2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
33 * SLAB caches for signal bits.
36 static kmem_cache_t
*sigqueue_cachep
;
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
113 #define M_SIGEMT M(SIGEMT)
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
121 #define M(sig) (1UL << ((sig)-1))
123 #define T(sig, mask) (M(sig) & (mask))
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct
*t
, int sig
)
160 void __user
* handler
;
163 * Tracers always want to know about signals..
165 if (t
->ptrace
& PT_PTRACED
)
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
173 if (sigismember(&t
->blocked
, sig
))
176 /* Is it explicitly or implicitly ignored? */
177 handler
= t
->sighand
->action
[sig
-1].sa
.sa_handler
;
178 return handler
== SIG_IGN
||
179 (handler
== SIG_DFL
&& sig_kernel_ignore(sig
));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t
*signal
, sigset_t
*blocked
)
191 switch (_NSIG_WORDS
) {
193 for (i
= _NSIG_WORDS
, ready
= 0; --i
>= 0 ;)
194 ready
|= signal
->sig
[i
] &~ blocked
->sig
[i
];
197 case 4: ready
= signal
->sig
[3] &~ blocked
->sig
[3];
198 ready
|= signal
->sig
[2] &~ blocked
->sig
[2];
199 ready
|= signal
->sig
[1] &~ blocked
->sig
[1];
200 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
203 case 2: ready
= signal
->sig
[1] &~ blocked
->sig
[1];
204 ready
|= signal
->sig
[0] &~ blocked
->sig
[0];
207 case 1: ready
= signal
->sig
[0] &~ blocked
->sig
[0];
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall
void recalc_sigpending_tsk(struct task_struct
*t
)
216 if (t
->signal
->group_stop_count
> 0 ||
218 PENDING(&t
->pending
, &t
->blocked
) ||
219 PENDING(&t
->signal
->shared_pending
, &t
->blocked
))
220 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
222 clear_tsk_thread_flag(t
, TIF_SIGPENDING
);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current
);
230 /* Given the mask, find the first available signal that should be serviced. */
233 next_signal(struct sigpending
*pending
, sigset_t
*mask
)
235 unsigned long i
, *s
, *m
, x
;
238 s
= pending
->signal
.sig
;
240 switch (_NSIG_WORDS
) {
242 for (i
= 0; i
< _NSIG_WORDS
; ++i
, ++s
, ++m
)
243 if ((x
= *s
&~ *m
) != 0) {
244 sig
= ffz(~x
) + i
*_NSIG_BPW
+ 1;
249 case 2: if ((x
= s
[0] &~ m
[0]) != 0)
251 else if ((x
= s
[1] &~ m
[1]) != 0)
258 case 1: if ((x
= *s
&~ *m
) != 0)
266 static struct sigqueue
*__sigqueue_alloc(struct task_struct
*t
, gfp_t flags
,
269 struct sigqueue
*q
= NULL
;
271 atomic_inc(&t
->user
->sigpending
);
272 if (override_rlimit
||
273 atomic_read(&t
->user
->sigpending
) <=
274 t
->signal
->rlim
[RLIMIT_SIGPENDING
].rlim_cur
)
275 q
= kmem_cache_alloc(sigqueue_cachep
, flags
);
276 if (unlikely(q
== NULL
)) {
277 atomic_dec(&t
->user
->sigpending
);
279 INIT_LIST_HEAD(&q
->list
);
281 q
->user
= get_uid(t
->user
);
286 static void __sigqueue_free(struct sigqueue
*q
)
288 if (q
->flags
& SIGQUEUE_PREALLOC
)
290 atomic_dec(&q
->user
->sigpending
);
292 kmem_cache_free(sigqueue_cachep
, q
);
295 void flush_sigqueue(struct sigpending
*queue
)
299 sigemptyset(&queue
->signal
);
300 while (!list_empty(&queue
->list
)) {
301 q
= list_entry(queue
->list
.next
, struct sigqueue
, list
);
302 list_del_init(&q
->list
);
308 * Flush all pending signals for a task.
310 void flush_signals(struct task_struct
*t
)
314 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
315 clear_tsk_thread_flag(t
,TIF_SIGPENDING
);
316 flush_sigqueue(&t
->pending
);
317 flush_sigqueue(&t
->signal
->shared_pending
);
318 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
322 * Flush all handlers for a task.
326 flush_signal_handlers(struct task_struct
*t
, int force_default
)
329 struct k_sigaction
*ka
= &t
->sighand
->action
[0];
330 for (i
= _NSIG
; i
!= 0 ; i
--) {
331 if (force_default
|| ka
->sa
.sa_handler
!= SIG_IGN
)
332 ka
->sa
.sa_handler
= SIG_DFL
;
334 sigemptyset(&ka
->sa
.sa_mask
);
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
349 block_all_signals(int (*notifier
)(void *priv
), void *priv
, sigset_t
*mask
)
353 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
354 current
->notifier_mask
= mask
;
355 current
->notifier_data
= priv
;
356 current
->notifier
= notifier
;
357 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
360 /* Notify the system that blocking has ended. */
363 unblock_all_signals(void)
367 spin_lock_irqsave(¤t
->sighand
->siglock
, flags
);
368 current
->notifier
= NULL
;
369 current
->notifier_data
= NULL
;
371 spin_unlock_irqrestore(¤t
->sighand
->siglock
, flags
);
374 static int collect_signal(int sig
, struct sigpending
*list
, siginfo_t
*info
)
376 struct sigqueue
*q
, *first
= NULL
;
377 int still_pending
= 0;
379 if (unlikely(!sigismember(&list
->signal
, sig
)))
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
386 list_for_each_entry(q
, &list
->list
, list
) {
387 if (q
->info
.si_signo
== sig
) {
396 list_del_init(&first
->list
);
397 copy_siginfo(info
, &first
->info
);
398 __sigqueue_free(first
);
400 sigdelset(&list
->signal
, sig
);
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
407 sigdelset(&list
->signal
, sig
);
408 info
->si_signo
= sig
;
417 static int __dequeue_signal(struct sigpending
*pending
, sigset_t
*mask
,
422 sig
= next_signal(pending
, mask
);
424 if (current
->notifier
) {
425 if (sigismember(current
->notifier_mask
, sig
)) {
426 if (!(current
->notifier
)(current
->notifier_data
)) {
427 clear_thread_flag(TIF_SIGPENDING
);
433 if (!collect_signal(sig
, pending
, info
))
443 * Dequeue a signal and return the element to the caller, which is
444 * expected to free it.
446 * All callers have to hold the siglock.
448 int dequeue_signal(struct task_struct
*tsk
, sigset_t
*mask
, siginfo_t
*info
)
450 int signr
= __dequeue_signal(&tsk
->pending
, mask
, info
);
452 signr
= __dequeue_signal(&tsk
->signal
->shared_pending
,
454 if (signr
&& unlikely(sig_kernel_stop(signr
))) {
456 * Set a marker that we have dequeued a stop signal. Our
457 * caller might release the siglock and then the pending
458 * stop signal it is about to process is no longer in the
459 * pending bitmasks, but must still be cleared by a SIGCONT
460 * (and overruled by a SIGKILL). So those cases clear this
461 * shared flag after we've set it. Note that this flag may
462 * remain set after the signal we return is ignored or
463 * handled. That doesn't matter because its only purpose
464 * is to alert stop-signal processing code when another
465 * processor has come along and cleared the flag.
467 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_EXIT
))
468 tsk
->signal
->flags
|= SIGNAL_STOP_DEQUEUED
;
471 ((info
->si_code
& __SI_MASK
) == __SI_TIMER
) &&
472 info
->si_sys_private
){
474 * Release the siglock to ensure proper locking order
475 * of timer locks outside of siglocks. Note, we leave
476 * irqs disabled here, since the posix-timers code is
477 * about to disable them again anyway.
479 spin_unlock(&tsk
->sighand
->siglock
);
480 do_schedule_next_timer(info
);
481 spin_lock(&tsk
->sighand
->siglock
);
487 * Tell a process that it has a new active signal..
489 * NOTE! we rely on the previous spin_lock to
490 * lock interrupts for us! We can only be called with
491 * "siglock" held, and the local interrupt must
492 * have been disabled when that got acquired!
494 * No need to set need_resched since signal event passing
495 * goes through ->blocked
497 void signal_wake_up(struct task_struct
*t
, int resume
)
501 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
504 * For SIGKILL, we want to wake it up in the stopped/traced case.
505 * We don't check t->state here because there is a race with it
506 * executing another processor and just now entering stopped state.
507 * By using wake_up_state, we ensure the process will wake up and
508 * handle its death signal.
510 mask
= TASK_INTERRUPTIBLE
;
512 mask
|= TASK_STOPPED
| TASK_TRACED
;
513 if (!wake_up_state(t
, mask
))
518 * Remove signals in mask from the pending set and queue.
519 * Returns 1 if any signals were found.
521 * All callers must be holding the siglock.
523 * This version takes a sigset mask and looks at all signals,
524 * not just those in the first mask word.
526 static int rm_from_queue_full(sigset_t
*mask
, struct sigpending
*s
)
528 struct sigqueue
*q
, *n
;
531 sigandsets(&m
, mask
, &s
->signal
);
532 if (sigisemptyset(&m
))
535 signandsets(&s
->signal
, &s
->signal
, mask
);
536 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
537 if (sigismember(mask
, q
->info
.si_signo
)) {
538 list_del_init(&q
->list
);
545 * Remove signals in mask from the pending set and queue.
546 * Returns 1 if any signals were found.
548 * All callers must be holding the siglock.
550 static int rm_from_queue(unsigned long mask
, struct sigpending
*s
)
552 struct sigqueue
*q
, *n
;
554 if (!sigtestsetmask(&s
->signal
, mask
))
557 sigdelsetmask(&s
->signal
, mask
);
558 list_for_each_entry_safe(q
, n
, &s
->list
, list
) {
559 if (q
->info
.si_signo
< SIGRTMIN
&&
560 (mask
& sigmask(q
->info
.si_signo
))) {
561 list_del_init(&q
->list
);
569 * Bad permissions for sending the signal
571 static int check_kill_permission(int sig
, struct siginfo
*info
,
572 struct task_struct
*t
)
575 if (!valid_signal(sig
))
578 if ((info
== SEND_SIG_NOINFO
|| (!is_si_special(info
) && SI_FROMUSER(info
)))
579 && ((sig
!= SIGCONT
) ||
580 (current
->signal
->session
!= t
->signal
->session
))
581 && (current
->euid
^ t
->suid
) && (current
->euid
^ t
->uid
)
582 && (current
->uid
^ t
->suid
) && (current
->uid
^ t
->uid
)
583 && !capable(CAP_KILL
))
586 error
= security_task_kill(t
, info
, sig
, 0);
588 audit_signal_info(sig
, t
); /* Let audit system see the signal */
593 static void do_notify_parent_cldstop(struct task_struct
*tsk
, int why
);
596 * Handle magic process-wide effects of stop/continue signals.
597 * Unlike the signal actions, these happen immediately at signal-generation
598 * time regardless of blocking, ignoring, or handling. This does the
599 * actual continuing for SIGCONT, but not the actual stopping for stop
600 * signals. The process stop is done as a signal action for SIG_DFL.
602 static void handle_stop_signal(int sig
, struct task_struct
*p
)
604 struct task_struct
*t
;
606 if (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
608 * The process is in the middle of dying already.
612 if (sig_kernel_stop(sig
)) {
614 * This is a stop signal. Remove SIGCONT from all queues.
616 rm_from_queue(sigmask(SIGCONT
), &p
->signal
->shared_pending
);
619 rm_from_queue(sigmask(SIGCONT
), &t
->pending
);
622 } else if (sig
== SIGCONT
) {
624 * Remove all stop signals from all queues,
625 * and wake all threads.
627 if (unlikely(p
->signal
->group_stop_count
> 0)) {
629 * There was a group stop in progress. We'll
630 * pretend it finished before we got here. We are
631 * obliged to report it to the parent: if the
632 * SIGSTOP happened "after" this SIGCONT, then it
633 * would have cleared this pending SIGCONT. If it
634 * happened "before" this SIGCONT, then the parent
635 * got the SIGCHLD about the stop finishing before
636 * the continue happened. We do the notification
637 * now, and it's as if the stop had finished and
638 * the SIGCHLD was pending on entry to this kill.
640 p
->signal
->group_stop_count
= 0;
641 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
642 spin_unlock(&p
->sighand
->siglock
);
643 do_notify_parent_cldstop(p
, CLD_STOPPED
);
644 spin_lock(&p
->sighand
->siglock
);
646 rm_from_queue(SIG_KERNEL_STOP_MASK
, &p
->signal
->shared_pending
);
650 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
653 * If there is a handler for SIGCONT, we must make
654 * sure that no thread returns to user mode before
655 * we post the signal, in case it was the only
656 * thread eligible to run the signal handler--then
657 * it must not do anything between resuming and
658 * running the handler. With the TIF_SIGPENDING
659 * flag set, the thread will pause and acquire the
660 * siglock that we hold now and until we've queued
661 * the pending signal.
663 * Wake up the stopped thread _after_ setting
666 state
= TASK_STOPPED
;
667 if (sig_user_defined(t
, SIGCONT
) && !sigismember(&t
->blocked
, SIGCONT
)) {
668 set_tsk_thread_flag(t
, TIF_SIGPENDING
);
669 state
|= TASK_INTERRUPTIBLE
;
671 wake_up_state(t
, state
);
676 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
) {
678 * We were in fact stopped, and are now continued.
679 * Notify the parent with CLD_CONTINUED.
681 p
->signal
->flags
= SIGNAL_STOP_CONTINUED
;
682 p
->signal
->group_exit_code
= 0;
683 spin_unlock(&p
->sighand
->siglock
);
684 do_notify_parent_cldstop(p
, CLD_CONTINUED
);
685 spin_lock(&p
->sighand
->siglock
);
688 * We are not stopped, but there could be a stop
689 * signal in the middle of being processed after
690 * being removed from the queue. Clear that too.
692 p
->signal
->flags
= 0;
694 } else if (sig
== SIGKILL
) {
696 * Make sure that any pending stop signal already dequeued
697 * is undone by the wakeup for SIGKILL.
699 p
->signal
->flags
= 0;
703 static int send_signal(int sig
, struct siginfo
*info
, struct task_struct
*t
,
704 struct sigpending
*signals
)
706 struct sigqueue
* q
= NULL
;
710 * fast-pathed signals for kernel-internal things like SIGSTOP
713 if (info
== SEND_SIG_FORCED
)
716 /* Real-time signals must be queued if sent by sigqueue, or
717 some other real-time mechanism. It is implementation
718 defined whether kill() does so. We attempt to do so, on
719 the principle of least surprise, but since kill is not
720 allowed to fail with EAGAIN when low on memory we just
721 make sure at least one signal gets delivered and don't
722 pass on the info struct. */
724 q
= __sigqueue_alloc(t
, GFP_ATOMIC
, (sig
< SIGRTMIN
&&
725 (is_si_special(info
) ||
726 info
->si_code
>= 0)));
728 list_add_tail(&q
->list
, &signals
->list
);
729 switch ((unsigned long) info
) {
730 case (unsigned long) SEND_SIG_NOINFO
:
731 q
->info
.si_signo
= sig
;
732 q
->info
.si_errno
= 0;
733 q
->info
.si_code
= SI_USER
;
734 q
->info
.si_pid
= current
->pid
;
735 q
->info
.si_uid
= current
->uid
;
737 case (unsigned long) SEND_SIG_PRIV
:
738 q
->info
.si_signo
= sig
;
739 q
->info
.si_errno
= 0;
740 q
->info
.si_code
= SI_KERNEL
;
745 copy_siginfo(&q
->info
, info
);
748 } else if (!is_si_special(info
)) {
749 if (sig
>= SIGRTMIN
&& info
->si_code
!= SI_USER
)
751 * Queue overflow, abort. We may abort if the signal was rt
752 * and sent by user using something other than kill().
758 sigaddset(&signals
->signal
, sig
);
762 #define LEGACY_QUEUE(sigptr, sig) \
763 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
767 specific_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
771 BUG_ON(!irqs_disabled());
772 assert_spin_locked(&t
->sighand
->siglock
);
774 /* Short-circuit ignored signals. */
775 if (sig_ignored(t
, sig
))
778 /* Support queueing exactly one non-rt signal, so that we
779 can get more detailed information about the cause of
781 if (LEGACY_QUEUE(&t
->pending
, sig
))
784 ret
= send_signal(sig
, info
, t
, &t
->pending
);
785 if (!ret
&& !sigismember(&t
->blocked
, sig
))
786 signal_wake_up(t
, sig
== SIGKILL
);
792 * Force a signal that the process can't ignore: if necessary
793 * we unblock the signal and change any SIG_IGN to SIG_DFL.
795 * Note: If we unblock the signal, we always reset it to SIG_DFL,
796 * since we do not want to have a signal handler that was blocked
797 * be invoked when user space had explicitly blocked it.
799 * We don't want to have recursive SIGSEGV's etc, for example.
802 force_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*t
)
804 unsigned long int flags
;
805 int ret
, blocked
, ignored
;
806 struct k_sigaction
*action
;
808 spin_lock_irqsave(&t
->sighand
->siglock
, flags
);
809 action
= &t
->sighand
->action
[sig
-1];
810 ignored
= action
->sa
.sa_handler
== SIG_IGN
;
811 blocked
= sigismember(&t
->blocked
, sig
);
812 if (blocked
|| ignored
) {
813 action
->sa
.sa_handler
= SIG_DFL
;
815 sigdelset(&t
->blocked
, sig
);
816 recalc_sigpending_tsk(t
);
819 ret
= specific_send_sig_info(sig
, info
, t
);
820 spin_unlock_irqrestore(&t
->sighand
->siglock
, flags
);
826 force_sig_specific(int sig
, struct task_struct
*t
)
828 force_sig_info(sig
, SEND_SIG_FORCED
, t
);
832 * Test if P wants to take SIG. After we've checked all threads with this,
833 * it's equivalent to finding no threads not blocking SIG. Any threads not
834 * blocking SIG were ruled out because they are not running and already
835 * have pending signals. Such threads will dequeue from the shared queue
836 * as soon as they're available, so putting the signal on the shared queue
837 * will be equivalent to sending it to one such thread.
839 static inline int wants_signal(int sig
, struct task_struct
*p
)
841 if (sigismember(&p
->blocked
, sig
))
843 if (p
->flags
& PF_EXITING
)
847 if (p
->state
& (TASK_STOPPED
| TASK_TRACED
))
849 return task_curr(p
) || !signal_pending(p
);
853 __group_complete_signal(int sig
, struct task_struct
*p
)
855 struct task_struct
*t
;
858 * Now find a thread we can wake up to take the signal off the queue.
860 * If the main thread wants the signal, it gets first crack.
861 * Probably the least surprising to the average bear.
863 if (wants_signal(sig
, p
))
865 else if (thread_group_empty(p
))
867 * There is just one thread and it does not need to be woken.
868 * It will dequeue unblocked signals before it runs again.
873 * Otherwise try to find a suitable thread.
875 t
= p
->signal
->curr_target
;
877 /* restart balancing at this thread */
878 t
= p
->signal
->curr_target
= p
;
880 while (!wants_signal(sig
, t
)) {
882 if (t
== p
->signal
->curr_target
)
884 * No thread needs to be woken.
885 * Any eligible threads will see
886 * the signal in the queue soon.
890 p
->signal
->curr_target
= t
;
894 * Found a killable thread. If the signal will be fatal,
895 * then start taking the whole group down immediately.
897 if (sig_fatal(p
, sig
) && !(p
->signal
->flags
& SIGNAL_GROUP_EXIT
) &&
898 !sigismember(&t
->real_blocked
, sig
) &&
899 (sig
== SIGKILL
|| !(t
->ptrace
& PT_PTRACED
))) {
901 * This signal will be fatal to the whole group.
903 if (!sig_kernel_coredump(sig
)) {
905 * Start a group exit and wake everybody up.
906 * This way we don't have other threads
907 * running and doing things after a slower
908 * thread has the fatal signal pending.
910 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
911 p
->signal
->group_exit_code
= sig
;
912 p
->signal
->group_stop_count
= 0;
915 sigaddset(&t
->pending
.signal
, SIGKILL
);
916 signal_wake_up(t
, 1);
923 * There will be a core dump. We make all threads other
924 * than the chosen one go into a group stop so that nothing
925 * happens until it gets scheduled, takes the signal off
926 * the shared queue, and does the core dump. This is a
927 * little more complicated than strictly necessary, but it
928 * keeps the signal state that winds up in the core dump
929 * unchanged from the death state, e.g. which thread had
930 * the core-dump signal unblocked.
932 rm_from_queue(SIG_KERNEL_STOP_MASK
, &t
->pending
);
933 rm_from_queue(SIG_KERNEL_STOP_MASK
, &p
->signal
->shared_pending
);
934 p
->signal
->group_stop_count
= 0;
935 p
->signal
->group_exit_task
= t
;
938 p
->signal
->group_stop_count
++;
939 signal_wake_up(t
, 0);
942 wake_up_process(p
->signal
->group_exit_task
);
947 * The signal is already in the shared-pending queue.
948 * Tell the chosen thread to wake up and dequeue it.
950 signal_wake_up(t
, sig
== SIGKILL
);
955 __group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
959 assert_spin_locked(&p
->sighand
->siglock
);
960 handle_stop_signal(sig
, p
);
962 /* Short-circuit ignored signals. */
963 if (sig_ignored(p
, sig
))
966 if (LEGACY_QUEUE(&p
->signal
->shared_pending
, sig
))
967 /* This is a non-RT signal and we already have one queued. */
971 * Put this signal on the shared-pending queue, or fail with EAGAIN.
972 * We always use the shared queue for process-wide signals,
973 * to avoid several races.
975 ret
= send_signal(sig
, info
, p
, &p
->signal
->shared_pending
);
979 __group_complete_signal(sig
, p
);
984 * Nuke all other threads in the group.
986 void zap_other_threads(struct task_struct
*p
)
988 struct task_struct
*t
;
990 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
991 p
->signal
->group_stop_count
= 0;
993 if (thread_group_empty(p
))
996 for (t
= next_thread(p
); t
!= p
; t
= next_thread(t
)) {
998 * Don't bother with already dead threads
1004 * We don't want to notify the parent, since we are
1005 * killed as part of a thread group due to another
1006 * thread doing an execve() or similar. So set the
1007 * exit signal to -1 to allow immediate reaping of
1008 * the process. But don't detach the thread group
1011 if (t
!= p
->group_leader
)
1012 t
->exit_signal
= -1;
1014 /* SIGKILL will be handled before any pending SIGSTOP */
1015 sigaddset(&t
->pending
.signal
, SIGKILL
);
1016 signal_wake_up(t
, 1);
1021 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1023 struct sighand_struct
*lock_task_sighand(struct task_struct
*tsk
, unsigned long *flags
)
1025 struct sighand_struct
*sighand
;
1028 sighand
= rcu_dereference(tsk
->sighand
);
1029 if (unlikely(sighand
== NULL
))
1032 spin_lock_irqsave(&sighand
->siglock
, *flags
);
1033 if (likely(sighand
== tsk
->sighand
))
1035 spin_unlock_irqrestore(&sighand
->siglock
, *flags
);
1041 int group_send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1043 unsigned long flags
;
1046 ret
= check_kill_permission(sig
, info
, p
);
1050 if (lock_task_sighand(p
, &flags
)) {
1051 ret
= __group_send_sig_info(sig
, info
, p
);
1052 unlock_task_sighand(p
, &flags
);
1060 * kill_pg_info() sends a signal to a process group: this is what the tty
1061 * control characters do (^C, ^Z etc)
1064 int __kill_pg_info(int sig
, struct siginfo
*info
, pid_t pgrp
)
1066 struct task_struct
*p
= NULL
;
1067 int retval
, success
;
1074 do_each_task_pid(pgrp
, PIDTYPE_PGID
, p
) {
1075 int err
= group_send_sig_info(sig
, info
, p
);
1078 } while_each_task_pid(pgrp
, PIDTYPE_PGID
, p
);
1079 return success
? 0 : retval
;
1083 kill_pg_info(int sig
, struct siginfo
*info
, pid_t pgrp
)
1087 read_lock(&tasklist_lock
);
1088 retval
= __kill_pg_info(sig
, info
, pgrp
);
1089 read_unlock(&tasklist_lock
);
1095 kill_proc_info(int sig
, struct siginfo
*info
, pid_t pid
)
1098 int acquired_tasklist_lock
= 0;
1099 struct task_struct
*p
;
1102 if (unlikely(sig_needs_tasklist(sig
))) {
1103 read_lock(&tasklist_lock
);
1104 acquired_tasklist_lock
= 1;
1106 p
= find_task_by_pid(pid
);
1109 error
= group_send_sig_info(sig
, info
, p
);
1110 if (unlikely(acquired_tasklist_lock
))
1111 read_unlock(&tasklist_lock
);
1116 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1117 int kill_proc_info_as_uid(int sig
, struct siginfo
*info
, pid_t pid
,
1118 uid_t uid
, uid_t euid
, u32 secid
)
1121 struct task_struct
*p
;
1123 if (!valid_signal(sig
))
1126 read_lock(&tasklist_lock
);
1127 p
= find_task_by_pid(pid
);
1132 if ((info
== SEND_SIG_NOINFO
|| (!is_si_special(info
) && SI_FROMUSER(info
)))
1133 && (euid
!= p
->suid
) && (euid
!= p
->uid
)
1134 && (uid
!= p
->suid
) && (uid
!= p
->uid
)) {
1138 ret
= security_task_kill(p
, info
, sig
, secid
);
1141 if (sig
&& p
->sighand
) {
1142 unsigned long flags
;
1143 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1144 ret
= __group_send_sig_info(sig
, info
, p
);
1145 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1148 read_unlock(&tasklist_lock
);
1151 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid
);
1154 * kill_something_info() interprets pid in interesting ways just like kill(2).
1156 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1157 * is probably wrong. Should make it like BSD or SYSV.
1160 static int kill_something_info(int sig
, struct siginfo
*info
, int pid
)
1163 return kill_pg_info(sig
, info
, process_group(current
));
1164 } else if (pid
== -1) {
1165 int retval
= 0, count
= 0;
1166 struct task_struct
* p
;
1168 read_lock(&tasklist_lock
);
1169 for_each_process(p
) {
1170 if (p
->pid
> 1 && p
->tgid
!= current
->tgid
) {
1171 int err
= group_send_sig_info(sig
, info
, p
);
1177 read_unlock(&tasklist_lock
);
1178 return count
? retval
: -ESRCH
;
1179 } else if (pid
< 0) {
1180 return kill_pg_info(sig
, info
, -pid
);
1182 return kill_proc_info(sig
, info
, pid
);
1187 * These are for backward compatibility with the rest of the kernel source.
1191 * These two are the most common entry points. They send a signal
1192 * just to the specific thread.
1195 send_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1198 unsigned long flags
;
1201 * Make sure legacy kernel users don't send in bad values
1202 * (normal paths check this in check_kill_permission).
1204 if (!valid_signal(sig
))
1208 * We need the tasklist lock even for the specific
1209 * thread case (when we don't need to follow the group
1210 * lists) in order to avoid races with "p->sighand"
1211 * going away or changing from under us.
1213 read_lock(&tasklist_lock
);
1214 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1215 ret
= specific_send_sig_info(sig
, info
, p
);
1216 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1217 read_unlock(&tasklist_lock
);
1221 #define __si_special(priv) \
1222 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1225 send_sig(int sig
, struct task_struct
*p
, int priv
)
1227 return send_sig_info(sig
, __si_special(priv
), p
);
1231 * This is the entry point for "process-wide" signals.
1232 * They will go to an appropriate thread in the thread group.
1235 send_group_sig_info(int sig
, struct siginfo
*info
, struct task_struct
*p
)
1238 read_lock(&tasklist_lock
);
1239 ret
= group_send_sig_info(sig
, info
, p
);
1240 read_unlock(&tasklist_lock
);
1245 force_sig(int sig
, struct task_struct
*p
)
1247 force_sig_info(sig
, SEND_SIG_PRIV
, p
);
1251 * When things go south during signal handling, we
1252 * will force a SIGSEGV. And if the signal that caused
1253 * the problem was already a SIGSEGV, we'll want to
1254 * make sure we don't even try to deliver the signal..
1257 force_sigsegv(int sig
, struct task_struct
*p
)
1259 if (sig
== SIGSEGV
) {
1260 unsigned long flags
;
1261 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1262 p
->sighand
->action
[sig
- 1].sa
.sa_handler
= SIG_DFL
;
1263 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1265 force_sig(SIGSEGV
, p
);
1270 kill_pg(pid_t pgrp
, int sig
, int priv
)
1272 return kill_pg_info(sig
, __si_special(priv
), pgrp
);
1276 kill_proc(pid_t pid
, int sig
, int priv
)
1278 return kill_proc_info(sig
, __si_special(priv
), pid
);
1282 * These functions support sending signals using preallocated sigqueue
1283 * structures. This is needed "because realtime applications cannot
1284 * afford to lose notifications of asynchronous events, like timer
1285 * expirations or I/O completions". In the case of Posix Timers
1286 * we allocate the sigqueue structure from the timer_create. If this
1287 * allocation fails we are able to report the failure to the application
1288 * with an EAGAIN error.
1291 struct sigqueue
*sigqueue_alloc(void)
1295 if ((q
= __sigqueue_alloc(current
, GFP_KERNEL
, 0)))
1296 q
->flags
|= SIGQUEUE_PREALLOC
;
1300 void sigqueue_free(struct sigqueue
*q
)
1302 unsigned long flags
;
1303 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1305 * If the signal is still pending remove it from the
1308 if (unlikely(!list_empty(&q
->list
))) {
1309 spinlock_t
*lock
= ¤t
->sighand
->siglock
;
1310 read_lock(&tasklist_lock
);
1311 spin_lock_irqsave(lock
, flags
);
1312 if (!list_empty(&q
->list
))
1313 list_del_init(&q
->list
);
1314 spin_unlock_irqrestore(lock
, flags
);
1315 read_unlock(&tasklist_lock
);
1317 q
->flags
&= ~SIGQUEUE_PREALLOC
;
1321 int send_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1323 unsigned long flags
;
1326 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1329 * The rcu based delayed sighand destroy makes it possible to
1330 * run this without tasklist lock held. The task struct itself
1331 * cannot go away as create_timer did get_task_struct().
1333 * We return -1, when the task is marked exiting, so
1334 * posix_timer_event can redirect it to the group leader
1338 if (!likely(lock_task_sighand(p
, &flags
))) {
1343 if (unlikely(!list_empty(&q
->list
))) {
1345 * If an SI_TIMER entry is already queue just increment
1346 * the overrun count.
1348 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1349 q
->info
.si_overrun
++;
1352 /* Short-circuit ignored signals. */
1353 if (sig_ignored(p
, sig
)) {
1358 list_add_tail(&q
->list
, &p
->pending
.list
);
1359 sigaddset(&p
->pending
.signal
, sig
);
1360 if (!sigismember(&p
->blocked
, sig
))
1361 signal_wake_up(p
, sig
== SIGKILL
);
1364 unlock_task_sighand(p
, &flags
);
1372 send_group_sigqueue(int sig
, struct sigqueue
*q
, struct task_struct
*p
)
1374 unsigned long flags
;
1377 BUG_ON(!(q
->flags
& SIGQUEUE_PREALLOC
));
1379 read_lock(&tasklist_lock
);
1380 /* Since it_lock is held, p->sighand cannot be NULL. */
1381 spin_lock_irqsave(&p
->sighand
->siglock
, flags
);
1382 handle_stop_signal(sig
, p
);
1384 /* Short-circuit ignored signals. */
1385 if (sig_ignored(p
, sig
)) {
1390 if (unlikely(!list_empty(&q
->list
))) {
1392 * If an SI_TIMER entry is already queue just increment
1393 * the overrun count. Other uses should not try to
1394 * send the signal multiple times.
1396 BUG_ON(q
->info
.si_code
!= SI_TIMER
);
1397 q
->info
.si_overrun
++;
1402 * Put this signal on the shared-pending queue.
1403 * We always use the shared queue for process-wide signals,
1404 * to avoid several races.
1406 list_add_tail(&q
->list
, &p
->signal
->shared_pending
.list
);
1407 sigaddset(&p
->signal
->shared_pending
.signal
, sig
);
1409 __group_complete_signal(sig
, p
);
1411 spin_unlock_irqrestore(&p
->sighand
->siglock
, flags
);
1412 read_unlock(&tasklist_lock
);
1417 * Wake up any threads in the parent blocked in wait* syscalls.
1419 static inline void __wake_up_parent(struct task_struct
*p
,
1420 struct task_struct
*parent
)
1422 wake_up_interruptible_sync(&parent
->signal
->wait_chldexit
);
1426 * Let a parent know about the death of a child.
1427 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1430 void do_notify_parent(struct task_struct
*tsk
, int sig
)
1432 struct siginfo info
;
1433 unsigned long flags
;
1434 struct sighand_struct
*psig
;
1438 /* do_notify_parent_cldstop should have been called instead. */
1439 BUG_ON(tsk
->state
& (TASK_STOPPED
|TASK_TRACED
));
1441 BUG_ON(!tsk
->ptrace
&&
1442 (tsk
->group_leader
!= tsk
|| !thread_group_empty(tsk
)));
1444 info
.si_signo
= sig
;
1446 info
.si_pid
= tsk
->pid
;
1447 info
.si_uid
= tsk
->uid
;
1449 /* FIXME: find out whether or not this is supposed to be c*time. */
1450 info
.si_utime
= cputime_to_jiffies(cputime_add(tsk
->utime
,
1451 tsk
->signal
->utime
));
1452 info
.si_stime
= cputime_to_jiffies(cputime_add(tsk
->stime
,
1453 tsk
->signal
->stime
));
1455 info
.si_status
= tsk
->exit_code
& 0x7f;
1456 if (tsk
->exit_code
& 0x80)
1457 info
.si_code
= CLD_DUMPED
;
1458 else if (tsk
->exit_code
& 0x7f)
1459 info
.si_code
= CLD_KILLED
;
1461 info
.si_code
= CLD_EXITED
;
1462 info
.si_status
= tsk
->exit_code
>> 8;
1465 psig
= tsk
->parent
->sighand
;
1466 spin_lock_irqsave(&psig
->siglock
, flags
);
1467 if (!tsk
->ptrace
&& sig
== SIGCHLD
&&
1468 (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
||
1469 (psig
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDWAIT
))) {
1471 * We are exiting and our parent doesn't care. POSIX.1
1472 * defines special semantics for setting SIGCHLD to SIG_IGN
1473 * or setting the SA_NOCLDWAIT flag: we should be reaped
1474 * automatically and not left for our parent's wait4 call.
1475 * Rather than having the parent do it as a magic kind of
1476 * signal handler, we just set this to tell do_exit that we
1477 * can be cleaned up without becoming a zombie. Note that
1478 * we still call __wake_up_parent in this case, because a
1479 * blocked sys_wait4 might now return -ECHILD.
1481 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1482 * is implementation-defined: we do (if you don't want
1483 * it, just use SIG_IGN instead).
1485 tsk
->exit_signal
= -1;
1486 if (psig
->action
[SIGCHLD
-1].sa
.sa_handler
== SIG_IGN
)
1489 if (valid_signal(sig
) && sig
> 0)
1490 __group_send_sig_info(sig
, &info
, tsk
->parent
);
1491 __wake_up_parent(tsk
, tsk
->parent
);
1492 spin_unlock_irqrestore(&psig
->siglock
, flags
);
1495 static void do_notify_parent_cldstop(struct task_struct
*tsk
, int why
)
1497 struct siginfo info
;
1498 unsigned long flags
;
1499 struct task_struct
*parent
;
1500 struct sighand_struct
*sighand
;
1502 if (tsk
->ptrace
& PT_PTRACED
)
1503 parent
= tsk
->parent
;
1505 tsk
= tsk
->group_leader
;
1506 parent
= tsk
->real_parent
;
1509 info
.si_signo
= SIGCHLD
;
1511 info
.si_pid
= tsk
->pid
;
1512 info
.si_uid
= tsk
->uid
;
1514 /* FIXME: find out whether or not this is supposed to be c*time. */
1515 info
.si_utime
= cputime_to_jiffies(tsk
->utime
);
1516 info
.si_stime
= cputime_to_jiffies(tsk
->stime
);
1521 info
.si_status
= SIGCONT
;
1524 info
.si_status
= tsk
->signal
->group_exit_code
& 0x7f;
1527 info
.si_status
= tsk
->exit_code
& 0x7f;
1533 sighand
= parent
->sighand
;
1534 spin_lock_irqsave(&sighand
->siglock
, flags
);
1535 if (sighand
->action
[SIGCHLD
-1].sa
.sa_handler
!= SIG_IGN
&&
1536 !(sighand
->action
[SIGCHLD
-1].sa
.sa_flags
& SA_NOCLDSTOP
))
1537 __group_send_sig_info(SIGCHLD
, &info
, parent
);
1539 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1541 __wake_up_parent(tsk
, parent
);
1542 spin_unlock_irqrestore(&sighand
->siglock
, flags
);
1545 static inline int may_ptrace_stop(void)
1547 if (!likely(current
->ptrace
& PT_PTRACED
))
1550 if (unlikely(current
->parent
== current
->real_parent
&&
1551 (current
->ptrace
& PT_ATTACHED
)))
1554 if (unlikely(current
->signal
== current
->parent
->signal
) &&
1555 unlikely(current
->signal
->flags
& SIGNAL_GROUP_EXIT
))
1559 * Are we in the middle of do_coredump?
1560 * If so and our tracer is also part of the coredump stopping
1561 * is a deadlock situation, and pointless because our tracer
1562 * is dead so don't allow us to stop.
1563 * If SIGKILL was already sent before the caller unlocked
1564 * ->siglock we must see ->core_waiters != 0. Otherwise it
1565 * is safe to enter schedule().
1567 if (unlikely(current
->mm
->core_waiters
) &&
1568 unlikely(current
->mm
== current
->parent
->mm
))
1575 * This must be called with current->sighand->siglock held.
1577 * This should be the path for all ptrace stops.
1578 * We always set current->last_siginfo while stopped here.
1579 * That makes it a way to test a stopped process for
1580 * being ptrace-stopped vs being job-control-stopped.
1582 * If we actually decide not to stop at all because the tracer is gone,
1583 * we leave nostop_code in current->exit_code.
1585 static void ptrace_stop(int exit_code
, int nostop_code
, siginfo_t
*info
)
1588 * If there is a group stop in progress,
1589 * we must participate in the bookkeeping.
1591 if (current
->signal
->group_stop_count
> 0)
1592 --current
->signal
->group_stop_count
;
1594 current
->last_siginfo
= info
;
1595 current
->exit_code
= exit_code
;
1597 /* Let the debugger run. */
1598 set_current_state(TASK_TRACED
);
1599 spin_unlock_irq(¤t
->sighand
->siglock
);
1601 read_lock(&tasklist_lock
);
1602 if (may_ptrace_stop()) {
1603 do_notify_parent_cldstop(current
, CLD_TRAPPED
);
1604 read_unlock(&tasklist_lock
);
1608 * By the time we got the lock, our tracer went away.
1611 read_unlock(&tasklist_lock
);
1612 set_current_state(TASK_RUNNING
);
1613 current
->exit_code
= nostop_code
;
1617 * We are back. Now reacquire the siglock before touching
1618 * last_siginfo, so that we are sure to have synchronized with
1619 * any signal-sending on another CPU that wants to examine it.
1621 spin_lock_irq(¤t
->sighand
->siglock
);
1622 current
->last_siginfo
= NULL
;
1625 * Queued signals ignored us while we were stopped for tracing.
1626 * So check for any that we should take before resuming user mode.
1628 recalc_sigpending();
1631 void ptrace_notify(int exit_code
)
1635 BUG_ON((exit_code
& (0x7f | ~0xffff)) != SIGTRAP
);
1637 memset(&info
, 0, sizeof info
);
1638 info
.si_signo
= SIGTRAP
;
1639 info
.si_code
= exit_code
;
1640 info
.si_pid
= current
->pid
;
1641 info
.si_uid
= current
->uid
;
1643 /* Let the debugger run. */
1644 spin_lock_irq(¤t
->sighand
->siglock
);
1645 ptrace_stop(exit_code
, 0, &info
);
1646 spin_unlock_irq(¤t
->sighand
->siglock
);
1650 finish_stop(int stop_count
)
1653 * If there are no other threads in the group, or if there is
1654 * a group stop in progress and we are the last to stop,
1655 * report to the parent. When ptraced, every thread reports itself.
1657 if (stop_count
== 0 || (current
->ptrace
& PT_PTRACED
)) {
1658 read_lock(&tasklist_lock
);
1659 do_notify_parent_cldstop(current
, CLD_STOPPED
);
1660 read_unlock(&tasklist_lock
);
1665 * Now we don't run again until continued.
1667 current
->exit_code
= 0;
1671 * This performs the stopping for SIGSTOP and other stop signals.
1672 * We have to stop all threads in the thread group.
1673 * Returns nonzero if we've actually stopped and released the siglock.
1674 * Returns zero if we didn't stop and still hold the siglock.
1676 static int do_signal_stop(int signr
)
1678 struct signal_struct
*sig
= current
->signal
;
1681 if (!likely(sig
->flags
& SIGNAL_STOP_DEQUEUED
))
1684 if (sig
->group_stop_count
> 0) {
1686 * There is a group stop in progress. We don't need to
1687 * start another one.
1689 stop_count
= --sig
->group_stop_count
;
1692 * There is no group stop already in progress.
1693 * We must initiate one now.
1695 struct task_struct
*t
;
1697 sig
->group_exit_code
= signr
;
1700 for (t
= next_thread(current
); t
!= current
; t
= next_thread(t
))
1702 * Setting state to TASK_STOPPED for a group
1703 * stop is always done with the siglock held,
1704 * so this check has no races.
1706 if (!t
->exit_state
&&
1707 !(t
->state
& (TASK_STOPPED
|TASK_TRACED
))) {
1709 signal_wake_up(t
, 0);
1711 sig
->group_stop_count
= stop_count
;
1714 if (stop_count
== 0)
1715 sig
->flags
= SIGNAL_STOP_STOPPED
;
1716 current
->exit_code
= sig
->group_exit_code
;
1717 __set_current_state(TASK_STOPPED
);
1719 spin_unlock_irq(¤t
->sighand
->siglock
);
1720 finish_stop(stop_count
);
1725 * Do appropriate magic when group_stop_count > 0.
1726 * We return nonzero if we stopped, after releasing the siglock.
1727 * We return zero if we still hold the siglock and should look
1728 * for another signal without checking group_stop_count again.
1730 static int handle_group_stop(void)
1734 if (current
->signal
->group_exit_task
== current
) {
1736 * Group stop is so we can do a core dump,
1737 * We are the initiating thread, so get on with it.
1739 current
->signal
->group_exit_task
= NULL
;
1743 if (current
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1745 * Group stop is so another thread can do a core dump,
1746 * or else we are racing against a death signal.
1747 * Just punt the stop so we can get the next signal.
1752 * There is a group stop in progress. We stop
1753 * without any associated signal being in our queue.
1755 stop_count
= --current
->signal
->group_stop_count
;
1756 if (stop_count
== 0)
1757 current
->signal
->flags
= SIGNAL_STOP_STOPPED
;
1758 current
->exit_code
= current
->signal
->group_exit_code
;
1759 set_current_state(TASK_STOPPED
);
1760 spin_unlock_irq(¤t
->sighand
->siglock
);
1761 finish_stop(stop_count
);
1765 int get_signal_to_deliver(siginfo_t
*info
, struct k_sigaction
*return_ka
,
1766 struct pt_regs
*regs
, void *cookie
)
1768 sigset_t
*mask
= ¤t
->blocked
;
1774 spin_lock_irq(¤t
->sighand
->siglock
);
1776 struct k_sigaction
*ka
;
1778 if (unlikely(current
->signal
->group_stop_count
> 0) &&
1779 handle_group_stop())
1782 signr
= dequeue_signal(current
, mask
, info
);
1785 break; /* will return 0 */
1787 if ((current
->ptrace
& PT_PTRACED
) && signr
!= SIGKILL
) {
1788 ptrace_signal_deliver(regs
, cookie
);
1790 /* Let the debugger run. */
1791 ptrace_stop(signr
, signr
, info
);
1793 /* We're back. Did the debugger cancel the sig? */
1794 signr
= current
->exit_code
;
1798 current
->exit_code
= 0;
1800 /* Update the siginfo structure if the signal has
1801 changed. If the debugger wanted something
1802 specific in the siginfo structure then it should
1803 have updated *info via PTRACE_SETSIGINFO. */
1804 if (signr
!= info
->si_signo
) {
1805 info
->si_signo
= signr
;
1807 info
->si_code
= SI_USER
;
1808 info
->si_pid
= current
->parent
->pid
;
1809 info
->si_uid
= current
->parent
->uid
;
1812 /* If the (new) signal is now blocked, requeue it. */
1813 if (sigismember(¤t
->blocked
, signr
)) {
1814 specific_send_sig_info(signr
, info
, current
);
1819 ka
= ¤t
->sighand
->action
[signr
-1];
1820 if (ka
->sa
.sa_handler
== SIG_IGN
) /* Do nothing. */
1822 if (ka
->sa
.sa_handler
!= SIG_DFL
) {
1823 /* Run the handler. */
1826 if (ka
->sa
.sa_flags
& SA_ONESHOT
)
1827 ka
->sa
.sa_handler
= SIG_DFL
;
1829 break; /* will return non-zero "signr" value */
1833 * Now we are doing the default action for this signal.
1835 if (sig_kernel_ignore(signr
)) /* Default is nothing. */
1838 /* Init gets no signals it doesn't want. */
1839 if (current
== child_reaper
)
1842 if (sig_kernel_stop(signr
)) {
1844 * The default action is to stop all threads in
1845 * the thread group. The job control signals
1846 * do nothing in an orphaned pgrp, but SIGSTOP
1847 * always works. Note that siglock needs to be
1848 * dropped during the call to is_orphaned_pgrp()
1849 * because of lock ordering with tasklist_lock.
1850 * This allows an intervening SIGCONT to be posted.
1851 * We need to check for that and bail out if necessary.
1853 if (signr
!= SIGSTOP
) {
1854 spin_unlock_irq(¤t
->sighand
->siglock
);
1856 /* signals can be posted during this window */
1858 if (is_orphaned_pgrp(process_group(current
)))
1861 spin_lock_irq(¤t
->sighand
->siglock
);
1864 if (likely(do_signal_stop(signr
))) {
1865 /* It released the siglock. */
1870 * We didn't actually stop, due to a race
1871 * with SIGCONT or something like that.
1876 spin_unlock_irq(¤t
->sighand
->siglock
);
1879 * Anything else is fatal, maybe with a core dump.
1881 current
->flags
|= PF_SIGNALED
;
1882 if (sig_kernel_coredump(signr
)) {
1884 * If it was able to dump core, this kills all
1885 * other threads in the group and synchronizes with
1886 * their demise. If we lost the race with another
1887 * thread getting here, it set group_exit_code
1888 * first and our do_group_exit call below will use
1889 * that value and ignore the one we pass it.
1891 do_coredump((long)signr
, signr
, regs
);
1895 * Death signals, no core dump.
1897 do_group_exit(signr
);
1900 spin_unlock_irq(¤t
->sighand
->siglock
);
1904 EXPORT_SYMBOL(recalc_sigpending
);
1905 EXPORT_SYMBOL_GPL(dequeue_signal
);
1906 EXPORT_SYMBOL(flush_signals
);
1907 EXPORT_SYMBOL(force_sig
);
1908 EXPORT_SYMBOL(kill_pg
);
1909 EXPORT_SYMBOL(kill_proc
);
1910 EXPORT_SYMBOL(ptrace_notify
);
1911 EXPORT_SYMBOL(send_sig
);
1912 EXPORT_SYMBOL(send_sig_info
);
1913 EXPORT_SYMBOL(sigprocmask
);
1914 EXPORT_SYMBOL(block_all_signals
);
1915 EXPORT_SYMBOL(unblock_all_signals
);
1919 * System call entry points.
1922 asmlinkage
long sys_restart_syscall(void)
1924 struct restart_block
*restart
= ¤t_thread_info()->restart_block
;
1925 return restart
->fn(restart
);
1928 long do_no_restart_syscall(struct restart_block
*param
)
1934 * We don't need to get the kernel lock - this is all local to this
1935 * particular thread.. (and that's good, because this is _heavily_
1936 * used by various programs)
1940 * This is also useful for kernel threads that want to temporarily
1941 * (or permanently) block certain signals.
1943 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1944 * interface happily blocks "unblockable" signals like SIGKILL
1947 int sigprocmask(int how
, sigset_t
*set
, sigset_t
*oldset
)
1951 spin_lock_irq(¤t
->sighand
->siglock
);
1953 *oldset
= current
->blocked
;
1958 sigorsets(¤t
->blocked
, ¤t
->blocked
, set
);
1961 signandsets(¤t
->blocked
, ¤t
->blocked
, set
);
1964 current
->blocked
= *set
;
1969 recalc_sigpending();
1970 spin_unlock_irq(¤t
->sighand
->siglock
);
1976 sys_rt_sigprocmask(int how
, sigset_t __user
*set
, sigset_t __user
*oset
, size_t sigsetsize
)
1978 int error
= -EINVAL
;
1979 sigset_t old_set
, new_set
;
1981 /* XXX: Don't preclude handling different sized sigset_t's. */
1982 if (sigsetsize
!= sizeof(sigset_t
))
1987 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
1989 sigdelsetmask(&new_set
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
1991 error
= sigprocmask(how
, &new_set
, &old_set
);
1997 spin_lock_irq(¤t
->sighand
->siglock
);
1998 old_set
= current
->blocked
;
1999 spin_unlock_irq(¤t
->sighand
->siglock
);
2003 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2011 long do_sigpending(void __user
*set
, unsigned long sigsetsize
)
2013 long error
= -EINVAL
;
2016 if (sigsetsize
> sizeof(sigset_t
))
2019 spin_lock_irq(¤t
->sighand
->siglock
);
2020 sigorsets(&pending
, ¤t
->pending
.signal
,
2021 ¤t
->signal
->shared_pending
.signal
);
2022 spin_unlock_irq(¤t
->sighand
->siglock
);
2024 /* Outside the lock because only this thread touches it. */
2025 sigandsets(&pending
, ¤t
->blocked
, &pending
);
2028 if (!copy_to_user(set
, &pending
, sigsetsize
))
2036 sys_rt_sigpending(sigset_t __user
*set
, size_t sigsetsize
)
2038 return do_sigpending(set
, sigsetsize
);
2041 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2043 int copy_siginfo_to_user(siginfo_t __user
*to
, siginfo_t
*from
)
2047 if (!access_ok (VERIFY_WRITE
, to
, sizeof(siginfo_t
)))
2049 if (from
->si_code
< 0)
2050 return __copy_to_user(to
, from
, sizeof(siginfo_t
))
2053 * If you change siginfo_t structure, please be sure
2054 * this code is fixed accordingly.
2055 * It should never copy any pad contained in the structure
2056 * to avoid security leaks, but must copy the generic
2057 * 3 ints plus the relevant union member.
2059 err
= __put_user(from
->si_signo
, &to
->si_signo
);
2060 err
|= __put_user(from
->si_errno
, &to
->si_errno
);
2061 err
|= __put_user((short)from
->si_code
, &to
->si_code
);
2062 switch (from
->si_code
& __SI_MASK
) {
2064 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2065 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2068 err
|= __put_user(from
->si_tid
, &to
->si_tid
);
2069 err
|= __put_user(from
->si_overrun
, &to
->si_overrun
);
2070 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2073 err
|= __put_user(from
->si_band
, &to
->si_band
);
2074 err
|= __put_user(from
->si_fd
, &to
->si_fd
);
2077 err
|= __put_user(from
->si_addr
, &to
->si_addr
);
2078 #ifdef __ARCH_SI_TRAPNO
2079 err
|= __put_user(from
->si_trapno
, &to
->si_trapno
);
2083 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2084 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2085 err
|= __put_user(from
->si_status
, &to
->si_status
);
2086 err
|= __put_user(from
->si_utime
, &to
->si_utime
);
2087 err
|= __put_user(from
->si_stime
, &to
->si_stime
);
2089 case __SI_RT
: /* This is not generated by the kernel as of now. */
2090 case __SI_MESGQ
: /* But this is */
2091 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2092 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2093 err
|= __put_user(from
->si_ptr
, &to
->si_ptr
);
2095 default: /* this is just in case for now ... */
2096 err
|= __put_user(from
->si_pid
, &to
->si_pid
);
2097 err
|= __put_user(from
->si_uid
, &to
->si_uid
);
2106 sys_rt_sigtimedwait(const sigset_t __user
*uthese
,
2107 siginfo_t __user
*uinfo
,
2108 const struct timespec __user
*uts
,
2117 /* XXX: Don't preclude handling different sized sigset_t's. */
2118 if (sigsetsize
!= sizeof(sigset_t
))
2121 if (copy_from_user(&these
, uthese
, sizeof(these
)))
2125 * Invert the set of allowed signals to get those we
2128 sigdelsetmask(&these
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2132 if (copy_from_user(&ts
, uts
, sizeof(ts
)))
2134 if (ts
.tv_nsec
>= 1000000000L || ts
.tv_nsec
< 0
2139 spin_lock_irq(¤t
->sighand
->siglock
);
2140 sig
= dequeue_signal(current
, &these
, &info
);
2142 timeout
= MAX_SCHEDULE_TIMEOUT
;
2144 timeout
= (timespec_to_jiffies(&ts
)
2145 + (ts
.tv_sec
|| ts
.tv_nsec
));
2148 /* None ready -- temporarily unblock those we're
2149 * interested while we are sleeping in so that we'll
2150 * be awakened when they arrive. */
2151 current
->real_blocked
= current
->blocked
;
2152 sigandsets(¤t
->blocked
, ¤t
->blocked
, &these
);
2153 recalc_sigpending();
2154 spin_unlock_irq(¤t
->sighand
->siglock
);
2156 timeout
= schedule_timeout_interruptible(timeout
);
2158 spin_lock_irq(¤t
->sighand
->siglock
);
2159 sig
= dequeue_signal(current
, &these
, &info
);
2160 current
->blocked
= current
->real_blocked
;
2161 siginitset(¤t
->real_blocked
, 0);
2162 recalc_sigpending();
2165 spin_unlock_irq(¤t
->sighand
->siglock
);
2170 if (copy_siginfo_to_user(uinfo
, &info
))
2183 sys_kill(int pid
, int sig
)
2185 struct siginfo info
;
2187 info
.si_signo
= sig
;
2189 info
.si_code
= SI_USER
;
2190 info
.si_pid
= current
->tgid
;
2191 info
.si_uid
= current
->uid
;
2193 return kill_something_info(sig
, &info
, pid
);
2196 static int do_tkill(int tgid
, int pid
, int sig
)
2199 struct siginfo info
;
2200 struct task_struct
*p
;
2203 info
.si_signo
= sig
;
2205 info
.si_code
= SI_TKILL
;
2206 info
.si_pid
= current
->tgid
;
2207 info
.si_uid
= current
->uid
;
2209 read_lock(&tasklist_lock
);
2210 p
= find_task_by_pid(pid
);
2211 if (p
&& (tgid
<= 0 || p
->tgid
== tgid
)) {
2212 error
= check_kill_permission(sig
, &info
, p
);
2214 * The null signal is a permissions and process existence
2215 * probe. No signal is actually delivered.
2217 if (!error
&& sig
&& p
->sighand
) {
2218 spin_lock_irq(&p
->sighand
->siglock
);
2219 handle_stop_signal(sig
, p
);
2220 error
= specific_send_sig_info(sig
, &info
, p
);
2221 spin_unlock_irq(&p
->sighand
->siglock
);
2224 read_unlock(&tasklist_lock
);
2230 * sys_tgkill - send signal to one specific thread
2231 * @tgid: the thread group ID of the thread
2232 * @pid: the PID of the thread
2233 * @sig: signal to be sent
2235 * This syscall also checks the tgid and returns -ESRCH even if the PID
2236 * exists but it's not belonging to the target process anymore. This
2237 * method solves the problem of threads exiting and PIDs getting reused.
2239 asmlinkage
long sys_tgkill(int tgid
, int pid
, int sig
)
2241 /* This is only valid for single tasks */
2242 if (pid
<= 0 || tgid
<= 0)
2245 return do_tkill(tgid
, pid
, sig
);
2249 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2252 sys_tkill(int pid
, int sig
)
2254 /* This is only valid for single tasks */
2258 return do_tkill(0, pid
, sig
);
2262 sys_rt_sigqueueinfo(int pid
, int sig
, siginfo_t __user
*uinfo
)
2266 if (copy_from_user(&info
, uinfo
, sizeof(siginfo_t
)))
2269 /* Not even root can pretend to send signals from the kernel.
2270 Nor can they impersonate a kill(), which adds source info. */
2271 if (info
.si_code
>= 0)
2273 info
.si_signo
= sig
;
2275 /* POSIX.1b doesn't mention process groups. */
2276 return kill_proc_info(sig
, &info
, pid
);
2279 int do_sigaction(int sig
, struct k_sigaction
*act
, struct k_sigaction
*oact
)
2281 struct k_sigaction
*k
;
2284 if (!valid_signal(sig
) || sig
< 1 || (act
&& sig_kernel_only(sig
)))
2287 k
= ¤t
->sighand
->action
[sig
-1];
2289 spin_lock_irq(¤t
->sighand
->siglock
);
2290 if (signal_pending(current
)) {
2292 * If there might be a fatal signal pending on multiple
2293 * threads, make sure we take it before changing the action.
2295 spin_unlock_irq(¤t
->sighand
->siglock
);
2296 return -ERESTARTNOINTR
;
2303 sigdelsetmask(&act
->sa
.sa_mask
,
2304 sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2308 * "Setting a signal action to SIG_IGN for a signal that is
2309 * pending shall cause the pending signal to be discarded,
2310 * whether or not it is blocked."
2312 * "Setting a signal action to SIG_DFL for a signal that is
2313 * pending and whose default action is to ignore the signal
2314 * (for example, SIGCHLD), shall cause the pending signal to
2315 * be discarded, whether or not it is blocked"
2317 if (act
->sa
.sa_handler
== SIG_IGN
||
2318 (act
->sa
.sa_handler
== SIG_DFL
&& sig_kernel_ignore(sig
))) {
2319 struct task_struct
*t
= current
;
2321 sigaddset(&mask
, sig
);
2322 rm_from_queue_full(&mask
, &t
->signal
->shared_pending
);
2324 rm_from_queue_full(&mask
, &t
->pending
);
2325 recalc_sigpending_tsk(t
);
2327 } while (t
!= current
);
2331 spin_unlock_irq(¤t
->sighand
->siglock
);
2336 do_sigaltstack (const stack_t __user
*uss
, stack_t __user
*uoss
, unsigned long sp
)
2342 oss
.ss_sp
= (void __user
*) current
->sas_ss_sp
;
2343 oss
.ss_size
= current
->sas_ss_size
;
2344 oss
.ss_flags
= sas_ss_flags(sp
);
2353 if (!access_ok(VERIFY_READ
, uss
, sizeof(*uss
))
2354 || __get_user(ss_sp
, &uss
->ss_sp
)
2355 || __get_user(ss_flags
, &uss
->ss_flags
)
2356 || __get_user(ss_size
, &uss
->ss_size
))
2360 if (on_sig_stack(sp
))
2366 * Note - this code used to test ss_flags incorrectly
2367 * old code may have been written using ss_flags==0
2368 * to mean ss_flags==SS_ONSTACK (as this was the only
2369 * way that worked) - this fix preserves that older
2372 if (ss_flags
!= SS_DISABLE
&& ss_flags
!= SS_ONSTACK
&& ss_flags
!= 0)
2375 if (ss_flags
== SS_DISABLE
) {
2380 if (ss_size
< MINSIGSTKSZ
)
2384 current
->sas_ss_sp
= (unsigned long) ss_sp
;
2385 current
->sas_ss_size
= ss_size
;
2390 if (copy_to_user(uoss
, &oss
, sizeof(oss
)))
2399 #ifdef __ARCH_WANT_SYS_SIGPENDING
2402 sys_sigpending(old_sigset_t __user
*set
)
2404 return do_sigpending(set
, sizeof(*set
));
2409 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2410 /* Some platforms have their own version with special arguments others
2411 support only sys_rt_sigprocmask. */
2414 sys_sigprocmask(int how
, old_sigset_t __user
*set
, old_sigset_t __user
*oset
)
2417 old_sigset_t old_set
, new_set
;
2421 if (copy_from_user(&new_set
, set
, sizeof(*set
)))
2423 new_set
&= ~(sigmask(SIGKILL
) | sigmask(SIGSTOP
));
2425 spin_lock_irq(¤t
->sighand
->siglock
);
2426 old_set
= current
->blocked
.sig
[0];
2434 sigaddsetmask(¤t
->blocked
, new_set
);
2437 sigdelsetmask(¤t
->blocked
, new_set
);
2440 current
->blocked
.sig
[0] = new_set
;
2444 recalc_sigpending();
2445 spin_unlock_irq(¤t
->sighand
->siglock
);
2451 old_set
= current
->blocked
.sig
[0];
2454 if (copy_to_user(oset
, &old_set
, sizeof(*oset
)))
2461 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2463 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2465 sys_rt_sigaction(int sig
,
2466 const struct sigaction __user
*act
,
2467 struct sigaction __user
*oact
,
2470 struct k_sigaction new_sa
, old_sa
;
2473 /* XXX: Don't preclude handling different sized sigset_t's. */
2474 if (sigsetsize
!= sizeof(sigset_t
))
2478 if (copy_from_user(&new_sa
.sa
, act
, sizeof(new_sa
.sa
)))
2482 ret
= do_sigaction(sig
, act
? &new_sa
: NULL
, oact
? &old_sa
: NULL
);
2485 if (copy_to_user(oact
, &old_sa
.sa
, sizeof(old_sa
.sa
)))
2491 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2493 #ifdef __ARCH_WANT_SYS_SGETMASK
2496 * For backwards compatibility. Functionality superseded by sigprocmask.
2502 return current
->blocked
.sig
[0];
2506 sys_ssetmask(int newmask
)
2510 spin_lock_irq(¤t
->sighand
->siglock
);
2511 old
= current
->blocked
.sig
[0];
2513 siginitset(¤t
->blocked
, newmask
& ~(sigmask(SIGKILL
)|
2515 recalc_sigpending();
2516 spin_unlock_irq(¤t
->sighand
->siglock
);
2520 #endif /* __ARCH_WANT_SGETMASK */
2522 #ifdef __ARCH_WANT_SYS_SIGNAL
2524 * For backwards compatibility. Functionality superseded by sigaction.
2526 asmlinkage
unsigned long
2527 sys_signal(int sig
, __sighandler_t handler
)
2529 struct k_sigaction new_sa
, old_sa
;
2532 new_sa
.sa
.sa_handler
= handler
;
2533 new_sa
.sa
.sa_flags
= SA_ONESHOT
| SA_NOMASK
;
2534 sigemptyset(&new_sa
.sa
.sa_mask
);
2536 ret
= do_sigaction(sig
, &new_sa
, &old_sa
);
2538 return ret
? ret
: (unsigned long)old_sa
.sa
.sa_handler
;
2540 #endif /* __ARCH_WANT_SYS_SIGNAL */
2542 #ifdef __ARCH_WANT_SYS_PAUSE
2547 current
->state
= TASK_INTERRUPTIBLE
;
2549 return -ERESTARTNOHAND
;
2554 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2555 asmlinkage
long sys_rt_sigsuspend(sigset_t __user
*unewset
, size_t sigsetsize
)
2559 /* XXX: Don't preclude handling different sized sigset_t's. */
2560 if (sigsetsize
!= sizeof(sigset_t
))
2563 if (copy_from_user(&newset
, unewset
, sizeof(newset
)))
2565 sigdelsetmask(&newset
, sigmask(SIGKILL
)|sigmask(SIGSTOP
));
2567 spin_lock_irq(¤t
->sighand
->siglock
);
2568 current
->saved_sigmask
= current
->blocked
;
2569 current
->blocked
= newset
;
2570 recalc_sigpending();
2571 spin_unlock_irq(¤t
->sighand
->siglock
);
2573 current
->state
= TASK_INTERRUPTIBLE
;
2575 set_thread_flag(TIF_RESTORE_SIGMASK
);
2576 return -ERESTARTNOHAND
;
2578 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2580 __attribute__((weak
)) const char *arch_vma_name(struct vm_area_struct
*vma
)
2585 void __init
signals_init(void)
2588 kmem_cache_create("sigqueue",
2589 sizeof(struct sigqueue
),
2590 __alignof__(struct sigqueue
),
2591 SLAB_PANIC
, NULL
, NULL
);