2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * ROUTE - implementation of the IP router.
8 * Version: $Id: route.c,v 1.103 2002/01/12 07:44:09 davem Exp $
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Alan Cox, <gw4pts@gw4pts.ampr.org>
13 * Linus Torvalds, <Linus.Torvalds@helsinki.fi>
14 * Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
17 * Alan Cox : Verify area fixes.
18 * Alan Cox : cli() protects routing changes
19 * Rui Oliveira : ICMP routing table updates
20 * (rco@di.uminho.pt) Routing table insertion and update
21 * Linus Torvalds : Rewrote bits to be sensible
22 * Alan Cox : Added BSD route gw semantics
23 * Alan Cox : Super /proc >4K
24 * Alan Cox : MTU in route table
25 * Alan Cox : MSS actually. Also added the window
27 * Sam Lantinga : Fixed route matching in rt_del()
28 * Alan Cox : Routing cache support.
29 * Alan Cox : Removed compatibility cruft.
30 * Alan Cox : RTF_REJECT support.
31 * Alan Cox : TCP irtt support.
32 * Jonathan Naylor : Added Metric support.
33 * Miquel van Smoorenburg : BSD API fixes.
34 * Miquel van Smoorenburg : Metrics.
35 * Alan Cox : Use __u32 properly
36 * Alan Cox : Aligned routing errors more closely with BSD
37 * our system is still very different.
38 * Alan Cox : Faster /proc handling
39 * Alexey Kuznetsov : Massive rework to support tree based routing,
40 * routing caches and better behaviour.
42 * Olaf Erb : irtt wasn't being copied right.
43 * Bjorn Ekwall : Kerneld route support.
44 * Alan Cox : Multicast fixed (I hope)
45 * Pavel Krauz : Limited broadcast fixed
46 * Mike McLagan : Routing by source
47 * Alexey Kuznetsov : End of old history. Split to fib.c and
48 * route.c and rewritten from scratch.
49 * Andi Kleen : Load-limit warning messages.
50 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
51 * Vitaly E. Lavrov : Race condition in ip_route_input_slow.
52 * Tobias Ringstrom : Uninitialized res.type in ip_route_output_slow.
53 * Vladimir V. Ivanov : IP rule info (flowid) is really useful.
54 * Marc Boucher : routing by fwmark
55 * Robert Olsson : Added rt_cache statistics
56 * Arnaldo C. Melo : Convert proc stuff to seq_file
57 * Eric Dumazet : hashed spinlocks and rt_check_expire() fixes.
58 * Ilia Sotnikov : Ignore TOS on PMTUD and Redirect
59 * Ilia Sotnikov : Removed TOS from hash calculations
61 * This program is free software; you can redistribute it and/or
62 * modify it under the terms of the GNU General Public License
63 * as published by the Free Software Foundation; either version
64 * 2 of the License, or (at your option) any later version.
67 #include <linux/module.h>
68 #include <asm/uaccess.h>
69 #include <asm/system.h>
70 #include <linux/bitops.h>
71 #include <linux/types.h>
72 #include <linux/kernel.h>
74 #include <linux/bootmem.h>
75 #include <linux/string.h>
76 #include <linux/socket.h>
77 #include <linux/sockios.h>
78 #include <linux/errno.h>
80 #include <linux/inet.h>
81 #include <linux/netdevice.h>
82 #include <linux/proc_fs.h>
83 #include <linux/init.h>
84 #include <linux/skbuff.h>
85 #include <linux/inetdevice.h>
86 #include <linux/igmp.h>
87 #include <linux/pkt_sched.h>
88 #include <linux/mroute.h>
89 #include <linux/netfilter_ipv4.h>
90 #include <linux/random.h>
91 #include <linux/jhash.h>
92 #include <linux/rcupdate.h>
93 #include <linux/times.h>
94 #include <net/protocol.h>
96 #include <net/route.h>
97 #include <net/inetpeer.h>
99 #include <net/ip_fib.h>
102 #include <net/icmp.h>
103 #include <net/xfrm.h>
104 #include <net/netevent.h>
105 #include <net/rtnetlink.h>
107 #include <linux/sysctl.h>
110 #define RT_FL_TOS(oldflp) \
111 ((u32)(oldflp->fl4_tos & (IPTOS_RT_MASK | RTO_ONLINK)))
113 #define IP_MAX_MTU 0xFFF0
115 #define RT_GC_TIMEOUT (300*HZ)
117 static int ip_rt_min_delay
= 2 * HZ
;
118 static int ip_rt_max_delay
= 10 * HZ
;
119 static int ip_rt_max_size
;
120 static int ip_rt_gc_timeout
= RT_GC_TIMEOUT
;
121 static int ip_rt_gc_interval
= 60 * HZ
;
122 static int ip_rt_gc_min_interval
= HZ
/ 2;
123 static int ip_rt_redirect_number
= 9;
124 static int ip_rt_redirect_load
= HZ
/ 50;
125 static int ip_rt_redirect_silence
= ((HZ
/ 50) << (9 + 1));
126 static int ip_rt_error_cost
= HZ
;
127 static int ip_rt_error_burst
= 5 * HZ
;
128 static int ip_rt_gc_elasticity
= 8;
129 static int ip_rt_mtu_expires
= 10 * 60 * HZ
;
130 static int ip_rt_min_pmtu
= 512 + 20 + 20;
131 static int ip_rt_min_advmss
= 256;
132 static int ip_rt_secret_interval
= 10 * 60 * HZ
;
133 static unsigned long rt_deadline
;
135 #define RTprint(a...) printk(KERN_DEBUG a)
137 static struct timer_list rt_flush_timer
;
138 static struct timer_list rt_periodic_timer
;
139 static struct timer_list rt_secret_timer
;
142 * Interface to generic destination cache.
145 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
);
146 static void ipv4_dst_destroy(struct dst_entry
*dst
);
147 static void ipv4_dst_ifdown(struct dst_entry
*dst
,
148 struct net_device
*dev
, int how
);
149 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
);
150 static void ipv4_link_failure(struct sk_buff
*skb
);
151 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
);
152 static int rt_garbage_collect(void);
155 static struct dst_ops ipv4_dst_ops
= {
157 .protocol
= __constant_htons(ETH_P_IP
),
158 .gc
= rt_garbage_collect
,
159 .check
= ipv4_dst_check
,
160 .destroy
= ipv4_dst_destroy
,
161 .ifdown
= ipv4_dst_ifdown
,
162 .negative_advice
= ipv4_negative_advice
,
163 .link_failure
= ipv4_link_failure
,
164 .update_pmtu
= ip_rt_update_pmtu
,
165 .entry_size
= sizeof(struct rtable
),
168 #define ECN_OR_COST(class) TC_PRIO_##class
170 const __u8 ip_tos2prio
[16] = {
174 ECN_OR_COST(BESTEFFORT
),
180 ECN_OR_COST(INTERACTIVE
),
182 ECN_OR_COST(INTERACTIVE
),
183 TC_PRIO_INTERACTIVE_BULK
,
184 ECN_OR_COST(INTERACTIVE_BULK
),
185 TC_PRIO_INTERACTIVE_BULK
,
186 ECN_OR_COST(INTERACTIVE_BULK
)
194 /* The locking scheme is rather straight forward:
196 * 1) Read-Copy Update protects the buckets of the central route hash.
197 * 2) Only writers remove entries, and they hold the lock
198 * as they look at rtable reference counts.
199 * 3) Only readers acquire references to rtable entries,
200 * they do so with atomic increments and with the
204 struct rt_hash_bucket
{
205 struct rtable
*chain
;
207 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_SPINLOCK) || \
208 defined(CONFIG_PROVE_LOCKING)
210 * Instead of using one spinlock for each rt_hash_bucket, we use a table of spinlocks
211 * The size of this table is a power of two and depends on the number of CPUS.
212 * (on lockdep we have a quite big spinlock_t, so keep the size down there)
214 #ifdef CONFIG_LOCKDEP
215 # define RT_HASH_LOCK_SZ 256
218 # define RT_HASH_LOCK_SZ 4096
220 # define RT_HASH_LOCK_SZ 2048
222 # define RT_HASH_LOCK_SZ 1024
224 # define RT_HASH_LOCK_SZ 512
226 # define RT_HASH_LOCK_SZ 256
230 static spinlock_t
*rt_hash_locks
;
231 # define rt_hash_lock_addr(slot) &rt_hash_locks[(slot) & (RT_HASH_LOCK_SZ - 1)]
232 # define rt_hash_lock_init() { \
234 rt_hash_locks = kmalloc(sizeof(spinlock_t) * RT_HASH_LOCK_SZ, GFP_KERNEL); \
235 if (!rt_hash_locks) panic("IP: failed to allocate rt_hash_locks\n"); \
236 for (i = 0; i < RT_HASH_LOCK_SZ; i++) \
237 spin_lock_init(&rt_hash_locks[i]); \
240 # define rt_hash_lock_addr(slot) NULL
241 # define rt_hash_lock_init()
244 static struct rt_hash_bucket
*rt_hash_table
;
245 static unsigned rt_hash_mask
;
246 static int rt_hash_log
;
247 static unsigned int rt_hash_rnd
;
249 static DEFINE_PER_CPU(struct rt_cache_stat
, rt_cache_stat
);
250 #define RT_CACHE_STAT_INC(field) \
251 (__raw_get_cpu_var(rt_cache_stat).field++)
253 static int rt_intern_hash(unsigned hash
, struct rtable
*rth
,
254 struct rtable
**res
);
256 static unsigned int rt_hash_code(u32 daddr
, u32 saddr
)
258 return (jhash_2words(daddr
, saddr
, rt_hash_rnd
)
262 #define rt_hash(daddr, saddr, idx) \
263 rt_hash_code((__force u32)(__be32)(daddr),\
264 (__force u32)(__be32)(saddr) ^ ((idx) << 5))
266 #ifdef CONFIG_PROC_FS
267 struct rt_cache_iter_state
{
271 static struct rtable
*rt_cache_get_first(struct seq_file
*seq
)
273 struct rtable
*r
= NULL
;
274 struct rt_cache_iter_state
*st
= seq
->private;
276 for (st
->bucket
= rt_hash_mask
; st
->bucket
>= 0; --st
->bucket
) {
278 r
= rt_hash_table
[st
->bucket
].chain
;
281 rcu_read_unlock_bh();
286 static struct rtable
*rt_cache_get_next(struct seq_file
*seq
, struct rtable
*r
)
288 struct rt_cache_iter_state
*st
= rcu_dereference(seq
->private);
290 r
= r
->u
.dst
.rt_next
;
292 rcu_read_unlock_bh();
293 if (--st
->bucket
< 0)
296 r
= rt_hash_table
[st
->bucket
].chain
;
301 static struct rtable
*rt_cache_get_idx(struct seq_file
*seq
, loff_t pos
)
303 struct rtable
*r
= rt_cache_get_first(seq
);
306 while (pos
&& (r
= rt_cache_get_next(seq
, r
)))
308 return pos
? NULL
: r
;
311 static void *rt_cache_seq_start(struct seq_file
*seq
, loff_t
*pos
)
313 return *pos
? rt_cache_get_idx(seq
, *pos
- 1) : SEQ_START_TOKEN
;
316 static void *rt_cache_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
318 struct rtable
*r
= NULL
;
320 if (v
== SEQ_START_TOKEN
)
321 r
= rt_cache_get_first(seq
);
323 r
= rt_cache_get_next(seq
, v
);
328 static void rt_cache_seq_stop(struct seq_file
*seq
, void *v
)
330 if (v
&& v
!= SEQ_START_TOKEN
)
331 rcu_read_unlock_bh();
334 static int rt_cache_seq_show(struct seq_file
*seq
, void *v
)
336 if (v
== SEQ_START_TOKEN
)
337 seq_printf(seq
, "%-127s\n",
338 "Iface\tDestination\tGateway \tFlags\t\tRefCnt\tUse\t"
339 "Metric\tSource\t\tMTU\tWindow\tIRTT\tTOS\tHHRef\t"
342 struct rtable
*r
= v
;
345 sprintf(temp
, "%s\t%08lX\t%08lX\t%8X\t%d\t%u\t%d\t"
346 "%08lX\t%d\t%u\t%u\t%02X\t%d\t%1d\t%08X",
347 r
->u
.dst
.dev
? r
->u
.dst
.dev
->name
: "*",
348 (unsigned long)r
->rt_dst
, (unsigned long)r
->rt_gateway
,
349 r
->rt_flags
, atomic_read(&r
->u
.dst
.__refcnt
),
350 r
->u
.dst
.__use
, 0, (unsigned long)r
->rt_src
,
351 (dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) ?
352 (int)dst_metric(&r
->u
.dst
, RTAX_ADVMSS
) + 40 : 0),
353 dst_metric(&r
->u
.dst
, RTAX_WINDOW
),
354 (int)((dst_metric(&r
->u
.dst
, RTAX_RTT
) >> 3) +
355 dst_metric(&r
->u
.dst
, RTAX_RTTVAR
)),
357 r
->u
.dst
.hh
? atomic_read(&r
->u
.dst
.hh
->hh_refcnt
) : -1,
358 r
->u
.dst
.hh
? (r
->u
.dst
.hh
->hh_output
==
361 seq_printf(seq
, "%-127s\n", temp
);
366 static const struct seq_operations rt_cache_seq_ops
= {
367 .start
= rt_cache_seq_start
,
368 .next
= rt_cache_seq_next
,
369 .stop
= rt_cache_seq_stop
,
370 .show
= rt_cache_seq_show
,
373 static int rt_cache_seq_open(struct inode
*inode
, struct file
*file
)
375 struct seq_file
*seq
;
377 struct rt_cache_iter_state
*s
;
379 s
= kzalloc(sizeof(*s
), GFP_KERNEL
);
382 rc
= seq_open(file
, &rt_cache_seq_ops
);
385 seq
= file
->private_data
;
394 static const struct file_operations rt_cache_seq_fops
= {
395 .owner
= THIS_MODULE
,
396 .open
= rt_cache_seq_open
,
399 .release
= seq_release_private
,
403 static void *rt_cpu_seq_start(struct seq_file
*seq
, loff_t
*pos
)
408 return SEQ_START_TOKEN
;
410 for (cpu
= *pos
-1; cpu
< NR_CPUS
; ++cpu
) {
411 if (!cpu_possible(cpu
))
414 return &per_cpu(rt_cache_stat
, cpu
);
419 static void *rt_cpu_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
423 for (cpu
= *pos
; cpu
< NR_CPUS
; ++cpu
) {
424 if (!cpu_possible(cpu
))
427 return &per_cpu(rt_cache_stat
, cpu
);
433 static void rt_cpu_seq_stop(struct seq_file
*seq
, void *v
)
438 static int rt_cpu_seq_show(struct seq_file
*seq
, void *v
)
440 struct rt_cache_stat
*st
= v
;
442 if (v
== SEQ_START_TOKEN
) {
443 seq_printf(seq
, "entries in_hit in_slow_tot in_slow_mc in_no_route in_brd in_martian_dst in_martian_src out_hit out_slow_tot out_slow_mc gc_total gc_ignored gc_goal_miss gc_dst_overflow in_hlist_search out_hlist_search\n");
447 seq_printf(seq
,"%08x %08x %08x %08x %08x %08x %08x %08x "
448 " %08x %08x %08x %08x %08x %08x %08x %08x %08x \n",
449 atomic_read(&ipv4_dst_ops
.entries
),
472 static const struct seq_operations rt_cpu_seq_ops
= {
473 .start
= rt_cpu_seq_start
,
474 .next
= rt_cpu_seq_next
,
475 .stop
= rt_cpu_seq_stop
,
476 .show
= rt_cpu_seq_show
,
480 static int rt_cpu_seq_open(struct inode
*inode
, struct file
*file
)
482 return seq_open(file
, &rt_cpu_seq_ops
);
485 static const struct file_operations rt_cpu_seq_fops
= {
486 .owner
= THIS_MODULE
,
487 .open
= rt_cpu_seq_open
,
490 .release
= seq_release
,
493 #endif /* CONFIG_PROC_FS */
495 static __inline__
void rt_free(struct rtable
*rt
)
497 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
500 static __inline__
void rt_drop(struct rtable
*rt
)
503 call_rcu_bh(&rt
->u
.dst
.rcu_head
, dst_rcu_free
);
506 static __inline__
int rt_fast_clean(struct rtable
*rth
)
508 /* Kill broadcast/multicast entries very aggresively, if they
509 collide in hash table with more useful entries */
510 return (rth
->rt_flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) &&
511 rth
->fl
.iif
&& rth
->u
.dst
.rt_next
;
514 static __inline__
int rt_valuable(struct rtable
*rth
)
516 return (rth
->rt_flags
& (RTCF_REDIRECTED
| RTCF_NOTIFY
)) ||
520 static int rt_may_expire(struct rtable
*rth
, unsigned long tmo1
, unsigned long tmo2
)
525 if (atomic_read(&rth
->u
.dst
.__refcnt
))
529 if (rth
->u
.dst
.expires
&&
530 time_after_eq(jiffies
, rth
->u
.dst
.expires
))
533 age
= jiffies
- rth
->u
.dst
.lastuse
;
535 if ((age
<= tmo1
&& !rt_fast_clean(rth
)) ||
536 (age
<= tmo2
&& rt_valuable(rth
)))
542 /* Bits of score are:
544 * 30: not quite useless
545 * 29..0: usage counter
547 static inline u32
rt_score(struct rtable
*rt
)
549 u32 score
= jiffies
- rt
->u
.dst
.lastuse
;
551 score
= ~score
& ~(3<<30);
557 !(rt
->rt_flags
& (RTCF_BROADCAST
|RTCF_MULTICAST
|RTCF_LOCAL
)))
563 static inline int compare_keys(struct flowi
*fl1
, struct flowi
*fl2
)
565 return ((__force u32
)((fl1
->nl_u
.ip4_u
.daddr
^ fl2
->nl_u
.ip4_u
.daddr
) |
566 (fl1
->nl_u
.ip4_u
.saddr
^ fl2
->nl_u
.ip4_u
.saddr
)) |
567 (fl1
->mark
^ fl2
->mark
) |
568 (*(u16
*)&fl1
->nl_u
.ip4_u
.tos
^
569 *(u16
*)&fl2
->nl_u
.ip4_u
.tos
) |
570 (fl1
->oif
^ fl2
->oif
) |
571 (fl1
->iif
^ fl2
->iif
)) == 0;
574 /* This runs via a timer and thus is always in BH context. */
575 static void rt_check_expire(unsigned long dummy
)
577 static unsigned int rover
;
578 unsigned int i
= rover
, goal
;
579 struct rtable
*rth
, **rthp
;
580 unsigned long now
= jiffies
;
583 mult
= ((u64
)ip_rt_gc_interval
) << rt_hash_log
;
584 if (ip_rt_gc_timeout
> 1)
585 do_div(mult
, ip_rt_gc_timeout
);
586 goal
= (unsigned int)mult
;
587 if (goal
> rt_hash_mask
) goal
= rt_hash_mask
+ 1;
588 for (; goal
> 0; goal
--) {
589 unsigned long tmo
= ip_rt_gc_timeout
;
591 i
= (i
+ 1) & rt_hash_mask
;
592 rthp
= &rt_hash_table
[i
].chain
;
596 spin_lock(rt_hash_lock_addr(i
));
597 while ((rth
= *rthp
) != NULL
) {
598 if (rth
->u
.dst
.expires
) {
599 /* Entry is expired even if it is in use */
600 if (time_before_eq(now
, rth
->u
.dst
.expires
)) {
602 rthp
= &rth
->u
.dst
.rt_next
;
605 } else if (!rt_may_expire(rth
, tmo
, ip_rt_gc_timeout
)) {
607 rthp
= &rth
->u
.dst
.rt_next
;
611 /* Cleanup aged off entries. */
612 *rthp
= rth
->u
.dst
.rt_next
;
615 spin_unlock(rt_hash_lock_addr(i
));
617 /* Fallback loop breaker. */
618 if (time_after(jiffies
, now
))
622 mod_timer(&rt_periodic_timer
, jiffies
+ ip_rt_gc_interval
);
625 /* This can run from both BH and non-BH contexts, the latter
626 * in the case of a forced flush event.
628 static void rt_run_flush(unsigned long dummy
)
631 struct rtable
*rth
, *next
;
635 get_random_bytes(&rt_hash_rnd
, 4);
637 for (i
= rt_hash_mask
; i
>= 0; i
--) {
638 spin_lock_bh(rt_hash_lock_addr(i
));
639 rth
= rt_hash_table
[i
].chain
;
641 rt_hash_table
[i
].chain
= NULL
;
642 spin_unlock_bh(rt_hash_lock_addr(i
));
644 for (; rth
; rth
= next
) {
645 next
= rth
->u
.dst
.rt_next
;
651 static DEFINE_SPINLOCK(rt_flush_lock
);
653 void rt_cache_flush(int delay
)
655 unsigned long now
= jiffies
;
656 int user_mode
= !in_softirq();
659 delay
= ip_rt_min_delay
;
661 spin_lock_bh(&rt_flush_lock
);
663 if (del_timer(&rt_flush_timer
) && delay
> 0 && rt_deadline
) {
664 long tmo
= (long)(rt_deadline
- now
);
666 /* If flush timer is already running
667 and flush request is not immediate (delay > 0):
669 if deadline is not achieved, prolongate timer to "delay",
670 otherwise fire it at deadline time.
673 if (user_mode
&& tmo
< ip_rt_max_delay
-ip_rt_min_delay
)
681 spin_unlock_bh(&rt_flush_lock
);
686 if (rt_deadline
== 0)
687 rt_deadline
= now
+ ip_rt_max_delay
;
689 mod_timer(&rt_flush_timer
, now
+delay
);
690 spin_unlock_bh(&rt_flush_lock
);
693 static void rt_secret_rebuild(unsigned long dummy
)
695 unsigned long now
= jiffies
;
698 mod_timer(&rt_secret_timer
, now
+ ip_rt_secret_interval
);
702 Short description of GC goals.
704 We want to build algorithm, which will keep routing cache
705 at some equilibrium point, when number of aged off entries
706 is kept approximately equal to newly generated ones.
708 Current expiration strength is variable "expire".
709 We try to adjust it dynamically, so that if networking
710 is idle expires is large enough to keep enough of warm entries,
711 and when load increases it reduces to limit cache size.
714 static int rt_garbage_collect(void)
716 static unsigned long expire
= RT_GC_TIMEOUT
;
717 static unsigned long last_gc
;
719 static int equilibrium
;
720 struct rtable
*rth
, **rthp
;
721 unsigned long now
= jiffies
;
725 * Garbage collection is pretty expensive,
726 * do not make it too frequently.
729 RT_CACHE_STAT_INC(gc_total
);
731 if (now
- last_gc
< ip_rt_gc_min_interval
&&
732 atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
) {
733 RT_CACHE_STAT_INC(gc_ignored
);
737 /* Calculate number of entries, which we want to expire now. */
738 goal
= atomic_read(&ipv4_dst_ops
.entries
) -
739 (ip_rt_gc_elasticity
<< rt_hash_log
);
741 if (equilibrium
< ipv4_dst_ops
.gc_thresh
)
742 equilibrium
= ipv4_dst_ops
.gc_thresh
;
743 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
745 equilibrium
+= min_t(unsigned int, goal
/ 2, rt_hash_mask
+ 1);
746 goal
= atomic_read(&ipv4_dst_ops
.entries
) - equilibrium
;
749 /* We are in dangerous area. Try to reduce cache really
752 goal
= max_t(unsigned int, goal
/ 2, rt_hash_mask
+ 1);
753 equilibrium
= atomic_read(&ipv4_dst_ops
.entries
) - goal
;
756 if (now
- last_gc
>= ip_rt_gc_min_interval
)
767 for (i
= rt_hash_mask
, k
= rover
; i
>= 0; i
--) {
768 unsigned long tmo
= expire
;
770 k
= (k
+ 1) & rt_hash_mask
;
771 rthp
= &rt_hash_table
[k
].chain
;
772 spin_lock_bh(rt_hash_lock_addr(k
));
773 while ((rth
= *rthp
) != NULL
) {
774 if (!rt_may_expire(rth
, tmo
, expire
)) {
776 rthp
= &rth
->u
.dst
.rt_next
;
779 *rthp
= rth
->u
.dst
.rt_next
;
783 spin_unlock_bh(rt_hash_lock_addr(k
));
792 /* Goal is not achieved. We stop process if:
794 - if expire reduced to zero. Otherwise, expire is halfed.
795 - if table is not full.
796 - if we are called from interrupt.
797 - jiffies check is just fallback/debug loop breaker.
798 We will not spin here for long time in any case.
801 RT_CACHE_STAT_INC(gc_goal_miss
);
807 #if RT_CACHE_DEBUG >= 2
808 printk(KERN_DEBUG
"expire>> %u %d %d %d\n", expire
,
809 atomic_read(&ipv4_dst_ops
.entries
), goal
, i
);
812 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
814 } while (!in_softirq() && time_before_eq(jiffies
, now
));
816 if (atomic_read(&ipv4_dst_ops
.entries
) < ip_rt_max_size
)
819 printk(KERN_WARNING
"dst cache overflow\n");
820 RT_CACHE_STAT_INC(gc_dst_overflow
);
824 expire
+= ip_rt_gc_min_interval
;
825 if (expire
> ip_rt_gc_timeout
||
826 atomic_read(&ipv4_dst_ops
.entries
) < ipv4_dst_ops
.gc_thresh
)
827 expire
= ip_rt_gc_timeout
;
828 #if RT_CACHE_DEBUG >= 2
829 printk(KERN_DEBUG
"expire++ %u %d %d %d\n", expire
,
830 atomic_read(&ipv4_dst_ops
.entries
), goal
, rover
);
835 static int rt_intern_hash(unsigned hash
, struct rtable
*rt
, struct rtable
**rp
)
837 struct rtable
*rth
, **rthp
;
839 struct rtable
*cand
, **candp
;
842 int attempts
= !in_softirq();
851 rthp
= &rt_hash_table
[hash
].chain
;
853 spin_lock_bh(rt_hash_lock_addr(hash
));
854 while ((rth
= *rthp
) != NULL
) {
855 if (compare_keys(&rth
->fl
, &rt
->fl
)) {
857 *rthp
= rth
->u
.dst
.rt_next
;
859 * Since lookup is lockfree, the deletion
860 * must be visible to another weakly ordered CPU before
861 * the insertion at the start of the hash chain.
863 rcu_assign_pointer(rth
->u
.dst
.rt_next
,
864 rt_hash_table
[hash
].chain
);
866 * Since lookup is lockfree, the update writes
867 * must be ordered for consistency on SMP.
869 rcu_assign_pointer(rt_hash_table
[hash
].chain
, rth
);
872 dst_hold(&rth
->u
.dst
);
873 rth
->u
.dst
.lastuse
= now
;
874 spin_unlock_bh(rt_hash_lock_addr(hash
));
881 if (!atomic_read(&rth
->u
.dst
.__refcnt
)) {
882 u32 score
= rt_score(rth
);
884 if (score
<= min_score
) {
893 rthp
= &rth
->u
.dst
.rt_next
;
897 /* ip_rt_gc_elasticity used to be average length of chain
898 * length, when exceeded gc becomes really aggressive.
900 * The second limit is less certain. At the moment it allows
901 * only 2 entries per bucket. We will see.
903 if (chain_length
> ip_rt_gc_elasticity
) {
904 *candp
= cand
->u
.dst
.rt_next
;
909 /* Try to bind route to arp only if it is output
910 route or unicast forwarding path.
912 if (rt
->rt_type
== RTN_UNICAST
|| rt
->fl
.iif
== 0) {
913 int err
= arp_bind_neighbour(&rt
->u
.dst
);
915 spin_unlock_bh(rt_hash_lock_addr(hash
));
917 if (err
!= -ENOBUFS
) {
922 /* Neighbour tables are full and nothing
923 can be released. Try to shrink route cache,
924 it is most likely it holds some neighbour records.
926 if (attempts
-- > 0) {
927 int saved_elasticity
= ip_rt_gc_elasticity
;
928 int saved_int
= ip_rt_gc_min_interval
;
929 ip_rt_gc_elasticity
= 1;
930 ip_rt_gc_min_interval
= 0;
931 rt_garbage_collect();
932 ip_rt_gc_min_interval
= saved_int
;
933 ip_rt_gc_elasticity
= saved_elasticity
;
938 printk(KERN_WARNING
"Neighbour table overflow.\n");
944 rt
->u
.dst
.rt_next
= rt_hash_table
[hash
].chain
;
945 #if RT_CACHE_DEBUG >= 2
946 if (rt
->u
.dst
.rt_next
) {
948 printk(KERN_DEBUG
"rt_cache @%02x: %u.%u.%u.%u", hash
,
949 NIPQUAD(rt
->rt_dst
));
950 for (trt
= rt
->u
.dst
.rt_next
; trt
; trt
= trt
->u
.dst
.rt_next
)
951 printk(" . %u.%u.%u.%u", NIPQUAD(trt
->rt_dst
));
955 rt_hash_table
[hash
].chain
= rt
;
956 spin_unlock_bh(rt_hash_lock_addr(hash
));
961 void rt_bind_peer(struct rtable
*rt
, int create
)
963 static DEFINE_SPINLOCK(rt_peer_lock
);
964 struct inet_peer
*peer
;
966 peer
= inet_getpeer(rt
->rt_dst
, create
);
968 spin_lock_bh(&rt_peer_lock
);
969 if (rt
->peer
== NULL
) {
973 spin_unlock_bh(&rt_peer_lock
);
979 * Peer allocation may fail only in serious out-of-memory conditions. However
980 * we still can generate some output.
981 * Random ID selection looks a bit dangerous because we have no chances to
982 * select ID being unique in a reasonable period of time.
983 * But broken packet identifier may be better than no packet at all.
985 static void ip_select_fb_ident(struct iphdr
*iph
)
987 static DEFINE_SPINLOCK(ip_fb_id_lock
);
988 static u32 ip_fallback_id
;
991 spin_lock_bh(&ip_fb_id_lock
);
992 salt
= secure_ip_id((__force __be32
)ip_fallback_id
^ iph
->daddr
);
993 iph
->id
= htons(salt
& 0xFFFF);
994 ip_fallback_id
= salt
;
995 spin_unlock_bh(&ip_fb_id_lock
);
998 void __ip_select_ident(struct iphdr
*iph
, struct dst_entry
*dst
, int more
)
1000 struct rtable
*rt
= (struct rtable
*) dst
;
1003 if (rt
->peer
== NULL
)
1004 rt_bind_peer(rt
, 1);
1006 /* If peer is attached to destination, it is never detached,
1007 so that we need not to grab a lock to dereference it.
1010 iph
->id
= htons(inet_getid(rt
->peer
, more
));
1014 printk(KERN_DEBUG
"rt_bind_peer(0) @%p\n",
1015 __builtin_return_address(0));
1017 ip_select_fb_ident(iph
);
1020 static void rt_del(unsigned hash
, struct rtable
*rt
)
1022 struct rtable
**rthp
;
1024 spin_lock_bh(rt_hash_lock_addr(hash
));
1026 for (rthp
= &rt_hash_table
[hash
].chain
; *rthp
;
1027 rthp
= &(*rthp
)->u
.dst
.rt_next
)
1029 *rthp
= rt
->u
.dst
.rt_next
;
1033 spin_unlock_bh(rt_hash_lock_addr(hash
));
1036 void ip_rt_redirect(__be32 old_gw
, __be32 daddr
, __be32 new_gw
,
1037 __be32 saddr
, struct net_device
*dev
)
1040 struct in_device
*in_dev
= in_dev_get(dev
);
1041 struct rtable
*rth
, **rthp
;
1042 __be32 skeys
[2] = { saddr
, 0 };
1043 int ikeys
[2] = { dev
->ifindex
, 0 };
1044 struct netevent_redirect netevent
;
1049 if (new_gw
== old_gw
|| !IN_DEV_RX_REDIRECTS(in_dev
)
1050 || MULTICAST(new_gw
) || BADCLASS(new_gw
) || ZERONET(new_gw
))
1051 goto reject_redirect
;
1053 if (!IN_DEV_SHARED_MEDIA(in_dev
)) {
1054 if (!inet_addr_onlink(in_dev
, new_gw
, old_gw
))
1055 goto reject_redirect
;
1056 if (IN_DEV_SEC_REDIRECTS(in_dev
) && ip_fib_check_default(new_gw
, dev
))
1057 goto reject_redirect
;
1059 if (inet_addr_type(new_gw
) != RTN_UNICAST
)
1060 goto reject_redirect
;
1063 for (i
= 0; i
< 2; i
++) {
1064 for (k
= 0; k
< 2; k
++) {
1065 unsigned hash
= rt_hash(daddr
, skeys
[i
], ikeys
[k
]);
1067 rthp
=&rt_hash_table
[hash
].chain
;
1070 while ((rth
= rcu_dereference(*rthp
)) != NULL
) {
1073 if (rth
->fl
.fl4_dst
!= daddr
||
1074 rth
->fl
.fl4_src
!= skeys
[i
] ||
1075 rth
->fl
.oif
!= ikeys
[k
] ||
1077 rthp
= &rth
->u
.dst
.rt_next
;
1081 if (rth
->rt_dst
!= daddr
||
1082 rth
->rt_src
!= saddr
||
1084 rth
->rt_gateway
!= old_gw
||
1085 rth
->u
.dst
.dev
!= dev
)
1088 dst_hold(&rth
->u
.dst
);
1091 rt
= dst_alloc(&ipv4_dst_ops
);
1098 /* Copy all the information. */
1100 INIT_RCU_HEAD(&rt
->u
.dst
.rcu_head
);
1101 rt
->u
.dst
.__use
= 1;
1102 atomic_set(&rt
->u
.dst
.__refcnt
, 1);
1103 rt
->u
.dst
.child
= NULL
;
1105 dev_hold(rt
->u
.dst
.dev
);
1107 in_dev_hold(rt
->idev
);
1108 rt
->u
.dst
.obsolete
= 0;
1109 rt
->u
.dst
.lastuse
= jiffies
;
1110 rt
->u
.dst
.path
= &rt
->u
.dst
;
1111 rt
->u
.dst
.neighbour
= NULL
;
1112 rt
->u
.dst
.hh
= NULL
;
1113 rt
->u
.dst
.xfrm
= NULL
;
1115 rt
->rt_flags
|= RTCF_REDIRECTED
;
1117 /* Gateway is different ... */
1118 rt
->rt_gateway
= new_gw
;
1120 /* Redirect received -> path was valid */
1121 dst_confirm(&rth
->u
.dst
);
1124 atomic_inc(&rt
->peer
->refcnt
);
1126 if (arp_bind_neighbour(&rt
->u
.dst
) ||
1127 !(rt
->u
.dst
.neighbour
->nud_state
&
1129 if (rt
->u
.dst
.neighbour
)
1130 neigh_event_send(rt
->u
.dst
.neighbour
, NULL
);
1136 netevent
.old
= &rth
->u
.dst
;
1137 netevent
.new = &rt
->u
.dst
;
1138 call_netevent_notifiers(NETEVENT_REDIRECT
,
1142 if (!rt_intern_hash(hash
, rt
, &rt
))
1155 #ifdef CONFIG_IP_ROUTE_VERBOSE
1156 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1157 printk(KERN_INFO
"Redirect from %u.%u.%u.%u on %s about "
1158 "%u.%u.%u.%u ignored.\n"
1159 " Advised path = %u.%u.%u.%u -> %u.%u.%u.%u\n",
1160 NIPQUAD(old_gw
), dev
->name
, NIPQUAD(new_gw
),
1161 NIPQUAD(saddr
), NIPQUAD(daddr
));
1166 static struct dst_entry
*ipv4_negative_advice(struct dst_entry
*dst
)
1168 struct rtable
*rt
= (struct rtable
*)dst
;
1169 struct dst_entry
*ret
= dst
;
1172 if (dst
->obsolete
) {
1175 } else if ((rt
->rt_flags
& RTCF_REDIRECTED
) ||
1176 rt
->u
.dst
.expires
) {
1177 unsigned hash
= rt_hash(rt
->fl
.fl4_dst
, rt
->fl
.fl4_src
,
1179 #if RT_CACHE_DEBUG >= 1
1180 printk(KERN_DEBUG
"ip_rt_advice: redirect to "
1181 "%u.%u.%u.%u/%02x dropped\n",
1182 NIPQUAD(rt
->rt_dst
), rt
->fl
.fl4_tos
);
1193 * 1. The first ip_rt_redirect_number redirects are sent
1194 * with exponential backoff, then we stop sending them at all,
1195 * assuming that the host ignores our redirects.
1196 * 2. If we did not see packets requiring redirects
1197 * during ip_rt_redirect_silence, we assume that the host
1198 * forgot redirected route and start to send redirects again.
1200 * This algorithm is much cheaper and more intelligent than dumb load limiting
1203 * NOTE. Do not forget to inhibit load limiting for redirects (redundant)
1204 * and "frag. need" (breaks PMTU discovery) in icmp.c.
1207 void ip_rt_send_redirect(struct sk_buff
*skb
)
1209 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1210 struct in_device
*in_dev
= in_dev_get(rt
->u
.dst
.dev
);
1215 if (!IN_DEV_TX_REDIRECTS(in_dev
))
1218 /* No redirected packets during ip_rt_redirect_silence;
1219 * reset the algorithm.
1221 if (time_after(jiffies
, rt
->u
.dst
.rate_last
+ ip_rt_redirect_silence
))
1222 rt
->u
.dst
.rate_tokens
= 0;
1224 /* Too many ignored redirects; do not send anything
1225 * set u.dst.rate_last to the last seen redirected packet.
1227 if (rt
->u
.dst
.rate_tokens
>= ip_rt_redirect_number
) {
1228 rt
->u
.dst
.rate_last
= jiffies
;
1232 /* Check for load limit; set rate_last to the latest sent
1235 if (rt
->u
.dst
.rate_tokens
== 0 ||
1237 (rt
->u
.dst
.rate_last
+
1238 (ip_rt_redirect_load
<< rt
->u
.dst
.rate_tokens
)))) {
1239 icmp_send(skb
, ICMP_REDIRECT
, ICMP_REDIR_HOST
, rt
->rt_gateway
);
1240 rt
->u
.dst
.rate_last
= jiffies
;
1241 ++rt
->u
.dst
.rate_tokens
;
1242 #ifdef CONFIG_IP_ROUTE_VERBOSE
1243 if (IN_DEV_LOG_MARTIANS(in_dev
) &&
1244 rt
->u
.dst
.rate_tokens
== ip_rt_redirect_number
&&
1246 printk(KERN_WARNING
"host %u.%u.%u.%u/if%d ignores "
1247 "redirects for %u.%u.%u.%u to %u.%u.%u.%u.\n",
1248 NIPQUAD(rt
->rt_src
), rt
->rt_iif
,
1249 NIPQUAD(rt
->rt_dst
), NIPQUAD(rt
->rt_gateway
));
1256 static int ip_error(struct sk_buff
*skb
)
1258 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
1262 switch (rt
->u
.dst
.error
) {
1267 code
= ICMP_HOST_UNREACH
;
1270 code
= ICMP_NET_UNREACH
;
1273 code
= ICMP_PKT_FILTERED
;
1278 rt
->u
.dst
.rate_tokens
+= now
- rt
->u
.dst
.rate_last
;
1279 if (rt
->u
.dst
.rate_tokens
> ip_rt_error_burst
)
1280 rt
->u
.dst
.rate_tokens
= ip_rt_error_burst
;
1281 rt
->u
.dst
.rate_last
= now
;
1282 if (rt
->u
.dst
.rate_tokens
>= ip_rt_error_cost
) {
1283 rt
->u
.dst
.rate_tokens
-= ip_rt_error_cost
;
1284 icmp_send(skb
, ICMP_DEST_UNREACH
, code
, 0);
1287 out
: kfree_skb(skb
);
1292 * The last two values are not from the RFC but
1293 * are needed for AMPRnet AX.25 paths.
1296 static const unsigned short mtu_plateau
[] =
1297 {32000, 17914, 8166, 4352, 2002, 1492, 576, 296, 216, 128 };
1299 static __inline__
unsigned short guess_mtu(unsigned short old_mtu
)
1303 for (i
= 0; i
< ARRAY_SIZE(mtu_plateau
); i
++)
1304 if (old_mtu
> mtu_plateau
[i
])
1305 return mtu_plateau
[i
];
1309 unsigned short ip_rt_frag_needed(struct iphdr
*iph
, unsigned short new_mtu
)
1312 unsigned short old_mtu
= ntohs(iph
->tot_len
);
1314 __be32 skeys
[2] = { iph
->saddr
, 0, };
1315 __be32 daddr
= iph
->daddr
;
1316 unsigned short est_mtu
= 0;
1318 if (ipv4_config
.no_pmtu_disc
)
1321 for (i
= 0; i
< 2; i
++) {
1322 unsigned hash
= rt_hash(daddr
, skeys
[i
], 0);
1325 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1326 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1327 if (rth
->fl
.fl4_dst
== daddr
&&
1328 rth
->fl
.fl4_src
== skeys
[i
] &&
1329 rth
->rt_dst
== daddr
&&
1330 rth
->rt_src
== iph
->saddr
&&
1332 !(dst_metric_locked(&rth
->u
.dst
, RTAX_MTU
))) {
1333 unsigned short mtu
= new_mtu
;
1335 if (new_mtu
< 68 || new_mtu
>= old_mtu
) {
1337 /* BSD 4.2 compatibility hack :-( */
1339 old_mtu
>= rth
->u
.dst
.metrics
[RTAX_MTU
-1] &&
1340 old_mtu
>= 68 + (iph
->ihl
<< 2))
1341 old_mtu
-= iph
->ihl
<< 2;
1343 mtu
= guess_mtu(old_mtu
);
1345 if (mtu
<= rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1346 if (mtu
< rth
->u
.dst
.metrics
[RTAX_MTU
-1]) {
1347 dst_confirm(&rth
->u
.dst
);
1348 if (mtu
< ip_rt_min_pmtu
) {
1349 mtu
= ip_rt_min_pmtu
;
1350 rth
->u
.dst
.metrics
[RTAX_LOCK
-1] |=
1353 rth
->u
.dst
.metrics
[RTAX_MTU
-1] = mtu
;
1354 dst_set_expires(&rth
->u
.dst
,
1363 return est_mtu
? : new_mtu
;
1366 static void ip_rt_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
1368 if (dst
->metrics
[RTAX_MTU
-1] > mtu
&& mtu
>= 68 &&
1369 !(dst_metric_locked(dst
, RTAX_MTU
))) {
1370 if (mtu
< ip_rt_min_pmtu
) {
1371 mtu
= ip_rt_min_pmtu
;
1372 dst
->metrics
[RTAX_LOCK
-1] |= (1 << RTAX_MTU
);
1374 dst
->metrics
[RTAX_MTU
-1] = mtu
;
1375 dst_set_expires(dst
, ip_rt_mtu_expires
);
1376 call_netevent_notifiers(NETEVENT_PMTU_UPDATE
, dst
);
1380 static struct dst_entry
*ipv4_dst_check(struct dst_entry
*dst
, u32 cookie
)
1385 static void ipv4_dst_destroy(struct dst_entry
*dst
)
1387 struct rtable
*rt
= (struct rtable
*) dst
;
1388 struct inet_peer
*peer
= rt
->peer
;
1389 struct in_device
*idev
= rt
->idev
;
1402 static void ipv4_dst_ifdown(struct dst_entry
*dst
, struct net_device
*dev
,
1405 struct rtable
*rt
= (struct rtable
*) dst
;
1406 struct in_device
*idev
= rt
->idev
;
1407 if (dev
!= &loopback_dev
&& idev
&& idev
->dev
== dev
) {
1408 struct in_device
*loopback_idev
= in_dev_get(&loopback_dev
);
1409 if (loopback_idev
) {
1410 rt
->idev
= loopback_idev
;
1416 static void ipv4_link_failure(struct sk_buff
*skb
)
1420 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_HOST_UNREACH
, 0);
1422 rt
= (struct rtable
*) skb
->dst
;
1424 dst_set_expires(&rt
->u
.dst
, 0);
1427 static int ip_rt_bug(struct sk_buff
*skb
)
1429 printk(KERN_DEBUG
"ip_rt_bug: %u.%u.%u.%u -> %u.%u.%u.%u, %s\n",
1430 NIPQUAD(ip_hdr(skb
)->saddr
), NIPQUAD(ip_hdr(skb
)->daddr
),
1431 skb
->dev
? skb
->dev
->name
: "?");
1437 We do not cache source address of outgoing interface,
1438 because it is used only by IP RR, TS and SRR options,
1439 so that it out of fast path.
1441 BTW remember: "addr" is allowed to be not aligned
1445 void ip_rt_get_source(u8
*addr
, struct rtable
*rt
)
1448 struct fib_result res
;
1450 if (rt
->fl
.iif
== 0)
1452 else if (fib_lookup(&rt
->fl
, &res
) == 0) {
1453 src
= FIB_RES_PREFSRC(res
);
1456 src
= inet_select_addr(rt
->u
.dst
.dev
, rt
->rt_gateway
,
1458 memcpy(addr
, &src
, 4);
1461 #ifdef CONFIG_NET_CLS_ROUTE
1462 static void set_class_tag(struct rtable
*rt
, u32 tag
)
1464 if (!(rt
->u
.dst
.tclassid
& 0xFFFF))
1465 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF;
1466 if (!(rt
->u
.dst
.tclassid
& 0xFFFF0000))
1467 rt
->u
.dst
.tclassid
|= tag
& 0xFFFF0000;
1471 static void rt_set_nexthop(struct rtable
*rt
, struct fib_result
*res
, u32 itag
)
1473 struct fib_info
*fi
= res
->fi
;
1476 if (FIB_RES_GW(*res
) &&
1477 FIB_RES_NH(*res
).nh_scope
== RT_SCOPE_LINK
)
1478 rt
->rt_gateway
= FIB_RES_GW(*res
);
1479 memcpy(rt
->u
.dst
.metrics
, fi
->fib_metrics
,
1480 sizeof(rt
->u
.dst
.metrics
));
1481 if (fi
->fib_mtu
== 0) {
1482 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = rt
->u
.dst
.dev
->mtu
;
1483 if (rt
->u
.dst
.metrics
[RTAX_LOCK
-1] & (1 << RTAX_MTU
) &&
1484 rt
->rt_gateway
!= rt
->rt_dst
&&
1485 rt
->u
.dst
.dev
->mtu
> 576)
1486 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = 576;
1488 #ifdef CONFIG_NET_CLS_ROUTE
1489 rt
->u
.dst
.tclassid
= FIB_RES_NH(*res
).nh_tclassid
;
1492 rt
->u
.dst
.metrics
[RTAX_MTU
-1]= rt
->u
.dst
.dev
->mtu
;
1494 if (rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] == 0)
1495 rt
->u
.dst
.metrics
[RTAX_HOPLIMIT
-1] = sysctl_ip_default_ttl
;
1496 if (rt
->u
.dst
.metrics
[RTAX_MTU
-1] > IP_MAX_MTU
)
1497 rt
->u
.dst
.metrics
[RTAX_MTU
-1] = IP_MAX_MTU
;
1498 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] == 0)
1499 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = max_t(unsigned int, rt
->u
.dst
.dev
->mtu
- 40,
1501 if (rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] > 65535 - 40)
1502 rt
->u
.dst
.metrics
[RTAX_ADVMSS
-1] = 65535 - 40;
1504 #ifdef CONFIG_NET_CLS_ROUTE
1505 #ifdef CONFIG_IP_MULTIPLE_TABLES
1506 set_class_tag(rt
, fib_rules_tclass(res
));
1508 set_class_tag(rt
, itag
);
1510 rt
->rt_type
= res
->type
;
1513 static int ip_route_input_mc(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1514 u8 tos
, struct net_device
*dev
, int our
)
1519 struct in_device
*in_dev
= in_dev_get(dev
);
1522 /* Primary sanity checks. */
1527 if (MULTICAST(saddr
) || BADCLASS(saddr
) || LOOPBACK(saddr
) ||
1528 skb
->protocol
!= htons(ETH_P_IP
))
1531 if (ZERONET(saddr
)) {
1532 if (!LOCAL_MCAST(daddr
))
1534 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1535 } else if (fib_validate_source(saddr
, 0, tos
, 0,
1536 dev
, &spec_dst
, &itag
) < 0)
1539 rth
= dst_alloc(&ipv4_dst_ops
);
1543 rth
->u
.dst
.output
= ip_rt_bug
;
1545 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1546 rth
->u
.dst
.flags
= DST_HOST
;
1547 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1548 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1549 rth
->fl
.fl4_dst
= daddr
;
1550 rth
->rt_dst
= daddr
;
1551 rth
->fl
.fl4_tos
= tos
;
1552 rth
->fl
.mark
= skb
->mark
;
1553 rth
->fl
.fl4_src
= saddr
;
1554 rth
->rt_src
= saddr
;
1555 #ifdef CONFIG_NET_CLS_ROUTE
1556 rth
->u
.dst
.tclassid
= itag
;
1559 rth
->fl
.iif
= dev
->ifindex
;
1560 rth
->u
.dst
.dev
= &loopback_dev
;
1561 dev_hold(rth
->u
.dst
.dev
);
1562 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1564 rth
->rt_gateway
= daddr
;
1565 rth
->rt_spec_dst
= spec_dst
;
1566 rth
->rt_type
= RTN_MULTICAST
;
1567 rth
->rt_flags
= RTCF_MULTICAST
;
1569 rth
->u
.dst
.input
= ip_local_deliver
;
1570 rth
->rt_flags
|= RTCF_LOCAL
;
1573 #ifdef CONFIG_IP_MROUTE
1574 if (!LOCAL_MCAST(daddr
) && IN_DEV_MFORWARD(in_dev
))
1575 rth
->u
.dst
.input
= ip_mr_input
;
1577 RT_CACHE_STAT_INC(in_slow_mc
);
1580 hash
= rt_hash(daddr
, saddr
, dev
->ifindex
);
1581 return rt_intern_hash(hash
, rth
, (struct rtable
**) &skb
->dst
);
1593 static void ip_handle_martian_source(struct net_device
*dev
,
1594 struct in_device
*in_dev
,
1595 struct sk_buff
*skb
,
1599 RT_CACHE_STAT_INC(in_martian_src
);
1600 #ifdef CONFIG_IP_ROUTE_VERBOSE
1601 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit()) {
1603 * RFC1812 recommendation, if source is martian,
1604 * the only hint is MAC header.
1606 printk(KERN_WARNING
"martian source %u.%u.%u.%u from "
1607 "%u.%u.%u.%u, on dev %s\n",
1608 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1609 if (dev
->hard_header_len
&& skb_mac_header_was_set(skb
)) {
1611 const unsigned char *p
= skb_mac_header(skb
);
1612 printk(KERN_WARNING
"ll header: ");
1613 for (i
= 0; i
< dev
->hard_header_len
; i
++, p
++) {
1615 if (i
< (dev
->hard_header_len
- 1))
1624 static inline int __mkroute_input(struct sk_buff
*skb
,
1625 struct fib_result
* res
,
1626 struct in_device
*in_dev
,
1627 __be32 daddr
, __be32 saddr
, u32 tos
,
1628 struct rtable
**result
)
1633 struct in_device
*out_dev
;
1638 /* get a working reference to the output device */
1639 out_dev
= in_dev_get(FIB_RES_DEV(*res
));
1640 if (out_dev
== NULL
) {
1641 if (net_ratelimit())
1642 printk(KERN_CRIT
"Bug in ip_route_input" \
1643 "_slow(). Please, report\n");
1648 err
= fib_validate_source(saddr
, daddr
, tos
, FIB_RES_OIF(*res
),
1649 in_dev
->dev
, &spec_dst
, &itag
);
1651 ip_handle_martian_source(in_dev
->dev
, in_dev
, skb
, daddr
,
1659 flags
|= RTCF_DIRECTSRC
;
1661 if (out_dev
== in_dev
&& err
&& !(flags
& (RTCF_NAT
| RTCF_MASQ
)) &&
1662 (IN_DEV_SHARED_MEDIA(out_dev
) ||
1663 inet_addr_onlink(out_dev
, saddr
, FIB_RES_GW(*res
))))
1664 flags
|= RTCF_DOREDIRECT
;
1666 if (skb
->protocol
!= htons(ETH_P_IP
)) {
1667 /* Not IP (i.e. ARP). Do not create route, if it is
1668 * invalid for proxy arp. DNAT routes are always valid.
1670 if (out_dev
== in_dev
&& !(flags
& RTCF_DNAT
)) {
1677 rth
= dst_alloc(&ipv4_dst_ops
);
1683 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1684 rth
->u
.dst
.flags
= DST_HOST
;
1685 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1686 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1687 if (IN_DEV_CONF_GET(out_dev
, NOXFRM
))
1688 rth
->u
.dst
.flags
|= DST_NOXFRM
;
1689 rth
->fl
.fl4_dst
= daddr
;
1690 rth
->rt_dst
= daddr
;
1691 rth
->fl
.fl4_tos
= tos
;
1692 rth
->fl
.mark
= skb
->mark
;
1693 rth
->fl
.fl4_src
= saddr
;
1694 rth
->rt_src
= saddr
;
1695 rth
->rt_gateway
= daddr
;
1697 rth
->fl
.iif
= in_dev
->dev
->ifindex
;
1698 rth
->u
.dst
.dev
= (out_dev
)->dev
;
1699 dev_hold(rth
->u
.dst
.dev
);
1700 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1702 rth
->rt_spec_dst
= spec_dst
;
1704 rth
->u
.dst
.input
= ip_forward
;
1705 rth
->u
.dst
.output
= ip_output
;
1707 rt_set_nexthop(rth
, res
, itag
);
1709 rth
->rt_flags
= flags
;
1714 /* release the working reference to the output device */
1715 in_dev_put(out_dev
);
1719 static inline int ip_mkroute_input(struct sk_buff
*skb
,
1720 struct fib_result
* res
,
1721 const struct flowi
*fl
,
1722 struct in_device
*in_dev
,
1723 __be32 daddr
, __be32 saddr
, u32 tos
)
1725 struct rtable
* rth
= NULL
;
1729 #ifdef CONFIG_IP_ROUTE_MULTIPATH
1730 if (res
->fi
&& res
->fi
->fib_nhs
> 1 && fl
->oif
== 0)
1731 fib_select_multipath(fl
, res
);
1734 /* create a routing cache entry */
1735 err
= __mkroute_input(skb
, res
, in_dev
, daddr
, saddr
, tos
, &rth
);
1739 /* put it into the cache */
1740 hash
= rt_hash(daddr
, saddr
, fl
->iif
);
1741 return rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
1745 * NOTE. We drop all the packets that has local source
1746 * addresses, because every properly looped back packet
1747 * must have correct destination already attached by output routine.
1749 * Such approach solves two big problems:
1750 * 1. Not simplex devices are handled properly.
1751 * 2. IP spoofing attempts are filtered with 100% of guarantee.
1754 static int ip_route_input_slow(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1755 u8 tos
, struct net_device
*dev
)
1757 struct fib_result res
;
1758 struct in_device
*in_dev
= in_dev_get(dev
);
1759 struct flowi fl
= { .nl_u
= { .ip4_u
=
1763 .scope
= RT_SCOPE_UNIVERSE
,
1766 .iif
= dev
->ifindex
};
1769 struct rtable
* rth
;
1775 /* IP on this device is disabled. */
1780 /* Check for the most weird martians, which can be not detected
1784 if (MULTICAST(saddr
) || BADCLASS(saddr
) || LOOPBACK(saddr
))
1785 goto martian_source
;
1787 if (daddr
== htonl(0xFFFFFFFF) || (saddr
== 0 && daddr
== 0))
1790 /* Accept zero addresses only to limited broadcast;
1791 * I even do not know to fix it or not. Waiting for complains :-)
1794 goto martian_source
;
1796 if (BADCLASS(daddr
) || ZERONET(daddr
) || LOOPBACK(daddr
))
1797 goto martian_destination
;
1800 * Now we are ready to route packet.
1802 if ((err
= fib_lookup(&fl
, &res
)) != 0) {
1803 if (!IN_DEV_FORWARD(in_dev
))
1809 RT_CACHE_STAT_INC(in_slow_tot
);
1811 if (res
.type
== RTN_BROADCAST
)
1814 if (res
.type
== RTN_LOCAL
) {
1816 result
= fib_validate_source(saddr
, daddr
, tos
,
1817 loopback_dev
.ifindex
,
1818 dev
, &spec_dst
, &itag
);
1820 goto martian_source
;
1822 flags
|= RTCF_DIRECTSRC
;
1827 if (!IN_DEV_FORWARD(in_dev
))
1829 if (res
.type
!= RTN_UNICAST
)
1830 goto martian_destination
;
1832 err
= ip_mkroute_input(skb
, &res
, &fl
, in_dev
, daddr
, saddr
, tos
);
1833 if (err
== -ENOBUFS
)
1845 if (skb
->protocol
!= htons(ETH_P_IP
))
1849 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_LINK
);
1851 err
= fib_validate_source(saddr
, 0, tos
, 0, dev
, &spec_dst
,
1854 goto martian_source
;
1856 flags
|= RTCF_DIRECTSRC
;
1858 flags
|= RTCF_BROADCAST
;
1859 res
.type
= RTN_BROADCAST
;
1860 RT_CACHE_STAT_INC(in_brd
);
1863 rth
= dst_alloc(&ipv4_dst_ops
);
1867 rth
->u
.dst
.output
= ip_rt_bug
;
1869 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
1870 rth
->u
.dst
.flags
= DST_HOST
;
1871 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
1872 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
1873 rth
->fl
.fl4_dst
= daddr
;
1874 rth
->rt_dst
= daddr
;
1875 rth
->fl
.fl4_tos
= tos
;
1876 rth
->fl
.mark
= skb
->mark
;
1877 rth
->fl
.fl4_src
= saddr
;
1878 rth
->rt_src
= saddr
;
1879 #ifdef CONFIG_NET_CLS_ROUTE
1880 rth
->u
.dst
.tclassid
= itag
;
1883 rth
->fl
.iif
= dev
->ifindex
;
1884 rth
->u
.dst
.dev
= &loopback_dev
;
1885 dev_hold(rth
->u
.dst
.dev
);
1886 rth
->idev
= in_dev_get(rth
->u
.dst
.dev
);
1887 rth
->rt_gateway
= daddr
;
1888 rth
->rt_spec_dst
= spec_dst
;
1889 rth
->u
.dst
.input
= ip_local_deliver
;
1890 rth
->rt_flags
= flags
|RTCF_LOCAL
;
1891 if (res
.type
== RTN_UNREACHABLE
) {
1892 rth
->u
.dst
.input
= ip_error
;
1893 rth
->u
.dst
.error
= -err
;
1894 rth
->rt_flags
&= ~RTCF_LOCAL
;
1896 rth
->rt_type
= res
.type
;
1897 hash
= rt_hash(daddr
, saddr
, fl
.iif
);
1898 err
= rt_intern_hash(hash
, rth
, (struct rtable
**)&skb
->dst
);
1902 RT_CACHE_STAT_INC(in_no_route
);
1903 spec_dst
= inet_select_addr(dev
, 0, RT_SCOPE_UNIVERSE
);
1904 res
.type
= RTN_UNREACHABLE
;
1908 * Do not cache martian addresses: they should be logged (RFC1812)
1910 martian_destination
:
1911 RT_CACHE_STAT_INC(in_martian_dst
);
1912 #ifdef CONFIG_IP_ROUTE_VERBOSE
1913 if (IN_DEV_LOG_MARTIANS(in_dev
) && net_ratelimit())
1914 printk(KERN_WARNING
"martian destination %u.%u.%u.%u from "
1915 "%u.%u.%u.%u, dev %s\n",
1916 NIPQUAD(daddr
), NIPQUAD(saddr
), dev
->name
);
1920 err
= -EHOSTUNREACH
;
1932 ip_handle_martian_source(dev
, in_dev
, skb
, daddr
, saddr
);
1936 int ip_route_input(struct sk_buff
*skb
, __be32 daddr
, __be32 saddr
,
1937 u8 tos
, struct net_device
*dev
)
1939 struct rtable
* rth
;
1941 int iif
= dev
->ifindex
;
1943 tos
&= IPTOS_RT_MASK
;
1944 hash
= rt_hash(daddr
, saddr
, iif
);
1947 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
1948 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
1949 if (rth
->fl
.fl4_dst
== daddr
&&
1950 rth
->fl
.fl4_src
== saddr
&&
1951 rth
->fl
.iif
== iif
&&
1953 rth
->fl
.mark
== skb
->mark
&&
1954 rth
->fl
.fl4_tos
== tos
) {
1955 rth
->u
.dst
.lastuse
= jiffies
;
1956 dst_hold(&rth
->u
.dst
);
1958 RT_CACHE_STAT_INC(in_hit
);
1960 skb
->dst
= (struct dst_entry
*)rth
;
1963 RT_CACHE_STAT_INC(in_hlist_search
);
1967 /* Multicast recognition logic is moved from route cache to here.
1968 The problem was that too many Ethernet cards have broken/missing
1969 hardware multicast filters :-( As result the host on multicasting
1970 network acquires a lot of useless route cache entries, sort of
1971 SDR messages from all the world. Now we try to get rid of them.
1972 Really, provided software IP multicast filter is organized
1973 reasonably (at least, hashed), it does not result in a slowdown
1974 comparing with route cache reject entries.
1975 Note, that multicast routers are not affected, because
1976 route cache entry is created eventually.
1978 if (MULTICAST(daddr
)) {
1979 struct in_device
*in_dev
;
1982 if ((in_dev
= __in_dev_get_rcu(dev
)) != NULL
) {
1983 int our
= ip_check_mc(in_dev
, daddr
, saddr
,
1984 ip_hdr(skb
)->protocol
);
1986 #ifdef CONFIG_IP_MROUTE
1987 || (!LOCAL_MCAST(daddr
) && IN_DEV_MFORWARD(in_dev
))
1991 return ip_route_input_mc(skb
, daddr
, saddr
,
1998 return ip_route_input_slow(skb
, daddr
, saddr
, tos
, dev
);
2001 static inline int __mkroute_output(struct rtable
**result
,
2002 struct fib_result
* res
,
2003 const struct flowi
*fl
,
2004 const struct flowi
*oldflp
,
2005 struct net_device
*dev_out
,
2009 struct in_device
*in_dev
;
2010 u32 tos
= RT_FL_TOS(oldflp
);
2013 if (LOOPBACK(fl
->fl4_src
) && !(dev_out
->flags
&IFF_LOOPBACK
))
2016 if (fl
->fl4_dst
== htonl(0xFFFFFFFF))
2017 res
->type
= RTN_BROADCAST
;
2018 else if (MULTICAST(fl
->fl4_dst
))
2019 res
->type
= RTN_MULTICAST
;
2020 else if (BADCLASS(fl
->fl4_dst
) || ZERONET(fl
->fl4_dst
))
2023 if (dev_out
->flags
& IFF_LOOPBACK
)
2024 flags
|= RTCF_LOCAL
;
2026 /* get work reference to inet device */
2027 in_dev
= in_dev_get(dev_out
);
2031 if (res
->type
== RTN_BROADCAST
) {
2032 flags
|= RTCF_BROADCAST
| RTCF_LOCAL
;
2034 fib_info_put(res
->fi
);
2037 } else if (res
->type
== RTN_MULTICAST
) {
2038 flags
|= RTCF_MULTICAST
|RTCF_LOCAL
;
2039 if (!ip_check_mc(in_dev
, oldflp
->fl4_dst
, oldflp
->fl4_src
,
2041 flags
&= ~RTCF_LOCAL
;
2042 /* If multicast route do not exist use
2043 default one, but do not gateway in this case.
2046 if (res
->fi
&& res
->prefixlen
< 4) {
2047 fib_info_put(res
->fi
);
2053 rth
= dst_alloc(&ipv4_dst_ops
);
2059 atomic_set(&rth
->u
.dst
.__refcnt
, 1);
2060 rth
->u
.dst
.flags
= DST_HOST
;
2061 if (IN_DEV_CONF_GET(in_dev
, NOXFRM
))
2062 rth
->u
.dst
.flags
|= DST_NOXFRM
;
2063 if (IN_DEV_CONF_GET(in_dev
, NOPOLICY
))
2064 rth
->u
.dst
.flags
|= DST_NOPOLICY
;
2066 rth
->fl
.fl4_dst
= oldflp
->fl4_dst
;
2067 rth
->fl
.fl4_tos
= tos
;
2068 rth
->fl
.fl4_src
= oldflp
->fl4_src
;
2069 rth
->fl
.oif
= oldflp
->oif
;
2070 rth
->fl
.mark
= oldflp
->mark
;
2071 rth
->rt_dst
= fl
->fl4_dst
;
2072 rth
->rt_src
= fl
->fl4_src
;
2073 rth
->rt_iif
= oldflp
->oif
? : dev_out
->ifindex
;
2074 /* get references to the devices that are to be hold by the routing
2076 rth
->u
.dst
.dev
= dev_out
;
2078 rth
->idev
= in_dev_get(dev_out
);
2079 rth
->rt_gateway
= fl
->fl4_dst
;
2080 rth
->rt_spec_dst
= fl
->fl4_src
;
2082 rth
->u
.dst
.output
=ip_output
;
2084 RT_CACHE_STAT_INC(out_slow_tot
);
2086 if (flags
& RTCF_LOCAL
) {
2087 rth
->u
.dst
.input
= ip_local_deliver
;
2088 rth
->rt_spec_dst
= fl
->fl4_dst
;
2090 if (flags
& (RTCF_BROADCAST
| RTCF_MULTICAST
)) {
2091 rth
->rt_spec_dst
= fl
->fl4_src
;
2092 if (flags
& RTCF_LOCAL
&&
2093 !(dev_out
->flags
& IFF_LOOPBACK
)) {
2094 rth
->u
.dst
.output
= ip_mc_output
;
2095 RT_CACHE_STAT_INC(out_slow_mc
);
2097 #ifdef CONFIG_IP_MROUTE
2098 if (res
->type
== RTN_MULTICAST
) {
2099 if (IN_DEV_MFORWARD(in_dev
) &&
2100 !LOCAL_MCAST(oldflp
->fl4_dst
)) {
2101 rth
->u
.dst
.input
= ip_mr_input
;
2102 rth
->u
.dst
.output
= ip_mc_output
;
2108 rt_set_nexthop(rth
, res
, 0);
2110 rth
->rt_flags
= flags
;
2114 /* release work reference to inet device */
2120 static inline int ip_mkroute_output(struct rtable
**rp
,
2121 struct fib_result
* res
,
2122 const struct flowi
*fl
,
2123 const struct flowi
*oldflp
,
2124 struct net_device
*dev_out
,
2127 struct rtable
*rth
= NULL
;
2128 int err
= __mkroute_output(&rth
, res
, fl
, oldflp
, dev_out
, flags
);
2131 hash
= rt_hash(oldflp
->fl4_dst
, oldflp
->fl4_src
, oldflp
->oif
);
2132 err
= rt_intern_hash(hash
, rth
, rp
);
2139 * Major route resolver routine.
2142 static int ip_route_output_slow(struct rtable
**rp
, const struct flowi
*oldflp
)
2144 u32 tos
= RT_FL_TOS(oldflp
);
2145 struct flowi fl
= { .nl_u
= { .ip4_u
=
2146 { .daddr
= oldflp
->fl4_dst
,
2147 .saddr
= oldflp
->fl4_src
,
2148 .tos
= tos
& IPTOS_RT_MASK
,
2149 .scope
= ((tos
& RTO_ONLINK
) ?
2153 .mark
= oldflp
->mark
,
2154 .iif
= loopback_dev
.ifindex
,
2155 .oif
= oldflp
->oif
};
2156 struct fib_result res
;
2158 struct net_device
*dev_out
= NULL
;
2164 #ifdef CONFIG_IP_MULTIPLE_TABLES
2168 if (oldflp
->fl4_src
) {
2170 if (MULTICAST(oldflp
->fl4_src
) ||
2171 BADCLASS(oldflp
->fl4_src
) ||
2172 ZERONET(oldflp
->fl4_src
))
2175 /* It is equivalent to inet_addr_type(saddr) == RTN_LOCAL */
2176 dev_out
= ip_dev_find(oldflp
->fl4_src
);
2177 if (dev_out
== NULL
)
2180 /* I removed check for oif == dev_out->oif here.
2181 It was wrong for two reasons:
2182 1. ip_dev_find(saddr) can return wrong iface, if saddr is
2183 assigned to multiple interfaces.
2184 2. Moreover, we are allowed to send packets with saddr
2185 of another iface. --ANK
2188 if (oldflp
->oif
== 0
2189 && (MULTICAST(oldflp
->fl4_dst
) || oldflp
->fl4_dst
== htonl(0xFFFFFFFF))) {
2190 /* Special hack: user can direct multicasts
2191 and limited broadcast via necessary interface
2192 without fiddling with IP_MULTICAST_IF or IP_PKTINFO.
2193 This hack is not just for fun, it allows
2194 vic,vat and friends to work.
2195 They bind socket to loopback, set ttl to zero
2196 and expect that it will work.
2197 From the viewpoint of routing cache they are broken,
2198 because we are not allowed to build multicast path
2199 with loopback source addr (look, routing cache
2200 cannot know, that ttl is zero, so that packet
2201 will not leave this host and route is valid).
2202 Luckily, this hack is good workaround.
2205 fl
.oif
= dev_out
->ifindex
;
2215 dev_out
= dev_get_by_index(oldflp
->oif
);
2217 if (dev_out
== NULL
)
2220 /* RACE: Check return value of inet_select_addr instead. */
2221 if (__in_dev_get_rtnl(dev_out
) == NULL
) {
2223 goto out
; /* Wrong error code */
2226 if (LOCAL_MCAST(oldflp
->fl4_dst
) || oldflp
->fl4_dst
== htonl(0xFFFFFFFF)) {
2228 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2233 if (MULTICAST(oldflp
->fl4_dst
))
2234 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2236 else if (!oldflp
->fl4_dst
)
2237 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2243 fl
.fl4_dst
= fl
.fl4_src
;
2245 fl
.fl4_dst
= fl
.fl4_src
= htonl(INADDR_LOOPBACK
);
2248 dev_out
= &loopback_dev
;
2250 fl
.oif
= loopback_dev
.ifindex
;
2251 res
.type
= RTN_LOCAL
;
2252 flags
|= RTCF_LOCAL
;
2256 if (fib_lookup(&fl
, &res
)) {
2259 /* Apparently, routing tables are wrong. Assume,
2260 that the destination is on link.
2263 Because we are allowed to send to iface
2264 even if it has NO routes and NO assigned
2265 addresses. When oif is specified, routing
2266 tables are looked up with only one purpose:
2267 to catch if destination is gatewayed, rather than
2268 direct. Moreover, if MSG_DONTROUTE is set,
2269 we send packet, ignoring both routing tables
2270 and ifaddr state. --ANK
2273 We could make it even if oif is unknown,
2274 likely IPv6, but we do not.
2277 if (fl
.fl4_src
== 0)
2278 fl
.fl4_src
= inet_select_addr(dev_out
, 0,
2280 res
.type
= RTN_UNICAST
;
2290 if (res
.type
== RTN_LOCAL
) {
2292 fl
.fl4_src
= fl
.fl4_dst
;
2295 dev_out
= &loopback_dev
;
2297 fl
.oif
= dev_out
->ifindex
;
2299 fib_info_put(res
.fi
);
2301 flags
|= RTCF_LOCAL
;
2305 #ifdef CONFIG_IP_ROUTE_MULTIPATH
2306 if (res
.fi
->fib_nhs
> 1 && fl
.oif
== 0)
2307 fib_select_multipath(&fl
, &res
);
2310 if (!res
.prefixlen
&& res
.type
== RTN_UNICAST
&& !fl
.oif
)
2311 fib_select_default(&fl
, &res
);
2314 fl
.fl4_src
= FIB_RES_PREFSRC(res
);
2318 dev_out
= FIB_RES_DEV(res
);
2320 fl
.oif
= dev_out
->ifindex
;
2324 err
= ip_mkroute_output(rp
, &res
, &fl
, oldflp
, dev_out
, flags
);
2334 int __ip_route_output_key(struct rtable
**rp
, const struct flowi
*flp
)
2339 hash
= rt_hash(flp
->fl4_dst
, flp
->fl4_src
, flp
->oif
);
2342 for (rth
= rcu_dereference(rt_hash_table
[hash
].chain
); rth
;
2343 rth
= rcu_dereference(rth
->u
.dst
.rt_next
)) {
2344 if (rth
->fl
.fl4_dst
== flp
->fl4_dst
&&
2345 rth
->fl
.fl4_src
== flp
->fl4_src
&&
2347 rth
->fl
.oif
== flp
->oif
&&
2348 rth
->fl
.mark
== flp
->mark
&&
2349 !((rth
->fl
.fl4_tos
^ flp
->fl4_tos
) &
2350 (IPTOS_RT_MASK
| RTO_ONLINK
))) {
2351 rth
->u
.dst
.lastuse
= jiffies
;
2352 dst_hold(&rth
->u
.dst
);
2354 RT_CACHE_STAT_INC(out_hit
);
2355 rcu_read_unlock_bh();
2359 RT_CACHE_STAT_INC(out_hlist_search
);
2361 rcu_read_unlock_bh();
2363 return ip_route_output_slow(rp
, flp
);
2366 EXPORT_SYMBOL_GPL(__ip_route_output_key
);
2368 static void ipv4_rt_blackhole_update_pmtu(struct dst_entry
*dst
, u32 mtu
)
2372 static struct dst_ops ipv4_dst_blackhole_ops
= {
2374 .protocol
= __constant_htons(ETH_P_IP
),
2375 .destroy
= ipv4_dst_destroy
,
2376 .check
= ipv4_dst_check
,
2377 .update_pmtu
= ipv4_rt_blackhole_update_pmtu
,
2378 .entry_size
= sizeof(struct rtable
),
2382 static int ipv4_blackhole_output(struct sk_buff
*skb
)
2388 static int ipv4_dst_blackhole(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
)
2390 struct rtable
*ort
= *rp
;
2391 struct rtable
*rt
= (struct rtable
*)
2392 dst_alloc(&ipv4_dst_blackhole_ops
);
2395 struct dst_entry
*new = &rt
->u
.dst
;
2397 atomic_set(&new->__refcnt
, 1);
2399 new->input
= ipv4_blackhole_output
;
2400 new->output
= ipv4_blackhole_output
;
2401 memcpy(new->metrics
, ort
->u
.dst
.metrics
, RTAX_MAX
*sizeof(u32
));
2403 new->dev
= ort
->u
.dst
.dev
;
2409 rt
->idev
= ort
->idev
;
2411 in_dev_hold(rt
->idev
);
2412 rt
->rt_flags
= ort
->rt_flags
;
2413 rt
->rt_type
= ort
->rt_type
;
2414 rt
->rt_dst
= ort
->rt_dst
;
2415 rt
->rt_src
= ort
->rt_src
;
2416 rt
->rt_iif
= ort
->rt_iif
;
2417 rt
->rt_gateway
= ort
->rt_gateway
;
2418 rt
->rt_spec_dst
= ort
->rt_spec_dst
;
2419 rt
->peer
= ort
->peer
;
2421 atomic_inc(&rt
->peer
->refcnt
);
2426 dst_release(&(*rp
)->u
.dst
);
2428 return (rt
? 0 : -ENOMEM
);
2431 int ip_route_output_flow(struct rtable
**rp
, struct flowi
*flp
, struct sock
*sk
, int flags
)
2435 if ((err
= __ip_route_output_key(rp
, flp
)) != 0)
2440 flp
->fl4_src
= (*rp
)->rt_src
;
2442 flp
->fl4_dst
= (*rp
)->rt_dst
;
2443 err
= __xfrm_lookup((struct dst_entry
**)rp
, flp
, sk
, flags
);
2444 if (err
== -EREMOTE
)
2445 err
= ipv4_dst_blackhole(rp
, flp
, sk
);
2453 EXPORT_SYMBOL_GPL(ip_route_output_flow
);
2455 int ip_route_output_key(struct rtable
**rp
, struct flowi
*flp
)
2457 return ip_route_output_flow(rp
, flp
, NULL
, 0);
2460 static int rt_fill_info(struct sk_buff
*skb
, u32 pid
, u32 seq
, int event
,
2461 int nowait
, unsigned int flags
)
2463 struct rtable
*rt
= (struct rtable
*)skb
->dst
;
2465 struct nlmsghdr
*nlh
;
2467 u32 id
= 0, ts
= 0, tsage
= 0, error
;
2469 nlh
= nlmsg_put(skb
, pid
, seq
, event
, sizeof(*r
), flags
);
2473 r
= nlmsg_data(nlh
);
2474 r
->rtm_family
= AF_INET
;
2475 r
->rtm_dst_len
= 32;
2477 r
->rtm_tos
= rt
->fl
.fl4_tos
;
2478 r
->rtm_table
= RT_TABLE_MAIN
;
2479 NLA_PUT_U32(skb
, RTA_TABLE
, RT_TABLE_MAIN
);
2480 r
->rtm_type
= rt
->rt_type
;
2481 r
->rtm_scope
= RT_SCOPE_UNIVERSE
;
2482 r
->rtm_protocol
= RTPROT_UNSPEC
;
2483 r
->rtm_flags
= (rt
->rt_flags
& ~0xFFFF) | RTM_F_CLONED
;
2484 if (rt
->rt_flags
& RTCF_NOTIFY
)
2485 r
->rtm_flags
|= RTM_F_NOTIFY
;
2487 NLA_PUT_BE32(skb
, RTA_DST
, rt
->rt_dst
);
2489 if (rt
->fl
.fl4_src
) {
2490 r
->rtm_src_len
= 32;
2491 NLA_PUT_BE32(skb
, RTA_SRC
, rt
->fl
.fl4_src
);
2494 NLA_PUT_U32(skb
, RTA_OIF
, rt
->u
.dst
.dev
->ifindex
);
2495 #ifdef CONFIG_NET_CLS_ROUTE
2496 if (rt
->u
.dst
.tclassid
)
2497 NLA_PUT_U32(skb
, RTA_FLOW
, rt
->u
.dst
.tclassid
);
2500 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_spec_dst
);
2501 else if (rt
->rt_src
!= rt
->fl
.fl4_src
)
2502 NLA_PUT_BE32(skb
, RTA_PREFSRC
, rt
->rt_src
);
2504 if (rt
->rt_dst
!= rt
->rt_gateway
)
2505 NLA_PUT_BE32(skb
, RTA_GATEWAY
, rt
->rt_gateway
);
2507 if (rtnetlink_put_metrics(skb
, rt
->u
.dst
.metrics
) < 0)
2508 goto nla_put_failure
;
2510 error
= rt
->u
.dst
.error
;
2511 expires
= rt
->u
.dst
.expires
? rt
->u
.dst
.expires
- jiffies
: 0;
2513 id
= rt
->peer
->ip_id_count
;
2514 if (rt
->peer
->tcp_ts_stamp
) {
2515 ts
= rt
->peer
->tcp_ts
;
2516 tsage
= get_seconds() - rt
->peer
->tcp_ts_stamp
;
2521 #ifdef CONFIG_IP_MROUTE
2522 __be32 dst
= rt
->rt_dst
;
2524 if (MULTICAST(dst
) && !LOCAL_MCAST(dst
) &&
2525 IPV4_DEVCONF_ALL(MC_FORWARDING
)) {
2526 int err
= ipmr_get_route(skb
, r
, nowait
);
2531 goto nla_put_failure
;
2533 if (err
== -EMSGSIZE
)
2534 goto nla_put_failure
;
2540 NLA_PUT_U32(skb
, RTA_IIF
, rt
->fl
.iif
);
2543 if (rtnl_put_cacheinfo(skb
, &rt
->u
.dst
, id
, ts
, tsage
,
2544 expires
, error
) < 0)
2545 goto nla_put_failure
;
2547 return nlmsg_end(skb
, nlh
);
2550 nlmsg_cancel(skb
, nlh
);
2554 static int inet_rtm_getroute(struct sk_buff
*in_skb
, struct nlmsghdr
* nlh
, void *arg
)
2557 struct nlattr
*tb
[RTA_MAX
+1];
2558 struct rtable
*rt
= NULL
;
2563 struct sk_buff
*skb
;
2565 err
= nlmsg_parse(nlh
, sizeof(*rtm
), tb
, RTA_MAX
, rtm_ipv4_policy
);
2569 rtm
= nlmsg_data(nlh
);
2571 skb
= alloc_skb(NLMSG_GOODSIZE
, GFP_KERNEL
);
2577 /* Reserve room for dummy headers, this skb can pass
2578 through good chunk of routing engine.
2580 skb_reset_mac_header(skb
);
2581 skb_reset_network_header(skb
);
2583 /* Bugfix: need to give ip_route_input enough of an IP header to not gag. */
2584 ip_hdr(skb
)->protocol
= IPPROTO_ICMP
;
2585 skb_reserve(skb
, MAX_HEADER
+ sizeof(struct iphdr
));
2587 src
= tb
[RTA_SRC
] ? nla_get_be32(tb
[RTA_SRC
]) : 0;
2588 dst
= tb
[RTA_DST
] ? nla_get_be32(tb
[RTA_DST
]) : 0;
2589 iif
= tb
[RTA_IIF
] ? nla_get_u32(tb
[RTA_IIF
]) : 0;
2592 struct net_device
*dev
;
2594 dev
= __dev_get_by_index(iif
);
2600 skb
->protocol
= htons(ETH_P_IP
);
2603 err
= ip_route_input(skb
, dst
, src
, rtm
->rtm_tos
, dev
);
2606 rt
= (struct rtable
*) skb
->dst
;
2607 if (err
== 0 && rt
->u
.dst
.error
)
2608 err
= -rt
->u
.dst
.error
;
2615 .tos
= rtm
->rtm_tos
,
2618 .oif
= tb
[RTA_OIF
] ? nla_get_u32(tb
[RTA_OIF
]) : 0,
2620 err
= ip_route_output_key(&rt
, &fl
);
2626 skb
->dst
= &rt
->u
.dst
;
2627 if (rtm
->rtm_flags
& RTM_F_NOTIFY
)
2628 rt
->rt_flags
|= RTCF_NOTIFY
;
2630 err
= rt_fill_info(skb
, NETLINK_CB(in_skb
).pid
, nlh
->nlmsg_seq
,
2631 RTM_NEWROUTE
, 0, 0);
2635 err
= rtnl_unicast(skb
, NETLINK_CB(in_skb
).pid
);
2644 int ip_rt_dump(struct sk_buff
*skb
, struct netlink_callback
*cb
)
2651 s_idx
= idx
= cb
->args
[1];
2652 for (h
= 0; h
<= rt_hash_mask
; h
++) {
2653 if (h
< s_h
) continue;
2657 for (rt
= rcu_dereference(rt_hash_table
[h
].chain
), idx
= 0; rt
;
2658 rt
= rcu_dereference(rt
->u
.dst
.rt_next
), idx
++) {
2661 skb
->dst
= dst_clone(&rt
->u
.dst
);
2662 if (rt_fill_info(skb
, NETLINK_CB(cb
->skb
).pid
,
2663 cb
->nlh
->nlmsg_seq
, RTM_NEWROUTE
,
2664 1, NLM_F_MULTI
) <= 0) {
2665 dst_release(xchg(&skb
->dst
, NULL
));
2666 rcu_read_unlock_bh();
2669 dst_release(xchg(&skb
->dst
, NULL
));
2671 rcu_read_unlock_bh();
2680 void ip_rt_multicast_event(struct in_device
*in_dev
)
2685 #ifdef CONFIG_SYSCTL
2686 static int flush_delay
;
2688 static int ipv4_sysctl_rtcache_flush(ctl_table
*ctl
, int write
,
2689 struct file
*filp
, void __user
*buffer
,
2690 size_t *lenp
, loff_t
*ppos
)
2693 proc_dointvec(ctl
, write
, filp
, buffer
, lenp
, ppos
);
2694 rt_cache_flush(flush_delay
);
2701 static int ipv4_sysctl_rtcache_flush_strategy(ctl_table
*table
,
2704 void __user
*oldval
,
2705 size_t __user
*oldlenp
,
2706 void __user
*newval
,
2710 if (newlen
!= sizeof(int))
2712 if (get_user(delay
, (int __user
*)newval
))
2714 rt_cache_flush(delay
);
2718 ctl_table ipv4_route_table
[] = {
2720 .ctl_name
= NET_IPV4_ROUTE_FLUSH
,
2721 .procname
= "flush",
2722 .data
= &flush_delay
,
2723 .maxlen
= sizeof(int),
2725 .proc_handler
= &ipv4_sysctl_rtcache_flush
,
2726 .strategy
= &ipv4_sysctl_rtcache_flush_strategy
,
2729 .ctl_name
= NET_IPV4_ROUTE_MIN_DELAY
,
2730 .procname
= "min_delay",
2731 .data
= &ip_rt_min_delay
,
2732 .maxlen
= sizeof(int),
2734 .proc_handler
= &proc_dointvec_jiffies
,
2735 .strategy
= &sysctl_jiffies
,
2738 .ctl_name
= NET_IPV4_ROUTE_MAX_DELAY
,
2739 .procname
= "max_delay",
2740 .data
= &ip_rt_max_delay
,
2741 .maxlen
= sizeof(int),
2743 .proc_handler
= &proc_dointvec_jiffies
,
2744 .strategy
= &sysctl_jiffies
,
2747 .ctl_name
= NET_IPV4_ROUTE_GC_THRESH
,
2748 .procname
= "gc_thresh",
2749 .data
= &ipv4_dst_ops
.gc_thresh
,
2750 .maxlen
= sizeof(int),
2752 .proc_handler
= &proc_dointvec
,
2755 .ctl_name
= NET_IPV4_ROUTE_MAX_SIZE
,
2756 .procname
= "max_size",
2757 .data
= &ip_rt_max_size
,
2758 .maxlen
= sizeof(int),
2760 .proc_handler
= &proc_dointvec
,
2763 /* Deprecated. Use gc_min_interval_ms */
2765 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL
,
2766 .procname
= "gc_min_interval",
2767 .data
= &ip_rt_gc_min_interval
,
2768 .maxlen
= sizeof(int),
2770 .proc_handler
= &proc_dointvec_jiffies
,
2771 .strategy
= &sysctl_jiffies
,
2774 .ctl_name
= NET_IPV4_ROUTE_GC_MIN_INTERVAL_MS
,
2775 .procname
= "gc_min_interval_ms",
2776 .data
= &ip_rt_gc_min_interval
,
2777 .maxlen
= sizeof(int),
2779 .proc_handler
= &proc_dointvec_ms_jiffies
,
2780 .strategy
= &sysctl_ms_jiffies
,
2783 .ctl_name
= NET_IPV4_ROUTE_GC_TIMEOUT
,
2784 .procname
= "gc_timeout",
2785 .data
= &ip_rt_gc_timeout
,
2786 .maxlen
= sizeof(int),
2788 .proc_handler
= &proc_dointvec_jiffies
,
2789 .strategy
= &sysctl_jiffies
,
2792 .ctl_name
= NET_IPV4_ROUTE_GC_INTERVAL
,
2793 .procname
= "gc_interval",
2794 .data
= &ip_rt_gc_interval
,
2795 .maxlen
= sizeof(int),
2797 .proc_handler
= &proc_dointvec_jiffies
,
2798 .strategy
= &sysctl_jiffies
,
2801 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_LOAD
,
2802 .procname
= "redirect_load",
2803 .data
= &ip_rt_redirect_load
,
2804 .maxlen
= sizeof(int),
2806 .proc_handler
= &proc_dointvec
,
2809 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_NUMBER
,
2810 .procname
= "redirect_number",
2811 .data
= &ip_rt_redirect_number
,
2812 .maxlen
= sizeof(int),
2814 .proc_handler
= &proc_dointvec
,
2817 .ctl_name
= NET_IPV4_ROUTE_REDIRECT_SILENCE
,
2818 .procname
= "redirect_silence",
2819 .data
= &ip_rt_redirect_silence
,
2820 .maxlen
= sizeof(int),
2822 .proc_handler
= &proc_dointvec
,
2825 .ctl_name
= NET_IPV4_ROUTE_ERROR_COST
,
2826 .procname
= "error_cost",
2827 .data
= &ip_rt_error_cost
,
2828 .maxlen
= sizeof(int),
2830 .proc_handler
= &proc_dointvec
,
2833 .ctl_name
= NET_IPV4_ROUTE_ERROR_BURST
,
2834 .procname
= "error_burst",
2835 .data
= &ip_rt_error_burst
,
2836 .maxlen
= sizeof(int),
2838 .proc_handler
= &proc_dointvec
,
2841 .ctl_name
= NET_IPV4_ROUTE_GC_ELASTICITY
,
2842 .procname
= "gc_elasticity",
2843 .data
= &ip_rt_gc_elasticity
,
2844 .maxlen
= sizeof(int),
2846 .proc_handler
= &proc_dointvec
,
2849 .ctl_name
= NET_IPV4_ROUTE_MTU_EXPIRES
,
2850 .procname
= "mtu_expires",
2851 .data
= &ip_rt_mtu_expires
,
2852 .maxlen
= sizeof(int),
2854 .proc_handler
= &proc_dointvec_jiffies
,
2855 .strategy
= &sysctl_jiffies
,
2858 .ctl_name
= NET_IPV4_ROUTE_MIN_PMTU
,
2859 .procname
= "min_pmtu",
2860 .data
= &ip_rt_min_pmtu
,
2861 .maxlen
= sizeof(int),
2863 .proc_handler
= &proc_dointvec
,
2866 .ctl_name
= NET_IPV4_ROUTE_MIN_ADVMSS
,
2867 .procname
= "min_adv_mss",
2868 .data
= &ip_rt_min_advmss
,
2869 .maxlen
= sizeof(int),
2871 .proc_handler
= &proc_dointvec
,
2874 .ctl_name
= NET_IPV4_ROUTE_SECRET_INTERVAL
,
2875 .procname
= "secret_interval",
2876 .data
= &ip_rt_secret_interval
,
2877 .maxlen
= sizeof(int),
2879 .proc_handler
= &proc_dointvec_jiffies
,
2880 .strategy
= &sysctl_jiffies
,
2886 #ifdef CONFIG_NET_CLS_ROUTE
2887 struct ip_rt_acct
*ip_rt_acct
;
2889 /* This code sucks. But you should have seen it before! --RR */
2891 /* IP route accounting ptr for this logical cpu number. */
2892 #define IP_RT_ACCT_CPU(i) (ip_rt_acct + i * 256)
2894 #ifdef CONFIG_PROC_FS
2895 static int ip_rt_acct_read(char *buffer
, char **start
, off_t offset
,
2896 int length
, int *eof
, void *data
)
2900 if ((offset
& 3) || (length
& 3))
2903 if (offset
>= sizeof(struct ip_rt_acct
) * 256) {
2908 if (offset
+ length
>= sizeof(struct ip_rt_acct
) * 256) {
2909 length
= sizeof(struct ip_rt_acct
) * 256 - offset
;
2913 offset
/= sizeof(u32
);
2916 u32
*src
= ((u32
*) IP_RT_ACCT_CPU(0)) + offset
;
2917 u32
*dst
= (u32
*) buffer
;
2919 /* Copy first cpu. */
2921 memcpy(dst
, src
, length
);
2923 /* Add the other cpus in, one int at a time */
2924 for_each_possible_cpu(i
) {
2927 src
= ((u32
*) IP_RT_ACCT_CPU(i
)) + offset
;
2929 for (j
= 0; j
< length
/4; j
++)
2935 #endif /* CONFIG_PROC_FS */
2936 #endif /* CONFIG_NET_CLS_ROUTE */
2938 static __initdata
unsigned long rhash_entries
;
2939 static int __init
set_rhash_entries(char *str
)
2943 rhash_entries
= simple_strtoul(str
, &str
, 0);
2946 __setup("rhash_entries=", set_rhash_entries
);
2948 int __init
ip_rt_init(void)
2952 rt_hash_rnd
= (int) ((num_physpages
^ (num_physpages
>>8)) ^
2953 (jiffies
^ (jiffies
>> 7)));
2955 #ifdef CONFIG_NET_CLS_ROUTE
2959 (PAGE_SIZE
<< order
) < 256 * sizeof(struct ip_rt_acct
) * NR_CPUS
; order
++)
2961 ip_rt_acct
= (struct ip_rt_acct
*)__get_free_pages(GFP_KERNEL
, order
);
2963 panic("IP: failed to allocate ip_rt_acct\n");
2964 memset(ip_rt_acct
, 0, PAGE_SIZE
<< order
);
2968 ipv4_dst_ops
.kmem_cachep
=
2969 kmem_cache_create("ip_dst_cache", sizeof(struct rtable
), 0,
2970 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2972 ipv4_dst_blackhole_ops
.kmem_cachep
= ipv4_dst_ops
.kmem_cachep
;
2974 rt_hash_table
= (struct rt_hash_bucket
*)
2975 alloc_large_system_hash("IP route cache",
2976 sizeof(struct rt_hash_bucket
),
2978 (num_physpages
>= 128 * 1024) ?
2984 memset(rt_hash_table
, 0, (rt_hash_mask
+ 1) * sizeof(struct rt_hash_bucket
));
2985 rt_hash_lock_init();
2987 ipv4_dst_ops
.gc_thresh
= (rt_hash_mask
+ 1);
2988 ip_rt_max_size
= (rt_hash_mask
+ 1) * 16;
2993 init_timer(&rt_flush_timer
);
2994 rt_flush_timer
.function
= rt_run_flush
;
2995 init_timer(&rt_periodic_timer
);
2996 rt_periodic_timer
.function
= rt_check_expire
;
2997 init_timer(&rt_secret_timer
);
2998 rt_secret_timer
.function
= rt_secret_rebuild
;
3000 /* All the timers, started at system startup tend
3001 to synchronize. Perturb it a bit.
3003 rt_periodic_timer
.expires
= jiffies
+ net_random() % ip_rt_gc_interval
+
3005 add_timer(&rt_periodic_timer
);
3007 rt_secret_timer
.expires
= jiffies
+ net_random() % ip_rt_secret_interval
+
3008 ip_rt_secret_interval
;
3009 add_timer(&rt_secret_timer
);
3011 #ifdef CONFIG_PROC_FS
3013 struct proc_dir_entry
*rtstat_pde
= NULL
; /* keep gcc happy */
3014 if (!proc_net_fops_create("rt_cache", S_IRUGO
, &rt_cache_seq_fops
) ||
3015 !(rtstat_pde
= create_proc_entry("rt_cache", S_IRUGO
,
3019 rtstat_pde
->proc_fops
= &rt_cpu_seq_fops
;
3021 #ifdef CONFIG_NET_CLS_ROUTE
3022 create_proc_read_entry("rt_acct", 0, proc_net
, ip_rt_acct_read
, NULL
);
3029 rtnl_register(PF_INET
, RTM_GETROUTE
, inet_rtm_getroute
, NULL
);
3034 EXPORT_SYMBOL(__ip_select_ident
);
3035 EXPORT_SYMBOL(ip_route_input
);
3036 EXPORT_SYMBOL(ip_route_output_key
);