2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/mii.h>
44 #define DRV_NAME "skge"
45 #define DRV_VERSION "1.11"
46 #define PFX DRV_NAME " "
48 #define DEFAULT_TX_RING_SIZE 128
49 #define DEFAULT_RX_RING_SIZE 512
50 #define MAX_TX_RING_SIZE 1024
51 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
52 #define MAX_RX_RING_SIZE 4096
53 #define RX_COPY_THRESHOLD 128
54 #define RX_BUF_SIZE 1536
55 #define PHY_RETRIES 1000
56 #define ETH_JUMBO_MTU 9000
57 #define TX_WATCHDOG (5 * HZ)
58 #define NAPI_WEIGHT 64
60 #define LINK_HZ (HZ/2)
62 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
63 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
64 MODULE_LICENSE("GPL");
65 MODULE_VERSION(DRV_VERSION
);
67 static const u32 default_msg
68 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
69 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
71 static int debug
= -1; /* defaults above */
72 module_param(debug
, int, 0);
73 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
75 static const struct pci_device_id skge_id_table
[] = {
76 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
77 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
78 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
79 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
80 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
81 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
82 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
83 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
84 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
86 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
89 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
91 static int skge_up(struct net_device
*dev
);
92 static int skge_down(struct net_device
*dev
);
93 static void skge_phy_reset(struct skge_port
*skge
);
94 static void skge_tx_clean(struct net_device
*dev
);
95 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
96 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
97 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
98 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
99 static void yukon_init(struct skge_hw
*hw
, int port
);
100 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
101 static void genesis_link_up(struct skge_port
*skge
);
103 /* Avoid conditionals by using array */
104 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
105 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
106 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
107 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
108 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
109 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
111 static int skge_get_regs_len(struct net_device
*dev
)
117 * Returns copy of whole control register region
118 * Note: skip RAM address register because accessing it will
121 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
124 const struct skge_port
*skge
= netdev_priv(dev
);
125 const void __iomem
*io
= skge
->hw
->regs
;
128 memset(p
, 0, regs
->len
);
129 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
131 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
132 regs
->len
- B3_RI_WTO_R1
);
135 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
136 static u32
wol_supported(const struct skge_hw
*hw
)
138 if (hw
->chip_id
== CHIP_ID_GENESIS
)
141 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
144 return WAKE_MAGIC
| WAKE_PHY
;
147 static u32
pci_wake_enabled(struct pci_dev
*dev
)
149 int pm
= pci_find_capability(dev
, PCI_CAP_ID_PM
);
152 /* If device doesn't support PM Capabilities, but request is to disable
153 * wake events, it's a nop; otherwise fail */
157 pci_read_config_word(dev
, pm
+ PCI_PM_PMC
, &value
);
159 value
&= PCI_PM_CAP_PME_MASK
;
160 value
>>= ffs(PCI_PM_CAP_PME_MASK
) - 1; /* First bit of mask */
165 static void skge_wol_init(struct skge_port
*skge
)
167 struct skge_hw
*hw
= skge
->hw
;
168 int port
= skge
->port
;
171 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
172 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
175 skge_write8(hw
, B0_POWER_CTRL
,
176 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
178 /* WA code for COMA mode -- clear PHY reset */
179 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
180 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
181 u32 reg
= skge_read32(hw
, B2_GP_IO
);
184 skge_write32(hw
, B2_GP_IO
, reg
);
187 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
189 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
190 GPC_ANEG_1
| GPC_RST_SET
);
192 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
194 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
195 GPC_ANEG_1
| GPC_RST_CLR
);
197 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
199 /* Force to 10/100 skge_reset will re-enable on resume */
200 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
201 PHY_AN_100FULL
| PHY_AN_100HALF
|
202 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
204 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
205 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
206 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
207 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
210 /* Set GMAC to no flow control and auto update for speed/duplex */
211 gma_write16(hw
, port
, GM_GP_CTRL
,
212 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
213 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
215 /* Set WOL address */
216 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
217 skge
->netdev
->dev_addr
, ETH_ALEN
);
219 /* Turn on appropriate WOL control bits */
220 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
222 if (skge
->wol
& WAKE_PHY
)
223 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
225 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
227 if (skge
->wol
& WAKE_MAGIC
)
228 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
230 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;;
232 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
233 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
236 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
239 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
241 struct skge_port
*skge
= netdev_priv(dev
);
243 wol
->supported
= wol_supported(skge
->hw
);
244 wol
->wolopts
= skge
->wol
;
247 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
249 struct skge_port
*skge
= netdev_priv(dev
);
250 struct skge_hw
*hw
= skge
->hw
;
252 if (wol
->wolopts
& ~wol_supported(hw
))
255 skge
->wol
= wol
->wolopts
;
259 /* Determine supported/advertised modes based on hardware.
260 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
262 static u32
skge_supported_modes(const struct skge_hw
*hw
)
267 supported
= SUPPORTED_10baseT_Half
268 | SUPPORTED_10baseT_Full
269 | SUPPORTED_100baseT_Half
270 | SUPPORTED_100baseT_Full
271 | SUPPORTED_1000baseT_Half
272 | SUPPORTED_1000baseT_Full
273 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
275 if (hw
->chip_id
== CHIP_ID_GENESIS
)
276 supported
&= ~(SUPPORTED_10baseT_Half
277 | SUPPORTED_10baseT_Full
278 | SUPPORTED_100baseT_Half
279 | SUPPORTED_100baseT_Full
);
281 else if (hw
->chip_id
== CHIP_ID_YUKON
)
282 supported
&= ~SUPPORTED_1000baseT_Half
;
284 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
285 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
290 static int skge_get_settings(struct net_device
*dev
,
291 struct ethtool_cmd
*ecmd
)
293 struct skge_port
*skge
= netdev_priv(dev
);
294 struct skge_hw
*hw
= skge
->hw
;
296 ecmd
->transceiver
= XCVR_INTERNAL
;
297 ecmd
->supported
= skge_supported_modes(hw
);
300 ecmd
->port
= PORT_TP
;
301 ecmd
->phy_address
= hw
->phy_addr
;
303 ecmd
->port
= PORT_FIBRE
;
305 ecmd
->advertising
= skge
->advertising
;
306 ecmd
->autoneg
= skge
->autoneg
;
307 ecmd
->speed
= skge
->speed
;
308 ecmd
->duplex
= skge
->duplex
;
312 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
314 struct skge_port
*skge
= netdev_priv(dev
);
315 const struct skge_hw
*hw
= skge
->hw
;
316 u32 supported
= skge_supported_modes(hw
);
318 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
319 ecmd
->advertising
= supported
;
325 switch (ecmd
->speed
) {
327 if (ecmd
->duplex
== DUPLEX_FULL
)
328 setting
= SUPPORTED_1000baseT_Full
;
329 else if (ecmd
->duplex
== DUPLEX_HALF
)
330 setting
= SUPPORTED_1000baseT_Half
;
335 if (ecmd
->duplex
== DUPLEX_FULL
)
336 setting
= SUPPORTED_100baseT_Full
;
337 else if (ecmd
->duplex
== DUPLEX_HALF
)
338 setting
= SUPPORTED_100baseT_Half
;
344 if (ecmd
->duplex
== DUPLEX_FULL
)
345 setting
= SUPPORTED_10baseT_Full
;
346 else if (ecmd
->duplex
== DUPLEX_HALF
)
347 setting
= SUPPORTED_10baseT_Half
;
355 if ((setting
& supported
) == 0)
358 skge
->speed
= ecmd
->speed
;
359 skge
->duplex
= ecmd
->duplex
;
362 skge
->autoneg
= ecmd
->autoneg
;
363 skge
->advertising
= ecmd
->advertising
;
365 if (netif_running(dev
))
366 skge_phy_reset(skge
);
371 static void skge_get_drvinfo(struct net_device
*dev
,
372 struct ethtool_drvinfo
*info
)
374 struct skge_port
*skge
= netdev_priv(dev
);
376 strcpy(info
->driver
, DRV_NAME
);
377 strcpy(info
->version
, DRV_VERSION
);
378 strcpy(info
->fw_version
, "N/A");
379 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
382 static const struct skge_stat
{
383 char name
[ETH_GSTRING_LEN
];
387 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
388 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
390 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
391 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
392 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
393 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
394 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
395 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
396 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
397 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
399 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
400 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
401 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
402 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
403 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
404 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
406 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
407 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
408 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
409 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
410 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
413 static int skge_get_stats_count(struct net_device
*dev
)
415 return ARRAY_SIZE(skge_stats
);
418 static void skge_get_ethtool_stats(struct net_device
*dev
,
419 struct ethtool_stats
*stats
, u64
*data
)
421 struct skge_port
*skge
= netdev_priv(dev
);
423 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
424 genesis_get_stats(skge
, data
);
426 yukon_get_stats(skge
, data
);
429 /* Use hardware MIB variables for critical path statistics and
430 * transmit feedback not reported at interrupt.
431 * Other errors are accounted for in interrupt handler.
433 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
435 struct skge_port
*skge
= netdev_priv(dev
);
436 u64 data
[ARRAY_SIZE(skge_stats
)];
438 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
439 genesis_get_stats(skge
, data
);
441 yukon_get_stats(skge
, data
);
443 skge
->net_stats
.tx_bytes
= data
[0];
444 skge
->net_stats
.rx_bytes
= data
[1];
445 skge
->net_stats
.tx_packets
= data
[2] + data
[4] + data
[6];
446 skge
->net_stats
.rx_packets
= data
[3] + data
[5] + data
[7];
447 skge
->net_stats
.multicast
= data
[3] + data
[5];
448 skge
->net_stats
.collisions
= data
[10];
449 skge
->net_stats
.tx_aborted_errors
= data
[12];
451 return &skge
->net_stats
;
454 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
460 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
461 memcpy(data
+ i
* ETH_GSTRING_LEN
,
462 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
467 static void skge_get_ring_param(struct net_device
*dev
,
468 struct ethtool_ringparam
*p
)
470 struct skge_port
*skge
= netdev_priv(dev
);
472 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
473 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
474 p
->rx_mini_max_pending
= 0;
475 p
->rx_jumbo_max_pending
= 0;
477 p
->rx_pending
= skge
->rx_ring
.count
;
478 p
->tx_pending
= skge
->tx_ring
.count
;
479 p
->rx_mini_pending
= 0;
480 p
->rx_jumbo_pending
= 0;
483 static int skge_set_ring_param(struct net_device
*dev
,
484 struct ethtool_ringparam
*p
)
486 struct skge_port
*skge
= netdev_priv(dev
);
489 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
490 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
493 skge
->rx_ring
.count
= p
->rx_pending
;
494 skge
->tx_ring
.count
= p
->tx_pending
;
496 if (netif_running(dev
)) {
506 static u32
skge_get_msglevel(struct net_device
*netdev
)
508 struct skge_port
*skge
= netdev_priv(netdev
);
509 return skge
->msg_enable
;
512 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
514 struct skge_port
*skge
= netdev_priv(netdev
);
515 skge
->msg_enable
= value
;
518 static int skge_nway_reset(struct net_device
*dev
)
520 struct skge_port
*skge
= netdev_priv(dev
);
522 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
525 skge_phy_reset(skge
);
529 static int skge_set_sg(struct net_device
*dev
, u32 data
)
531 struct skge_port
*skge
= netdev_priv(dev
);
532 struct skge_hw
*hw
= skge
->hw
;
534 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
536 return ethtool_op_set_sg(dev
, data
);
539 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
541 struct skge_port
*skge
= netdev_priv(dev
);
542 struct skge_hw
*hw
= skge
->hw
;
544 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
547 return ethtool_op_set_tx_csum(dev
, data
);
550 static u32
skge_get_rx_csum(struct net_device
*dev
)
552 struct skge_port
*skge
= netdev_priv(dev
);
554 return skge
->rx_csum
;
557 /* Only Yukon supports checksum offload. */
558 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
560 struct skge_port
*skge
= netdev_priv(dev
);
562 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
565 skge
->rx_csum
= data
;
569 static void skge_get_pauseparam(struct net_device
*dev
,
570 struct ethtool_pauseparam
*ecmd
)
572 struct skge_port
*skge
= netdev_priv(dev
);
574 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
575 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
576 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
578 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
581 static int skge_set_pauseparam(struct net_device
*dev
,
582 struct ethtool_pauseparam
*ecmd
)
584 struct skge_port
*skge
= netdev_priv(dev
);
585 struct ethtool_pauseparam old
;
587 skge_get_pauseparam(dev
, &old
);
589 if (ecmd
->autoneg
!= old
.autoneg
)
590 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
592 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
593 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
594 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
595 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
596 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
597 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
599 skge
->flow_control
= FLOW_MODE_NONE
;
602 if (netif_running(dev
))
603 skge_phy_reset(skge
);
608 /* Chip internal frequency for clock calculations */
609 static inline u32
hwkhz(const struct skge_hw
*hw
)
611 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
614 /* Chip HZ to microseconds */
615 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
617 return (ticks
* 1000) / hwkhz(hw
);
620 /* Microseconds to chip HZ */
621 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
623 return hwkhz(hw
) * usec
/ 1000;
626 static int skge_get_coalesce(struct net_device
*dev
,
627 struct ethtool_coalesce
*ecmd
)
629 struct skge_port
*skge
= netdev_priv(dev
);
630 struct skge_hw
*hw
= skge
->hw
;
631 int port
= skge
->port
;
633 ecmd
->rx_coalesce_usecs
= 0;
634 ecmd
->tx_coalesce_usecs
= 0;
636 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
637 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
638 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
640 if (msk
& rxirqmask
[port
])
641 ecmd
->rx_coalesce_usecs
= delay
;
642 if (msk
& txirqmask
[port
])
643 ecmd
->tx_coalesce_usecs
= delay
;
649 /* Note: interrupt timer is per board, but can turn on/off per port */
650 static int skge_set_coalesce(struct net_device
*dev
,
651 struct ethtool_coalesce
*ecmd
)
653 struct skge_port
*skge
= netdev_priv(dev
);
654 struct skge_hw
*hw
= skge
->hw
;
655 int port
= skge
->port
;
656 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
659 if (ecmd
->rx_coalesce_usecs
== 0)
660 msk
&= ~rxirqmask
[port
];
661 else if (ecmd
->rx_coalesce_usecs
< 25 ||
662 ecmd
->rx_coalesce_usecs
> 33333)
665 msk
|= rxirqmask
[port
];
666 delay
= ecmd
->rx_coalesce_usecs
;
669 if (ecmd
->tx_coalesce_usecs
== 0)
670 msk
&= ~txirqmask
[port
];
671 else if (ecmd
->tx_coalesce_usecs
< 25 ||
672 ecmd
->tx_coalesce_usecs
> 33333)
675 msk
|= txirqmask
[port
];
676 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
679 skge_write32(hw
, B2_IRQM_MSK
, msk
);
681 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
683 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
684 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
689 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
690 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
692 struct skge_hw
*hw
= skge
->hw
;
693 int port
= skge
->port
;
695 spin_lock_bh(&hw
->phy_lock
);
696 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
699 if (hw
->phy_type
== SK_PHY_BCOM
)
700 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
702 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
703 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
705 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
706 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
707 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
711 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
712 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
714 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
715 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
720 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
721 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
722 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
724 if (hw
->phy_type
== SK_PHY_BCOM
)
725 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
727 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
728 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
729 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
736 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
737 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
738 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
739 PHY_M_LED_MO_10(MO_LED_OFF
) |
740 PHY_M_LED_MO_100(MO_LED_OFF
) |
741 PHY_M_LED_MO_1000(MO_LED_OFF
) |
742 PHY_M_LED_MO_RX(MO_LED_OFF
));
745 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
746 PHY_M_LED_PULS_DUR(PULS_170MS
) |
747 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
751 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
752 PHY_M_LED_MO_RX(MO_LED_OFF
) |
753 (skge
->speed
== SPEED_100
?
754 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
757 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
758 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
759 PHY_M_LED_MO_DUP(MO_LED_ON
) |
760 PHY_M_LED_MO_10(MO_LED_ON
) |
761 PHY_M_LED_MO_100(MO_LED_ON
) |
762 PHY_M_LED_MO_1000(MO_LED_ON
) |
763 PHY_M_LED_MO_RX(MO_LED_ON
));
766 spin_unlock_bh(&hw
->phy_lock
);
769 /* blink LED's for finding board */
770 static int skge_phys_id(struct net_device
*dev
, u32 data
)
772 struct skge_port
*skge
= netdev_priv(dev
);
774 enum led_mode mode
= LED_MODE_TST
;
776 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
777 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
782 skge_led(skge
, mode
);
783 mode
^= LED_MODE_TST
;
785 if (msleep_interruptible(BLINK_MS
))
790 /* back to regular LED state */
791 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
796 static const struct ethtool_ops skge_ethtool_ops
= {
797 .get_settings
= skge_get_settings
,
798 .set_settings
= skge_set_settings
,
799 .get_drvinfo
= skge_get_drvinfo
,
800 .get_regs_len
= skge_get_regs_len
,
801 .get_regs
= skge_get_regs
,
802 .get_wol
= skge_get_wol
,
803 .set_wol
= skge_set_wol
,
804 .get_msglevel
= skge_get_msglevel
,
805 .set_msglevel
= skge_set_msglevel
,
806 .nway_reset
= skge_nway_reset
,
807 .get_link
= ethtool_op_get_link
,
808 .get_ringparam
= skge_get_ring_param
,
809 .set_ringparam
= skge_set_ring_param
,
810 .get_pauseparam
= skge_get_pauseparam
,
811 .set_pauseparam
= skge_set_pauseparam
,
812 .get_coalesce
= skge_get_coalesce
,
813 .set_coalesce
= skge_set_coalesce
,
814 .get_sg
= ethtool_op_get_sg
,
815 .set_sg
= skge_set_sg
,
816 .get_tx_csum
= ethtool_op_get_tx_csum
,
817 .set_tx_csum
= skge_set_tx_csum
,
818 .get_rx_csum
= skge_get_rx_csum
,
819 .set_rx_csum
= skge_set_rx_csum
,
820 .get_strings
= skge_get_strings
,
821 .phys_id
= skge_phys_id
,
822 .get_stats_count
= skge_get_stats_count
,
823 .get_ethtool_stats
= skge_get_ethtool_stats
,
827 * Allocate ring elements and chain them together
828 * One-to-one association of board descriptors with ring elements
830 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
832 struct skge_tx_desc
*d
;
833 struct skge_element
*e
;
836 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
840 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
842 if (i
== ring
->count
- 1) {
843 e
->next
= ring
->start
;
844 d
->next_offset
= base
;
847 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
850 ring
->to_use
= ring
->to_clean
= ring
->start
;
855 /* Allocate and setup a new buffer for receiving */
856 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
857 struct sk_buff
*skb
, unsigned int bufsize
)
859 struct skge_rx_desc
*rd
= e
->desc
;
862 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
866 rd
->dma_hi
= map
>> 32;
868 rd
->csum1_start
= ETH_HLEN
;
869 rd
->csum2_start
= ETH_HLEN
;
875 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
876 pci_unmap_addr_set(e
, mapaddr
, map
);
877 pci_unmap_len_set(e
, maplen
, bufsize
);
880 /* Resume receiving using existing skb,
881 * Note: DMA address is not changed by chip.
882 * MTU not changed while receiver active.
884 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
886 struct skge_rx_desc
*rd
= e
->desc
;
889 rd
->csum2_start
= ETH_HLEN
;
893 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
897 /* Free all buffers in receive ring, assumes receiver stopped */
898 static void skge_rx_clean(struct skge_port
*skge
)
900 struct skge_hw
*hw
= skge
->hw
;
901 struct skge_ring
*ring
= &skge
->rx_ring
;
902 struct skge_element
*e
;
906 struct skge_rx_desc
*rd
= e
->desc
;
909 pci_unmap_single(hw
->pdev
,
910 pci_unmap_addr(e
, mapaddr
),
911 pci_unmap_len(e
, maplen
),
913 dev_kfree_skb(e
->skb
);
916 } while ((e
= e
->next
) != ring
->start
);
920 /* Allocate buffers for receive ring
921 * For receive: to_clean is next received frame.
923 static int skge_rx_fill(struct net_device
*dev
)
925 struct skge_port
*skge
= netdev_priv(dev
);
926 struct skge_ring
*ring
= &skge
->rx_ring
;
927 struct skge_element
*e
;
933 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
938 skb_reserve(skb
, NET_IP_ALIGN
);
939 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
940 } while ( (e
= e
->next
) != ring
->start
);
942 ring
->to_clean
= ring
->start
;
946 static const char *skge_pause(enum pause_status status
)
951 case FLOW_STAT_REM_SEND
:
953 case FLOW_STAT_LOC_SEND
:
955 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
958 return "indeterminated";
963 static void skge_link_up(struct skge_port
*skge
)
965 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
966 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
968 netif_carrier_on(skge
->netdev
);
969 netif_wake_queue(skge
->netdev
);
971 if (netif_msg_link(skge
)) {
973 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
974 skge
->netdev
->name
, skge
->speed
,
975 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
976 skge_pause(skge
->flow_status
));
980 static void skge_link_down(struct skge_port
*skge
)
982 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
983 netif_carrier_off(skge
->netdev
);
984 netif_stop_queue(skge
->netdev
);
986 if (netif_msg_link(skge
))
987 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
991 static void xm_link_down(struct skge_hw
*hw
, int port
)
993 struct net_device
*dev
= hw
->dev
[port
];
994 struct skge_port
*skge
= netdev_priv(dev
);
997 if (hw
->phy_type
== SK_PHY_XMAC
) {
998 msk
= xm_read16(hw
, port
, XM_IMSK
);
999 msk
|= XM_IS_INP_ASS
| XM_IS_LIPA_RC
| XM_IS_RX_PAGE
| XM_IS_AND
;
1000 xm_write16(hw
, port
, XM_IMSK
, msk
);
1003 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1004 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1005 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1006 /* dummy read to ensure writing */
1007 (void) xm_read16(hw
, port
, XM_MMU_CMD
);
1009 if (netif_carrier_ok(dev
))
1010 skge_link_down(skge
);
1013 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1017 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1018 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1020 if (hw
->phy_type
== SK_PHY_XMAC
)
1023 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1024 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1031 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1036 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1039 if (__xm_phy_read(hw
, port
, reg
, &v
))
1040 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1041 hw
->dev
[port
]->name
);
1045 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1049 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1050 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1051 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1058 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1059 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1060 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1067 static void genesis_init(struct skge_hw
*hw
)
1069 /* set blink source counter */
1070 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1071 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1073 /* configure mac arbiter */
1074 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1076 /* configure mac arbiter timeout values */
1077 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1078 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1079 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1080 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1082 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1083 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1084 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1085 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1087 /* configure packet arbiter timeout */
1088 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1089 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1090 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1091 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1092 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1095 static void genesis_reset(struct skge_hw
*hw
, int port
)
1097 const u8 zero
[8] = { 0 };
1099 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1101 /* reset the statistics module */
1102 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1103 xm_write16(hw
, port
, XM_IMSK
, 0xffff); /* disable XMAC IRQs */
1104 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1105 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1106 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1108 /* disable Broadcom PHY IRQ */
1109 if (hw
->phy_type
== SK_PHY_BCOM
)
1110 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1112 xm_outhash(hw
, port
, XM_HSM
, zero
);
1116 /* Convert mode to MII values */
1117 static const u16 phy_pause_map
[] = {
1118 [FLOW_MODE_NONE
] = 0,
1119 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1120 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1121 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1124 /* special defines for FIBER (88E1011S only) */
1125 static const u16 fiber_pause_map
[] = {
1126 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1127 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1128 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1129 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1133 /* Check status of Broadcom phy link */
1134 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1136 struct net_device
*dev
= hw
->dev
[port
];
1137 struct skge_port
*skge
= netdev_priv(dev
);
1140 /* read twice because of latch */
1141 (void) xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1142 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1144 if ((status
& PHY_ST_LSYNC
) == 0) {
1145 xm_link_down(hw
, port
);
1149 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1152 if (!(status
& PHY_ST_AN_OVER
))
1155 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1156 if (lpa
& PHY_B_AN_RF
) {
1157 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1162 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1164 /* Check Duplex mismatch */
1165 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1166 case PHY_B_RES_1000FD
:
1167 skge
->duplex
= DUPLEX_FULL
;
1169 case PHY_B_RES_1000HD
:
1170 skge
->duplex
= DUPLEX_HALF
;
1173 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1178 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1179 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1180 case PHY_B_AS_PAUSE_MSK
:
1181 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1184 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1187 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1190 skge
->flow_status
= FLOW_STAT_NONE
;
1192 skge
->speed
= SPEED_1000
;
1195 if (!netif_carrier_ok(dev
))
1196 genesis_link_up(skge
);
1199 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1200 * Phy on for 100 or 10Mbit operation
1202 static void bcom_phy_init(struct skge_port
*skge
)
1204 struct skge_hw
*hw
= skge
->hw
;
1205 int port
= skge
->port
;
1207 u16 id1
, r
, ext
, ctl
;
1209 /* magic workaround patterns for Broadcom */
1210 static const struct {
1214 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1215 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1216 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1217 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1219 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1220 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1223 /* read Id from external PHY (all have the same address) */
1224 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1226 /* Optimize MDIO transfer by suppressing preamble. */
1227 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1229 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1232 case PHY_BCOM_ID1_C0
:
1234 * Workaround BCOM Errata for the C0 type.
1235 * Write magic patterns to reserved registers.
1237 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1238 xm_phy_write(hw
, port
,
1239 C0hack
[i
].reg
, C0hack
[i
].val
);
1242 case PHY_BCOM_ID1_A1
:
1244 * Workaround BCOM Errata for the A1 type.
1245 * Write magic patterns to reserved registers.
1247 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1248 xm_phy_write(hw
, port
,
1249 A1hack
[i
].reg
, A1hack
[i
].val
);
1254 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1255 * Disable Power Management after reset.
1257 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1258 r
|= PHY_B_AC_DIS_PM
;
1259 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1262 xm_read16(hw
, port
, XM_ISRC
);
1264 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1265 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1267 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1269 * Workaround BCOM Errata #1 for the C5 type.
1270 * 1000Base-T Link Acquisition Failure in Slave Mode
1271 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1273 u16 adv
= PHY_B_1000C_RD
;
1274 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1275 adv
|= PHY_B_1000C_AHD
;
1276 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1277 adv
|= PHY_B_1000C_AFD
;
1278 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1280 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1282 if (skge
->duplex
== DUPLEX_FULL
)
1283 ctl
|= PHY_CT_DUP_MD
;
1284 /* Force to slave */
1285 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1288 /* Set autonegotiation pause parameters */
1289 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1290 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1292 /* Handle Jumbo frames */
1293 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1294 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1295 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1297 ext
|= PHY_B_PEC_HIGH_LA
;
1301 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1302 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1304 /* Use link status change interrupt */
1305 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1308 static void xm_phy_init(struct skge_port
*skge
)
1310 struct skge_hw
*hw
= skge
->hw
;
1311 int port
= skge
->port
;
1314 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1315 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1316 ctrl
|= PHY_X_AN_HD
;
1317 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1318 ctrl
|= PHY_X_AN_FD
;
1320 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1322 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1324 /* Restart Auto-negotiation */
1325 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1327 /* Set DuplexMode in Config register */
1328 if (skge
->duplex
== DUPLEX_FULL
)
1329 ctrl
|= PHY_CT_DUP_MD
;
1331 * Do NOT enable Auto-negotiation here. This would hold
1332 * the link down because no IDLEs are transmitted
1336 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1338 /* Poll PHY for status changes */
1339 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1342 static void xm_check_link(struct net_device
*dev
)
1344 struct skge_port
*skge
= netdev_priv(dev
);
1345 struct skge_hw
*hw
= skge
->hw
;
1346 int port
= skge
->port
;
1349 /* read twice because of latch */
1350 (void) xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1351 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1353 if ((status
& PHY_ST_LSYNC
) == 0) {
1354 xm_link_down(hw
, port
);
1358 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1361 if (!(status
& PHY_ST_AN_OVER
))
1364 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1365 if (lpa
& PHY_B_AN_RF
) {
1366 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1371 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1373 /* Check Duplex mismatch */
1374 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1376 skge
->duplex
= DUPLEX_FULL
;
1379 skge
->duplex
= DUPLEX_HALF
;
1382 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1387 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1388 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1389 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1390 (lpa
& PHY_X_P_SYM_MD
))
1391 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1392 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1393 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1394 /* Enable PAUSE receive, disable PAUSE transmit */
1395 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1396 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1397 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1398 /* Disable PAUSE receive, enable PAUSE transmit */
1399 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1401 skge
->flow_status
= FLOW_STAT_NONE
;
1403 skge
->speed
= SPEED_1000
;
1406 if (!netif_carrier_ok(dev
))
1407 genesis_link_up(skge
);
1410 /* Poll to check for link coming up.
1411 * Since internal PHY is wired to a level triggered pin, can't
1412 * get an interrupt when carrier is detected.
1414 static void xm_link_timer(unsigned long arg
)
1416 struct skge_port
*skge
= (struct skge_port
*) arg
;
1417 struct net_device
*dev
= skge
->netdev
;
1418 struct skge_hw
*hw
= skge
->hw
;
1419 int port
= skge
->port
;
1421 if (!netif_running(dev
))
1424 if (netif_carrier_ok(dev
)) {
1425 xm_read16(hw
, port
, XM_ISRC
);
1426 if (!(xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
))
1429 if (xm_read32(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1431 xm_read16(hw
, port
, XM_ISRC
);
1432 if (xm_read16(hw
, port
, XM_ISRC
) & XM_IS_INP_ASS
)
1436 spin_lock(&hw
->phy_lock
);
1438 spin_unlock(&hw
->phy_lock
);
1441 if (netif_running(dev
))
1442 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1445 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1447 struct net_device
*dev
= hw
->dev
[port
];
1448 struct skge_port
*skge
= netdev_priv(dev
);
1449 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1452 const u8 zero
[6] = { 0 };
1454 for (i
= 0; i
< 10; i
++) {
1455 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1457 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1462 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1465 /* Unreset the XMAC. */
1466 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1469 * Perform additional initialization for external PHYs,
1470 * namely for the 1000baseTX cards that use the XMAC's
1473 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1474 /* Take external Phy out of reset */
1475 r
= skge_read32(hw
, B2_GP_IO
);
1477 r
|= GP_DIR_0
|GP_IO_0
;
1479 r
|= GP_DIR_2
|GP_IO_2
;
1481 skge_write32(hw
, B2_GP_IO
, r
);
1483 /* Enable GMII interface */
1484 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1488 switch(hw
->phy_type
) {
1493 bcom_phy_init(skge
);
1494 bcom_check_link(hw
, port
);
1497 /* Set Station Address */
1498 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1500 /* We don't use match addresses so clear */
1501 for (i
= 1; i
< 16; i
++)
1502 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1504 /* Clear MIB counters */
1505 xm_write16(hw
, port
, XM_STAT_CMD
,
1506 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1507 /* Clear two times according to Errata #3 */
1508 xm_write16(hw
, port
, XM_STAT_CMD
,
1509 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1511 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1512 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1514 /* We don't need the FCS appended to the packet. */
1515 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1517 r
|= XM_RX_BIG_PK_OK
;
1519 if (skge
->duplex
== DUPLEX_HALF
) {
1521 * If in manual half duplex mode the other side might be in
1522 * full duplex mode, so ignore if a carrier extension is not seen
1523 * on frames received
1525 r
|= XM_RX_DIS_CEXT
;
1527 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1530 /* We want short frames padded to 60 bytes. */
1531 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1534 * Bump up the transmit threshold. This helps hold off transmit
1535 * underruns when we're blasting traffic from both ports at once.
1537 xm_write16(hw
, port
, XM_TX_THR
, 512);
1540 * Enable the reception of all error frames. This is is
1541 * a necessary evil due to the design of the XMAC. The
1542 * XMAC's receive FIFO is only 8K in size, however jumbo
1543 * frames can be up to 9000 bytes in length. When bad
1544 * frame filtering is enabled, the XMAC's RX FIFO operates
1545 * in 'store and forward' mode. For this to work, the
1546 * entire frame has to fit into the FIFO, but that means
1547 * that jumbo frames larger than 8192 bytes will be
1548 * truncated. Disabling all bad frame filtering causes
1549 * the RX FIFO to operate in streaming mode, in which
1550 * case the XMAC will start transferring frames out of the
1551 * RX FIFO as soon as the FIFO threshold is reached.
1553 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1557 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1558 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1559 * and 'Octets Rx OK Hi Cnt Ov'.
1561 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1564 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1565 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1566 * and 'Octets Tx OK Hi Cnt Ov'.
1568 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1570 /* Configure MAC arbiter */
1571 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1573 /* configure timeout values */
1574 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1575 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1576 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1577 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1579 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1580 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1581 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1582 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1584 /* Configure Rx MAC FIFO */
1585 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1586 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1587 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1589 /* Configure Tx MAC FIFO */
1590 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1591 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1592 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1595 /* Enable frame flushing if jumbo frames used */
1596 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1598 /* enable timeout timers if normal frames */
1599 skge_write16(hw
, B3_PA_CTRL
,
1600 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1604 static void genesis_stop(struct skge_port
*skge
)
1606 struct skge_hw
*hw
= skge
->hw
;
1607 int port
= skge
->port
;
1610 genesis_reset(hw
, port
);
1612 /* Clear Tx packet arbiter timeout IRQ */
1613 skge_write16(hw
, B3_PA_CTRL
,
1614 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1617 * If the transfer sticks at the MAC the STOP command will not
1618 * terminate if we don't flush the XMAC's transmit FIFO !
1620 xm_write32(hw
, port
, XM_MODE
,
1621 xm_read32(hw
, port
, XM_MODE
)|XM_MD_FTF
);
1625 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1627 /* For external PHYs there must be special handling */
1628 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1629 reg
= skge_read32(hw
, B2_GP_IO
);
1637 skge_write32(hw
, B2_GP_IO
, reg
);
1638 skge_read32(hw
, B2_GP_IO
);
1641 xm_write16(hw
, port
, XM_MMU_CMD
,
1642 xm_read16(hw
, port
, XM_MMU_CMD
)
1643 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1645 xm_read16(hw
, port
, XM_MMU_CMD
);
1649 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1651 struct skge_hw
*hw
= skge
->hw
;
1652 int port
= skge
->port
;
1654 unsigned long timeout
= jiffies
+ HZ
;
1656 xm_write16(hw
, port
,
1657 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1659 /* wait for update to complete */
1660 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1661 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1662 if (time_after(jiffies
, timeout
))
1667 /* special case for 64 bit octet counter */
1668 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1669 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1670 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1671 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1673 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1674 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1677 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1679 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1680 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1682 if (netif_msg_intr(skge
))
1683 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1684 skge
->netdev
->name
, status
);
1686 if (hw
->phy_type
== SK_PHY_XMAC
&&
1687 (status
& (XM_IS_INP_ASS
| XM_IS_LIPA_RC
)))
1688 xm_link_down(hw
, port
);
1690 if (status
& XM_IS_TXF_UR
) {
1691 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1692 ++skge
->net_stats
.tx_fifo_errors
;
1694 if (status
& XM_IS_RXF_OV
) {
1695 xm_write32(hw
, port
, XM_MODE
, XM_MD_FRF
);
1696 ++skge
->net_stats
.rx_fifo_errors
;
1700 static void genesis_link_up(struct skge_port
*skge
)
1702 struct skge_hw
*hw
= skge
->hw
;
1703 int port
= skge
->port
;
1707 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1710 * enabling pause frame reception is required for 1000BT
1711 * because the XMAC is not reset if the link is going down
1713 if (skge
->flow_status
== FLOW_STAT_NONE
||
1714 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1715 /* Disable Pause Frame Reception */
1716 cmd
|= XM_MMU_IGN_PF
;
1718 /* Enable Pause Frame Reception */
1719 cmd
&= ~XM_MMU_IGN_PF
;
1721 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1723 mode
= xm_read32(hw
, port
, XM_MODE
);
1724 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1725 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1727 * Configure Pause Frame Generation
1728 * Use internal and external Pause Frame Generation.
1729 * Sending pause frames is edge triggered.
1730 * Send a Pause frame with the maximum pause time if
1731 * internal oder external FIFO full condition occurs.
1732 * Send a zero pause time frame to re-start transmission.
1734 /* XM_PAUSE_DA = '010000C28001' (default) */
1735 /* XM_MAC_PTIME = 0xffff (maximum) */
1736 /* remember this value is defined in big endian (!) */
1737 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1739 mode
|= XM_PAUSE_MODE
;
1740 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1743 * disable pause frame generation is required for 1000BT
1744 * because the XMAC is not reset if the link is going down
1746 /* Disable Pause Mode in Mode Register */
1747 mode
&= ~XM_PAUSE_MODE
;
1749 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1752 xm_write32(hw
, port
, XM_MODE
, mode
);
1754 if (hw
->phy_type
!= SK_PHY_XMAC
)
1755 msk
|= XM_IS_INP_ASS
; /* disable GP0 interrupt bit */
1757 xm_write16(hw
, port
, XM_IMSK
, msk
);
1758 xm_read16(hw
, port
, XM_ISRC
);
1760 /* get MMU Command Reg. */
1761 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1762 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1763 cmd
|= XM_MMU_GMII_FD
;
1766 * Workaround BCOM Errata (#10523) for all BCom Phys
1767 * Enable Power Management after link up
1769 if (hw
->phy_type
== SK_PHY_BCOM
) {
1770 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1771 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1772 & ~PHY_B_AC_DIS_PM
);
1773 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1777 xm_write16(hw
, port
, XM_MMU_CMD
,
1778 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1783 static inline void bcom_phy_intr(struct skge_port
*skge
)
1785 struct skge_hw
*hw
= skge
->hw
;
1786 int port
= skge
->port
;
1789 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1790 if (netif_msg_intr(skge
))
1791 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1792 skge
->netdev
->name
, isrc
);
1794 if (isrc
& PHY_B_IS_PSE
)
1795 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1796 hw
->dev
[port
]->name
);
1798 /* Workaround BCom Errata:
1799 * enable and disable loopback mode if "NO HCD" occurs.
1801 if (isrc
& PHY_B_IS_NO_HDCL
) {
1802 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1803 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1804 ctrl
| PHY_CT_LOOP
);
1805 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1806 ctrl
& ~PHY_CT_LOOP
);
1809 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1810 bcom_check_link(hw
, port
);
1814 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1818 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1819 gma_write16(hw
, port
, GM_SMI_CTRL
,
1820 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1821 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1824 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1828 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1829 hw
->dev
[port
]->name
);
1833 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1837 gma_write16(hw
, port
, GM_SMI_CTRL
,
1838 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1839 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1841 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1843 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1849 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1853 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1856 if (__gm_phy_read(hw
, port
, reg
, &v
))
1857 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1858 hw
->dev
[port
]->name
);
1862 /* Marvell Phy Initialization */
1863 static void yukon_init(struct skge_hw
*hw
, int port
)
1865 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1866 u16 ctrl
, ct1000
, adv
;
1868 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1869 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1871 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1872 PHY_M_EC_MAC_S_MSK
);
1873 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1875 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1877 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1880 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1881 if (skge
->autoneg
== AUTONEG_DISABLE
)
1882 ctrl
&= ~PHY_CT_ANE
;
1884 ctrl
|= PHY_CT_RESET
;
1885 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1891 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1893 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1894 ct1000
|= PHY_M_1000C_AFD
;
1895 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1896 ct1000
|= PHY_M_1000C_AHD
;
1897 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1898 adv
|= PHY_M_AN_100_FD
;
1899 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1900 adv
|= PHY_M_AN_100_HD
;
1901 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1902 adv
|= PHY_M_AN_10_FD
;
1903 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1904 adv
|= PHY_M_AN_10_HD
;
1906 /* Set Flow-control capabilities */
1907 adv
|= phy_pause_map
[skge
->flow_control
];
1909 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1910 adv
|= PHY_M_AN_1000X_AFD
;
1911 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1912 adv
|= PHY_M_AN_1000X_AHD
;
1914 adv
|= fiber_pause_map
[skge
->flow_control
];
1917 /* Restart Auto-negotiation */
1918 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1920 /* forced speed/duplex settings */
1921 ct1000
= PHY_M_1000C_MSE
;
1923 if (skge
->duplex
== DUPLEX_FULL
)
1924 ctrl
|= PHY_CT_DUP_MD
;
1926 switch (skge
->speed
) {
1928 ctrl
|= PHY_CT_SP1000
;
1931 ctrl
|= PHY_CT_SP100
;
1935 ctrl
|= PHY_CT_RESET
;
1938 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
1940 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
1941 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1943 /* Enable phy interrupt on autonegotiation complete (or link up) */
1944 if (skge
->autoneg
== AUTONEG_ENABLE
)
1945 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
1947 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
1950 static void yukon_reset(struct skge_hw
*hw
, int port
)
1952 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
1953 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
1954 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
1955 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
1956 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
1958 gma_write16(hw
, port
, GM_RX_CTRL
,
1959 gma_read16(hw
, port
, GM_RX_CTRL
)
1960 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
1963 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
1964 static int is_yukon_lite_a0(struct skge_hw
*hw
)
1969 if (hw
->chip_id
!= CHIP_ID_YUKON
)
1972 reg
= skge_read32(hw
, B2_FAR
);
1973 skge_write8(hw
, B2_FAR
+ 3, 0xff);
1974 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
1975 skge_write32(hw
, B2_FAR
, reg
);
1979 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
1981 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1984 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
1986 /* WA code for COMA mode -- set PHY reset */
1987 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
1988 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
1989 reg
= skge_read32(hw
, B2_GP_IO
);
1990 reg
|= GP_DIR_9
| GP_IO_9
;
1991 skge_write32(hw
, B2_GP_IO
, reg
);
1995 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
1996 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
1998 /* WA code for COMA mode -- clear PHY reset */
1999 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2000 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2001 reg
= skge_read32(hw
, B2_GP_IO
);
2004 skge_write32(hw
, B2_GP_IO
, reg
);
2007 /* Set hardware config mode */
2008 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2009 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2010 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2012 /* Clear GMC reset */
2013 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2014 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2015 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2017 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2018 reg
= GM_GPCR_AU_ALL_DIS
;
2019 gma_write16(hw
, port
, GM_GP_CTRL
,
2020 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2022 switch (skge
->speed
) {
2024 reg
&= ~GM_GPCR_SPEED_100
;
2025 reg
|= GM_GPCR_SPEED_1000
;
2028 reg
&= ~GM_GPCR_SPEED_1000
;
2029 reg
|= GM_GPCR_SPEED_100
;
2032 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2036 if (skge
->duplex
== DUPLEX_FULL
)
2037 reg
|= GM_GPCR_DUP_FULL
;
2039 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2041 switch (skge
->flow_control
) {
2042 case FLOW_MODE_NONE
:
2043 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2044 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2046 case FLOW_MODE_LOC_SEND
:
2047 /* disable Rx flow-control */
2048 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2050 case FLOW_MODE_SYMMETRIC
:
2051 case FLOW_MODE_SYM_OR_REM
:
2052 /* enable Tx & Rx flow-control */
2056 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2057 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2059 yukon_init(hw
, port
);
2062 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2063 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2065 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2066 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2067 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2069 /* transmit control */
2070 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2072 /* receive control reg: unicast + multicast + no FCS */
2073 gma_write16(hw
, port
, GM_RX_CTRL
,
2074 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2076 /* transmit flow control */
2077 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2079 /* transmit parameter */
2080 gma_write16(hw
, port
, GM_TX_PARAM
,
2081 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2082 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2083 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2085 /* serial mode register */
2086 reg
= GM_SMOD_VLAN_ENA
| IPG_DATA_VAL(IPG_DATA_DEF
);
2087 if (hw
->dev
[port
]->mtu
> 1500)
2088 reg
|= GM_SMOD_JUMBO_ENA
;
2090 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2092 /* physical address: used for pause frames */
2093 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2094 /* virtual address for data */
2095 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2097 /* enable interrupt mask for counter overflows */
2098 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2099 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2100 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2102 /* Initialize Mac Fifo */
2104 /* Configure Rx MAC FIFO */
2105 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2106 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2108 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2109 if (is_yukon_lite_a0(hw
))
2110 reg
&= ~GMF_RX_F_FL_ON
;
2112 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2113 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2115 * because Pause Packet Truncation in GMAC is not working
2116 * we have to increase the Flush Threshold to 64 bytes
2117 * in order to flush pause packets in Rx FIFO on Yukon-1
2119 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2121 /* Configure Tx MAC FIFO */
2122 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2123 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2126 /* Go into power down mode */
2127 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2131 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2132 ctrl
|= PHY_M_PC_POL_R_DIS
;
2133 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2135 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2136 ctrl
|= PHY_CT_RESET
;
2137 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2139 /* switch IEEE compatible power down mode on */
2140 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2141 ctrl
|= PHY_CT_PDOWN
;
2142 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2145 static void yukon_stop(struct skge_port
*skge
)
2147 struct skge_hw
*hw
= skge
->hw
;
2148 int port
= skge
->port
;
2150 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2151 yukon_reset(hw
, port
);
2153 gma_write16(hw
, port
, GM_GP_CTRL
,
2154 gma_read16(hw
, port
, GM_GP_CTRL
)
2155 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2156 gma_read16(hw
, port
, GM_GP_CTRL
);
2158 yukon_suspend(hw
, port
);
2160 /* set GPHY Control reset */
2161 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2162 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2165 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2167 struct skge_hw
*hw
= skge
->hw
;
2168 int port
= skge
->port
;
2171 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2172 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2173 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2174 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2176 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2177 data
[i
] = gma_read32(hw
, port
,
2178 skge_stats
[i
].gma_offset
);
2181 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2183 struct net_device
*dev
= hw
->dev
[port
];
2184 struct skge_port
*skge
= netdev_priv(dev
);
2185 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2187 if (netif_msg_intr(skge
))
2188 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2191 if (status
& GM_IS_RX_FF_OR
) {
2192 ++skge
->net_stats
.rx_fifo_errors
;
2193 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2196 if (status
& GM_IS_TX_FF_UR
) {
2197 ++skge
->net_stats
.tx_fifo_errors
;
2198 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2203 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2205 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2206 case PHY_M_PS_SPEED_1000
:
2208 case PHY_M_PS_SPEED_100
:
2215 static void yukon_link_up(struct skge_port
*skge
)
2217 struct skge_hw
*hw
= skge
->hw
;
2218 int port
= skge
->port
;
2221 /* Enable Transmit FIFO Underrun */
2222 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2224 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2225 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2226 reg
|= GM_GPCR_DUP_FULL
;
2229 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2230 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2232 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2236 static void yukon_link_down(struct skge_port
*skge
)
2238 struct skge_hw
*hw
= skge
->hw
;
2239 int port
= skge
->port
;
2242 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2243 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2244 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2246 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2247 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2248 ctrl
|= PHY_M_AN_ASP
;
2249 /* restore Asymmetric Pause bit */
2250 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2253 skge_link_down(skge
);
2255 yukon_init(hw
, port
);
2258 static void yukon_phy_intr(struct skge_port
*skge
)
2260 struct skge_hw
*hw
= skge
->hw
;
2261 int port
= skge
->port
;
2262 const char *reason
= NULL
;
2263 u16 istatus
, phystat
;
2265 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2266 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2268 if (netif_msg_intr(skge
))
2269 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2270 skge
->netdev
->name
, istatus
, phystat
);
2272 if (istatus
& PHY_M_IS_AN_COMPL
) {
2273 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2275 reason
= "remote fault";
2279 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2280 reason
= "master/slave fault";
2284 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2285 reason
= "speed/duplex";
2289 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2290 ? DUPLEX_FULL
: DUPLEX_HALF
;
2291 skge
->speed
= yukon_speed(hw
, phystat
);
2293 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2294 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2295 case PHY_M_PS_PAUSE_MSK
:
2296 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2298 case PHY_M_PS_RX_P_EN
:
2299 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2301 case PHY_M_PS_TX_P_EN
:
2302 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2305 skge
->flow_status
= FLOW_STAT_NONE
;
2308 if (skge
->flow_status
== FLOW_STAT_NONE
||
2309 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2310 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2312 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2313 yukon_link_up(skge
);
2317 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2318 skge
->speed
= yukon_speed(hw
, phystat
);
2320 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2321 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2322 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2323 if (phystat
& PHY_M_PS_LINK_UP
)
2324 yukon_link_up(skge
);
2326 yukon_link_down(skge
);
2330 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2331 skge
->netdev
->name
, reason
);
2333 /* XXX restart autonegotiation? */
2336 static void skge_phy_reset(struct skge_port
*skge
)
2338 struct skge_hw
*hw
= skge
->hw
;
2339 int port
= skge
->port
;
2340 struct net_device
*dev
= hw
->dev
[port
];
2342 netif_stop_queue(skge
->netdev
);
2343 netif_carrier_off(skge
->netdev
);
2345 spin_lock_bh(&hw
->phy_lock
);
2346 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2347 genesis_reset(hw
, port
);
2348 genesis_mac_init(hw
, port
);
2350 yukon_reset(hw
, port
);
2351 yukon_init(hw
, port
);
2353 spin_unlock_bh(&hw
->phy_lock
);
2355 dev
->set_multicast_list(dev
);
2358 /* Basic MII support */
2359 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2361 struct mii_ioctl_data
*data
= if_mii(ifr
);
2362 struct skge_port
*skge
= netdev_priv(dev
);
2363 struct skge_hw
*hw
= skge
->hw
;
2364 int err
= -EOPNOTSUPP
;
2366 if (!netif_running(dev
))
2367 return -ENODEV
; /* Phy still in reset */
2371 data
->phy_id
= hw
->phy_addr
;
2376 spin_lock_bh(&hw
->phy_lock
);
2377 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2378 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2380 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2381 spin_unlock_bh(&hw
->phy_lock
);
2382 data
->val_out
= val
;
2387 if (!capable(CAP_NET_ADMIN
))
2390 spin_lock_bh(&hw
->phy_lock
);
2391 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2392 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2395 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2397 spin_unlock_bh(&hw
->phy_lock
);
2403 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2409 end
= start
+ len
- 1;
2411 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2412 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2413 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2414 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2415 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2417 if (q
== Q_R1
|| q
== Q_R2
) {
2418 /* Set thresholds on receive queue's */
2419 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2421 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2424 /* Enable store & forward on Tx queue's because
2425 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2427 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2430 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2433 /* Setup Bus Memory Interface */
2434 static void skge_qset(struct skge_port
*skge
, u16 q
,
2435 const struct skge_element
*e
)
2437 struct skge_hw
*hw
= skge
->hw
;
2438 u32 watermark
= 0x600;
2439 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2441 /* optimization to reduce window on 32bit/33mhz */
2442 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2445 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2446 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2447 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2448 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2451 static int skge_up(struct net_device
*dev
)
2453 struct skge_port
*skge
= netdev_priv(dev
);
2454 struct skge_hw
*hw
= skge
->hw
;
2455 int port
= skge
->port
;
2456 u32 chunk
, ram_addr
;
2457 size_t rx_size
, tx_size
;
2460 if (!is_valid_ether_addr(dev
->dev_addr
))
2463 if (netif_msg_ifup(skge
))
2464 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2466 if (dev
->mtu
> RX_BUF_SIZE
)
2467 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2469 skge
->rx_buf_size
= RX_BUF_SIZE
;
2472 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2473 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2474 skge
->mem_size
= tx_size
+ rx_size
;
2475 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2479 BUG_ON(skge
->dma
& 7);
2481 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2482 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2487 memset(skge
->mem
, 0, skge
->mem_size
);
2489 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2493 err
= skge_rx_fill(dev
);
2497 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2498 skge
->dma
+ rx_size
);
2502 /* Initialize MAC */
2503 spin_lock_bh(&hw
->phy_lock
);
2504 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2505 genesis_mac_init(hw
, port
);
2507 yukon_mac_init(hw
, port
);
2508 spin_unlock_bh(&hw
->phy_lock
);
2510 /* Configure RAMbuffers */
2511 chunk
= hw
->ram_size
/ ((hw
->ports
+ 1)*2);
2512 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2514 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2515 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2517 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2518 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2519 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2521 /* Start receiver BMU */
2523 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2524 skge_led(skge
, LED_MODE_ON
);
2526 spin_lock_irq(&hw
->hw_lock
);
2527 hw
->intr_mask
|= portmask
[port
];
2528 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2529 spin_unlock_irq(&hw
->hw_lock
);
2531 netif_poll_enable(dev
);
2535 skge_rx_clean(skge
);
2536 kfree(skge
->rx_ring
.start
);
2538 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2544 static int skge_down(struct net_device
*dev
)
2546 struct skge_port
*skge
= netdev_priv(dev
);
2547 struct skge_hw
*hw
= skge
->hw
;
2548 int port
= skge
->port
;
2550 if (skge
->mem
== NULL
)
2553 if (netif_msg_ifdown(skge
))
2554 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2556 netif_stop_queue(dev
);
2558 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2559 del_timer_sync(&skge
->link_timer
);
2561 netif_poll_disable(dev
);
2562 netif_carrier_off(dev
);
2564 spin_lock_irq(&hw
->hw_lock
);
2565 hw
->intr_mask
&= ~portmask
[port
];
2566 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2567 spin_unlock_irq(&hw
->hw_lock
);
2569 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2570 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2575 /* Stop transmitter */
2576 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2577 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2578 RB_RST_SET
|RB_DIS_OP_MD
);
2581 /* Disable Force Sync bit and Enable Alloc bit */
2582 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2583 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2585 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2586 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2587 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2589 /* Reset PCI FIFO */
2590 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2591 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2593 /* Reset the RAM Buffer async Tx queue */
2594 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2596 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2597 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2598 RB_RST_SET
|RB_DIS_OP_MD
);
2599 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2601 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2602 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2603 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2605 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2606 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2609 skge_led(skge
, LED_MODE_OFF
);
2611 netif_tx_lock_bh(dev
);
2613 netif_tx_unlock_bh(dev
);
2615 skge_rx_clean(skge
);
2617 kfree(skge
->rx_ring
.start
);
2618 kfree(skge
->tx_ring
.start
);
2619 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2624 static inline int skge_avail(const struct skge_ring
*ring
)
2627 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2628 + (ring
->to_clean
- ring
->to_use
) - 1;
2631 static int skge_xmit_frame(struct sk_buff
*skb
, struct net_device
*dev
)
2633 struct skge_port
*skge
= netdev_priv(dev
);
2634 struct skge_hw
*hw
= skge
->hw
;
2635 struct skge_element
*e
;
2636 struct skge_tx_desc
*td
;
2641 if (skb_padto(skb
, ETH_ZLEN
))
2642 return NETDEV_TX_OK
;
2644 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2645 return NETDEV_TX_BUSY
;
2647 e
= skge
->tx_ring
.to_use
;
2649 BUG_ON(td
->control
& BMU_OWN
);
2651 len
= skb_headlen(skb
);
2652 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2653 pci_unmap_addr_set(e
, mapaddr
, map
);
2654 pci_unmap_len_set(e
, maplen
, len
);
2657 td
->dma_hi
= map
>> 32;
2659 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2660 const int offset
= skb_transport_offset(skb
);
2662 /* This seems backwards, but it is what the sk98lin
2663 * does. Looks like hardware is wrong?
2665 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2666 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2667 control
= BMU_TCP_CHECK
;
2669 control
= BMU_UDP_CHECK
;
2672 td
->csum_start
= offset
;
2673 td
->csum_write
= offset
+ skb
->csum_offset
;
2675 control
= BMU_CHECK
;
2677 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2678 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2680 struct skge_tx_desc
*tf
= td
;
2682 control
|= BMU_STFWD
;
2683 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2684 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2686 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2687 frag
->size
, PCI_DMA_TODEVICE
);
2692 BUG_ON(tf
->control
& BMU_OWN
);
2695 tf
->dma_hi
= (u64
) map
>> 32;
2696 pci_unmap_addr_set(e
, mapaddr
, map
);
2697 pci_unmap_len_set(e
, maplen
, frag
->size
);
2699 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2701 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2703 /* Make sure all the descriptors written */
2705 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2708 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2710 if (unlikely(netif_msg_tx_queued(skge
)))
2711 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2712 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2714 skge
->tx_ring
.to_use
= e
->next
;
2717 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2718 pr_debug("%s: transmit queue full\n", dev
->name
);
2719 netif_stop_queue(dev
);
2722 dev
->trans_start
= jiffies
;
2724 return NETDEV_TX_OK
;
2728 /* Free resources associated with this reing element */
2729 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2732 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2734 /* skb header vs. fragment */
2735 if (control
& BMU_STF
)
2736 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2737 pci_unmap_len(e
, maplen
),
2740 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2741 pci_unmap_len(e
, maplen
),
2744 if (control
& BMU_EOF
) {
2745 if (unlikely(netif_msg_tx_done(skge
)))
2746 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2747 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2749 dev_kfree_skb(e
->skb
);
2753 /* Free all buffers in transmit ring */
2754 static void skge_tx_clean(struct net_device
*dev
)
2756 struct skge_port
*skge
= netdev_priv(dev
);
2757 struct skge_element
*e
;
2759 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2760 struct skge_tx_desc
*td
= e
->desc
;
2761 skge_tx_free(skge
, e
, td
->control
);
2765 skge
->tx_ring
.to_clean
= e
;
2766 netif_wake_queue(dev
);
2769 static void skge_tx_timeout(struct net_device
*dev
)
2771 struct skge_port
*skge
= netdev_priv(dev
);
2773 if (netif_msg_timer(skge
))
2774 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2776 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2780 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2784 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2787 if (!netif_running(dev
)) {
2803 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2805 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2809 crc
= ether_crc_le(ETH_ALEN
, addr
);
2811 filter
[bit
/8] |= 1 << (bit
%8);
2814 static void genesis_set_multicast(struct net_device
*dev
)
2816 struct skge_port
*skge
= netdev_priv(dev
);
2817 struct skge_hw
*hw
= skge
->hw
;
2818 int port
= skge
->port
;
2819 int i
, count
= dev
->mc_count
;
2820 struct dev_mc_list
*list
= dev
->mc_list
;
2824 mode
= xm_read32(hw
, port
, XM_MODE
);
2825 mode
|= XM_MD_ENA_HASH
;
2826 if (dev
->flags
& IFF_PROMISC
)
2827 mode
|= XM_MD_ENA_PROM
;
2829 mode
&= ~XM_MD_ENA_PROM
;
2831 if (dev
->flags
& IFF_ALLMULTI
)
2832 memset(filter
, 0xff, sizeof(filter
));
2834 memset(filter
, 0, sizeof(filter
));
2836 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2837 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2838 genesis_add_filter(filter
, pause_mc_addr
);
2840 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2841 genesis_add_filter(filter
, list
->dmi_addr
);
2844 xm_write32(hw
, port
, XM_MODE
, mode
);
2845 xm_outhash(hw
, port
, XM_HSM
, filter
);
2848 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2850 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2851 filter
[bit
/8] |= 1 << (bit
%8);
2854 static void yukon_set_multicast(struct net_device
*dev
)
2856 struct skge_port
*skge
= netdev_priv(dev
);
2857 struct skge_hw
*hw
= skge
->hw
;
2858 int port
= skge
->port
;
2859 struct dev_mc_list
*list
= dev
->mc_list
;
2860 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2861 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2865 memset(filter
, 0, sizeof(filter
));
2867 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2868 reg
|= GM_RXCR_UCF_ENA
;
2870 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2871 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2872 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2873 memset(filter
, 0xff, sizeof(filter
));
2874 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2875 reg
&= ~GM_RXCR_MCF_ENA
;
2878 reg
|= GM_RXCR_MCF_ENA
;
2881 yukon_add_filter(filter
, pause_mc_addr
);
2883 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
2884 yukon_add_filter(filter
, list
->dmi_addr
);
2888 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2889 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2890 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2891 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2892 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2893 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2894 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2895 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2897 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2900 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2902 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2903 return status
>> XMR_FS_LEN_SHIFT
;
2905 return status
>> GMR_FS_LEN_SHIFT
;
2908 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2910 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2911 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2913 return (status
& GMR_FS_ANY_ERR
) ||
2914 (status
& GMR_FS_RX_OK
) == 0;
2918 /* Get receive buffer from descriptor.
2919 * Handles copy of small buffers and reallocation failures
2921 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
2922 struct skge_element
*e
,
2923 u32 control
, u32 status
, u16 csum
)
2925 struct skge_port
*skge
= netdev_priv(dev
);
2926 struct sk_buff
*skb
;
2927 u16 len
= control
& BMU_BBC
;
2929 if (unlikely(netif_msg_rx_status(skge
)))
2930 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
2931 dev
->name
, e
- skge
->rx_ring
.start
,
2934 if (len
> skge
->rx_buf_size
)
2937 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
2940 if (bad_phy_status(skge
->hw
, status
))
2943 if (phy_length(skge
->hw
, status
) != len
)
2946 if (len
< RX_COPY_THRESHOLD
) {
2947 skb
= netdev_alloc_skb(dev
, len
+ 2);
2951 skb_reserve(skb
, 2);
2952 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
2953 pci_unmap_addr(e
, mapaddr
),
2954 len
, PCI_DMA_FROMDEVICE
);
2955 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
2956 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
2957 pci_unmap_addr(e
, mapaddr
),
2958 len
, PCI_DMA_FROMDEVICE
);
2959 skge_rx_reuse(e
, skge
->rx_buf_size
);
2961 struct sk_buff
*nskb
;
2962 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
2966 skb_reserve(nskb
, NET_IP_ALIGN
);
2967 pci_unmap_single(skge
->hw
->pdev
,
2968 pci_unmap_addr(e
, mapaddr
),
2969 pci_unmap_len(e
, maplen
),
2970 PCI_DMA_FROMDEVICE
);
2972 prefetch(skb
->data
);
2973 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
2977 if (skge
->rx_csum
) {
2979 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2982 skb
->protocol
= eth_type_trans(skb
, dev
);
2987 if (netif_msg_rx_err(skge
))
2988 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
2989 dev
->name
, e
- skge
->rx_ring
.start
,
2992 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
2993 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
2994 skge
->net_stats
.rx_length_errors
++;
2995 if (status
& XMR_FS_FRA_ERR
)
2996 skge
->net_stats
.rx_frame_errors
++;
2997 if (status
& XMR_FS_FCS_ERR
)
2998 skge
->net_stats
.rx_crc_errors
++;
3000 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3001 skge
->net_stats
.rx_length_errors
++;
3002 if (status
& GMR_FS_FRAGMENT
)
3003 skge
->net_stats
.rx_frame_errors
++;
3004 if (status
& GMR_FS_CRC_ERR
)
3005 skge
->net_stats
.rx_crc_errors
++;
3009 skge_rx_reuse(e
, skge
->rx_buf_size
);
3013 /* Free all buffers in Tx ring which are no longer owned by device */
3014 static void skge_tx_done(struct net_device
*dev
)
3016 struct skge_port
*skge
= netdev_priv(dev
);
3017 struct skge_ring
*ring
= &skge
->tx_ring
;
3018 struct skge_element
*e
;
3020 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3022 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3023 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3025 if (control
& BMU_OWN
)
3028 skge_tx_free(skge
, e
, control
);
3030 skge
->tx_ring
.to_clean
= e
;
3032 /* Can run lockless until we need to synchronize to restart queue. */
3035 if (unlikely(netif_queue_stopped(dev
) &&
3036 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3038 if (unlikely(netif_queue_stopped(dev
) &&
3039 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3040 netif_wake_queue(dev
);
3043 netif_tx_unlock(dev
);
3047 static int skge_poll(struct net_device
*dev
, int *budget
)
3049 struct skge_port
*skge
= netdev_priv(dev
);
3050 struct skge_hw
*hw
= skge
->hw
;
3051 struct skge_ring
*ring
= &skge
->rx_ring
;
3052 struct skge_element
*e
;
3053 unsigned long flags
;
3054 int to_do
= min(dev
->quota
, *budget
);
3059 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3061 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3062 struct skge_rx_desc
*rd
= e
->desc
;
3063 struct sk_buff
*skb
;
3067 control
= rd
->control
;
3068 if (control
& BMU_OWN
)
3071 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3073 dev
->last_rx
= jiffies
;
3074 netif_receive_skb(skb
);
3081 /* restart receiver */
3083 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3085 *budget
-= work_done
;
3086 dev
->quota
-= work_done
;
3088 if (work_done
>= to_do
)
3089 return 1; /* not done */
3091 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3092 __netif_rx_complete(dev
);
3093 hw
->intr_mask
|= napimask
[skge
->port
];
3094 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3095 skge_read32(hw
, B0_IMSK
);
3096 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3101 /* Parity errors seem to happen when Genesis is connected to a switch
3102 * with no other ports present. Heartbeat error??
3104 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3106 struct net_device
*dev
= hw
->dev
[port
];
3109 struct skge_port
*skge
= netdev_priv(dev
);
3110 ++skge
->net_stats
.tx_heartbeat_errors
;
3113 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3114 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3117 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3118 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3119 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3120 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3123 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3125 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3126 genesis_mac_intr(hw
, port
);
3128 yukon_mac_intr(hw
, port
);
3131 /* Handle device specific framing and timeout interrupts */
3132 static void skge_error_irq(struct skge_hw
*hw
)
3134 struct pci_dev
*pdev
= hw
->pdev
;
3135 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3137 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3138 /* clear xmac errors */
3139 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3140 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3141 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3142 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3144 /* Timestamp (unused) overflow */
3145 if (hwstatus
& IS_IRQ_TIST_OV
)
3146 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3149 if (hwstatus
& IS_RAM_RD_PAR
) {
3150 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3151 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3154 if (hwstatus
& IS_RAM_WR_PAR
) {
3155 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3156 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3159 if (hwstatus
& IS_M1_PAR_ERR
)
3160 skge_mac_parity(hw
, 0);
3162 if (hwstatus
& IS_M2_PAR_ERR
)
3163 skge_mac_parity(hw
, 1);
3165 if (hwstatus
& IS_R1_PAR_ERR
) {
3166 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3168 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3171 if (hwstatus
& IS_R2_PAR_ERR
) {
3172 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3174 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3177 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3178 u16 pci_status
, pci_cmd
;
3180 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3181 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3183 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3184 pci_cmd
, pci_status
);
3186 /* Write the error bits back to clear them. */
3187 pci_status
&= PCI_STATUS_ERROR_BITS
;
3188 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3189 pci_write_config_word(pdev
, PCI_COMMAND
,
3190 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3191 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3192 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3194 /* if error still set then just ignore it */
3195 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3196 if (hwstatus
& IS_IRQ_STAT
) {
3197 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3198 hw
->intr_mask
&= ~IS_HW_ERR
;
3204 * Interrupt from PHY are handled in tasklet (softirq)
3205 * because accessing phy registers requires spin wait which might
3206 * cause excess interrupt latency.
3208 static void skge_extirq(unsigned long arg
)
3210 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3213 for (port
= 0; port
< hw
->ports
; port
++) {
3214 struct net_device
*dev
= hw
->dev
[port
];
3216 if (netif_running(dev
)) {
3217 struct skge_port
*skge
= netdev_priv(dev
);
3219 spin_lock(&hw
->phy_lock
);
3220 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3221 yukon_phy_intr(skge
);
3222 else if (hw
->phy_type
== SK_PHY_BCOM
)
3223 bcom_phy_intr(skge
);
3224 spin_unlock(&hw
->phy_lock
);
3228 spin_lock_irq(&hw
->hw_lock
);
3229 hw
->intr_mask
|= IS_EXT_REG
;
3230 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3231 skge_read32(hw
, B0_IMSK
);
3232 spin_unlock_irq(&hw
->hw_lock
);
3235 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3237 struct skge_hw
*hw
= dev_id
;
3241 spin_lock(&hw
->hw_lock
);
3242 /* Reading this register masks IRQ */
3243 status
= skge_read32(hw
, B0_SP_ISRC
);
3244 if (status
== 0 || status
== ~0)
3248 status
&= hw
->intr_mask
;
3249 if (status
& IS_EXT_REG
) {
3250 hw
->intr_mask
&= ~IS_EXT_REG
;
3251 tasklet_schedule(&hw
->phy_task
);
3254 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3255 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3256 netif_rx_schedule(hw
->dev
[0]);
3259 if (status
& IS_PA_TO_TX1
)
3260 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3262 if (status
& IS_PA_TO_RX1
) {
3263 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3265 ++skge
->net_stats
.rx_over_errors
;
3266 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3270 if (status
& IS_MAC1
)
3271 skge_mac_intr(hw
, 0);
3274 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3275 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3276 netif_rx_schedule(hw
->dev
[1]);
3279 if (status
& IS_PA_TO_RX2
) {
3280 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3281 ++skge
->net_stats
.rx_over_errors
;
3282 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3285 if (status
& IS_PA_TO_TX2
)
3286 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3288 if (status
& IS_MAC2
)
3289 skge_mac_intr(hw
, 1);
3292 if (status
& IS_HW_ERR
)
3295 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3296 skge_read32(hw
, B0_IMSK
);
3298 spin_unlock(&hw
->hw_lock
);
3300 return IRQ_RETVAL(handled
);
3303 #ifdef CONFIG_NET_POLL_CONTROLLER
3304 static void skge_netpoll(struct net_device
*dev
)
3306 struct skge_port
*skge
= netdev_priv(dev
);
3308 disable_irq(dev
->irq
);
3309 skge_intr(dev
->irq
, skge
->hw
);
3310 enable_irq(dev
->irq
);
3314 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3316 struct skge_port
*skge
= netdev_priv(dev
);
3317 struct skge_hw
*hw
= skge
->hw
;
3318 unsigned port
= skge
->port
;
3319 const struct sockaddr
*addr
= p
;
3322 if (!is_valid_ether_addr(addr
->sa_data
))
3323 return -EADDRNOTAVAIL
;
3325 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3327 if (!netif_running(dev
)) {
3328 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3329 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3332 spin_lock_bh(&hw
->phy_lock
);
3333 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3334 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3336 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3337 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3339 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3340 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3342 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3343 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3346 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3347 spin_unlock_bh(&hw
->phy_lock
);
3353 static const struct {
3357 { CHIP_ID_GENESIS
, "Genesis" },
3358 { CHIP_ID_YUKON
, "Yukon" },
3359 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3360 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3363 static const char *skge_board_name(const struct skge_hw
*hw
)
3366 static char buf
[16];
3368 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3369 if (skge_chips
[i
].id
== hw
->chip_id
)
3370 return skge_chips
[i
].name
;
3372 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3378 * Setup the board data structure, but don't bring up
3381 static int skge_reset(struct skge_hw
*hw
)
3384 u16 ctst
, pci_status
;
3385 u8 t8
, mac_cfg
, pmd_type
;
3388 ctst
= skge_read16(hw
, B0_CTST
);
3391 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3392 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3394 /* clear PCI errors, if any */
3395 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3396 skge_write8(hw
, B2_TST_CTRL2
, 0);
3398 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3399 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3400 pci_status
| PCI_STATUS_ERROR_BITS
);
3401 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3402 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3404 /* restore CLK_RUN bits (for Yukon-Lite) */
3405 skge_write16(hw
, B0_CTST
,
3406 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3408 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3409 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3410 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3411 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3413 switch (hw
->chip_id
) {
3414 case CHIP_ID_GENESIS
:
3415 switch (hw
->phy_type
) {
3417 hw
->phy_addr
= PHY_ADDR_XMAC
;
3420 hw
->phy_addr
= PHY_ADDR_BCOM
;
3423 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3430 case CHIP_ID_YUKON_LITE
:
3431 case CHIP_ID_YUKON_LP
:
3432 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3435 hw
->phy_addr
= PHY_ADDR_MARV
;
3439 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3444 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3445 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3446 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3448 /* read the adapters RAM size */
3449 t8
= skge_read8(hw
, B2_E_0
);
3450 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3452 /* special case: 4 x 64k x 36, offset = 0x80000 */
3453 hw
->ram_size
= 0x100000;
3454 hw
->ram_offset
= 0x80000;
3456 hw
->ram_size
= t8
* 512;
3459 hw
->ram_size
= 0x20000;
3461 hw
->ram_size
= t8
* 4096;
3463 hw
->intr_mask
= IS_HW_ERR
;
3465 /* Use PHY IRQ for all but fiber based Genesis board */
3466 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3467 hw
->intr_mask
|= IS_EXT_REG
;
3469 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3472 /* switch power to VCC (WA for VAUX problem) */
3473 skge_write8(hw
, B0_POWER_CTRL
,
3474 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3476 /* avoid boards with stuck Hardware error bits */
3477 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3478 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3479 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3480 hw
->intr_mask
&= ~IS_HW_ERR
;
3483 /* Clear PHY COMA */
3484 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3485 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3486 reg
&= ~PCI_PHY_COMA
;
3487 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3488 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3491 for (i
= 0; i
< hw
->ports
; i
++) {
3492 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3493 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3497 /* turn off hardware timer (unused) */
3498 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3499 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3500 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3502 /* enable the Tx Arbiters */
3503 for (i
= 0; i
< hw
->ports
; i
++)
3504 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3506 /* Initialize ram interface */
3507 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3509 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3510 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3511 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3512 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3513 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3514 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3515 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3516 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3517 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3518 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3519 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3520 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3522 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3524 /* Set interrupt moderation for Transmit only
3525 * Receive interrupts avoided by NAPI
3527 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3528 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3529 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3531 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3533 for (i
= 0; i
< hw
->ports
; i
++) {
3534 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3535 genesis_reset(hw
, i
);
3543 /* Initialize network device */
3544 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3547 struct skge_port
*skge
;
3548 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3551 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3555 SET_MODULE_OWNER(dev
);
3556 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3557 dev
->open
= skge_up
;
3558 dev
->stop
= skge_down
;
3559 dev
->do_ioctl
= skge_ioctl
;
3560 dev
->hard_start_xmit
= skge_xmit_frame
;
3561 dev
->get_stats
= skge_get_stats
;
3562 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3563 dev
->set_multicast_list
= genesis_set_multicast
;
3565 dev
->set_multicast_list
= yukon_set_multicast
;
3567 dev
->set_mac_address
= skge_set_mac_address
;
3568 dev
->change_mtu
= skge_change_mtu
;
3569 SET_ETHTOOL_OPS(dev
, &skge_ethtool_ops
);
3570 dev
->tx_timeout
= skge_tx_timeout
;
3571 dev
->watchdog_timeo
= TX_WATCHDOG
;
3572 dev
->poll
= skge_poll
;
3573 dev
->weight
= NAPI_WEIGHT
;
3574 #ifdef CONFIG_NET_POLL_CONTROLLER
3575 dev
->poll_controller
= skge_netpoll
;
3577 dev
->irq
= hw
->pdev
->irq
;
3580 dev
->features
|= NETIF_F_HIGHDMA
;
3582 skge
= netdev_priv(dev
);
3585 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3587 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3588 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3590 /* Auto speed and flow control */
3591 skge
->autoneg
= AUTONEG_ENABLE
;
3592 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3595 skge
->advertising
= skge_supported_modes(hw
);
3597 if (pci_wake_enabled(hw
->pdev
))
3598 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3600 hw
->dev
[port
] = dev
;
3604 /* Only used for Genesis XMAC */
3605 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3607 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3608 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3612 /* read the mac address */
3613 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3614 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3616 /* device is off until link detection */
3617 netif_carrier_off(dev
);
3618 netif_stop_queue(dev
);
3623 static void __devinit
skge_show_addr(struct net_device
*dev
)
3625 const struct skge_port
*skge
= netdev_priv(dev
);
3627 if (netif_msg_probe(skge
))
3628 printk(KERN_INFO PFX
"%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3630 dev
->dev_addr
[0], dev
->dev_addr
[1], dev
->dev_addr
[2],
3631 dev
->dev_addr
[3], dev
->dev_addr
[4], dev
->dev_addr
[5]);
3634 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3635 const struct pci_device_id
*ent
)
3637 struct net_device
*dev
, *dev1
;
3639 int err
, using_dac
= 0;
3641 err
= pci_enable_device(pdev
);
3643 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3647 err
= pci_request_regions(pdev
, DRV_NAME
);
3649 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3650 goto err_out_disable_pdev
;
3653 pci_set_master(pdev
);
3655 if (!pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
3657 err
= pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
);
3658 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
3660 err
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
3664 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3665 goto err_out_free_regions
;
3669 /* byte swap descriptors in hardware */
3673 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3674 reg
|= PCI_REV_DESC
;
3675 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3680 hw
= kzalloc(sizeof(*hw
), GFP_KERNEL
);
3682 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3683 goto err_out_free_regions
;
3687 spin_lock_init(&hw
->hw_lock
);
3688 spin_lock_init(&hw
->phy_lock
);
3689 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3691 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3693 dev_err(&pdev
->dev
, "cannot map device registers\n");
3694 goto err_out_free_hw
;
3697 err
= skge_reset(hw
);
3699 goto err_out_iounmap
;
3701 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3702 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3703 skge_board_name(hw
), hw
->chip_rev
);
3705 dev
= skge_devinit(hw
, 0, using_dac
);
3707 goto err_out_led_off
;
3709 /* Some motherboards are broken and has zero in ROM. */
3710 if (!is_valid_ether_addr(dev
->dev_addr
))
3711 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3713 err
= register_netdev(dev
);
3715 dev_err(&pdev
->dev
, "cannot register net device\n");
3716 goto err_out_free_netdev
;
3719 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, dev
->name
, hw
);
3721 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3722 dev
->name
, pdev
->irq
);
3723 goto err_out_unregister
;
3725 skge_show_addr(dev
);
3727 if (hw
->ports
> 1 && (dev1
= skge_devinit(hw
, 1, using_dac
))) {
3728 if (register_netdev(dev1
) == 0)
3729 skge_show_addr(dev1
);
3731 /* Failure to register second port need not be fatal */
3732 dev_warn(&pdev
->dev
, "register of second port failed\n");
3737 pci_set_drvdata(pdev
, hw
);
3742 unregister_netdev(dev
);
3743 err_out_free_netdev
:
3746 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3751 err_out_free_regions
:
3752 pci_release_regions(pdev
);
3753 err_out_disable_pdev
:
3754 pci_disable_device(pdev
);
3755 pci_set_drvdata(pdev
, NULL
);
3760 static void __devexit
skge_remove(struct pci_dev
*pdev
)
3762 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3763 struct net_device
*dev0
, *dev1
;
3768 flush_scheduled_work();
3770 if ((dev1
= hw
->dev
[1]))
3771 unregister_netdev(dev1
);
3773 unregister_netdev(dev0
);
3775 tasklet_disable(&hw
->phy_task
);
3777 spin_lock_irq(&hw
->hw_lock
);
3779 skge_write32(hw
, B0_IMSK
, 0);
3780 skge_read32(hw
, B0_IMSK
);
3781 spin_unlock_irq(&hw
->hw_lock
);
3783 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3784 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3786 free_irq(pdev
->irq
, hw
);
3787 pci_release_regions(pdev
);
3788 pci_disable_device(pdev
);
3795 pci_set_drvdata(pdev
, NULL
);
3799 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
3801 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3802 int i
, err
, wol
= 0;
3807 err
= pci_save_state(pdev
);
3811 for (i
= 0; i
< hw
->ports
; i
++) {
3812 struct net_device
*dev
= hw
->dev
[i
];
3813 struct skge_port
*skge
= netdev_priv(dev
);
3815 if (netif_running(dev
))
3818 skge_wol_init(skge
);
3823 skge_write32(hw
, B0_IMSK
, 0);
3824 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), wol
);
3825 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
3830 static int skge_resume(struct pci_dev
*pdev
)
3832 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3838 err
= pci_set_power_state(pdev
, PCI_D0
);
3842 err
= pci_restore_state(pdev
);
3846 pci_enable_wake(pdev
, PCI_D0
, 0);
3848 err
= skge_reset(hw
);
3852 for (i
= 0; i
< hw
->ports
; i
++) {
3853 struct net_device
*dev
= hw
->dev
[i
];
3855 if (netif_running(dev
)) {
3859 printk(KERN_ERR PFX
"%s: could not up: %d\n",
3871 static void skge_shutdown(struct pci_dev
*pdev
)
3873 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
3879 for (i
= 0; i
< hw
->ports
; i
++) {
3880 struct net_device
*dev
= hw
->dev
[i
];
3881 struct skge_port
*skge
= netdev_priv(dev
);
3884 skge_wol_init(skge
);
3888 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
3889 pci_enable_wake(pdev
, PCI_D3cold
, wol
);
3891 pci_disable_device(pdev
);
3892 pci_set_power_state(pdev
, PCI_D3hot
);
3896 static struct pci_driver skge_driver
= {
3898 .id_table
= skge_id_table
,
3899 .probe
= skge_probe
,
3900 .remove
= __devexit_p(skge_remove
),
3902 .suspend
= skge_suspend
,
3903 .resume
= skge_resume
,
3905 .shutdown
= skge_shutdown
,
3908 static int __init
skge_init_module(void)
3910 return pci_register_driver(&skge_driver
);
3913 static void __exit
skge_cleanup_module(void)
3915 pci_unregister_driver(&skge_driver
);
3918 module_init(skge_init_module
);
3919 module_exit(skge_cleanup_module
);