(&p->sighand->siglock, flags);
1135 ret = __group_send_sig_info(sig, info, p);
1136 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1138 out_unlock:
1139 read_unlock(&tasklist_lock);
1140 return ret;
1142 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1145 * kill_something_info() interprets pid in interesting ways just like kill(2).
1147 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1148 * is probably wrong. Should make it like BSD or SYSV.
1151 static int kill_something_info(int sig, struct siginfo *info, int pid)
1153 if (!pid) {
1154 return kill_pg_info(sig, info, process_group(current));
1155 } else if (pid == -1) {
1156 int retval = 0, count = 0;
1157 struct task_struct * p;
1159 read_lock(&tasklist_lock);
1160 for_each_process(p) {
1161 if (p->pid > 1 && p->tgid != current->tgid) {
1162 int err = group_send_sig_info(sig, info, p);
1163 ++count;
1164 if (err != -EPERM)
1165 retval = err;
1168 read_unlock(&tasklist_lock);
1169 return count ? retval : -ESRCH;
1170 } else if (pid < 0) {
1171 return kill_pg_info(sig, info, -pid);
1172 } else {
1173 return kill_proc_info(sig, info, pid);
1178 * These are for backward compatibility with the rest of the kernel source.
1182 * These two are the most common entry points. They send a signal
1183 * just to the specific thread.
1186 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1188 int ret;
1189 unsigned long flags;
1192 * Make sure legacy kernel users don't send in bad values
1193 * (normal paths check this in check_kill_permission).
1195 if (!valid_signal(sig))
1196 return -EINVAL;
1199 * We need the tasklist lock even for the specific
1200 * thread case (when we don't need to follow the group
1201 * lists) in order to avoid races with "p->sighand"
1202 * going away or changing from under us.
1204 read_lock(&tasklist_lock);
1205 spin_lock_irqsave(&p->sighand->siglock, flags);
1206 ret = specific_send_sig_info(sig, info, p);
1207 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1208 read_unlock(&tasklist_lock);
1209 return ret;
1212 #define __si_special(priv) \
1213 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1216 send_sig(int sig, struct task_struct *p, int priv)
1218 return send_sig_info(sig, __si_special(priv), p);
1222 * This is the entry point for "process-wide" signals.
1223 * They will go to an appropriate thread in the thread group.
1226 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1228 int ret;
1229 read_lock(&tasklist_lock);
1230 ret = group_send_sig_info(sig, info, p);
1231 read_unlock(&tasklist_lock);
1232 return ret;
1235 void
1236 force_sig(int sig, struct task_struct *p)
1238 force_sig_info(sig, SEND_SIG_PRIV, p);
1242 * When things go south during signal handling, we
1243 * will force a SIGSEGV. And if the signal that caused
1244 * the problem was already a SIGSEGV, we'll want to
1245 * make sure we don't even try to deliver the signal..
1248 force_sigsegv(int sig, struct task_struct *p)
1250 if (sig == SIGSEGV) {
1251 unsigned long flags;
1252 spin_lock_irqsave(&p->sighand->siglock, flags);
1253 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1254 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1256 force_sig(SIGSEGV, p);
1257 return 0;
1261 kill_pg(pid_t pgrp, int sig, int priv)
1263 return kill_pg_info(sig, __si_special(priv), pgrp);
1267 kill_proc(pid_t pid, int sig, int priv)
1269 return kill_proc_info(sig, __si_special(priv), pid);
1273 * These functions support sending signals using preallocated sigqueue
1274 * structures. This is needed "because realtime applications cannot
1275 * afford to lose notifications of asynchronous events, like timer
1276 * expirations or I/O completions". In the case of Posix Timers
1277 * we allocate the sigqueue structure from the timer_create. If this
1278 * allocation fails we are able to report the failure to the application
1279 * with an EAGAIN error.
1282 struct sigqueue *sigqueue_alloc(void)
1284 struct sigqueue *q;
1286 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1287 q->flags |= SIGQUEUE_PREALLOC;
1288 return(q);
1291 void sigqueue_free(struct sigqueue *q)
1293 unsigned long flags;
1294 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1296 * If the signal is still pending remove it from the
1297 * pending queue.
1299 if (unlikely(!list_empty(&q->list))) {
1300 spinlock_t *lock = &current->sighand->siglock;
1301 read_lock(&tasklist_lock);
1302 spin_lock_irqsave(lock, flags);
1303 if (!list_empty(&q->list))
1304 list_del_init(&q->list);
1305 spin_unlock_irqrestore(lock, flags);
1306 read_unlock(&tasklist_lock);
1308 q->flags &= ~SIGQUEUE_PREALLOC;
1309 __sigqueue_free(q);
1312 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1314 unsigned long flags;
1315 int ret = 0;
1317 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1320 * The rcu based delayed sighand destroy makes it possible to
1321 * run this without tasklist lock held. The task struct itself
1322 * cannot go away as create_timer did get_task_struct().
1324 * We return -1, when the task is marked exiting, so
1325 * posix_timer_event can redirect it to the group leader
1327 rcu_read_lock();
1329 if (!likely(lock_task_sighand(p, &flags))) {
1330 ret = -1;
1331 goto out_err;
1334 if (unlikely(!list_empty(&q->list))) {
1336 * If an SI_TIMER entry is already queue just increment
1337 * the overrun count.
1339 BUG_ON(q->info.si_code != SI_TIMER);
1340 q->info.si_overrun++;
1341 goto out;
1343 /* Short-circuit ignored signals. */
1344 if (sig_ignored(p, sig)) {
1345 ret = 1;
1346 goto out;
1349 list_add_tail(&q->list, &p->pending.list);
1350 sigaddset(&p->pending.signal, sig);
1351 if (!sigismember(&p->blocked, sig))
1352 signal_wake_up(p, sig == SIGKILL);
1354 out:
1355 unlock_task_sighand(p, &flags);
1356 out_err:
1357 rcu_read_unlock();
1359 return ret;
1363 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1365 unsigned long flags;
1366 int ret = 0;
1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1370 read_lock(&tasklist_lock);
1371 /* Since it_lock is held, p->sighand cannot be NULL. */
1372 spin_lock_irqsave(&p->sighand->siglock, flags);
1373 handle_stop_signal(sig, p);
1375 /* Short-circuit ignored signals. */
1376 if (sig_ignored(p, sig)) {
1377 ret = 1;
1378 goto out;
1381 if (unlikely(!list_empty(&q->list))) {
1383 * If an SI_TIMER entry is already queue just increment
1384 * the overrun count. Other uses should not try to
1385 * send the signal multiple times.
1387 BUG_ON(q->info.si_code != SI_TIMER);
1388 q->info.si_overrun++;
1389 goto out;
1393 * Put this signal on the shared-pending queue.
1394 * We always use the shared queue for process-wide signals,
1395 * to avoid several races.
1397 list_add_tail(&q->list, &p->signal->shared_pending.list);
1398 sigaddset(&p->signal->shared_pending.signal, sig);
1400 __group_complete_signal(sig, p);
1401 out:
1402 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1403 read_unlock(&tasklist_lock);
1404 return ret;
1408 * Wake up any threads in the parent blocked in wait* syscalls.
1410 static inline void __wake_up_parent(struct task_struct *p,
1411 struct task_struct *parent)
1413 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1417 * Let a parent know about the death of a child.
1418 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1421 void do_notify_parent(struct task_struct *tsk, int sig)
1423 struct siginfo info;
1424 unsigned long flags;
1425 struct sighand_struct *psig;
1427 BUG_ON(sig == -1);
1429 /* do_notify_parent_cldstop should have been called instead. */
1430 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1432 BUG_ON(!tsk->ptrace &&
1433 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1435 info.si_signo = sig;
1436 info.si_errno = 0;
1437 info.si_pid = tsk->pid;
1438 info.si_uid = tsk->uid;
1440 /* FIXME: find out whether or not this is supposed to be c*time. */
1441 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1442 tsk->signal->utime));
1443 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1444 tsk->signal->stime));
1446 info.si_status = tsk->exit_code & 0x7f;
1447 if (tsk->exit_code & 0x80)
1448 info.si_code = CLD_DUMPED;
1449 else if (tsk->exit_code & 0x7f)
1450 info.si_code = CLD_KILLED;
1451 else {
1452 info.si_code = CLD_EXITED;
1453 info.si_status = tsk->exit_code >> 8;
1456 psig = tsk->parent->sighand;
1457 spin_lock_irqsave(&psig->siglock, flags);
1458 if (!tsk->ptrace && sig == SIGCHLD &&
1459 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1460 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1462 * We are exiting and our parent doesn't care. POSIX.1
1463 * defines special semantics for setting SIGCHLD to SIG_IGN
1464 * or setting the SA_NOCLDWAIT flag: we should be reaped
1465 * automatically and not left for our parent's wait4 call.
1466 * Rather than having the parent do it as a magic kind of
1467 * signal handler, we just set this to tell do_exit that we
1468 * can be cleaned up without becoming a zombie. Note that
1469 * we still call __wake_up_parent in this case, because a
1470 * blocked sys_wait4 might now return -ECHILD.
1472 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1473 * is implementation-defined: we do (if you don't want
1474 * it, just use SIG_IGN instead).
1476 tsk->exit_signal = -1;
1477 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1478 sig = 0;
1480 if (valid_signal(sig) && sig > 0)
1481 __group_send_sig_info(sig, &info, tsk->parent);
1482 __wake_up_parent(tsk, tsk->parent);
1483 spin_unlock_irqrestore(&psig->siglock, flags);
1486 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1488 struct siginfo info;
1489 unsigned long flags;
1490 struct task_struct *parent;
1491 struct sighand_struct *sighand;
1493 if (tsk->ptrace & PT_PTRACED)
1494 parent = tsk->parent;
1495 else {
1496 tsk = tsk->group_leader;
1497 parent = tsk->real_parent;
1500 info.si_signo = SIGCHLD;
1501 info.si_errno = 0;
1502 info.si_pid = tsk->pid;
1503 info.si_uid = tsk->uid;
1505 /* FIXME: find out whether or not this is supposed to be c*time. */
1506 info.si_utime = cputime_to_jiffies(tsk->utime);
1507 info.si_stime = cputime_to_jiffies(tsk->stime);
1509 info.si_code = why;
1510 switch (why) {
1511 case CLD_CONTINUED:
1512 info.si_status = SIGCONT;
1513 break;
1514 case CLD_STOPPED:
1515 info.si_status = tsk->signal->group_exit_code & 0x7f;
1516 break;
1517 case CLD_TRAPPED:
1518 info.si_status = tsk->exit_code & 0x7f;
1519 break;
1520 default:
1521 BUG();
1524 sighand = parent->sighand;
1525 spin_lock_irqsave(&sighand->siglock, flags);
1526 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1527 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1528 __group_send_sig_info(SIGCHLD, &info, parent);
1530 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1532 __wake_up_parent(tsk, parent);
1533 spin_unlock_irqrestore(&sighand->siglock, flags);
1536 static inline int may_ptrace_stop(void)
1538 if (!likely(current->ptrace & PT_PTRACED))
1539 return 0;
1541 if (unlikely(current->parent == current->real_parent &&
1542 (current->ptrace & PT_ATTACHED)))
1543 return 0;
1545 if (unlikely(current->signal == current->parent->signal) &&
1546 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1547 return 0;
1550 * Are we in the middle of do_coredump?
1551 * If so and our tracer is also part of the coredump stopping
1552 * is a deadlock situation, and pointless because our tracer
1553 * is dead so don't allow us to stop.
1554 * If SIGKILL was already sent before the caller unlocked
1555 * ->siglock we must see ->core_waiters != 0. Otherwise it
1556 * is safe to enter schedule().
1558 if (unlikely(current->mm->core_waiters) &&
1559 unlikely(current->mm == current->parent->mm))
1560 return 0;
1562 return 1;
1566 * This must be called with current->sighand->siglock held.
1568 * This should be the path for all ptrace stops.
1569 * We always set current->last_siginfo while stopped here.
1570 * That makes it a way to test a stopped process for
1571 * being ptrace-stopped vs being job-control-stopped.
1573 * If we actually decide not to stop at all because the tracer is gone,
1574 * we leave nostop_code in current->exit_code.
1576 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1579 * If there is a group stop in progress,
1580 * we must participate in the bookkeeping.
1582 if (current->signal->group_stop_count > 0)
1583 --current->signal->group_stop_count;
1585 current->last_siginfo = info;
1586 current->exit_code = exit_code;
1588 /* Let the debugger run. */
1589 set_current_state(TASK_TRACED);
1590 spin_unlock_irq(&current->sighand->siglock);
1591 try_to_freeze();
1592 read_lock(&tasklist_lock);
1593 if (may_ptrace_stop()) {
1594 do_notify_parent_cldstop(current, CLD_TRAPPED);
1595 read_unlock(&tasklist_lock);
1596 schedule();
1597 } else {
1599 * By the time we got the lock, our tracer went away.
1600 * Don't stop here.
1602 read_unlock(&tasklist_lock);
1603 set_current_state(TASK_RUNNING);
1604 current->exit_code = nostop_code;
1608 * We are back. Now reacquire the siglock before touching
1609 * last_siginfo, so that we are sure to have synchronized with
1610 * any signal-sending on another CPU that wants to examine it.
1612 spin_lock_irq(&current->sighand->siglock);
1613 current->last_siginfo = NULL;
1616 * Queued signals ignored us while we were stopped for tracing.
1617 * So check for any that we should take before resuming user mode.
1619 recalc_sigpending();
1622 void ptrace_notify(int exit_code)
1624 siginfo_t info;
1626 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1628 memset(&info, 0, sizeof info);
1629 info.si_signo = SIGTRAP;
1630 info.si_code = exit_code;
1631 info.si_pid = current->pid;
1632 info.si_uid = current->uid;
1634 /* Let the debugger run. */
1635 spin_lock_irq(&current->sighand->siglock);
1636 ptrace_stop(exit_code, 0, &info);
1637 spin_unlock_irq(&current->sighand->siglock);
1640 static void
1641 finish_stop(int stop_count)
1644 * If there are no other threads in the group, or if there is
1645 * a group stop in progress and we are the last to stop,
1646 * report to the parent. When ptraced, every thread reports itself.
1648 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1649 read_lock(&tasklist_lock);
1650 do_notify_parent_cldstop(current, CLD_STOPPED);
1651 read_unlock(&tasklist_lock);
1654 schedule();
1656 * Now we don't run again until continued.
1658 current->exit_code = 0;
1662 * This performs the stopping for SIGSTOP and other stop signals.
1663 * We have to stop all threads in the thread group.
1664 * Returns nonzero if we've actually stopped and released the siglock.
1665 * Returns zero if we didn't stop and still hold the siglock.
1667 static int do_signal_stop(int signr)
1669 struct signal_struct *sig = current->signal;
1670 int stop_count;
1672 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1673 return 0;
1675 if (sig->group_stop_count > 0) {
1677 * There is a group stop in progress. We don't need to
1678 * start another one.
1680 stop_count = --sig->group_stop_count;
1681 } else {
1683 * There is no group stop already in progress.
1684 * We must initiate one now.
1686 struct task_struct *t;
1688 sig->group_exit_code = signr;
1690 stop_count = 0;
1691 for (t = next_thread(current); t != current; t = next_thread(t))
1693 * Setting state to TASK_STOPPED for a group
1694 * stop is always done with the siglock held,
1695 * so this check has no races.
1697 if (!t->exit_state &&
1698 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1699 stop_count++;
1700 signal_wake_up(t, 0);
1702 sig->group_stop_count = stop_count;
1705 if (stop_count == 0)
1706 sig->flags = SIGNAL_STOP_STOPPED;
1707 current->exit_code = sig->group_exit_code;
1708 __set_current_state(TASK_STOPPED);
1710 spin_unlock_irq(&current->sighand->siglock);
1711 finish_stop(stop_count);
1712 return 1;
1716 * Do appropriate magic when group_stop_count > 0.
1717 * We return nonzero if we stopped, after releasing the siglock.
1718 * We return zero if we still hold the siglock and should look
1719 * for another signal without checking group_stop_count again.
1721 static int handle_group_stop(void)
1723 int stop_count;
1725 if (current->signal->group_exit_task == current) {
1727 * Group stop is so we can do a core dump,
1728 * We are the initiating thread, so get on with it.
1730 current->signal->group_exit_task = NULL;
1731 return 0;
1734 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1736 * Group stop is so another thread can do a core dump,
1737 * or else we are racing against a death signal.
1738 * Just punt the stop so we can get the next signal.
1740 return 0;
1743 * There is a group stop in progress. We stop
1744 * without any associated signal being in our queue.
1746 stop_count = --current->signal->group_stop_count;
1747 if (stop_count == 0)
1748 current->signal->flags = SIGNAL_STOP_STOPPED;
1749 current->exit_code = current->signal->group_exit_code;
1750 set_current_state(TASK_STOPPED);
1751 spin_unlock_irq(&current->sighand->siglock);
1752 finish_stop(stop_count);
1753 return 1;
1756 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1757 struct pt_regs *regs, void *cookie)
1759 sigset_t *mask = &current->blocked;
1760 int signr = 0;
1762 try_to_freeze();
1764 relock:
1765 spin_lock_irq(&current->sighand->siglock);
1766 for (;;) {
1767 struct k_sigaction *ka;
1769 if (unlikely(current->signal->group_stop_count > 0) &&
1770 handle_group_stop())
1771 goto relock;
1773 signr = dequeue_signal(current, mask, info);
1775 if (!signr)
1776 break; /* will return 0 */
1778 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1779 ptrace_signal_deliver(regs, cookie);
1781 /* Let the debugger run. */
1782 ptrace_stop(signr, signr, info);
1784 /* We're back. Did the debugger cancel the sig? */
1785 signr = current->exit_code;
1786 if (signr == 0)
1787 continue;
1789 current->exit_code = 0;
1791 /* Update the siginfo structure if the signal has
1792 changed. If the debugger wanted something
1793 specific in the siginfo structure then it should
1794 have updated *info via PTRACE_SETSIGINFO. */
1795 if (signr != info->si_signo) {
1796 info->si_signo = signr;
1797 info->si_errno = 0;
1798 info->si_code = SI_USER;
1799 info->si_pid = current->parent->pid;
1800 info->si_uid = current->parent->uid;
1803 /* If the (new) signal is now blocked, requeue it. */
1804 if (sigismember(&current->blocked, signr)) {
1805 specific_send_sig_info(signr, info, current);
1806 continue;
1810 ka = &current->sighand->action[signr-1];
1811 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1812 continue;
1813 if (ka->sa.sa_handler != SIG_DFL) {
1814 /* Run the handler. */
1815 *return_ka = *ka;
1817 if (ka->sa.sa_flags & SA_ONESHOT)
1818 ka->sa.sa_handler = SIG_DFL;
1820 break; /* will return non-zero "signr" value */
1824 * Now we are doing the default action for this signal.
1826 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1827 continue;
1829 /* Init gets no signals it doesn't want. */
1830 if (current == child_reaper)
1831 continue;
1833 if (sig_kernel_stop(signr)) {
1835 * The default action is to stop all threads in
1836 * the thread group. The job control signals
1837 * do nothing in an orphaned pgrp, but SIGSTOP
1838 * always works. Note that siglock needs to be
1839 * dropped during the call to is_orphaned_pgrp()
1840 * because of lock ordering with tasklist_lock.
1841 * This allows an intervening SIGCONT to be posted.
1842 * We need to check for that and bail out if necessary.
1844 if (signr != SIGSTOP) {
1845 spin_unlock_irq(&current->sighand->siglock);
1847 /* signals can be posted during this window */
1849 if (is_orphaned_pgrp(process_group(current)))
1850 goto relock;
1852 spin_lock_irq(&current->sighand->siglock);
1855 if (likely(do_signal_stop(signr))) {
1856 /* It released the siglock. */
1857 goto relock;
1861 * We didn't actually stop, due to a race
1862 * with SIGCONT or something like that.
1864 continue;
1867 spin_unlock_irq(&current->sighand->siglock);
1870 * Anything else is fatal, maybe with a core dump.
1872 current->flags |= PF_SIGNALED;
1873 if (sig_kernel_coredump(signr)) {
1875 * If it was able to dump core, this kills all
1876 * other threads in the group and synchronizes with
1877 * their demise. If we lost the race with another
1878 * thread getting here, it set group_exit_code
1879 * first and our do_group_exit call below will use
1880 * that value and ignore the one we pass it.
1882 do_coredump((long)signr, signr, regs);
1886 * Death signals, no core dump.
1888 do_group_exit(signr);
1889 /* NOTREACHED */
1891 spin_unlock_irq(&current->sighand->siglock);
1892 return signr;
1895 EXPORT_SYMBOL(recalc_sigpending);
1896 EXPORT_SYMBOL_GPL(dequeue_signal);
1897 EXPORT_SYMBOL(flush_signals);
1898 EXPORT_SYMBOL(force_sig);
1899 EXPORT_SYMBOL(kill_pg);
1900 EXPORT_SYMBOL(kill_proc);
1901 EXPORT_SYMBOL(ptrace_notify);
1902 EXPORT_SYMBOL(send_sig);
1903 EXPORT_SYMBOL(send_sig_info);
1904 EXPORT_SYMBOL(sigprocmask);
1905 EXPORT_SYMBOL(block_all_signals);
1906 EXPORT_SYMBOL(unblock_all_signals);
1910 * System call entry points.
1913 asmlinkage long sys_restart_syscall(void)
1915 struct restart_block *restart = &current_thread_info()->restart_block;
1916 return restart->fn(restart);
1919 long do_no_restart_syscall(struct restart_block *param)
1921 return -EINTR;
1925 * We don't need to get the kernel lock - this is all local to this
1926 * particular thread.. (and that's good, because this is _heavily_
1927 * used by various programs)
1931 * This is also useful for kernel threads that want to temporarily
1932 * (or permanently) block certain signals.
1934 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1935 * interface happily blocks "unblockable" signals like SIGKILL
1936 * and friends.
1938 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1940 int error;
1942 spin_lock_irq(&current->sighand->siglock);
1943 if (oldset)
1944 *oldset = current->blocked;
1946 error = 0;
1947 switch (how) {
1948 case SIG_BLOCK:
1949 sigorsets(&current->blocked, &current->blocked, set);
1950 break;
1951 case SIG_UNBLOCK:
1952 signandsets(&current->blocked, &current->blocked, set);
1953 break;
1954 case SIG_SETMASK:
1955 current->blocked = *set;
1956 break;
1957 default:
1958 error = -EINVAL;
1960 recalc_sigpending();
1961 spin_unlock_irq(&current->sighand->siglock);
1963 return error;
1966 asmlinkage long
1967 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1969 int error = -EINVAL;
1970 sigset_t old_set, new_set;
1972 /* XXX: Don't preclude handling different sized sigset_t's. */
1973 if (sigsetsize != sizeof(sigset_t))
1974 goto out;
1976 if (set) {
1977 error = -EFAULT;
1978 if (copy_from_user(&new_set, set, sizeof(*set)))
1979 goto out;
1980 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1982 error = sigprocmask(how, &new_set, &old_set);
1983 if (error)
1984 goto out;
1985 if (oset)
1986 goto set_old;
1987 } else if (oset) {
1988 spin_lock_irq(&current->sighand->siglock);
1989 old_set = current->blocked;
1990 spin_unlock_irq(&current->sighand->siglock);
1992 set_old:
1993 error = -EFAULT;
1994 if (copy_to_user(oset, &old_set, sizeof(*oset)))
1995 goto out;
1997 error = 0;
1998 out:
1999 return error;
2002 long do_sigpending(void __user *set, unsigned long sigsetsize)
2004 long error = -EINVAL;
2005 sigset_t pending;
2007 if (sigsetsize > sizeof(sigset_t))
2008 goto out;
2010 spin_lock_irq(&current->sighand->siglock);
2011 sigorsets(&pending, &current->pending.signal,
2012 &current->signal->shared_pending.signal);
2013 spin_unlock_irq(&current->sighand->siglock);
2015 /* Outside the lock because only this thread touches it. */
2016 sigandsets(&pending, &current->blocked, &pending);
2018 error = -EFAULT;
2019 if (!copy_to_user(set, &pending, sigsetsize))
2020 error = 0;
2022 out:
2023 return error;
2026 asmlinkage long
2027 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2029 return do_sigpending(set, sigsetsize);
2032 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2034 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2036 int err;
2038 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2039 return -EFAULT;
2040 if (from->si_code < 0)
2041 return __copy_to_user(to, from, sizeof(siginfo_t))
2042 ? -EFAULT : 0;
2044 * If you change siginfo_t structure, please be sure
2045 * this code is fixed accordingly.
2046 * It should never copy any pad contained in the structure
2047 * to avoid security leaks, but must copy the generic
2048 * 3 ints plus the relevant union member.
2050 err = __put_user(from->si_signo, &to->si_signo);
2051 err |= __put_user(from->si_errno, &to->si_errno);
2052 err |= __put_user((short)from->si_code, &to->si_code);
2053 switch (from->si_code & __SI_MASK) {
2054 case __SI_KILL:
2055 err |= __put_user(from->si_pid, &to->si_pid);
2056 err |= __put_user(from->si_uid, &to->si_uid);
2057 break;
2058 case __SI_TIMER:
2059 err |= __put_user(from->si_tid, &to->si_tid);
2060 err |= __put_user(from->si_overrun, &to->si_overrun);
2061 err |= __put_user(from->si_ptr, &to->si_ptr);
2062 break;
2063 case __SI_POLL:
2064 err |= __put_user(from->si_band, &to->si_band);
2065 err |= __put_user(from->si_fd, &to->si_fd);
2066 break;
2067 case __SI_FAULT:
2068 err |= __put_user(from->si_addr, &to->si_addr);
2069 #ifdef __ARCH_SI_TRAPNO
2070 err |= __put_user(from->si_trapno, &to->si_trapno);
2071 #endif
2072 break;
2073 case __SI_CHLD:
2074 err |= __put_user(from->si_pid, &to->si_pid);
2075 err |= __put_user(from->si_uid, &to->si_uid);
2076 err |= __put_user(from->si_status, &to->si_status);
2077 err |= __put_user(from->si_utime, &to->si_utime);
2078 err |= __put_user(from->si_stime, &to->si_stime);
2079 break;
2080 case __SI_RT: /* This is not generated by the kernel as of now. */
2081 case __SI_MESGQ: /* But this is */
2082 err |= __put_user(from->si_pid, &to->si_pid);
2083 err |= __put_user(from->si_uid, &to->si_uid);
2084 err |= __put_user(from->si_ptr, &to->si_ptr);
2085 break;
2086 default: /* this is just in case for now ... */
2087 err |= __put_user(from->si_pid, &to->si_pid);
2088 err |= __put_user(from->si_uid, &to->si_uid);
2089 break;
2091 return err;
2094 #endif
2096 asmlinkage long
2097 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2098 siginfo_t __user *uinfo,
2099 const struct timespec __user *uts,
2100 size_t sigsetsize)
2102 int ret, sig;
2103 sigset_t these;
2104 struct timespec ts;
2105 siginfo_t info;
2106 long timeout = 0;
2108 /* XXX: Don't preclude handling different sized sigset_t's. */
2109 if (sigsetsize != sizeof(sigset_t))
2110 return -EINVAL;
2112 if (copy_from_user(&these, uthese, sizeof(these)))
2113 return -EFAULT;
2116 * Invert the set of allowed signals to get those we
2117 * want to block.
2119 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2120 signotset(&these);
2122 if (uts) {
2123 if (copy_from_user(&ts, uts, sizeof(ts)))
2124 return -EFAULT;
2125 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2126 || ts.tv_sec < 0)
2127 return -EINVAL;
2130 spin_lock_irq(&current->sighand->siglock);
2131 sig = dequeue_signal(current, &these, &info);
2132 if (!sig) {
2133 timeout = MAX_SCHEDULE_TIMEOUT;
2134 if (uts)
2135 timeout = (timespec_to_jiffies(&ts)
2136 + (ts.tv_sec || ts.tv_nsec));
2138 if (timeout) {
2139 /* None ready -- temporarily unblock those we're
2140 * interested while we are sleeping in so that we'll
2141 * be awakened when they arrive. */
2142 current->real_blocked = current->blocked;
2143 sigandsets(&current->blocked, &current->blocked, &these);
2144 recalc_sigpending();
2145 spin_unlock_irq(&current->sighand->siglock);
2147 timeout = schedule_timeout_interruptible(timeout);
2149 spin_lock_irq(&current->sighand->siglock);
2150 sig = dequeue_signal(current, &these, &info);
2151 current->blocked = current->real_blocked;
2152 siginitset(&current->real_blocked, 0);
2153 recalc_sigpending();
2156 spin_unlock_irq(&current->sighand->siglock);
2158 if (sig) {
2159 ret = sig;
2160 if (uinfo) {
2161 if (copy_siginfo_to_user(uinfo, &info))
2162 ret = -EFAULT;
2164 } else {
2165 ret = -EAGAIN;
2166 if (timeout)
2167 ret = -EINTR;
2170 return ret;
2173 asmlinkage long
2174 sys_kill(int pid, int sig)
2176 struct siginfo info;
2178 info.si_signo = sig;
2179 info.si_errno = 0;
2180 info.si_code = SI_USER;
2181 info.si_pid = current->tgid;
2182 info.si_uid = current->uid;
2184 return kill_something_info(sig, &info, pid);
2187 static int do_tkill(int tgid, int pid, int sig)
2189 int error;
2190 struct siginfo info;
2191 struct task_struct *p;
2193 error = -ESRCH;
2194 info.si_signo = sig;
2195 info.si_errno = 0;
2196 info.si_code = SI_TKILL;
2197 info.si_pid = current->tgid;
2198 info.si_uid = current->uid;
2200 read_lock(&tasklist_lock);
2201 p = find_task_by_pid(pid);
2202 if (p && (tgid <= 0 || p->tgid == tgid)) {
2203 error = check_kill_permission(sig, &info, p);
2205 * The null signal is a permissions and process existence
2206 * probe. No signal is actually delivered.
2208 if (!error && sig && p->sighand) {
2209 spin_lock_irq(&p->sighand->siglock);
2210 handle_stop_signal(sig, p);
2211 error = specific_send_sig_info(sig, &info, p);
2212 spin_unlock_irq(&p->sighand->siglock);
2215 read_unlock(&tasklist_lock);
2217 return error;
2221 * sys_tgkill - send signal to one specific thread
2222 * @tgid: the thread group ID of the thread
2223 * @pid: the PID of the thread
2224 * @sig: signal to be sent
2226 * This syscall also checks the tgid and returns -ESRCH even if the PID
2227 * exists but it's not belonging to the target process anymore. This
2228 * method solves the problem of threads exiting and PIDs getting reused.
2230 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2232 /* This is only valid for single tasks */
2233 if (pid <= 0 || tgid <= 0)
2234 return -EINVAL;
2236 return do_tkill(tgid, pid, sig);
2240 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2242 asmlinkage long
2243 sys_tkill(int pid, int sig)
2245 /* This is only valid for single tasks */
2246 if (pid <= 0)
2247 return -EINVAL;
2249 return do_tkill(0, pid, sig);
2252 asmlinkage long
2253 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2255 siginfo_t info;
2257 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2258 return -EFAULT;
2260 /* Not even root can pretend to send signals from the kernel.
2261 Nor can they impersonate a kill(), which adds source info. */
2262 if (info.si_code >= 0)
2263 return -EPERM;
2264 info.si_signo = sig;
2266 /* POSIX.1b doesn't mention process groups. */
2267 return kill_proc_info(sig, &info, pid);
2270 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2272 struct k_sigaction *k;
2273 sigset_t mask;
2275 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2276 return -EINVAL;
2278 k = &current->sighand->action[sig-1];
2280 spin_lock_irq(&current->sighand->siglock);
2281 if (signal_pending(current)) {
2283 * If there might be a fatal signal pending on multiple
2284 * threads, make sure we take it before changing the action.
2286 spin_unlock_irq(&current->sighand->siglock);
2287 return -ERESTARTNOINTR;
2290 if (oact)
2291 *oact = *k;
2293 if (act) {
2294 sigdelsetmask(&act->sa.sa_mask,
2295 sigmask(SIGKILL) | sigmask(SIGSTOP));
2296 *k = *act;
2298 * POSIX 3.3.1.3:
2299 * "Setting a signal action to SIG_IGN for a signal that is
2300 * pending shall cause the pending signal to be discarded,
2301 * whether or not it is blocked."
2303 * "Setting a signal action to SIG_DFL for a signal that is
2304 * pending and whose default action is to ignore the signal
2305 * (for example, SIGCHLD), shall cause the pending signal to
2306 * be discarded, whether or not it is blocked"
2308 if (act->sa.sa_handler == SIG_IGN ||
2309 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2310 struct task_struct *t = current;
2311 sigemptyset(&mask);
2312 sigaddset(&mask, sig);
2313 rm_from_queue_full(&mask, &t->signal->shared_pending);
2314 do {
2315 rm_from_queue_full(&mask, &t->pending);
2316 recalc_sigpending_tsk(t);
2317 t = next_thread(t);
2318 } while (t != current);
2322 spin_unlock_irq(&current->sighand->siglock);
2323 return 0;
2326 int
2327 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2329 stack_t oss;
2330 int error;
2332 if (uoss) {
2333 oss.ss_sp = (void __user *) current->sas_ss_sp;
2334 oss.ss_size = current->sas_ss_size;
2335 oss.ss_flags = sas_ss_flags(sp);
2338 if (uss) {
2339 void __user *ss_sp;
2340 size_t ss_size;
2341 int ss_flags;
2343 error = -EFAULT;
2344 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2345 || __get_user(ss_sp, &uss->ss_sp)
2346 || __get_user(ss_flags, &uss->ss_flags)
2347 || __get_user(ss_size, &uss->ss_size))
2348 goto out;
2350 error = -EPERM;
2351 if (on_sig_stack(sp))
2352 goto out;
2354 error = -EINVAL;
2357 * Note - this code used to test ss_flags incorrectly
2358 * old code may have been written using ss_flags==0
2359 * to mean ss_flags==SS_ONSTACK (as this was the only
2360 * way that worked) - this fix preserves that older
2361 * mechanism
2363 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2364 goto out;
2366 if (ss_flags == SS_DISABLE) {
2367 ss_size = 0;
2368 ss_sp = NULL;
2369 } else {
2370 error = -ENOMEM;
2371 if (ss_size < MINSIGSTKSZ)
2372 goto out;
2375 current->sas_ss_sp = (unsigned long) ss_sp;
2376 current->sas_ss_size = ss_size;
2379 if (uoss) {
2380 error = -EFAULT;
2381 if (copy_to_user(uoss, &oss, sizeof(oss)))
2382 goto out;
2385 error = 0;
2386 out:
2387 return error;
2390 #ifdef __ARCH_WANT_SYS_SIGPENDING
2392 asmlinkage long
2393 sys_sigpending(old_sigset_t __user *set)
2395 return do_sigpending(set, sizeof(*set));
2398 #endif
2400 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2401 /* Some platforms have their own version with special arguments others
2402 support only sys_rt_sigprocmask. */
2404 asmlinkage long
2405 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2407 int error;
2408 old_sigset_t old_set, new_set;
2410 if (set) {
2411 error = -EFAULT;
2412 if (copy_from_user(&new_set, set, sizeof(*set)))
2413 goto out;
2414 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2416 spin_lock_irq(&current->sighand->siglock);
2417 old_set = current->blocked.sig[0];
2419 error = 0;
2420 switch (how) {
2421 default:
2422 error = -EINVAL;
2423 break;
2424 case SIG_BLOCK:
2425 sigaddsetmask(&current->blocked, new_set);
2426 break;
2427 case SIG_UNBLOCK:
2428 sigdelsetmask(&current->blocked, new_set);
2429 break;
2430 case SIG_SETMASK:
2431 current->blocked.sig[0] = new_set;
2432 break;
2435 recalc_sigpending();
2436 spin_unlock_irq(&current->sighand->siglock);
2437 if (error)
2438 goto out;
2439 if (oset)
2440 goto set_old;
2441 } else if (oset) {
2442 old_set = current->blocked.sig[0];
2443 set_old:
2444 error = -EFAULT;
2445 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2446 goto out;
2448 error = 0;
2449 out:
2450 return error;
2452 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2454 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2455 asmlinkage long
2456 sys_rt_sigaction(int sig,
2457 const struct sigaction __user *act,
2458 struct sigaction __user *oact,
2459 size_t sigsetsize)
2461 struct k_sigaction new_sa, old_sa;
2462 int ret = -EINVAL;
2464 /* XXX: Don't preclude handling different sized sigset_t's. */
2465 if (sigsetsize != sizeof(sigset_t))
2466 goto out;
2468 if (act) {
2469 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2470 return -EFAULT;
2473 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2475 if (!ret && oact) {
2476 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2477 return -EFAULT;
2479 out:
2480 return ret;
2482 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2484 #ifdef __ARCH_WANT_SYS_SGETMASK
2487 * For backwards compatibility. Functionality superseded by sigprocmask.
2489 asmlinkage long
2490 sys_sgetmask(void)
2492 /* SMP safe */
2493 return current->blocked.sig[0];
2496 asmlinkage long
2497 sys_ssetmask(int newmask)
2499 int old;
2501 spin_lock_irq(&current->sighand->siglock);
2502 old = current->blocked.sig[0];
2504 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2505 sigmask(SIGSTOP)));
2506 recalc_sigpending();
2507 spin_unlock_irq(&current->sighand->siglock);
2509 return old;
2511 #endif /* __ARCH_WANT_SGETMASK */
2513 #ifdef __ARCH_WANT_SYS_SIGNAL
2515 * For backwards compatibility. Functionality superseded by sigaction.
2517 asmlinkage unsigned long
2518 sys_signal(int sig, __sighandler_t handler)
2520 struct k_sigaction new_sa, old_sa;
2521 int ret;
2523 new_sa.sa.sa_handler = handler;
2524 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2525 sigemptyset(&new_sa.sa.sa_mask);
2527 ret = do_sigaction(sig, &new_sa, &old_sa);
2529 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2531 #endif /* __ARCH_WANT_SYS_SIGNAL */
2533 #ifdef __ARCH_WANT_SYS_PAUSE
2535 asmlinkage long
2536 sys_pause(void)
2538 current->state = TASK_INTERRUPTIBLE;
2539 schedule();
2540 return -ERESTARTNOHAND;
2543 #endif
2545 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2546 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2548 sigset_t newset;
2550 /* XXX: Don't preclude handling different sized sigset_t's. */
2551 if (sigsetsize != sizeof(sigset_t))
2552 return -EINVAL;
2554 if (copy_from_user(&newset, unewset, sizeof(newset)))
2555 return -EFAULT;
2556 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2558 spin_lock_irq(&current->sighand->siglock);
2559 current->saved_sigmask = current->blocked;
2560 current->blocked = newset;
2561 recalc_sigpending();
2562 spin_unlock_irq(&current->sighand->siglock);
2564 current->state = TASK_INTERRUPTIBLE;
2565 schedule();
2566 set_thread_flag(TIF_RESTORE_SIGMASK);
2567 return -ERESTARTNOHAND;
2569 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2571 void __init signals_init(void)
2573 sigqueue_cachep =
2574 kmem_cache_create("sigqueue",
2575 sizeof(struct sigqueue),
2576 __alignof__(struct sigqueue),
2577 SLAB_PANIC, NULL, NULL);