SATA: use NULL for ptrs
[usb.git] / drivers / ata / sata_mv.c
blobc73aa3bbaa3e4595b73dbaea31ce94f16725efe6
1 /*
2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/device.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <linux/libata.h>
37 #define DRV_NAME "sata_mv"
38 #define DRV_VERSION "0.7"
40 enum {
41 /* BAR's are enumerated in terms of pci_resource_start() terms */
42 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
43 MV_IO_BAR = 2, /* offset 0x18: IO space */
44 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
46 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
47 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
49 MV_PCI_REG_BASE = 0,
50 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
51 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
52 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
53 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
54 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
55 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
57 MV_SATAHC0_REG_BASE = 0x20000,
58 MV_FLASH_CTL = 0x1046c,
59 MV_GPIO_PORT_CTL = 0x104f0,
60 MV_RESET_CFG = 0x180d8,
62 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
63 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
64 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
65 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
67 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
69 MV_MAX_Q_DEPTH = 32,
70 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
72 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
73 * CRPB needs alignment on a 256B boundary. Size == 256B
74 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
75 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
77 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
78 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
79 MV_MAX_SG_CT = 176,
80 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
81 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
83 MV_PORTS_PER_HC = 4,
84 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
85 MV_PORT_HC_SHIFT = 2,
86 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
87 MV_PORT_MASK = 3,
89 /* Host Flags */
90 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
91 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
92 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
93 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
94 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
95 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
97 CRQB_FLAG_READ = (1 << 0),
98 CRQB_TAG_SHIFT = 1,
99 CRQB_CMD_ADDR_SHIFT = 8,
100 CRQB_CMD_CS = (0x2 << 11),
101 CRQB_CMD_LAST = (1 << 15),
103 CRPB_FLAG_STATUS_SHIFT = 8,
105 EPRD_FLAG_END_OF_TBL = (1 << 31),
107 /* PCI interface registers */
109 PCI_COMMAND_OFS = 0xc00,
111 PCI_MAIN_CMD_STS_OFS = 0xd30,
112 STOP_PCI_MASTER = (1 << 2),
113 PCI_MASTER_EMPTY = (1 << 3),
114 GLOB_SFT_RST = (1 << 4),
116 MV_PCI_MODE = 0xd00,
117 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
118 MV_PCI_DISC_TIMER = 0xd04,
119 MV_PCI_MSI_TRIGGER = 0xc38,
120 MV_PCI_SERR_MASK = 0xc28,
121 MV_PCI_XBAR_TMOUT = 0x1d04,
122 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
123 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
124 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
125 MV_PCI_ERR_COMMAND = 0x1d50,
127 PCI_IRQ_CAUSE_OFS = 0x1d58,
128 PCI_IRQ_MASK_OFS = 0x1d5c,
129 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
131 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
132 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
133 PORT0_ERR = (1 << 0), /* shift by port # */
134 PORT0_DONE = (1 << 1), /* shift by port # */
135 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
136 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
137 PCI_ERR = (1 << 18),
138 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
139 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
140 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
141 GPIO_INT = (1 << 22),
142 SELF_INT = (1 << 23),
143 TWSI_INT = (1 << 24),
144 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
145 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
146 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
147 HC_MAIN_RSVD),
149 /* SATAHC registers */
150 HC_CFG_OFS = 0,
152 HC_IRQ_CAUSE_OFS = 0x14,
153 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
154 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
155 DEV_IRQ = (1 << 8), /* shift by port # */
157 /* Shadow block registers */
158 SHD_BLK_OFS = 0x100,
159 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
161 /* SATA registers */
162 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
163 SATA_ACTIVE_OFS = 0x350,
164 PHY_MODE3 = 0x310,
165 PHY_MODE4 = 0x314,
166 PHY_MODE2 = 0x330,
167 MV5_PHY_MODE = 0x74,
168 MV5_LT_MODE = 0x30,
169 MV5_PHY_CTL = 0x0C,
170 SATA_INTERFACE_CTL = 0x050,
172 MV_M2_PREAMP_MASK = 0x7e0,
174 /* Port registers */
175 EDMA_CFG_OFS = 0,
176 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
177 EDMA_CFG_NCQ = (1 << 5),
178 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
179 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
180 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
182 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
183 EDMA_ERR_IRQ_MASK_OFS = 0xc,
184 EDMA_ERR_D_PAR = (1 << 0),
185 EDMA_ERR_PRD_PAR = (1 << 1),
186 EDMA_ERR_DEV = (1 << 2),
187 EDMA_ERR_DEV_DCON = (1 << 3),
188 EDMA_ERR_DEV_CON = (1 << 4),
189 EDMA_ERR_SERR = (1 << 5),
190 EDMA_ERR_SELF_DIS = (1 << 7),
191 EDMA_ERR_BIST_ASYNC = (1 << 8),
192 EDMA_ERR_CRBQ_PAR = (1 << 9),
193 EDMA_ERR_CRPB_PAR = (1 << 10),
194 EDMA_ERR_INTRL_PAR = (1 << 11),
195 EDMA_ERR_IORDY = (1 << 12),
196 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
197 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
198 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
199 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
200 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
201 EDMA_ERR_TRANS_PROTO = (1 << 31),
202 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
203 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
204 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
205 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
206 EDMA_ERR_LNK_DATA_RX |
207 EDMA_ERR_LNK_DATA_TX |
208 EDMA_ERR_TRANS_PROTO),
210 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
211 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
213 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
214 EDMA_REQ_Q_PTR_SHIFT = 5,
216 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
217 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
218 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
219 EDMA_RSP_Q_PTR_SHIFT = 3,
221 EDMA_CMD_OFS = 0x28,
222 EDMA_EN = (1 << 0),
223 EDMA_DS = (1 << 1),
224 ATA_RST = (1 << 2),
226 EDMA_IORDY_TMOUT = 0x34,
227 EDMA_ARB_CFG = 0x38,
229 /* Host private flags (hp_flags) */
230 MV_HP_FLAG_MSI = (1 << 0),
231 MV_HP_ERRATA_50XXB0 = (1 << 1),
232 MV_HP_ERRATA_50XXB2 = (1 << 2),
233 MV_HP_ERRATA_60X1B2 = (1 << 3),
234 MV_HP_ERRATA_60X1C0 = (1 << 4),
235 MV_HP_ERRATA_XX42A0 = (1 << 5),
236 MV_HP_50XX = (1 << 6),
237 MV_HP_GEN_IIE = (1 << 7),
239 /* Port private flags (pp_flags) */
240 MV_PP_FLAG_EDMA_EN = (1 << 0),
241 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
244 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
245 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
246 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
247 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
248 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
250 enum {
251 /* Our DMA boundary is determined by an ePRD being unable to handle
252 * anything larger than 64KB
254 MV_DMA_BOUNDARY = 0xffffU,
256 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
258 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
261 enum chip_type {
262 chip_504x,
263 chip_508x,
264 chip_5080,
265 chip_604x,
266 chip_608x,
267 chip_6042,
268 chip_7042,
271 /* Command ReQuest Block: 32B */
272 struct mv_crqb {
273 __le32 sg_addr;
274 __le32 sg_addr_hi;
275 __le16 ctrl_flags;
276 __le16 ata_cmd[11];
279 struct mv_crqb_iie {
280 __le32 addr;
281 __le32 addr_hi;
282 __le32 flags;
283 __le32 len;
284 __le32 ata_cmd[4];
287 /* Command ResPonse Block: 8B */
288 struct mv_crpb {
289 __le16 id;
290 __le16 flags;
291 __le32 tmstmp;
294 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
295 struct mv_sg {
296 __le32 addr;
297 __le32 flags_size;
298 __le32 addr_hi;
299 __le32 reserved;
302 struct mv_port_priv {
303 struct mv_crqb *crqb;
304 dma_addr_t crqb_dma;
305 struct mv_crpb *crpb;
306 dma_addr_t crpb_dma;
307 struct mv_sg *sg_tbl;
308 dma_addr_t sg_tbl_dma;
309 u32 pp_flags;
312 struct mv_port_signal {
313 u32 amps;
314 u32 pre;
317 struct mv_host_priv;
318 struct mv_hw_ops {
319 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
320 unsigned int port);
321 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
322 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
323 void __iomem *mmio);
324 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
325 unsigned int n_hc);
326 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
327 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
330 struct mv_host_priv {
331 u32 hp_flags;
332 struct mv_port_signal signal[8];
333 const struct mv_hw_ops *ops;
336 static void mv_irq_clear(struct ata_port *ap);
337 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
338 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
339 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
340 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
341 static void mv_phy_reset(struct ata_port *ap);
342 static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
343 static int mv_port_start(struct ata_port *ap);
344 static void mv_port_stop(struct ata_port *ap);
345 static void mv_qc_prep(struct ata_queued_cmd *qc);
346 static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
347 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
348 static irqreturn_t mv_interrupt(int irq, void *dev_instance);
349 static void mv_eng_timeout(struct ata_port *ap);
350 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
352 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
353 unsigned int port);
354 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
355 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
356 void __iomem *mmio);
357 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
358 unsigned int n_hc);
359 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
360 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
362 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
363 unsigned int port);
364 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
365 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
366 void __iomem *mmio);
367 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
368 unsigned int n_hc);
369 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
370 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
371 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
372 unsigned int port_no);
373 static void mv_stop_and_reset(struct ata_port *ap);
375 static struct scsi_host_template mv_sht = {
376 .module = THIS_MODULE,
377 .name = DRV_NAME,
378 .ioctl = ata_scsi_ioctl,
379 .queuecommand = ata_scsi_queuecmd,
380 .can_queue = MV_USE_Q_DEPTH,
381 .this_id = ATA_SHT_THIS_ID,
382 .sg_tablesize = MV_MAX_SG_CT / 2,
383 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
384 .emulated = ATA_SHT_EMULATED,
385 .use_clustering = ATA_SHT_USE_CLUSTERING,
386 .proc_name = DRV_NAME,
387 .dma_boundary = MV_DMA_BOUNDARY,
388 .slave_configure = ata_scsi_slave_config,
389 .slave_destroy = ata_scsi_slave_destroy,
390 .bios_param = ata_std_bios_param,
393 static const struct ata_port_operations mv5_ops = {
394 .port_disable = ata_port_disable,
396 .tf_load = ata_tf_load,
397 .tf_read = ata_tf_read,
398 .check_status = ata_check_status,
399 .exec_command = ata_exec_command,
400 .dev_select = ata_std_dev_select,
402 .phy_reset = mv_phy_reset,
404 .qc_prep = mv_qc_prep,
405 .qc_issue = mv_qc_issue,
406 .data_xfer = ata_data_xfer,
408 .eng_timeout = mv_eng_timeout,
410 .irq_handler = mv_interrupt,
411 .irq_clear = mv_irq_clear,
412 .irq_on = ata_irq_on,
413 .irq_ack = ata_irq_ack,
415 .scr_read = mv5_scr_read,
416 .scr_write = mv5_scr_write,
418 .port_start = mv_port_start,
419 .port_stop = mv_port_stop,
422 static const struct ata_port_operations mv6_ops = {
423 .port_disable = ata_port_disable,
425 .tf_load = ata_tf_load,
426 .tf_read = ata_tf_read,
427 .check_status = ata_check_status,
428 .exec_command = ata_exec_command,
429 .dev_select = ata_std_dev_select,
431 .phy_reset = mv_phy_reset,
433 .qc_prep = mv_qc_prep,
434 .qc_issue = mv_qc_issue,
435 .data_xfer = ata_data_xfer,
437 .eng_timeout = mv_eng_timeout,
439 .irq_handler = mv_interrupt,
440 .irq_clear = mv_irq_clear,
441 .irq_on = ata_irq_on,
442 .irq_ack = ata_irq_ack,
444 .scr_read = mv_scr_read,
445 .scr_write = mv_scr_write,
447 .port_start = mv_port_start,
448 .port_stop = mv_port_stop,
451 static const struct ata_port_operations mv_iie_ops = {
452 .port_disable = ata_port_disable,
454 .tf_load = ata_tf_load,
455 .tf_read = ata_tf_read,
456 .check_status = ata_check_status,
457 .exec_command = ata_exec_command,
458 .dev_select = ata_std_dev_select,
460 .phy_reset = mv_phy_reset,
462 .qc_prep = mv_qc_prep_iie,
463 .qc_issue = mv_qc_issue,
464 .data_xfer = ata_data_xfer,
466 .eng_timeout = mv_eng_timeout,
468 .irq_handler = mv_interrupt,
469 .irq_clear = mv_irq_clear,
470 .irq_on = ata_irq_on,
471 .irq_ack = ata_irq_ack,
473 .scr_read = mv_scr_read,
474 .scr_write = mv_scr_write,
476 .port_start = mv_port_start,
477 .port_stop = mv_port_stop,
480 static const struct ata_port_info mv_port_info[] = {
481 { /* chip_504x */
482 .sht = &mv_sht,
483 .flags = MV_COMMON_FLAGS,
484 .pio_mask = 0x1f, /* pio0-4 */
485 .udma_mask = 0x7f, /* udma0-6 */
486 .port_ops = &mv5_ops,
488 { /* chip_508x */
489 .sht = &mv_sht,
490 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
491 .pio_mask = 0x1f, /* pio0-4 */
492 .udma_mask = 0x7f, /* udma0-6 */
493 .port_ops = &mv5_ops,
495 { /* chip_5080 */
496 .sht = &mv_sht,
497 .flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
498 .pio_mask = 0x1f, /* pio0-4 */
499 .udma_mask = 0x7f, /* udma0-6 */
500 .port_ops = &mv5_ops,
502 { /* chip_604x */
503 .sht = &mv_sht,
504 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
505 .pio_mask = 0x1f, /* pio0-4 */
506 .udma_mask = 0x7f, /* udma0-6 */
507 .port_ops = &mv6_ops,
509 { /* chip_608x */
510 .sht = &mv_sht,
511 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
512 MV_FLAG_DUAL_HC),
513 .pio_mask = 0x1f, /* pio0-4 */
514 .udma_mask = 0x7f, /* udma0-6 */
515 .port_ops = &mv6_ops,
517 { /* chip_6042 */
518 .sht = &mv_sht,
519 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
520 .pio_mask = 0x1f, /* pio0-4 */
521 .udma_mask = 0x7f, /* udma0-6 */
522 .port_ops = &mv_iie_ops,
524 { /* chip_7042 */
525 .sht = &mv_sht,
526 .flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
527 .pio_mask = 0x1f, /* pio0-4 */
528 .udma_mask = 0x7f, /* udma0-6 */
529 .port_ops = &mv_iie_ops,
533 static const struct pci_device_id mv_pci_tbl[] = {
534 { PCI_VDEVICE(MARVELL, 0x5040), chip_504x },
535 { PCI_VDEVICE(MARVELL, 0x5041), chip_504x },
536 { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 },
537 { PCI_VDEVICE(MARVELL, 0x5081), chip_508x },
539 { PCI_VDEVICE(MARVELL, 0x6040), chip_604x },
540 { PCI_VDEVICE(MARVELL, 0x6041), chip_604x },
541 { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 },
542 { PCI_VDEVICE(MARVELL, 0x6080), chip_608x },
543 { PCI_VDEVICE(MARVELL, 0x6081), chip_608x },
545 { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x },
547 { PCI_VDEVICE(TTI, 0x2310), chip_7042 },
549 { } /* terminate list */
552 static struct pci_driver mv_pci_driver = {
553 .name = DRV_NAME,
554 .id_table = mv_pci_tbl,
555 .probe = mv_init_one,
556 .remove = ata_pci_remove_one,
559 static const struct mv_hw_ops mv5xxx_ops = {
560 .phy_errata = mv5_phy_errata,
561 .enable_leds = mv5_enable_leds,
562 .read_preamp = mv5_read_preamp,
563 .reset_hc = mv5_reset_hc,
564 .reset_flash = mv5_reset_flash,
565 .reset_bus = mv5_reset_bus,
568 static const struct mv_hw_ops mv6xxx_ops = {
569 .phy_errata = mv6_phy_errata,
570 .enable_leds = mv6_enable_leds,
571 .read_preamp = mv6_read_preamp,
572 .reset_hc = mv6_reset_hc,
573 .reset_flash = mv6_reset_flash,
574 .reset_bus = mv_reset_pci_bus,
578 * module options
580 static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
584 * Functions
587 static inline void writelfl(unsigned long data, void __iomem *addr)
589 writel(data, addr);
590 (void) readl(addr); /* flush to avoid PCI posted write */
593 static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
595 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
598 static inline unsigned int mv_hc_from_port(unsigned int port)
600 return port >> MV_PORT_HC_SHIFT;
603 static inline unsigned int mv_hardport_from_port(unsigned int port)
605 return port & MV_PORT_MASK;
608 static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
609 unsigned int port)
611 return mv_hc_base(base, mv_hc_from_port(port));
614 static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
616 return mv_hc_base_from_port(base, port) +
617 MV_SATAHC_ARBTR_REG_SZ +
618 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
621 static inline void __iomem *mv_ap_base(struct ata_port *ap)
623 return mv_port_base(ap->host->iomap[MV_PRIMARY_BAR], ap->port_no);
626 static inline int mv_get_hc_count(unsigned long port_flags)
628 return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
631 static void mv_irq_clear(struct ata_port *ap)
636 * mv_start_dma - Enable eDMA engine
637 * @base: port base address
638 * @pp: port private data
640 * Verify the local cache of the eDMA state is accurate with a
641 * WARN_ON.
643 * LOCKING:
644 * Inherited from caller.
646 static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
648 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
649 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
650 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
652 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
656 * mv_stop_dma - Disable eDMA engine
657 * @ap: ATA channel to manipulate
659 * Verify the local cache of the eDMA state is accurate with a
660 * WARN_ON.
662 * LOCKING:
663 * Inherited from caller.
665 static void mv_stop_dma(struct ata_port *ap)
667 void __iomem *port_mmio = mv_ap_base(ap);
668 struct mv_port_priv *pp = ap->private_data;
669 u32 reg;
670 int i;
672 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
673 /* Disable EDMA if active. The disable bit auto clears.
675 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
676 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
677 } else {
678 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
681 /* now properly wait for the eDMA to stop */
682 for (i = 1000; i > 0; i--) {
683 reg = readl(port_mmio + EDMA_CMD_OFS);
684 if (!(EDMA_EN & reg)) {
685 break;
687 udelay(100);
690 if (EDMA_EN & reg) {
691 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
692 /* FIXME: Consider doing a reset here to recover */
696 #ifdef ATA_DEBUG
697 static void mv_dump_mem(void __iomem *start, unsigned bytes)
699 int b, w;
700 for (b = 0; b < bytes; ) {
701 DPRINTK("%p: ", start + b);
702 for (w = 0; b < bytes && w < 4; w++) {
703 printk("%08x ",readl(start + b));
704 b += sizeof(u32);
706 printk("\n");
709 #endif
711 static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
713 #ifdef ATA_DEBUG
714 int b, w;
715 u32 dw;
716 for (b = 0; b < bytes; ) {
717 DPRINTK("%02x: ", b);
718 for (w = 0; b < bytes && w < 4; w++) {
719 (void) pci_read_config_dword(pdev,b,&dw);
720 printk("%08x ",dw);
721 b += sizeof(u32);
723 printk("\n");
725 #endif
727 static void mv_dump_all_regs(void __iomem *mmio_base, int port,
728 struct pci_dev *pdev)
730 #ifdef ATA_DEBUG
731 void __iomem *hc_base = mv_hc_base(mmio_base,
732 port >> MV_PORT_HC_SHIFT);
733 void __iomem *port_base;
734 int start_port, num_ports, p, start_hc, num_hcs, hc;
736 if (0 > port) {
737 start_hc = start_port = 0;
738 num_ports = 8; /* shld be benign for 4 port devs */
739 num_hcs = 2;
740 } else {
741 start_hc = port >> MV_PORT_HC_SHIFT;
742 start_port = port;
743 num_ports = num_hcs = 1;
745 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
746 num_ports > 1 ? num_ports - 1 : start_port);
748 if (NULL != pdev) {
749 DPRINTK("PCI config space regs:\n");
750 mv_dump_pci_cfg(pdev, 0x68);
752 DPRINTK("PCI regs:\n");
753 mv_dump_mem(mmio_base+0xc00, 0x3c);
754 mv_dump_mem(mmio_base+0xd00, 0x34);
755 mv_dump_mem(mmio_base+0xf00, 0x4);
756 mv_dump_mem(mmio_base+0x1d00, 0x6c);
757 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
758 hc_base = mv_hc_base(mmio_base, hc);
759 DPRINTK("HC regs (HC %i):\n", hc);
760 mv_dump_mem(hc_base, 0x1c);
762 for (p = start_port; p < start_port + num_ports; p++) {
763 port_base = mv_port_base(mmio_base, p);
764 DPRINTK("EDMA regs (port %i):\n",p);
765 mv_dump_mem(port_base, 0x54);
766 DPRINTK("SATA regs (port %i):\n",p);
767 mv_dump_mem(port_base+0x300, 0x60);
769 #endif
772 static unsigned int mv_scr_offset(unsigned int sc_reg_in)
774 unsigned int ofs;
776 switch (sc_reg_in) {
777 case SCR_STATUS:
778 case SCR_CONTROL:
779 case SCR_ERROR:
780 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
781 break;
782 case SCR_ACTIVE:
783 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
784 break;
785 default:
786 ofs = 0xffffffffU;
787 break;
789 return ofs;
792 static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
794 unsigned int ofs = mv_scr_offset(sc_reg_in);
796 if (0xffffffffU != ofs) {
797 return readl(mv_ap_base(ap) + ofs);
798 } else {
799 return (u32) ofs;
803 static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
805 unsigned int ofs = mv_scr_offset(sc_reg_in);
807 if (0xffffffffU != ofs) {
808 writelfl(val, mv_ap_base(ap) + ofs);
812 static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
814 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
816 /* set up non-NCQ EDMA configuration */
817 cfg &= ~0x1f; /* clear queue depth */
818 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
819 cfg &= ~(1 << 9); /* disable equeue */
821 if (IS_GEN_I(hpriv))
822 cfg |= (1 << 8); /* enab config burst size mask */
824 else if (IS_GEN_II(hpriv))
825 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
827 else if (IS_GEN_IIE(hpriv)) {
828 cfg |= (1 << 23); /* dis RX PM port mask */
829 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
830 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
831 cfg |= (1 << 18); /* enab early completion */
832 cfg |= (1 << 17); /* enab host q cache */
833 cfg |= (1 << 22); /* enab cutthrough */
836 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
840 * mv_port_start - Port specific init/start routine.
841 * @ap: ATA channel to manipulate
843 * Allocate and point to DMA memory, init port private memory,
844 * zero indices.
846 * LOCKING:
847 * Inherited from caller.
849 static int mv_port_start(struct ata_port *ap)
851 struct device *dev = ap->host->dev;
852 struct mv_host_priv *hpriv = ap->host->private_data;
853 struct mv_port_priv *pp;
854 void __iomem *port_mmio = mv_ap_base(ap);
855 void *mem;
856 dma_addr_t mem_dma;
857 int rc;
859 pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL);
860 if (!pp)
861 return -ENOMEM;
863 mem = dmam_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
864 GFP_KERNEL);
865 if (!mem)
866 return -ENOMEM;
867 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
869 rc = ata_pad_alloc(ap, dev);
870 if (rc)
871 return rc;
873 /* First item in chunk of DMA memory:
874 * 32-slot command request table (CRQB), 32 bytes each in size
876 pp->crqb = mem;
877 pp->crqb_dma = mem_dma;
878 mem += MV_CRQB_Q_SZ;
879 mem_dma += MV_CRQB_Q_SZ;
881 /* Second item:
882 * 32-slot command response table (CRPB), 8 bytes each in size
884 pp->crpb = mem;
885 pp->crpb_dma = mem_dma;
886 mem += MV_CRPB_Q_SZ;
887 mem_dma += MV_CRPB_Q_SZ;
889 /* Third item:
890 * Table of scatter-gather descriptors (ePRD), 16 bytes each
892 pp->sg_tbl = mem;
893 pp->sg_tbl_dma = mem_dma;
895 mv_edma_cfg(hpriv, port_mmio);
897 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
898 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
899 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
901 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
902 writelfl(pp->crqb_dma & 0xffffffff,
903 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
904 else
905 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
907 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
909 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
910 writelfl(pp->crpb_dma & 0xffffffff,
911 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
912 else
913 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
915 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
916 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
918 /* Don't turn on EDMA here...do it before DMA commands only. Else
919 * we'll be unable to send non-data, PIO, etc due to restricted access
920 * to shadow regs.
922 ap->private_data = pp;
923 return 0;
927 * mv_port_stop - Port specific cleanup/stop routine.
928 * @ap: ATA channel to manipulate
930 * Stop DMA, cleanup port memory.
932 * LOCKING:
933 * This routine uses the host lock to protect the DMA stop.
935 static void mv_port_stop(struct ata_port *ap)
937 unsigned long flags;
939 spin_lock_irqsave(&ap->host->lock, flags);
940 mv_stop_dma(ap);
941 spin_unlock_irqrestore(&ap->host->lock, flags);
945 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
946 * @qc: queued command whose SG list to source from
948 * Populate the SG list and mark the last entry.
950 * LOCKING:
951 * Inherited from caller.
953 static void mv_fill_sg(struct ata_queued_cmd *qc)
955 struct mv_port_priv *pp = qc->ap->private_data;
956 unsigned int i = 0;
957 struct scatterlist *sg;
959 ata_for_each_sg(sg, qc) {
960 dma_addr_t addr;
961 u32 sg_len, len, offset;
963 addr = sg_dma_address(sg);
964 sg_len = sg_dma_len(sg);
966 while (sg_len) {
967 offset = addr & MV_DMA_BOUNDARY;
968 len = sg_len;
969 if ((offset + sg_len) > 0x10000)
970 len = 0x10000 - offset;
972 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
973 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
974 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
976 sg_len -= len;
977 addr += len;
979 if (!sg_len && ata_sg_is_last(sg, qc))
980 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
982 i++;
987 static inline unsigned mv_inc_q_index(unsigned index)
989 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
992 static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
994 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
995 (last ? CRQB_CMD_LAST : 0);
996 *cmdw = cpu_to_le16(tmp);
1000 * mv_qc_prep - Host specific command preparation.
1001 * @qc: queued command to prepare
1003 * This routine simply redirects to the general purpose routine
1004 * if command is not DMA. Else, it handles prep of the CRQB
1005 * (command request block), does some sanity checking, and calls
1006 * the SG load routine.
1008 * LOCKING:
1009 * Inherited from caller.
1011 static void mv_qc_prep(struct ata_queued_cmd *qc)
1013 struct ata_port *ap = qc->ap;
1014 struct mv_port_priv *pp = ap->private_data;
1015 __le16 *cw;
1016 struct ata_taskfile *tf;
1017 u16 flags = 0;
1018 unsigned in_index;
1020 if (ATA_PROT_DMA != qc->tf.protocol)
1021 return;
1023 /* Fill in command request block
1025 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1026 flags |= CRQB_FLAG_READ;
1027 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1028 flags |= qc->tag << CRQB_TAG_SHIFT;
1030 /* get current queue index from hardware */
1031 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1032 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1034 pp->crqb[in_index].sg_addr =
1035 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1036 pp->crqb[in_index].sg_addr_hi =
1037 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1038 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1040 cw = &pp->crqb[in_index].ata_cmd[0];
1041 tf = &qc->tf;
1043 /* Sadly, the CRQB cannot accomodate all registers--there are
1044 * only 11 bytes...so we must pick and choose required
1045 * registers based on the command. So, we drop feature and
1046 * hob_feature for [RW] DMA commands, but they are needed for
1047 * NCQ. NCQ will drop hob_nsect.
1049 switch (tf->command) {
1050 case ATA_CMD_READ:
1051 case ATA_CMD_READ_EXT:
1052 case ATA_CMD_WRITE:
1053 case ATA_CMD_WRITE_EXT:
1054 case ATA_CMD_WRITE_FUA_EXT:
1055 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1056 break;
1057 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1058 case ATA_CMD_FPDMA_READ:
1059 case ATA_CMD_FPDMA_WRITE:
1060 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1061 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1062 break;
1063 #endif /* FIXME: remove this line when NCQ added */
1064 default:
1065 /* The only other commands EDMA supports in non-queued and
1066 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1067 * of which are defined/used by Linux. If we get here, this
1068 * driver needs work.
1070 * FIXME: modify libata to give qc_prep a return value and
1071 * return error here.
1073 BUG_ON(tf->command);
1074 break;
1076 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1077 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1078 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1079 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1080 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1081 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1082 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1083 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1084 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1086 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1087 return;
1088 mv_fill_sg(qc);
1092 * mv_qc_prep_iie - Host specific command preparation.
1093 * @qc: queued command to prepare
1095 * This routine simply redirects to the general purpose routine
1096 * if command is not DMA. Else, it handles prep of the CRQB
1097 * (command request block), does some sanity checking, and calls
1098 * the SG load routine.
1100 * LOCKING:
1101 * Inherited from caller.
1103 static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1105 struct ata_port *ap = qc->ap;
1106 struct mv_port_priv *pp = ap->private_data;
1107 struct mv_crqb_iie *crqb;
1108 struct ata_taskfile *tf;
1109 unsigned in_index;
1110 u32 flags = 0;
1112 if (ATA_PROT_DMA != qc->tf.protocol)
1113 return;
1115 /* Fill in Gen IIE command request block
1117 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1118 flags |= CRQB_FLAG_READ;
1120 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1121 flags |= qc->tag << CRQB_TAG_SHIFT;
1123 /* get current queue index from hardware */
1124 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1125 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1127 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1128 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1129 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1130 crqb->flags = cpu_to_le32(flags);
1132 tf = &qc->tf;
1133 crqb->ata_cmd[0] = cpu_to_le32(
1134 (tf->command << 16) |
1135 (tf->feature << 24)
1137 crqb->ata_cmd[1] = cpu_to_le32(
1138 (tf->lbal << 0) |
1139 (tf->lbam << 8) |
1140 (tf->lbah << 16) |
1141 (tf->device << 24)
1143 crqb->ata_cmd[2] = cpu_to_le32(
1144 (tf->hob_lbal << 0) |
1145 (tf->hob_lbam << 8) |
1146 (tf->hob_lbah << 16) |
1147 (tf->hob_feature << 24)
1149 crqb->ata_cmd[3] = cpu_to_le32(
1150 (tf->nsect << 0) |
1151 (tf->hob_nsect << 8)
1154 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1155 return;
1156 mv_fill_sg(qc);
1160 * mv_qc_issue - Initiate a command to the host
1161 * @qc: queued command to start
1163 * This routine simply redirects to the general purpose routine
1164 * if command is not DMA. Else, it sanity checks our local
1165 * caches of the request producer/consumer indices then enables
1166 * DMA and bumps the request producer index.
1168 * LOCKING:
1169 * Inherited from caller.
1171 static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1173 void __iomem *port_mmio = mv_ap_base(qc->ap);
1174 struct mv_port_priv *pp = qc->ap->private_data;
1175 unsigned in_index;
1176 u32 in_ptr;
1178 if (ATA_PROT_DMA != qc->tf.protocol) {
1179 /* We're about to send a non-EDMA capable command to the
1180 * port. Turn off EDMA so there won't be problems accessing
1181 * shadow block, etc registers.
1183 mv_stop_dma(qc->ap);
1184 return ata_qc_issue_prot(qc);
1187 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1188 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1190 /* until we do queuing, the queue should be empty at this point */
1191 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1192 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1194 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1196 mv_start_dma(port_mmio, pp);
1198 /* and write the request in pointer to kick the EDMA to life */
1199 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1200 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1201 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1203 return 0;
1207 * mv_get_crpb_status - get status from most recently completed cmd
1208 * @ap: ATA channel to manipulate
1210 * This routine is for use when the port is in DMA mode, when it
1211 * will be using the CRPB (command response block) method of
1212 * returning command completion information. We check indices
1213 * are good, grab status, and bump the response consumer index to
1214 * prove that we're up to date.
1216 * LOCKING:
1217 * Inherited from caller.
1219 static u8 mv_get_crpb_status(struct ata_port *ap)
1221 void __iomem *port_mmio = mv_ap_base(ap);
1222 struct mv_port_priv *pp = ap->private_data;
1223 unsigned out_index;
1224 u32 out_ptr;
1225 u8 ata_status;
1227 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1228 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1230 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1231 >> CRPB_FLAG_STATUS_SHIFT;
1233 /* increment our consumer index... */
1234 out_index = mv_inc_q_index(out_index);
1236 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1237 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1238 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1240 /* write out our inc'd consumer index so EDMA knows we're caught up */
1241 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1242 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1243 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1245 /* Return ATA status register for completed CRPB */
1246 return ata_status;
1250 * mv_err_intr - Handle error interrupts on the port
1251 * @ap: ATA channel to manipulate
1252 * @reset_allowed: bool: 0 == don't trigger from reset here
1254 * In most cases, just clear the interrupt and move on. However,
1255 * some cases require an eDMA reset, which is done right before
1256 * the COMRESET in mv_phy_reset(). The SERR case requires a
1257 * clear of pending errors in the SATA SERROR register. Finally,
1258 * if the port disabled DMA, update our cached copy to match.
1260 * LOCKING:
1261 * Inherited from caller.
1263 static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1265 void __iomem *port_mmio = mv_ap_base(ap);
1266 u32 edma_err_cause, serr = 0;
1268 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1270 if (EDMA_ERR_SERR & edma_err_cause) {
1271 sata_scr_read(ap, SCR_ERROR, &serr);
1272 sata_scr_write_flush(ap, SCR_ERROR, serr);
1274 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1275 struct mv_port_priv *pp = ap->private_data;
1276 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1278 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1279 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1281 /* Clear EDMA now that SERR cleanup done */
1282 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1284 /* check for fatal here and recover if needed */
1285 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1286 mv_stop_and_reset(ap);
1290 * mv_host_intr - Handle all interrupts on the given host controller
1291 * @host: host specific structure
1292 * @relevant: port error bits relevant to this host controller
1293 * @hc: which host controller we're to look at
1295 * Read then write clear the HC interrupt status then walk each
1296 * port connected to the HC and see if it needs servicing. Port
1297 * success ints are reported in the HC interrupt status reg, the
1298 * port error ints are reported in the higher level main
1299 * interrupt status register and thus are passed in via the
1300 * 'relevant' argument.
1302 * LOCKING:
1303 * Inherited from caller.
1305 static void mv_host_intr(struct ata_host *host, u32 relevant, unsigned int hc)
1307 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1308 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1309 struct ata_queued_cmd *qc;
1310 u32 hc_irq_cause;
1311 int shift, port, port0, hard_port, handled;
1312 unsigned int err_mask;
1314 if (hc == 0) {
1315 port0 = 0;
1316 } else {
1317 port0 = MV_PORTS_PER_HC;
1320 /* we'll need the HC success int register in most cases */
1321 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1322 if (hc_irq_cause) {
1323 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1326 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1327 hc,relevant,hc_irq_cause);
1329 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1330 u8 ata_status = 0;
1331 struct ata_port *ap = host->ports[port];
1332 struct mv_port_priv *pp = ap->private_data;
1334 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1335 handled = 0; /* ensure ata_status is set if handled++ */
1337 /* Note that DEV_IRQ might happen spuriously during EDMA,
1338 * and should be ignored in such cases.
1339 * The cause of this is still under investigation.
1341 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1342 /* EDMA: check for response queue interrupt */
1343 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1344 ata_status = mv_get_crpb_status(ap);
1345 handled = 1;
1347 } else {
1348 /* PIO: check for device (drive) interrupt */
1349 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1350 ata_status = readb(ap->ioaddr.status_addr);
1351 handled = 1;
1352 /* ignore spurious intr if drive still BUSY */
1353 if (ata_status & ATA_BUSY) {
1354 ata_status = 0;
1355 handled = 0;
1360 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1361 continue;
1363 err_mask = ac_err_mask(ata_status);
1365 shift = port << 1; /* (port * 2) */
1366 if (port >= MV_PORTS_PER_HC) {
1367 shift++; /* skip bit 8 in the HC Main IRQ reg */
1369 if ((PORT0_ERR << shift) & relevant) {
1370 mv_err_intr(ap, 1);
1371 err_mask |= AC_ERR_OTHER;
1372 handled = 1;
1375 if (handled) {
1376 qc = ata_qc_from_tag(ap, ap->active_tag);
1377 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1378 VPRINTK("port %u IRQ found for qc, "
1379 "ata_status 0x%x\n", port,ata_status);
1380 /* mark qc status appropriately */
1381 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1382 qc->err_mask |= err_mask;
1383 ata_qc_complete(qc);
1388 VPRINTK("EXIT\n");
1392 * mv_interrupt -
1393 * @irq: unused
1394 * @dev_instance: private data; in this case the host structure
1395 * @regs: unused
1397 * Read the read only register to determine if any host
1398 * controllers have pending interrupts. If so, call lower level
1399 * routine to handle. Also check for PCI errors which are only
1400 * reported here.
1402 * LOCKING:
1403 * This routine holds the host lock while processing pending
1404 * interrupts.
1406 static irqreturn_t mv_interrupt(int irq, void *dev_instance)
1408 struct ata_host *host = dev_instance;
1409 unsigned int hc, handled = 0, n_hcs;
1410 void __iomem *mmio = host->iomap[MV_PRIMARY_BAR];
1411 struct mv_host_priv *hpriv;
1412 u32 irq_stat;
1414 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1416 /* check the cases where we either have nothing pending or have read
1417 * a bogus register value which can indicate HW removal or PCI fault
1419 if (!irq_stat || (0xffffffffU == irq_stat)) {
1420 return IRQ_NONE;
1423 n_hcs = mv_get_hc_count(host->ports[0]->flags);
1424 spin_lock(&host->lock);
1426 for (hc = 0; hc < n_hcs; hc++) {
1427 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1428 if (relevant) {
1429 mv_host_intr(host, relevant, hc);
1430 handled++;
1434 hpriv = host->private_data;
1435 if (IS_60XX(hpriv)) {
1436 /* deal with the interrupt coalescing bits */
1437 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1438 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1439 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1440 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1444 if (PCI_ERR & irq_stat) {
1445 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1446 readl(mmio + PCI_IRQ_CAUSE_OFS));
1448 DPRINTK("All regs @ PCI error\n");
1449 mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev));
1451 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1452 handled++;
1454 spin_unlock(&host->lock);
1456 return IRQ_RETVAL(handled);
1459 static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1461 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1462 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1464 return hc_mmio + ofs;
1467 static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1469 unsigned int ofs;
1471 switch (sc_reg_in) {
1472 case SCR_STATUS:
1473 case SCR_ERROR:
1474 case SCR_CONTROL:
1475 ofs = sc_reg_in * sizeof(u32);
1476 break;
1477 default:
1478 ofs = 0xffffffffU;
1479 break;
1481 return ofs;
1484 static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1486 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1487 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1488 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1490 if (ofs != 0xffffffffU)
1491 return readl(addr + ofs);
1492 else
1493 return (u32) ofs;
1496 static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1498 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1499 void __iomem *addr = mv5_phy_base(mmio, ap->port_no);
1500 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1502 if (ofs != 0xffffffffU)
1503 writelfl(val, addr + ofs);
1506 static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1508 u8 rev_id;
1509 int early_5080;
1511 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1513 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1515 if (!early_5080) {
1516 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1517 tmp |= (1 << 0);
1518 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1521 mv_reset_pci_bus(pdev, mmio);
1524 static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1526 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1529 static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1530 void __iomem *mmio)
1532 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1533 u32 tmp;
1535 tmp = readl(phy_mmio + MV5_PHY_MODE);
1537 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1538 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1541 static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1543 u32 tmp;
1545 writel(0, mmio + MV_GPIO_PORT_CTL);
1547 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1549 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1550 tmp |= ~(1 << 0);
1551 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1554 static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1555 unsigned int port)
1557 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1558 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1559 u32 tmp;
1560 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1562 if (fix_apm_sq) {
1563 tmp = readl(phy_mmio + MV5_LT_MODE);
1564 tmp |= (1 << 19);
1565 writel(tmp, phy_mmio + MV5_LT_MODE);
1567 tmp = readl(phy_mmio + MV5_PHY_CTL);
1568 tmp &= ~0x3;
1569 tmp |= 0x1;
1570 writel(tmp, phy_mmio + MV5_PHY_CTL);
1573 tmp = readl(phy_mmio + MV5_PHY_MODE);
1574 tmp &= ~mask;
1575 tmp |= hpriv->signal[port].pre;
1576 tmp |= hpriv->signal[port].amps;
1577 writel(tmp, phy_mmio + MV5_PHY_MODE);
1581 #undef ZERO
1582 #define ZERO(reg) writel(0, port_mmio + (reg))
1583 static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1584 unsigned int port)
1586 void __iomem *port_mmio = mv_port_base(mmio, port);
1588 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1590 mv_channel_reset(hpriv, mmio, port);
1592 ZERO(0x028); /* command */
1593 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1594 ZERO(0x004); /* timer */
1595 ZERO(0x008); /* irq err cause */
1596 ZERO(0x00c); /* irq err mask */
1597 ZERO(0x010); /* rq bah */
1598 ZERO(0x014); /* rq inp */
1599 ZERO(0x018); /* rq outp */
1600 ZERO(0x01c); /* respq bah */
1601 ZERO(0x024); /* respq outp */
1602 ZERO(0x020); /* respq inp */
1603 ZERO(0x02c); /* test control */
1604 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1606 #undef ZERO
1608 #define ZERO(reg) writel(0, hc_mmio + (reg))
1609 static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1610 unsigned int hc)
1612 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1613 u32 tmp;
1615 ZERO(0x00c);
1616 ZERO(0x010);
1617 ZERO(0x014);
1618 ZERO(0x018);
1620 tmp = readl(hc_mmio + 0x20);
1621 tmp &= 0x1c1c1c1c;
1622 tmp |= 0x03030303;
1623 writel(tmp, hc_mmio + 0x20);
1625 #undef ZERO
1627 static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1628 unsigned int n_hc)
1630 unsigned int hc, port;
1632 for (hc = 0; hc < n_hc; hc++) {
1633 for (port = 0; port < MV_PORTS_PER_HC; port++)
1634 mv5_reset_hc_port(hpriv, mmio,
1635 (hc * MV_PORTS_PER_HC) + port);
1637 mv5_reset_one_hc(hpriv, mmio, hc);
1640 return 0;
1643 #undef ZERO
1644 #define ZERO(reg) writel(0, mmio + (reg))
1645 static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1647 u32 tmp;
1649 tmp = readl(mmio + MV_PCI_MODE);
1650 tmp &= 0xff00ffff;
1651 writel(tmp, mmio + MV_PCI_MODE);
1653 ZERO(MV_PCI_DISC_TIMER);
1654 ZERO(MV_PCI_MSI_TRIGGER);
1655 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1656 ZERO(HC_MAIN_IRQ_MASK_OFS);
1657 ZERO(MV_PCI_SERR_MASK);
1658 ZERO(PCI_IRQ_CAUSE_OFS);
1659 ZERO(PCI_IRQ_MASK_OFS);
1660 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1661 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1662 ZERO(MV_PCI_ERR_ATTRIBUTE);
1663 ZERO(MV_PCI_ERR_COMMAND);
1665 #undef ZERO
1667 static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1669 u32 tmp;
1671 mv5_reset_flash(hpriv, mmio);
1673 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1674 tmp &= 0x3;
1675 tmp |= (1 << 5) | (1 << 6);
1676 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1680 * mv6_reset_hc - Perform the 6xxx global soft reset
1681 * @mmio: base address of the HBA
1683 * This routine only applies to 6xxx parts.
1685 * LOCKING:
1686 * Inherited from caller.
1688 static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1689 unsigned int n_hc)
1691 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1692 int i, rc = 0;
1693 u32 t;
1695 /* Following procedure defined in PCI "main command and status
1696 * register" table.
1698 t = readl(reg);
1699 writel(t | STOP_PCI_MASTER, reg);
1701 for (i = 0; i < 1000; i++) {
1702 udelay(1);
1703 t = readl(reg);
1704 if (PCI_MASTER_EMPTY & t) {
1705 break;
1708 if (!(PCI_MASTER_EMPTY & t)) {
1709 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1710 rc = 1;
1711 goto done;
1714 /* set reset */
1715 i = 5;
1716 do {
1717 writel(t | GLOB_SFT_RST, reg);
1718 t = readl(reg);
1719 udelay(1);
1720 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1722 if (!(GLOB_SFT_RST & t)) {
1723 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1724 rc = 1;
1725 goto done;
1728 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1729 i = 5;
1730 do {
1731 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1732 t = readl(reg);
1733 udelay(1);
1734 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1736 if (GLOB_SFT_RST & t) {
1737 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1738 rc = 1;
1740 done:
1741 return rc;
1744 static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1745 void __iomem *mmio)
1747 void __iomem *port_mmio;
1748 u32 tmp;
1750 tmp = readl(mmio + MV_RESET_CFG);
1751 if ((tmp & (1 << 0)) == 0) {
1752 hpriv->signal[idx].amps = 0x7 << 8;
1753 hpriv->signal[idx].pre = 0x1 << 5;
1754 return;
1757 port_mmio = mv_port_base(mmio, idx);
1758 tmp = readl(port_mmio + PHY_MODE2);
1760 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1761 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1764 static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1766 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1769 static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1770 unsigned int port)
1772 void __iomem *port_mmio = mv_port_base(mmio, port);
1774 u32 hp_flags = hpriv->hp_flags;
1775 int fix_phy_mode2 =
1776 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1777 int fix_phy_mode4 =
1778 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1779 u32 m2, tmp;
1781 if (fix_phy_mode2) {
1782 m2 = readl(port_mmio + PHY_MODE2);
1783 m2 &= ~(1 << 16);
1784 m2 |= (1 << 31);
1785 writel(m2, port_mmio + PHY_MODE2);
1787 udelay(200);
1789 m2 = readl(port_mmio + PHY_MODE2);
1790 m2 &= ~((1 << 16) | (1 << 31));
1791 writel(m2, port_mmio + PHY_MODE2);
1793 udelay(200);
1796 /* who knows what this magic does */
1797 tmp = readl(port_mmio + PHY_MODE3);
1798 tmp &= ~0x7F800000;
1799 tmp |= 0x2A800000;
1800 writel(tmp, port_mmio + PHY_MODE3);
1802 if (fix_phy_mode4) {
1803 u32 m4;
1805 m4 = readl(port_mmio + PHY_MODE4);
1807 if (hp_flags & MV_HP_ERRATA_60X1B2)
1808 tmp = readl(port_mmio + 0x310);
1810 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1812 writel(m4, port_mmio + PHY_MODE4);
1814 if (hp_flags & MV_HP_ERRATA_60X1B2)
1815 writel(tmp, port_mmio + 0x310);
1818 /* Revert values of pre-emphasis and signal amps to the saved ones */
1819 m2 = readl(port_mmio + PHY_MODE2);
1821 m2 &= ~MV_M2_PREAMP_MASK;
1822 m2 |= hpriv->signal[port].amps;
1823 m2 |= hpriv->signal[port].pre;
1824 m2 &= ~(1 << 16);
1826 /* according to mvSata 3.6.1, some IIE values are fixed */
1827 if (IS_GEN_IIE(hpriv)) {
1828 m2 &= ~0xC30FF01F;
1829 m2 |= 0x0000900F;
1832 writel(m2, port_mmio + PHY_MODE2);
1835 static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1836 unsigned int port_no)
1838 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1840 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1842 if (IS_60XX(hpriv)) {
1843 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1844 ifctl |= (1 << 7); /* enable gen2i speed */
1845 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1846 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1849 udelay(25); /* allow reset propagation */
1851 /* Spec never mentions clearing the bit. Marvell's driver does
1852 * clear the bit, however.
1854 writelfl(0, port_mmio + EDMA_CMD_OFS);
1856 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1858 if (IS_50XX(hpriv))
1859 mdelay(1);
1862 static void mv_stop_and_reset(struct ata_port *ap)
1864 struct mv_host_priv *hpriv = ap->host->private_data;
1865 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1867 mv_stop_dma(ap);
1869 mv_channel_reset(hpriv, mmio, ap->port_no);
1871 __mv_phy_reset(ap, 0);
1874 static inline void __msleep(unsigned int msec, int can_sleep)
1876 if (can_sleep)
1877 msleep(msec);
1878 else
1879 mdelay(msec);
1883 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1884 * @ap: ATA channel to manipulate
1886 * Part of this is taken from __sata_phy_reset and modified to
1887 * not sleep since this routine gets called from interrupt level.
1889 * LOCKING:
1890 * Inherited from caller. This is coded to safe to call at
1891 * interrupt level, i.e. it does not sleep.
1893 static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1895 struct mv_port_priv *pp = ap->private_data;
1896 struct mv_host_priv *hpriv = ap->host->private_data;
1897 void __iomem *port_mmio = mv_ap_base(ap);
1898 struct ata_taskfile tf;
1899 struct ata_device *dev = &ap->device[0];
1900 unsigned long timeout;
1901 int retry = 5;
1902 u32 sstatus;
1904 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1906 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1907 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1908 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1910 /* Issue COMRESET via SControl */
1911 comreset_retry:
1912 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1913 __msleep(1, can_sleep);
1915 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1916 __msleep(20, can_sleep);
1918 timeout = jiffies + msecs_to_jiffies(200);
1919 do {
1920 sata_scr_read(ap, SCR_STATUS, &sstatus);
1921 if (((sstatus & 0x3) == 3) || ((sstatus & 0x3) == 0))
1922 break;
1924 __msleep(1, can_sleep);
1925 } while (time_before(jiffies, timeout));
1927 /* work around errata */
1928 if (IS_60XX(hpriv) &&
1929 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1930 (retry-- > 0))
1931 goto comreset_retry;
1933 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1934 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1935 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1937 if (ata_port_online(ap)) {
1938 ata_port_probe(ap);
1939 } else {
1940 sata_scr_read(ap, SCR_STATUS, &sstatus);
1941 ata_port_printk(ap, KERN_INFO,
1942 "no device found (phy stat %08x)\n", sstatus);
1943 ata_port_disable(ap);
1944 return;
1946 ap->cbl = ATA_CBL_SATA;
1948 /* even after SStatus reflects that device is ready,
1949 * it seems to take a while for link to be fully
1950 * established (and thus Status no longer 0x80/0x7F),
1951 * so we poll a bit for that, here.
1953 retry = 20;
1954 while (1) {
1955 u8 drv_stat = ata_check_status(ap);
1956 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
1957 break;
1958 __msleep(500, can_sleep);
1959 if (retry-- <= 0)
1960 break;
1963 tf.lbah = readb(ap->ioaddr.lbah_addr);
1964 tf.lbam = readb(ap->ioaddr.lbam_addr);
1965 tf.lbal = readb(ap->ioaddr.lbal_addr);
1966 tf.nsect = readb(ap->ioaddr.nsect_addr);
1968 dev->class = ata_dev_classify(&tf);
1969 if (!ata_dev_enabled(dev)) {
1970 VPRINTK("Port disabled post-sig: No device present.\n");
1971 ata_port_disable(ap);
1974 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1976 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1978 VPRINTK("EXIT\n");
1981 static void mv_phy_reset(struct ata_port *ap)
1983 __mv_phy_reset(ap, 1);
1987 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1988 * @ap: ATA channel to manipulate
1990 * Intent is to clear all pending error conditions, reset the
1991 * chip/bus, fail the command, and move on.
1993 * LOCKING:
1994 * This routine holds the host lock while failing the command.
1996 static void mv_eng_timeout(struct ata_port *ap)
1998 void __iomem *mmio = ap->host->iomap[MV_PRIMARY_BAR];
1999 struct ata_queued_cmd *qc;
2000 unsigned long flags;
2002 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2003 DPRINTK("All regs @ start of eng_timeout\n");
2004 mv_dump_all_regs(mmio, ap->port_no, to_pci_dev(ap->host->dev));
2006 qc = ata_qc_from_tag(ap, ap->active_tag);
2007 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2008 mmio, ap, qc, qc->scsicmd, &qc->scsicmd->cmnd);
2010 spin_lock_irqsave(&ap->host->lock, flags);
2011 mv_err_intr(ap, 0);
2012 mv_stop_and_reset(ap);
2013 spin_unlock_irqrestore(&ap->host->lock, flags);
2015 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2016 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2017 qc->err_mask |= AC_ERR_TIMEOUT;
2018 ata_eh_qc_complete(qc);
2023 * mv_port_init - Perform some early initialization on a single port.
2024 * @port: libata data structure storing shadow register addresses
2025 * @port_mmio: base address of the port
2027 * Initialize shadow register mmio addresses, clear outstanding
2028 * interrupts on the port, and unmask interrupts for the future
2029 * start of the port.
2031 * LOCKING:
2032 * Inherited from caller.
2034 static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2036 void __iomem *shd_base = port_mmio + SHD_BLK_OFS;
2037 unsigned serr_ofs;
2039 /* PIO related setup
2041 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2042 port->error_addr =
2043 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2044 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2045 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2046 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2047 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2048 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2049 port->status_addr =
2050 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2051 /* special case: control/altstatus doesn't have ATA_REG_ address */
2052 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2054 /* unused: */
2055 port->cmd_addr = port->bmdma_addr = port->scr_addr = NULL;
2057 /* Clear any currently outstanding port interrupt conditions */
2058 serr_ofs = mv_scr_offset(SCR_ERROR);
2059 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2060 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2062 /* unmask all EDMA error interrupts */
2063 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2065 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2066 readl(port_mmio + EDMA_CFG_OFS),
2067 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2068 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2071 static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2072 unsigned int board_idx)
2074 u8 rev_id;
2075 u32 hp_flags = hpriv->hp_flags;
2077 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2079 switch(board_idx) {
2080 case chip_5080:
2081 hpriv->ops = &mv5xxx_ops;
2082 hp_flags |= MV_HP_50XX;
2084 switch (rev_id) {
2085 case 0x1:
2086 hp_flags |= MV_HP_ERRATA_50XXB0;
2087 break;
2088 case 0x3:
2089 hp_flags |= MV_HP_ERRATA_50XXB2;
2090 break;
2091 default:
2092 dev_printk(KERN_WARNING, &pdev->dev,
2093 "Applying 50XXB2 workarounds to unknown rev\n");
2094 hp_flags |= MV_HP_ERRATA_50XXB2;
2095 break;
2097 break;
2099 case chip_504x:
2100 case chip_508x:
2101 hpriv->ops = &mv5xxx_ops;
2102 hp_flags |= MV_HP_50XX;
2104 switch (rev_id) {
2105 case 0x0:
2106 hp_flags |= MV_HP_ERRATA_50XXB0;
2107 break;
2108 case 0x3:
2109 hp_flags |= MV_HP_ERRATA_50XXB2;
2110 break;
2111 default:
2112 dev_printk(KERN_WARNING, &pdev->dev,
2113 "Applying B2 workarounds to unknown rev\n");
2114 hp_flags |= MV_HP_ERRATA_50XXB2;
2115 break;
2117 break;
2119 case chip_604x:
2120 case chip_608x:
2121 hpriv->ops = &mv6xxx_ops;
2123 switch (rev_id) {
2124 case 0x7:
2125 hp_flags |= MV_HP_ERRATA_60X1B2;
2126 break;
2127 case 0x9:
2128 hp_flags |= MV_HP_ERRATA_60X1C0;
2129 break;
2130 default:
2131 dev_printk(KERN_WARNING, &pdev->dev,
2132 "Applying B2 workarounds to unknown rev\n");
2133 hp_flags |= MV_HP_ERRATA_60X1B2;
2134 break;
2136 break;
2138 case chip_7042:
2139 case chip_6042:
2140 hpriv->ops = &mv6xxx_ops;
2142 hp_flags |= MV_HP_GEN_IIE;
2144 switch (rev_id) {
2145 case 0x0:
2146 hp_flags |= MV_HP_ERRATA_XX42A0;
2147 break;
2148 case 0x1:
2149 hp_flags |= MV_HP_ERRATA_60X1C0;
2150 break;
2151 default:
2152 dev_printk(KERN_WARNING, &pdev->dev,
2153 "Applying 60X1C0 workarounds to unknown rev\n");
2154 hp_flags |= MV_HP_ERRATA_60X1C0;
2155 break;
2157 break;
2159 default:
2160 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2161 return 1;
2164 hpriv->hp_flags = hp_flags;
2166 return 0;
2170 * mv_init_host - Perform some early initialization of the host.
2171 * @pdev: host PCI device
2172 * @probe_ent: early data struct representing the host
2174 * If possible, do an early global reset of the host. Then do
2175 * our port init and clear/unmask all/relevant host interrupts.
2177 * LOCKING:
2178 * Inherited from caller.
2180 static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2181 unsigned int board_idx)
2183 int rc = 0, n_hc, port, hc;
2184 void __iomem *mmio = probe_ent->iomap[MV_PRIMARY_BAR];
2185 struct mv_host_priv *hpriv = probe_ent->private_data;
2187 /* global interrupt mask */
2188 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2190 rc = mv_chip_id(pdev, hpriv, board_idx);
2191 if (rc)
2192 goto done;
2194 n_hc = mv_get_hc_count(probe_ent->port_flags);
2195 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2197 for (port = 0; port < probe_ent->n_ports; port++)
2198 hpriv->ops->read_preamp(hpriv, port, mmio);
2200 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2201 if (rc)
2202 goto done;
2204 hpriv->ops->reset_flash(hpriv, mmio);
2205 hpriv->ops->reset_bus(pdev, mmio);
2206 hpriv->ops->enable_leds(hpriv, mmio);
2208 for (port = 0; port < probe_ent->n_ports; port++) {
2209 if (IS_60XX(hpriv)) {
2210 void __iomem *port_mmio = mv_port_base(mmio, port);
2212 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2213 ifctl |= (1 << 7); /* enable gen2i speed */
2214 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2215 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2218 hpriv->ops->phy_errata(hpriv, mmio, port);
2221 for (port = 0; port < probe_ent->n_ports; port++) {
2222 void __iomem *port_mmio = mv_port_base(mmio, port);
2223 mv_port_init(&probe_ent->port[port], port_mmio);
2226 for (hc = 0; hc < n_hc; hc++) {
2227 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2229 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2230 "(before clear)=0x%08x\n", hc,
2231 readl(hc_mmio + HC_CFG_OFS),
2232 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2234 /* Clear any currently outstanding hc interrupt conditions */
2235 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2238 /* Clear any currently outstanding host interrupt conditions */
2239 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2241 /* and unmask interrupt generation for host regs */
2242 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2243 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2245 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2246 "PCI int cause/mask=0x%08x/0x%08x\n",
2247 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2248 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2249 readl(mmio + PCI_IRQ_CAUSE_OFS),
2250 readl(mmio + PCI_IRQ_MASK_OFS));
2252 done:
2253 return rc;
2257 * mv_print_info - Dump key info to kernel log for perusal.
2258 * @probe_ent: early data struct representing the host
2260 * FIXME: complete this.
2262 * LOCKING:
2263 * Inherited from caller.
2265 static void mv_print_info(struct ata_probe_ent *probe_ent)
2267 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2268 struct mv_host_priv *hpriv = probe_ent->private_data;
2269 u8 rev_id, scc;
2270 const char *scc_s;
2272 /* Use this to determine the HW stepping of the chip so we know
2273 * what errata to workaround
2275 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2277 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2278 if (scc == 0)
2279 scc_s = "SCSI";
2280 else if (scc == 0x01)
2281 scc_s = "RAID";
2282 else
2283 scc_s = "unknown";
2285 dev_printk(KERN_INFO, &pdev->dev,
2286 "%u slots %u ports %s mode IRQ via %s\n",
2287 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2288 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2292 * mv_init_one - handle a positive probe of a Marvell host
2293 * @pdev: PCI device found
2294 * @ent: PCI device ID entry for the matched host
2296 * LOCKING:
2297 * Inherited from caller.
2299 static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2301 static int printed_version = 0;
2302 struct device *dev = &pdev->dev;
2303 struct ata_probe_ent *probe_ent;
2304 struct mv_host_priv *hpriv;
2305 unsigned int board_idx = (unsigned int)ent->driver_data;
2306 int rc;
2308 if (!printed_version++)
2309 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2311 rc = pcim_enable_device(pdev);
2312 if (rc)
2313 return rc;
2314 pci_set_master(pdev);
2316 rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME);
2317 if (rc == -EBUSY)
2318 pcim_pin_device(pdev);
2319 if (rc)
2320 return rc;
2322 probe_ent = devm_kzalloc(dev, sizeof(*probe_ent), GFP_KERNEL);
2323 if (probe_ent == NULL)
2324 return -ENOMEM;
2326 probe_ent->dev = pci_dev_to_dev(pdev);
2327 INIT_LIST_HEAD(&probe_ent->node);
2329 hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
2330 if (!hpriv)
2331 return -ENOMEM;
2333 probe_ent->sht = mv_port_info[board_idx].sht;
2334 probe_ent->port_flags = mv_port_info[board_idx].flags;
2335 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2336 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2337 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2339 probe_ent->irq = pdev->irq;
2340 probe_ent->irq_flags = IRQF_SHARED;
2341 probe_ent->iomap = pcim_iomap_table(pdev);
2342 probe_ent->private_data = hpriv;
2344 /* initialize adapter */
2345 rc = mv_init_host(pdev, probe_ent, board_idx);
2346 if (rc)
2347 return rc;
2349 /* Enable interrupts */
2350 if (msi && !pci_enable_msi(pdev))
2351 pci_intx(pdev, 1);
2353 mv_dump_pci_cfg(pdev, 0x68);
2354 mv_print_info(probe_ent);
2356 if (ata_device_add(probe_ent) == 0)
2357 return -ENODEV;
2359 devm_kfree(dev, probe_ent);
2360 return 0;
2363 static int __init mv_init(void)
2365 return pci_register_driver(&mv_pci_driver);
2368 static void __exit mv_exit(void)
2370 pci_unregister_driver(&mv_pci_driver);
2373 MODULE_AUTHOR("Brett Russ");
2374 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2375 MODULE_LICENSE("GPL");
2376 MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2377 MODULE_VERSION(DRV_VERSION);
2379 module_param(msi, int, 0444);
2380 MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2382 module_init(mv_init);
2383 module_exit(mv_exit);