sched: uninline rq_clock()
[usb.git] / kernel / sched.c
blob0112f63ad376ee873d2755fcaf9fdd3430f89a51
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
65 #include <asm/tlb.h>
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
72 unsigned long long __attribute__((weak)) sched_clock(void)
74 return (unsigned long long)jiffies * (1000000000 / HZ);
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
96 * Some helpers for converting nanosecond timing to jiffy resolution
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
105 * These are the 'tuning knobs' of the scheduler:
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
114 #ifdef CONFIG_SMP
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 #endif
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
142 static unsigned int static_prio_timeslice(int static_prio)
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
153 static inline int rt_policy(int policy)
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
160 static inline int task_has_rt_policy(struct task_struct *p)
162 return rt_policy(p->policy);
166 * This is the priority-queue data structure of the RT scheduling class:
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
219 * This is the main, per-CPU runqueue data structure.
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
255 unsigned long nr_uninterruptible;
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
267 atomic_t nr_iowait;
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 rq->curr->sched_class->check_preempt_curr(rq, p);
311 static inline int cpu_of(struct rq *rq)
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
321 * Per-runqueue clock, as finegrained as the platform can give us:
323 static unsigned long long __rq_clock(struct rq *rq)
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
331 * Protect against sched_clock() occasionally going backwards:
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
338 * Catch too large forward jumps too:
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
353 return clock;
356 static unsigned long long rq_clock(struct rq *rq)
358 int this_cpu = smp_processor_id();
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
363 return rq->clock;
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
385 unsigned long long cpu_clock(int cpu)
387 unsigned long long now;
388 unsigned long flags;
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
394 return now;
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct *p)
401 p->se.cfs_rq = &task_rq(p)->cfs;
403 #else
404 static inline void set_task_cfs_rq(struct task_struct *p)
407 #endif
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
411 #endif
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
414 #endif
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq *rq, struct task_struct *p)
419 return rq->curr == p;
422 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
426 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431 #endif
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439 spin_unlock_irq(&rq->lock);
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq *rq, struct task_struct *p)
445 #ifdef CONFIG_SMP
446 return p->oncpu;
447 #else
448 return rq->curr == p;
449 #endif
452 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 #ifdef CONFIG_SMP
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
460 next->oncpu = 1;
461 #endif
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464 #else
465 spin_unlock(&rq->lock);
466 #endif
469 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 #ifdef CONFIG_SMP
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
477 smp_wmb();
478 prev->oncpu = 0;
479 #endif
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
482 #endif
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
490 static inline struct rq *__task_rq_lock(struct task_struct *p)
491 __acquires(rq->lock)
493 struct rq *rq;
495 repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
502 return rq;
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
510 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
511 __acquires(rq->lock)
513 struct rq *rq;
515 repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
523 return rq;
526 static inline void __task_rq_unlock(struct rq *rq)
527 __releases(rq->lock)
529 spin_unlock(&rq->lock);
532 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
533 __releases(rq->lock)
535 spin_unlock_irqrestore(&rq->lock, *flags);
539 * this_rq_lock - lock this runqueue and disable interrupts.
541 static inline struct rq *this_rq_lock(void)
542 __acquires(rq->lock)
544 struct rq *rq;
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
550 return rq;
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 void sched_clock_unstable_event(void)
558 unsigned long flags;
559 struct rq *rq;
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
568 * resched_task - mark a task 'to be rescheduled now'.
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
574 #ifdef CONFIG_SMP
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578 #endif
580 static void resched_task(struct task_struct *p)
582 int cpu;
584 assert_spin_locked(&task_rq(p)->lock);
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
601 static void resched_cpu(int cpu)
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
611 #else
612 static inline void resched_task(struct task_struct *p)
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
617 #endif
619 static u64 div64_likely32(u64 divident, unsigned long divisor)
621 #if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
626 return divident;
627 #else
628 return divident / divisor;
629 #endif
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
634 #else
635 # define WMULT_CONST (1UL << 32)
636 #endif
638 #define WMULT_SHIFT 32
640 static unsigned long
641 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
644 u64 tmp;
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
649 tmp = (u64)delta_exec * weight;
651 * Check whether we'd overflow the 64-bit multiplication:
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
669 static void update_load_add(struct load_weight *lw, unsigned long inc)
671 lw->weight += inc;
672 lw->inv_weight = 0;
675 static void update_load_sub(struct load_weight *lw, unsigned long dec)
677 lw->weight -= dec;
678 lw->inv_weight = 0;
682 * To aid in avoiding the subversion of "niceness" due to uneven distribution
683 * of tasks with abnormal "nice" values across CPUs the contribution that
684 * each task makes to its run queue's load is weighted according to its
685 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
686 * scaled version of the new time slice allocation that they receive on time
687 * slice expiry etc.
690 #define WEIGHT_IDLEPRIO 2
691 #define WMULT_IDLEPRIO (1 << 31)
694 * Nice levels are multiplicative, with a gentle 10% change for every
695 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
696 * nice 1, it will get ~10% less CPU time than another CPU-bound task
697 * that remained on nice 0.
699 * The "10% effect" is relative and cumulative: from _any_ nice level,
700 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
701 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
702 * If a task goes up by ~10% and another task goes down by ~10% then
703 * the relative distance between them is ~25%.)
705 static const int prio_to_weight[40] = {
706 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
707 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
708 /* 0 */ NICE_0_LOAD /* 1024 */,
709 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
710 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
714 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 * In cases where the weight does not change often, we can use the
717 * precalculated inverse to speed up arithmetics by turning divisions
718 * into multiplications:
720 static const u32 prio_to_wmult[40] = {
721 /* -20 */ 48356, 60446, 75558, 94446, 118058,
722 /* -15 */ 147573, 184467, 230589, 288233, 360285,
723 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
724 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
725 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
726 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
727 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
728 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
731 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
734 * runqueue iterator, to support SMP load-balancing between different
735 * scheduling classes, without having to expose their internal data
736 * structures to the load-balancing proper:
738 struct rq_iterator {
739 void *arg;
740 struct task_struct *(*start)(void *);
741 struct task_struct *(*next)(void *);
744 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
745 unsigned long max_nr_move, unsigned long max_load_move,
746 struct sched_domain *sd, enum cpu_idle_type idle,
747 int *all_pinned, unsigned long *load_moved,
748 int this_best_prio, int best_prio, int best_prio_seen,
749 struct rq_iterator *iterator);
751 #include "sched_stats.h"
752 #include "sched_rt.c"
753 #include "sched_fair.c"
754 #include "sched_idletask.c"
755 #ifdef CONFIG_SCHED_DEBUG
756 # include "sched_debug.c"
757 #endif
759 #define sched_class_highest (&rt_sched_class)
761 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
771 * Update delta_exec, delta_fair fields for rq.
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
785 static void update_curr_load(struct rq *rq, u64 now)
787 struct load_stat *ls = &rq->ls;
788 u64 start;
790 start = ls->load_update_start;
791 ls->load_update_start = now;
792 ls->delta_stat += now - start;
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
801 static inline void
802 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
804 update_curr_load(rq, now);
805 update_load_add(&rq->ls.load, p->se.load.weight);
808 static inline void
809 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
811 update_curr_load(rq, now);
812 update_load_sub(&rq->ls.load, p->se.load.weight);
815 static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
817 rq->nr_running++;
818 inc_load(rq, p, now);
821 static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
823 rq->nr_running--;
824 dec_load(rq, p, now);
827 static void set_load_weight(struct task_struct *p)
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
832 if (task_has_rt_policy(p)) {
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
839 * SCHED_IDLE tasks get minimal weight:
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
851 static void
852 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup, now);
856 p->se.on_rq = 1;
859 static void
860 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
862 p->sched_class->dequeue_task(rq, p, sleep, now);
863 p->se.on_rq = 0;
867 * __normal_prio - return the priority that is based on the static prio
869 static inline int __normal_prio(struct task_struct *p)
871 return p->static_prio;
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
881 static inline int normal_prio(struct task_struct *p)
883 int prio;
885 if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
899 static int effective_prio(struct task_struct *p)
901 p->normal_prio = normal_prio(p);
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
913 * activate_task - move a task to the runqueue.
915 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
917 u64 now = rq_clock(rq);
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
922 enqueue_task(rq, p, wakeup, now);
923 inc_nr_running(p, rq, now);
927 * activate_idle_task - move idle task to the _front_ of runqueue.
929 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
931 u64 now = rq_clock(rq);
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
936 enqueue_task(rq, p, 0, now);
937 inc_nr_running(p, rq, now);
941 * deactivate_task - remove a task from the runqueue.
943 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
945 u64 now = rq_clock(rq);
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible++;
950 dequeue_task(rq, p, sleep, now);
951 dec_nr_running(p, rq, now);
955 * task_curr - is this task currently executing on a CPU?
956 * @p: the task in question.
958 inline int task_curr(const struct task_struct *p)
960 return cpu_curr(task_cpu(p)) == p;
963 /* Used instead of source_load when we know the type == 0 */
964 unsigned long weighted_cpuload(const int cpu)
966 return cpu_rq(cpu)->ls.load.weight;
969 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
971 #ifdef CONFIG_SMP
972 task_thread_info(p)->cpu = cpu;
973 set_task_cfs_rq(p);
974 #endif
977 #ifdef CONFIG_SMP
979 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
981 int old_cpu = task_cpu(p);
982 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983 u64 clock_offset, fair_clock_offset;
985 clock_offset = old_rq->clock - new_rq->clock;
986 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
990 if (p->se.sleep_start_fair)
991 p->se.sleep_start_fair -= fair_clock_offset;
993 #ifdef CONFIG_SCHEDSTATS
994 if (p->se.wait_start)
995 p->se.wait_start -= clock_offset;
996 if (p->se.sleep_start)
997 p->se.sleep_start -= clock_offset;
998 if (p->se.block_start)
999 p->se.block_start -= clock_offset;
1000 #endif
1002 __set_task_cpu(p, new_cpu);
1005 struct migration_req {
1006 struct list_head list;
1008 struct task_struct *task;
1009 int dest_cpu;
1011 struct completion done;
1015 * The task's runqueue lock must be held.
1016 * Returns true if you have to wait for migration thread.
1018 static int
1019 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1021 struct rq *rq = task_rq(p);
1024 * If the task is not on a runqueue (and not running), then
1025 * it is sufficient to simply update the task's cpu field.
1027 if (!p->se.on_rq && !task_running(rq, p)) {
1028 set_task_cpu(p, dest_cpu);
1029 return 0;
1032 init_completion(&req->done);
1033 req->task = p;
1034 req->dest_cpu = dest_cpu;
1035 list_add(&req->list, &rq->migration_queue);
1037 return 1;
1041 * wait_task_inactive - wait for a thread to unschedule.
1043 * The caller must ensure that the task *will* unschedule sometime soon,
1044 * else this function might spin for a *long* time. This function can't
1045 * be called with interrupts off, or it may introduce deadlock with
1046 * smp_call_function() if an IPI is sent by the same process we are
1047 * waiting to become inactive.
1049 void wait_task_inactive(struct task_struct *p)
1051 unsigned long flags;
1052 int running, on_rq;
1053 struct rq *rq;
1055 repeat:
1057 * We do the initial early heuristics without holding
1058 * any task-queue locks at all. We'll only try to get
1059 * the runqueue lock when things look like they will
1060 * work out!
1062 rq = task_rq(p);
1065 * If the task is actively running on another CPU
1066 * still, just relax and busy-wait without holding
1067 * any locks.
1069 * NOTE! Since we don't hold any locks, it's not
1070 * even sure that "rq" stays as the right runqueue!
1071 * But we don't care, since "task_running()" will
1072 * return false if the runqueue has changed and p
1073 * is actually now running somewhere else!
1075 while (task_running(rq, p))
1076 cpu_relax();
1079 * Ok, time to look more closely! We need the rq
1080 * lock now, to be *sure*. If we're wrong, we'll
1081 * just go back and repeat.
1083 rq = task_rq_lock(p, &flags);
1084 running = task_running(rq, p);
1085 on_rq = p->se.on_rq;
1086 task_rq_unlock(rq, &flags);
1089 * Was it really running after all now that we
1090 * checked with the proper locks actually held?
1092 * Oops. Go back and try again..
1094 if (unlikely(running)) {
1095 cpu_relax();
1096 goto repeat;
1100 * It's not enough that it's not actively running,
1101 * it must be off the runqueue _entirely_, and not
1102 * preempted!
1104 * So if it wa still runnable (but just not actively
1105 * running right now), it's preempted, and we should
1106 * yield - it could be a while.
1108 if (unlikely(on_rq)) {
1109 yield();
1110 goto repeat;
1114 * Ahh, all good. It wasn't running, and it wasn't
1115 * runnable, which means that it will never become
1116 * running in the future either. We're all done!
1120 /***
1121 * kick_process - kick a running thread to enter/exit the kernel
1122 * @p: the to-be-kicked thread
1124 * Cause a process which is running on another CPU to enter
1125 * kernel-mode, without any delay. (to get signals handled.)
1127 * NOTE: this function doesnt have to take the runqueue lock,
1128 * because all it wants to ensure is that the remote task enters
1129 * the kernel. If the IPI races and the task has been migrated
1130 * to another CPU then no harm is done and the purpose has been
1131 * achieved as well.
1133 void kick_process(struct task_struct *p)
1135 int cpu;
1137 preempt_disable();
1138 cpu = task_cpu(p);
1139 if ((cpu != smp_processor_id()) && task_curr(p))
1140 smp_send_reschedule(cpu);
1141 preempt_enable();
1145 * Return a low guess at the load of a migration-source cpu weighted
1146 * according to the scheduling class and "nice" value.
1148 * We want to under-estimate the load of migration sources, to
1149 * balance conservatively.
1151 static inline unsigned long source_load(int cpu, int type)
1153 struct rq *rq = cpu_rq(cpu);
1154 unsigned long total = weighted_cpuload(cpu);
1156 if (type == 0)
1157 return total;
1159 return min(rq->cpu_load[type-1], total);
1163 * Return a high guess at the load of a migration-target cpu weighted
1164 * according to the scheduling class and "nice" value.
1166 static inline unsigned long target_load(int cpu, int type)
1168 struct rq *rq = cpu_rq(cpu);
1169 unsigned long total = weighted_cpuload(cpu);
1171 if (type == 0)
1172 return total;
1174 return max(rq->cpu_load[type-1], total);
1178 * Return the average load per task on the cpu's run queue
1180 static inline unsigned long cpu_avg_load_per_task(int cpu)
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long total = weighted_cpuload(cpu);
1184 unsigned long n = rq->nr_running;
1186 return n ? total / n : SCHED_LOAD_SCALE;
1190 * find_idlest_group finds and returns the least busy CPU group within the
1191 * domain.
1193 static struct sched_group *
1194 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1196 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1197 unsigned long min_load = ULONG_MAX, this_load = 0;
1198 int load_idx = sd->forkexec_idx;
1199 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1201 do {
1202 unsigned long load, avg_load;
1203 int local_group;
1204 int i;
1206 /* Skip over this group if it has no CPUs allowed */
1207 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1208 goto nextgroup;
1210 local_group = cpu_isset(this_cpu, group->cpumask);
1212 /* Tally up the load of all CPUs in the group */
1213 avg_load = 0;
1215 for_each_cpu_mask(i, group->cpumask) {
1216 /* Bias balancing toward cpus of our domain */
1217 if (local_group)
1218 load = source_load(i, load_idx);
1219 else
1220 load = target_load(i, load_idx);
1222 avg_load += load;
1225 /* Adjust by relative CPU power of the group */
1226 avg_load = sg_div_cpu_power(group,
1227 avg_load * SCHED_LOAD_SCALE);
1229 if (local_group) {
1230 this_load = avg_load;
1231 this = group;
1232 } else if (avg_load < min_load) {
1233 min_load = avg_load;
1234 idlest = group;
1236 nextgroup:
1237 group = group->next;
1238 } while (group != sd->groups);
1240 if (!idlest || 100*this_load < imbalance*min_load)
1241 return NULL;
1242 return idlest;
1246 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1248 static int
1249 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1251 cpumask_t tmp;
1252 unsigned long load, min_load = ULONG_MAX;
1253 int idlest = -1;
1254 int i;
1256 /* Traverse only the allowed CPUs */
1257 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1259 for_each_cpu_mask(i, tmp) {
1260 load = weighted_cpuload(i);
1262 if (load < min_load || (load == min_load && i == this_cpu)) {
1263 min_load = load;
1264 idlest = i;
1268 return idlest;
1272 * sched_balance_self: balance the current task (running on cpu) in domains
1273 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1274 * SD_BALANCE_EXEC.
1276 * Balance, ie. select the least loaded group.
1278 * Returns the target CPU number, or the same CPU if no balancing is needed.
1280 * preempt must be disabled.
1282 static int sched_balance_self(int cpu, int flag)
1284 struct task_struct *t = current;
1285 struct sched_domain *tmp, *sd = NULL;
1287 for_each_domain(cpu, tmp) {
1289 * If power savings logic is enabled for a domain, stop there.
1291 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1292 break;
1293 if (tmp->flags & flag)
1294 sd = tmp;
1297 while (sd) {
1298 cpumask_t span;
1299 struct sched_group *group;
1300 int new_cpu, weight;
1302 if (!(sd->flags & flag)) {
1303 sd = sd->child;
1304 continue;
1307 span = sd->span;
1308 group = find_idlest_group(sd, t, cpu);
1309 if (!group) {
1310 sd = sd->child;
1311 continue;
1314 new_cpu = find_idlest_cpu(group, t, cpu);
1315 if (new_cpu == -1 || new_cpu == cpu) {
1316 /* Now try balancing at a lower domain level of cpu */
1317 sd = sd->child;
1318 continue;
1321 /* Now try balancing at a lower domain level of new_cpu */
1322 cpu = new_cpu;
1323 sd = NULL;
1324 weight = cpus_weight(span);
1325 for_each_domain(cpu, tmp) {
1326 if (weight <= cpus_weight(tmp->span))
1327 break;
1328 if (tmp->flags & flag)
1329 sd = tmp;
1331 /* while loop will break here if sd == NULL */
1334 return cpu;
1337 #endif /* CONFIG_SMP */
1340 * wake_idle() will wake a task on an idle cpu if task->cpu is
1341 * not idle and an idle cpu is available. The span of cpus to
1342 * search starts with cpus closest then further out as needed,
1343 * so we always favor a closer, idle cpu.
1345 * Returns the CPU we should wake onto.
1347 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1348 static int wake_idle(int cpu, struct task_struct *p)
1350 cpumask_t tmp;
1351 struct sched_domain *sd;
1352 int i;
1355 * If it is idle, then it is the best cpu to run this task.
1357 * This cpu is also the best, if it has more than one task already.
1358 * Siblings must be also busy(in most cases) as they didn't already
1359 * pickup the extra load from this cpu and hence we need not check
1360 * sibling runqueue info. This will avoid the checks and cache miss
1361 * penalities associated with that.
1363 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1364 return cpu;
1366 for_each_domain(cpu, sd) {
1367 if (sd->flags & SD_WAKE_IDLE) {
1368 cpus_and(tmp, sd->span, p->cpus_allowed);
1369 for_each_cpu_mask(i, tmp) {
1370 if (idle_cpu(i))
1371 return i;
1373 } else {
1374 break;
1377 return cpu;
1379 #else
1380 static inline int wake_idle(int cpu, struct task_struct *p)
1382 return cpu;
1384 #endif
1386 /***
1387 * try_to_wake_up - wake up a thread
1388 * @p: the to-be-woken-up thread
1389 * @state: the mask of task states that can be woken
1390 * @sync: do a synchronous wakeup?
1392 * Put it on the run-queue if it's not already there. The "current"
1393 * thread is always on the run-queue (except when the actual
1394 * re-schedule is in progress), and as such you're allowed to do
1395 * the simpler "current->state = TASK_RUNNING" to mark yourself
1396 * runnable without the overhead of this.
1398 * returns failure only if the task is already active.
1400 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1402 int cpu, this_cpu, success = 0;
1403 unsigned long flags;
1404 long old_state;
1405 struct rq *rq;
1406 #ifdef CONFIG_SMP
1407 struct sched_domain *sd, *this_sd = NULL;
1408 unsigned long load, this_load;
1409 int new_cpu;
1410 #endif
1412 rq = task_rq_lock(p, &flags);
1413 old_state = p->state;
1414 if (!(old_state & state))
1415 goto out;
1417 if (p->se.on_rq)
1418 goto out_running;
1420 cpu = task_cpu(p);
1421 this_cpu = smp_processor_id();
1423 #ifdef CONFIG_SMP
1424 if (unlikely(task_running(rq, p)))
1425 goto out_activate;
1427 new_cpu = cpu;
1429 schedstat_inc(rq, ttwu_cnt);
1430 if (cpu == this_cpu) {
1431 schedstat_inc(rq, ttwu_local);
1432 goto out_set_cpu;
1435 for_each_domain(this_cpu, sd) {
1436 if (cpu_isset(cpu, sd->span)) {
1437 schedstat_inc(sd, ttwu_wake_remote);
1438 this_sd = sd;
1439 break;
1443 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1444 goto out_set_cpu;
1447 * Check for affine wakeup and passive balancing possibilities.
1449 if (this_sd) {
1450 int idx = this_sd->wake_idx;
1451 unsigned int imbalance;
1453 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1455 load = source_load(cpu, idx);
1456 this_load = target_load(this_cpu, idx);
1458 new_cpu = this_cpu; /* Wake to this CPU if we can */
1460 if (this_sd->flags & SD_WAKE_AFFINE) {
1461 unsigned long tl = this_load;
1462 unsigned long tl_per_task;
1464 tl_per_task = cpu_avg_load_per_task(this_cpu);
1467 * If sync wakeup then subtract the (maximum possible)
1468 * effect of the currently running task from the load
1469 * of the current CPU:
1471 if (sync)
1472 tl -= current->se.load.weight;
1474 if ((tl <= load &&
1475 tl + target_load(cpu, idx) <= tl_per_task) ||
1476 100*(tl + p->se.load.weight) <= imbalance*load) {
1478 * This domain has SD_WAKE_AFFINE and
1479 * p is cache cold in this domain, and
1480 * there is no bad imbalance.
1482 schedstat_inc(this_sd, ttwu_move_affine);
1483 goto out_set_cpu;
1488 * Start passive balancing when half the imbalance_pct
1489 * limit is reached.
1491 if (this_sd->flags & SD_WAKE_BALANCE) {
1492 if (imbalance*this_load <= 100*load) {
1493 schedstat_inc(this_sd, ttwu_move_balance);
1494 goto out_set_cpu;
1499 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1500 out_set_cpu:
1501 new_cpu = wake_idle(new_cpu, p);
1502 if (new_cpu != cpu) {
1503 set_task_cpu(p, new_cpu);
1504 task_rq_unlock(rq, &flags);
1505 /* might preempt at this point */
1506 rq = task_rq_lock(p, &flags);
1507 old_state = p->state;
1508 if (!(old_state & state))
1509 goto out;
1510 if (p->se.on_rq)
1511 goto out_running;
1513 this_cpu = smp_processor_id();
1514 cpu = task_cpu(p);
1517 out_activate:
1518 #endif /* CONFIG_SMP */
1519 activate_task(rq, p, 1);
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1530 success = 1;
1532 out_running:
1533 p->state = TASK_RUNNING;
1534 out:
1535 task_rq_unlock(rq, &flags);
1537 return success;
1540 int fastcall wake_up_process(struct task_struct *p)
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1545 EXPORT_SYMBOL(wake_up_process);
1547 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1549 return try_to_wake_up(p, state, 0);
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
1556 * __sched_fork() is basic setup used by init_idle() too:
1558 static void __sched_fork(struct task_struct *p)
1560 p->se.wait_start_fair = 0;
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.delta_exec = 0;
1564 p->se.delta_fair_run = 0;
1565 p->se.delta_fair_sleep = 0;
1566 p->se.wait_runtime = 0;
1567 p->se.sleep_start_fair = 0;
1569 #ifdef CONFIG_SCHEDSTATS
1570 p->se.wait_start = 0;
1571 p->se.sum_wait_runtime = 0;
1572 p->se.sum_sleep_runtime = 0;
1573 p->se.sleep_start = 0;
1574 p->se.block_start = 0;
1575 p->se.sleep_max = 0;
1576 p->se.block_max = 0;
1577 p->se.exec_max = 0;
1578 p->se.wait_max = 0;
1579 p->se.wait_runtime_overruns = 0;
1580 p->se.wait_runtime_underruns = 0;
1581 #endif
1583 INIT_LIST_HEAD(&p->run_list);
1584 p->se.on_rq = 0;
1586 #ifdef CONFIG_PREEMPT_NOTIFIERS
1587 INIT_HLIST_HEAD(&p->preempt_notifiers);
1588 #endif
1591 * We mark the process as running here, but have not actually
1592 * inserted it onto the runqueue yet. This guarantees that
1593 * nobody will actually run it, and a signal or other external
1594 * event cannot wake it up and insert it on the runqueue either.
1596 p->state = TASK_RUNNING;
1600 * fork()/clone()-time setup:
1602 void sched_fork(struct task_struct *p, int clone_flags)
1604 int cpu = get_cpu();
1606 __sched_fork(p);
1608 #ifdef CONFIG_SMP
1609 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1610 #endif
1611 __set_task_cpu(p, cpu);
1614 * Make sure we do not leak PI boosting priority to the child:
1616 p->prio = current->normal_prio;
1618 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1619 if (likely(sched_info_on()))
1620 memset(&p->sched_info, 0, sizeof(p->sched_info));
1621 #endif
1622 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 p->oncpu = 0;
1624 #endif
1625 #ifdef CONFIG_PREEMPT
1626 /* Want to start with kernel preemption disabled. */
1627 task_thread_info(p)->preempt_count = 1;
1628 #endif
1629 put_cpu();
1633 * After fork, child runs first. (default) If set to 0 then
1634 * parent will (try to) run first.
1636 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1639 * wake_up_new_task - wake up a newly created task for the first time.
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1645 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1647 unsigned long flags;
1648 struct rq *rq;
1649 int this_cpu;
1650 u64 now;
1652 rq = task_rq_lock(p, &flags);
1653 BUG_ON(p->state != TASK_RUNNING);
1654 this_cpu = smp_processor_id(); /* parent's CPU */
1655 now = rq_clock(rq);
1657 p->prio = effective_prio(p);
1659 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1660 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1661 !current->se.on_rq) {
1663 activate_task(rq, p, 0);
1664 } else {
1666 * Let the scheduling class do new task startup
1667 * management (if any):
1669 p->sched_class->task_new(rq, p, now);
1670 inc_nr_running(p, rq, now);
1672 check_preempt_curr(rq, p);
1673 task_rq_unlock(rq, &flags);
1676 #ifdef CONFIG_PREEMPT_NOTIFIERS
1679 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1680 * @notifier: notifier struct to register
1682 void preempt_notifier_register(struct preempt_notifier *notifier)
1684 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1686 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1689 * preempt_notifier_unregister - no longer interested in preemption notifications
1690 * @notifier: notifier struct to unregister
1692 * This is safe to call from within a preemption notifier.
1694 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1696 hlist_del(&notifier->link);
1698 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1700 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1709 static void
1710 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1711 struct task_struct *next)
1713 struct preempt_notifier *notifier;
1714 struct hlist_node *node;
1716 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1717 notifier->ops->sched_out(notifier, next);
1720 #else
1722 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1726 static void
1727 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1728 struct task_struct *next)
1732 #endif
1735 * prepare_task_switch - prepare to switch tasks
1736 * @rq: the runqueue preparing to switch
1737 * @prev: the current task that is being switched out
1738 * @next: the task we are going to switch to.
1740 * This is called with the rq lock held and interrupts off. It must
1741 * be paired with a subsequent finish_task_switch after the context
1742 * switch.
1744 * prepare_task_switch sets up locking and calls architecture specific
1745 * hooks.
1747 static inline void
1748 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1749 struct task_struct *next)
1751 fire_sched_out_preempt_notifiers(prev, next);
1752 prepare_lock_switch(rq, next);
1753 prepare_arch_switch(next);
1757 * finish_task_switch - clean up after a task-switch
1758 * @rq: runqueue associated with task-switch
1759 * @prev: the thread we just switched away from.
1761 * finish_task_switch must be called after the context switch, paired
1762 * with a prepare_task_switch call before the context switch.
1763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1764 * and do any other architecture-specific cleanup actions.
1766 * Note that we may have delayed dropping an mm in context_switch(). If
1767 * so, we finish that here outside of the runqueue lock. (Doing it
1768 * with the lock held can cause deadlocks; see schedule() for
1769 * details.)
1771 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1772 __releases(rq->lock)
1774 struct mm_struct *mm = rq->prev_mm;
1775 long prev_state;
1777 rq->prev_mm = NULL;
1780 * A task struct has one reference for the use as "current".
1781 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1782 * schedule one last time. The schedule call will never return, and
1783 * the scheduled task must drop that reference.
1784 * The test for TASK_DEAD must occur while the runqueue locks are
1785 * still held, otherwise prev could be scheduled on another cpu, die
1786 * there before we look at prev->state, and then the reference would
1787 * be dropped twice.
1788 * Manfred Spraul <manfred@colorfullife.com>
1790 prev_state = prev->state;
1791 finish_arch_switch(prev);
1792 finish_lock_switch(rq, prev);
1793 fire_sched_in_preempt_notifiers(current);
1794 if (mm)
1795 mmdrop(mm);
1796 if (unlikely(prev_state == TASK_DEAD)) {
1798 * Remove function-return probe instances associated with this
1799 * task and put them back on the free list.
1801 kprobe_flush_task(prev);
1802 put_task_struct(prev);
1807 * schedule_tail - first thing a freshly forked thread must call.
1808 * @prev: the thread we just switched away from.
1810 asmlinkage void schedule_tail(struct task_struct *prev)
1811 __releases(rq->lock)
1813 struct rq *rq = this_rq();
1815 finish_task_switch(rq, prev);
1816 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1817 /* In this case, finish_task_switch does not reenable preemption */
1818 preempt_enable();
1819 #endif
1820 if (current->set_child_tid)
1821 put_user(current->pid, current->set_child_tid);
1825 * context_switch - switch to the new MM and the new
1826 * thread's register state.
1828 static inline void
1829 context_switch(struct rq *rq, struct task_struct *prev,
1830 struct task_struct *next)
1832 struct mm_struct *mm, *oldmm;
1834 prepare_task_switch(rq, prev, next);
1835 mm = next->mm;
1836 oldmm = prev->active_mm;
1838 * For paravirt, this is coupled with an exit in switch_to to
1839 * combine the page table reload and the switch backend into
1840 * one hypercall.
1842 arch_enter_lazy_cpu_mode();
1844 if (unlikely(!mm)) {
1845 next->active_mm = oldmm;
1846 atomic_inc(&oldmm->mm_count);
1847 enter_lazy_tlb(oldmm, next);
1848 } else
1849 switch_mm(oldmm, mm, next);
1851 if (unlikely(!prev->mm)) {
1852 prev->active_mm = NULL;
1853 rq->prev_mm = oldmm;
1856 * Since the runqueue lock will be released by the next
1857 * task (which is an invalid locking op but in the case
1858 * of the scheduler it's an obvious special-case), so we
1859 * do an early lockdep release here:
1861 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1863 #endif
1865 /* Here we just switch the register state and the stack. */
1866 switch_to(prev, next, prev);
1868 barrier();
1870 * this_rq must be evaluated again because prev may have moved
1871 * CPUs since it called schedule(), thus the 'rq' on its stack
1872 * frame will be invalid.
1874 finish_task_switch(this_rq(), prev);
1878 * nr_running, nr_uninterruptible and nr_context_switches:
1880 * externally visible scheduler statistics: current number of runnable
1881 * threads, current number of uninterruptible-sleeping threads, total
1882 * number of context switches performed since bootup.
1884 unsigned long nr_running(void)
1886 unsigned long i, sum = 0;
1888 for_each_online_cpu(i)
1889 sum += cpu_rq(i)->nr_running;
1891 return sum;
1894 unsigned long nr_uninterruptible(void)
1896 unsigned long i, sum = 0;
1898 for_each_possible_cpu(i)
1899 sum += cpu_rq(i)->nr_uninterruptible;
1902 * Since we read the counters lockless, it might be slightly
1903 * inaccurate. Do not allow it to go below zero though:
1905 if (unlikely((long)sum < 0))
1906 sum = 0;
1908 return sum;
1911 unsigned long long nr_context_switches(void)
1913 int i;
1914 unsigned long long sum = 0;
1916 for_each_possible_cpu(i)
1917 sum += cpu_rq(i)->nr_switches;
1919 return sum;
1922 unsigned long nr_iowait(void)
1924 unsigned long i, sum = 0;
1926 for_each_possible_cpu(i)
1927 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1929 return sum;
1932 unsigned long nr_active(void)
1934 unsigned long i, running = 0, uninterruptible = 0;
1936 for_each_online_cpu(i) {
1937 running += cpu_rq(i)->nr_running;
1938 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1941 if (unlikely((long)uninterruptible < 0))
1942 uninterruptible = 0;
1944 return running + uninterruptible;
1948 * Update rq->cpu_load[] statistics. This function is usually called every
1949 * scheduler tick (TICK_NSEC).
1951 static void update_cpu_load(struct rq *this_rq)
1953 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1954 unsigned long total_load = this_rq->ls.load.weight;
1955 unsigned long this_load = total_load;
1956 struct load_stat *ls = &this_rq->ls;
1957 u64 now = __rq_clock(this_rq);
1958 int i, scale;
1960 this_rq->nr_load_updates++;
1961 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1962 goto do_avg;
1964 /* Update delta_fair/delta_exec fields first */
1965 update_curr_load(this_rq, now);
1967 fair_delta64 = ls->delta_fair + 1;
1968 ls->delta_fair = 0;
1970 exec_delta64 = ls->delta_exec + 1;
1971 ls->delta_exec = 0;
1973 sample_interval64 = now - ls->load_update_last;
1974 ls->load_update_last = now;
1976 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1977 sample_interval64 = TICK_NSEC;
1979 if (exec_delta64 > sample_interval64)
1980 exec_delta64 = sample_interval64;
1982 idle_delta64 = sample_interval64 - exec_delta64;
1984 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1985 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1987 this_load = (unsigned long)tmp64;
1989 do_avg:
1991 /* Update our load: */
1992 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1993 unsigned long old_load, new_load;
1995 /* scale is effectively 1 << i now, and >> i divides by scale */
1997 old_load = this_rq->cpu_load[i];
1998 new_load = this_load;
2000 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2004 #ifdef CONFIG_SMP
2007 * double_rq_lock - safely lock two runqueues
2009 * Note this does not disable interrupts like task_rq_lock,
2010 * you need to do so manually before calling.
2012 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2013 __acquires(rq1->lock)
2014 __acquires(rq2->lock)
2016 BUG_ON(!irqs_disabled());
2017 if (rq1 == rq2) {
2018 spin_lock(&rq1->lock);
2019 __acquire(rq2->lock); /* Fake it out ;) */
2020 } else {
2021 if (rq1 < rq2) {
2022 spin_lock(&rq1->lock);
2023 spin_lock(&rq2->lock);
2024 } else {
2025 spin_lock(&rq2->lock);
2026 spin_lock(&rq1->lock);
2032 * double_rq_unlock - safely unlock two runqueues
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2037 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2051 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2061 if (unlikely(!spin_trylock(&busiest->lock))) {
2062 if (busiest < this_rq) {
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2079 struct migration_req req;
2080 unsigned long flags;
2081 struct rq *rq;
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
2099 return;
2101 out:
2102 task_rq_unlock(rq, &flags);
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
2109 void sched_exec(void)
2111 int new_cpu, this_cpu = get_cpu();
2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2113 put_cpu();
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2122 static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
2125 deactivate_task(src_rq, p, 0);
2126 set_task_cpu(p, this_cpu);
2127 activate_task(this_rq, p, 0);
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2132 check_preempt_curr(this_rq, p);
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2138 static
2139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2140 struct sched_domain *sd, enum cpu_idle_type idle,
2141 int *all_pinned)
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
2151 *all_pinned = 0;
2153 if (task_running(rq, p))
2154 return 0;
2157 * Aggressive migration if too many balance attempts have failed:
2159 if (sd->nr_balance_failed > sd->cache_nice_tries)
2160 return 1;
2162 return 1;
2165 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166 unsigned long max_nr_move, unsigned long max_load_move,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned, unsigned long *load_moved,
2169 int this_best_prio, int best_prio, int best_prio_seen,
2170 struct rq_iterator *iterator)
2172 int pulled = 0, pinned = 0, skip_for_load;
2173 struct task_struct *p;
2174 long rem_load_move = max_load_move;
2176 if (max_nr_move == 0 || max_load_move == 0)
2177 goto out;
2179 pinned = 1;
2182 * Start the load-balancing iterator:
2184 p = iterator->start(iterator->arg);
2185 next:
2186 if (!p)
2187 goto out;
2189 * To help distribute high priority tasks accross CPUs we don't
2190 * skip a task if it will be the highest priority task (i.e. smallest
2191 * prio value) on its new queue regardless of its load weight
2193 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2194 SCHED_LOAD_SCALE_FUZZ;
2195 if (skip_for_load && p->prio < this_best_prio)
2196 skip_for_load = !best_prio_seen && p->prio == best_prio;
2197 if (skip_for_load ||
2198 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2200 best_prio_seen |= p->prio == best_prio;
2201 p = iterator->next(iterator->arg);
2202 goto next;
2205 pull_task(busiest, p, this_rq, this_cpu);
2206 pulled++;
2207 rem_load_move -= p->se.load.weight;
2210 * We only want to steal up to the prescribed number of tasks
2211 * and the prescribed amount of weighted load.
2213 if (pulled < max_nr_move && rem_load_move > 0) {
2214 if (p->prio < this_best_prio)
2215 this_best_prio = p->prio;
2216 p = iterator->next(iterator->arg);
2217 goto next;
2219 out:
2221 * Right now, this is the only place pull_task() is called,
2222 * so we can safely collect pull_task() stats here rather than
2223 * inside pull_task().
2225 schedstat_add(sd, lb_gained[idle], pulled);
2227 if (all_pinned)
2228 *all_pinned = pinned;
2229 *load_moved = max_load_move - rem_load_move;
2230 return pulled;
2234 * move_tasks tries to move up to max_load_move weighted load from busiest to
2235 * this_rq, as part of a balancing operation within domain "sd".
2236 * Returns 1 if successful and 0 otherwise.
2238 * Called with both runqueues locked.
2240 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 unsigned long max_load_move,
2242 struct sched_domain *sd, enum cpu_idle_type idle,
2243 int *all_pinned)
2245 struct sched_class *class = sched_class_highest;
2246 unsigned long total_load_moved = 0;
2248 do {
2249 total_load_moved +=
2250 class->load_balance(this_rq, this_cpu, busiest,
2251 ULONG_MAX, max_load_move - total_load_moved,
2252 sd, idle, all_pinned);
2253 class = class->next;
2254 } while (class && max_load_move > total_load_moved);
2256 return total_load_moved > 0;
2260 * move_one_task tries to move exactly one task from busiest to this_rq, as
2261 * part of active balancing operations within "domain".
2262 * Returns 1 if successful and 0 otherwise.
2264 * Called with both runqueues locked.
2266 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2267 struct sched_domain *sd, enum cpu_idle_type idle)
2269 struct sched_class *class;
2271 for (class = sched_class_highest; class; class = class->next)
2272 if (class->load_balance(this_rq, this_cpu, busiest,
2273 1, ULONG_MAX, sd, idle, NULL))
2274 return 1;
2276 return 0;
2280 * find_busiest_group finds and returns the busiest CPU group within the
2281 * domain. It calculates and returns the amount of weighted load which
2282 * should be moved to restore balance via the imbalance parameter.
2284 static struct sched_group *
2285 find_busiest_group(struct sched_domain *sd, int this_cpu,
2286 unsigned long *imbalance, enum cpu_idle_type idle,
2287 int *sd_idle, cpumask_t *cpus, int *balance)
2289 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2290 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2291 unsigned long max_pull;
2292 unsigned long busiest_load_per_task, busiest_nr_running;
2293 unsigned long this_load_per_task, this_nr_running;
2294 int load_idx;
2295 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2296 int power_savings_balance = 1;
2297 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2298 unsigned long min_nr_running = ULONG_MAX;
2299 struct sched_group *group_min = NULL, *group_leader = NULL;
2300 #endif
2302 max_load = this_load = total_load = total_pwr = 0;
2303 busiest_load_per_task = busiest_nr_running = 0;
2304 this_load_per_task = this_nr_running = 0;
2305 if (idle == CPU_NOT_IDLE)
2306 load_idx = sd->busy_idx;
2307 else if (idle == CPU_NEWLY_IDLE)
2308 load_idx = sd->newidle_idx;
2309 else
2310 load_idx = sd->idle_idx;
2312 do {
2313 unsigned long load, group_capacity;
2314 int local_group;
2315 int i;
2316 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2317 unsigned long sum_nr_running, sum_weighted_load;
2319 local_group = cpu_isset(this_cpu, group->cpumask);
2321 if (local_group)
2322 balance_cpu = first_cpu(group->cpumask);
2324 /* Tally up the load of all CPUs in the group */
2325 sum_weighted_load = sum_nr_running = avg_load = 0;
2327 for_each_cpu_mask(i, group->cpumask) {
2328 struct rq *rq;
2330 if (!cpu_isset(i, *cpus))
2331 continue;
2333 rq = cpu_rq(i);
2335 if (*sd_idle && rq->nr_running)
2336 *sd_idle = 0;
2338 /* Bias balancing toward cpus of our domain */
2339 if (local_group) {
2340 if (idle_cpu(i) && !first_idle_cpu) {
2341 first_idle_cpu = 1;
2342 balance_cpu = i;
2345 load = target_load(i, load_idx);
2346 } else
2347 load = source_load(i, load_idx);
2349 avg_load += load;
2350 sum_nr_running += rq->nr_running;
2351 sum_weighted_load += weighted_cpuload(i);
2355 * First idle cpu or the first cpu(busiest) in this sched group
2356 * is eligible for doing load balancing at this and above
2357 * domains. In the newly idle case, we will allow all the cpu's
2358 * to do the newly idle load balance.
2360 if (idle != CPU_NEWLY_IDLE && local_group &&
2361 balance_cpu != this_cpu && balance) {
2362 *balance = 0;
2363 goto ret;
2366 total_load += avg_load;
2367 total_pwr += group->__cpu_power;
2369 /* Adjust by relative CPU power of the group */
2370 avg_load = sg_div_cpu_power(group,
2371 avg_load * SCHED_LOAD_SCALE);
2373 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2375 if (local_group) {
2376 this_load = avg_load;
2377 this = group;
2378 this_nr_running = sum_nr_running;
2379 this_load_per_task = sum_weighted_load;
2380 } else if (avg_load > max_load &&
2381 sum_nr_running > group_capacity) {
2382 max_load = avg_load;
2383 busiest = group;
2384 busiest_nr_running = sum_nr_running;
2385 busiest_load_per_task = sum_weighted_load;
2388 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2390 * Busy processors will not participate in power savings
2391 * balance.
2393 if (idle == CPU_NOT_IDLE ||
2394 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2395 goto group_next;
2398 * If the local group is idle or completely loaded
2399 * no need to do power savings balance at this domain
2401 if (local_group && (this_nr_running >= group_capacity ||
2402 !this_nr_running))
2403 power_savings_balance = 0;
2406 * If a group is already running at full capacity or idle,
2407 * don't include that group in power savings calculations
2409 if (!power_savings_balance || sum_nr_running >= group_capacity
2410 || !sum_nr_running)
2411 goto group_next;
2414 * Calculate the group which has the least non-idle load.
2415 * This is the group from where we need to pick up the load
2416 * for saving power
2418 if ((sum_nr_running < min_nr_running) ||
2419 (sum_nr_running == min_nr_running &&
2420 first_cpu(group->cpumask) <
2421 first_cpu(group_min->cpumask))) {
2422 group_min = group;
2423 min_nr_running = sum_nr_running;
2424 min_load_per_task = sum_weighted_load /
2425 sum_nr_running;
2429 * Calculate the group which is almost near its
2430 * capacity but still has some space to pick up some load
2431 * from other group and save more power
2433 if (sum_nr_running <= group_capacity - 1) {
2434 if (sum_nr_running > leader_nr_running ||
2435 (sum_nr_running == leader_nr_running &&
2436 first_cpu(group->cpumask) >
2437 first_cpu(group_leader->cpumask))) {
2438 group_leader = group;
2439 leader_nr_running = sum_nr_running;
2442 group_next:
2443 #endif
2444 group = group->next;
2445 } while (group != sd->groups);
2447 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2448 goto out_balanced;
2450 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2452 if (this_load >= avg_load ||
2453 100*max_load <= sd->imbalance_pct*this_load)
2454 goto out_balanced;
2456 busiest_load_per_task /= busiest_nr_running;
2458 * We're trying to get all the cpus to the average_load, so we don't
2459 * want to push ourselves above the average load, nor do we wish to
2460 * reduce the max loaded cpu below the average load, as either of these
2461 * actions would just result in more rebalancing later, and ping-pong
2462 * tasks around. Thus we look for the minimum possible imbalance.
2463 * Negative imbalances (*we* are more loaded than anyone else) will
2464 * be counted as no imbalance for these purposes -- we can't fix that
2465 * by pulling tasks to us. Be careful of negative numbers as they'll
2466 * appear as very large values with unsigned longs.
2468 if (max_load <= busiest_load_per_task)
2469 goto out_balanced;
2472 * In the presence of smp nice balancing, certain scenarios can have
2473 * max load less than avg load(as we skip the groups at or below
2474 * its cpu_power, while calculating max_load..)
2476 if (max_load < avg_load) {
2477 *imbalance = 0;
2478 goto small_imbalance;
2481 /* Don't want to pull so many tasks that a group would go idle */
2482 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2484 /* How much load to actually move to equalise the imbalance */
2485 *imbalance = min(max_pull * busiest->__cpu_power,
2486 (avg_load - this_load) * this->__cpu_power)
2487 / SCHED_LOAD_SCALE;
2490 * if *imbalance is less than the average load per runnable task
2491 * there is no gaurantee that any tasks will be moved so we'll have
2492 * a think about bumping its value to force at least one task to be
2493 * moved
2495 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2496 unsigned long tmp, pwr_now, pwr_move;
2497 unsigned int imbn;
2499 small_imbalance:
2500 pwr_move = pwr_now = 0;
2501 imbn = 2;
2502 if (this_nr_running) {
2503 this_load_per_task /= this_nr_running;
2504 if (busiest_load_per_task > this_load_per_task)
2505 imbn = 1;
2506 } else
2507 this_load_per_task = SCHED_LOAD_SCALE;
2509 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2510 busiest_load_per_task * imbn) {
2511 *imbalance = busiest_load_per_task;
2512 return busiest;
2516 * OK, we don't have enough imbalance to justify moving tasks,
2517 * however we may be able to increase total CPU power used by
2518 * moving them.
2521 pwr_now += busiest->__cpu_power *
2522 min(busiest_load_per_task, max_load);
2523 pwr_now += this->__cpu_power *
2524 min(this_load_per_task, this_load);
2525 pwr_now /= SCHED_LOAD_SCALE;
2527 /* Amount of load we'd subtract */
2528 tmp = sg_div_cpu_power(busiest,
2529 busiest_load_per_task * SCHED_LOAD_SCALE);
2530 if (max_load > tmp)
2531 pwr_move += busiest->__cpu_power *
2532 min(busiest_load_per_task, max_load - tmp);
2534 /* Amount of load we'd add */
2535 if (max_load * busiest->__cpu_power <
2536 busiest_load_per_task * SCHED_LOAD_SCALE)
2537 tmp = sg_div_cpu_power(this,
2538 max_load * busiest->__cpu_power);
2539 else
2540 tmp = sg_div_cpu_power(this,
2541 busiest_load_per_task * SCHED_LOAD_SCALE);
2542 pwr_move += this->__cpu_power *
2543 min(this_load_per_task, this_load + tmp);
2544 pwr_move /= SCHED_LOAD_SCALE;
2546 /* Move if we gain throughput */
2547 if (pwr_move <= pwr_now)
2548 goto out_balanced;
2550 *imbalance = busiest_load_per_task;
2553 return busiest;
2555 out_balanced:
2556 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2557 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2558 goto ret;
2560 if (this == group_leader && group_leader != group_min) {
2561 *imbalance = min_load_per_task;
2562 return group_min;
2564 #endif
2565 ret:
2566 *imbalance = 0;
2567 return NULL;
2571 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2573 static struct rq *
2574 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2575 unsigned long imbalance, cpumask_t *cpus)
2577 struct rq *busiest = NULL, *rq;
2578 unsigned long max_load = 0;
2579 int i;
2581 for_each_cpu_mask(i, group->cpumask) {
2582 unsigned long wl;
2584 if (!cpu_isset(i, *cpus))
2585 continue;
2587 rq = cpu_rq(i);
2588 wl = weighted_cpuload(i);
2590 if (rq->nr_running == 1 && wl > imbalance)
2591 continue;
2593 if (wl > max_load) {
2594 max_load = wl;
2595 busiest = rq;
2599 return busiest;
2603 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2604 * so long as it is large enough.
2606 #define MAX_PINNED_INTERVAL 512
2609 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2610 * tasks if there is an imbalance.
2612 static int load_balance(int this_cpu, struct rq *this_rq,
2613 struct sched_domain *sd, enum cpu_idle_type idle,
2614 int *balance)
2616 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2617 struct sched_group *group;
2618 unsigned long imbalance;
2619 struct rq *busiest;
2620 cpumask_t cpus = CPU_MASK_ALL;
2621 unsigned long flags;
2624 * When power savings policy is enabled for the parent domain, idle
2625 * sibling can pick up load irrespective of busy siblings. In this case,
2626 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2627 * portraying it as CPU_NOT_IDLE.
2629 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2630 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2631 sd_idle = 1;
2633 schedstat_inc(sd, lb_cnt[idle]);
2635 redo:
2636 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2637 &cpus, balance);
2639 if (*balance == 0)
2640 goto out_balanced;
2642 if (!group) {
2643 schedstat_inc(sd, lb_nobusyg[idle]);
2644 goto out_balanced;
2647 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2648 if (!busiest) {
2649 schedstat_inc(sd, lb_nobusyq[idle]);
2650 goto out_balanced;
2653 BUG_ON(busiest == this_rq);
2655 schedstat_add(sd, lb_imbalance[idle], imbalance);
2657 ld_moved = 0;
2658 if (busiest->nr_running > 1) {
2660 * Attempt to move tasks. If find_busiest_group has found
2661 * an imbalance but busiest->nr_running <= 1, the group is
2662 * still unbalanced. ld_moved simply stays zero, so it is
2663 * correctly treated as an imbalance.
2665 local_irq_save(flags);
2666 double_rq_lock(this_rq, busiest);
2667 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2668 imbalance, sd, idle, &all_pinned);
2669 double_rq_unlock(this_rq, busiest);
2670 local_irq_restore(flags);
2673 * some other cpu did the load balance for us.
2675 if (ld_moved && this_cpu != smp_processor_id())
2676 resched_cpu(this_cpu);
2678 /* All tasks on this runqueue were pinned by CPU affinity */
2679 if (unlikely(all_pinned)) {
2680 cpu_clear(cpu_of(busiest), cpus);
2681 if (!cpus_empty(cpus))
2682 goto redo;
2683 goto out_balanced;
2687 if (!ld_moved) {
2688 schedstat_inc(sd, lb_failed[idle]);
2689 sd->nr_balance_failed++;
2691 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2693 spin_lock_irqsave(&busiest->lock, flags);
2695 /* don't kick the migration_thread, if the curr
2696 * task on busiest cpu can't be moved to this_cpu
2698 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2699 spin_unlock_irqrestore(&busiest->lock, flags);
2700 all_pinned = 1;
2701 goto out_one_pinned;
2704 if (!busiest->active_balance) {
2705 busiest->active_balance = 1;
2706 busiest->push_cpu = this_cpu;
2707 active_balance = 1;
2709 spin_unlock_irqrestore(&busiest->lock, flags);
2710 if (active_balance)
2711 wake_up_process(busiest->migration_thread);
2714 * We've kicked active balancing, reset the failure
2715 * counter.
2717 sd->nr_balance_failed = sd->cache_nice_tries+1;
2719 } else
2720 sd->nr_balance_failed = 0;
2722 if (likely(!active_balance)) {
2723 /* We were unbalanced, so reset the balancing interval */
2724 sd->balance_interval = sd->min_interval;
2725 } else {
2727 * If we've begun active balancing, start to back off. This
2728 * case may not be covered by the all_pinned logic if there
2729 * is only 1 task on the busy runqueue (because we don't call
2730 * move_tasks).
2732 if (sd->balance_interval < sd->max_interval)
2733 sd->balance_interval *= 2;
2736 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2737 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2738 return -1;
2739 return ld_moved;
2741 out_balanced:
2742 schedstat_inc(sd, lb_balanced[idle]);
2744 sd->nr_balance_failed = 0;
2746 out_one_pinned:
2747 /* tune up the balancing interval */
2748 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2749 (sd->balance_interval < sd->max_interval))
2750 sd->balance_interval *= 2;
2752 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2753 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2754 return -1;
2755 return 0;
2759 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2760 * tasks if there is an imbalance.
2762 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2763 * this_rq is locked.
2765 static int
2766 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2768 struct sched_group *group;
2769 struct rq *busiest = NULL;
2770 unsigned long imbalance;
2771 int ld_moved = 0;
2772 int sd_idle = 0;
2773 int all_pinned = 0;
2774 cpumask_t cpus = CPU_MASK_ALL;
2777 * When power savings policy is enabled for the parent domain, idle
2778 * sibling can pick up load irrespective of busy siblings. In this case,
2779 * let the state of idle sibling percolate up as IDLE, instead of
2780 * portraying it as CPU_NOT_IDLE.
2782 if (sd->flags & SD_SHARE_CPUPOWER &&
2783 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2784 sd_idle = 1;
2786 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2787 redo:
2788 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2789 &sd_idle, &cpus, NULL);
2790 if (!group) {
2791 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2792 goto out_balanced;
2795 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2796 &cpus);
2797 if (!busiest) {
2798 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2799 goto out_balanced;
2802 BUG_ON(busiest == this_rq);
2804 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2806 ld_moved = 0;
2807 if (busiest->nr_running > 1) {
2808 /* Attempt to move tasks */
2809 double_lock_balance(this_rq, busiest);
2810 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2811 imbalance, sd, CPU_NEWLY_IDLE,
2812 &all_pinned);
2813 spin_unlock(&busiest->lock);
2815 if (unlikely(all_pinned)) {
2816 cpu_clear(cpu_of(busiest), cpus);
2817 if (!cpus_empty(cpus))
2818 goto redo;
2822 if (!ld_moved) {
2823 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 return -1;
2827 } else
2828 sd->nr_balance_failed = 0;
2830 return ld_moved;
2832 out_balanced:
2833 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2834 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2835 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2836 return -1;
2837 sd->nr_balance_failed = 0;
2839 return 0;
2843 * idle_balance is called by schedule() if this_cpu is about to become
2844 * idle. Attempts to pull tasks from other CPUs.
2846 static void idle_balance(int this_cpu, struct rq *this_rq)
2848 struct sched_domain *sd;
2849 int pulled_task = -1;
2850 unsigned long next_balance = jiffies + HZ;
2852 for_each_domain(this_cpu, sd) {
2853 unsigned long interval;
2855 if (!(sd->flags & SD_LOAD_BALANCE))
2856 continue;
2858 if (sd->flags & SD_BALANCE_NEWIDLE)
2859 /* If we've pulled tasks over stop searching: */
2860 pulled_task = load_balance_newidle(this_cpu,
2861 this_rq, sd);
2863 interval = msecs_to_jiffies(sd->balance_interval);
2864 if (time_after(next_balance, sd->last_balance + interval))
2865 next_balance = sd->last_balance + interval;
2866 if (pulled_task)
2867 break;
2869 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2871 * We are going idle. next_balance may be set based on
2872 * a busy processor. So reset next_balance.
2874 this_rq->next_balance = next_balance;
2879 * active_load_balance is run by migration threads. It pushes running tasks
2880 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2881 * running on each physical CPU where possible, and avoids physical /
2882 * logical imbalances.
2884 * Called with busiest_rq locked.
2886 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2888 int target_cpu = busiest_rq->push_cpu;
2889 struct sched_domain *sd;
2890 struct rq *target_rq;
2892 /* Is there any task to move? */
2893 if (busiest_rq->nr_running <= 1)
2894 return;
2896 target_rq = cpu_rq(target_cpu);
2899 * This condition is "impossible", if it occurs
2900 * we need to fix it. Originally reported by
2901 * Bjorn Helgaas on a 128-cpu setup.
2903 BUG_ON(busiest_rq == target_rq);
2905 /* move a task from busiest_rq to target_rq */
2906 double_lock_balance(busiest_rq, target_rq);
2908 /* Search for an sd spanning us and the target CPU. */
2909 for_each_domain(target_cpu, sd) {
2910 if ((sd->flags & SD_LOAD_BALANCE) &&
2911 cpu_isset(busiest_cpu, sd->span))
2912 break;
2915 if (likely(sd)) {
2916 schedstat_inc(sd, alb_cnt);
2918 if (move_one_task(target_rq, target_cpu, busiest_rq,
2919 sd, CPU_IDLE))
2920 schedstat_inc(sd, alb_pushed);
2921 else
2922 schedstat_inc(sd, alb_failed);
2924 spin_unlock(&target_rq->lock);
2927 #ifdef CONFIG_NO_HZ
2928 static struct {
2929 atomic_t load_balancer;
2930 cpumask_t cpu_mask;
2931 } nohz ____cacheline_aligned = {
2932 .load_balancer = ATOMIC_INIT(-1),
2933 .cpu_mask = CPU_MASK_NONE,
2937 * This routine will try to nominate the ilb (idle load balancing)
2938 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2939 * load balancing on behalf of all those cpus. If all the cpus in the system
2940 * go into this tickless mode, then there will be no ilb owner (as there is
2941 * no need for one) and all the cpus will sleep till the next wakeup event
2942 * arrives...
2944 * For the ilb owner, tick is not stopped. And this tick will be used
2945 * for idle load balancing. ilb owner will still be part of
2946 * nohz.cpu_mask..
2948 * While stopping the tick, this cpu will become the ilb owner if there
2949 * is no other owner. And will be the owner till that cpu becomes busy
2950 * or if all cpus in the system stop their ticks at which point
2951 * there is no need for ilb owner.
2953 * When the ilb owner becomes busy, it nominates another owner, during the
2954 * next busy scheduler_tick()
2956 int select_nohz_load_balancer(int stop_tick)
2958 int cpu = smp_processor_id();
2960 if (stop_tick) {
2961 cpu_set(cpu, nohz.cpu_mask);
2962 cpu_rq(cpu)->in_nohz_recently = 1;
2965 * If we are going offline and still the leader, give up!
2967 if (cpu_is_offline(cpu) &&
2968 atomic_read(&nohz.load_balancer) == cpu) {
2969 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2970 BUG();
2971 return 0;
2974 /* time for ilb owner also to sleep */
2975 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2976 if (atomic_read(&nohz.load_balancer) == cpu)
2977 atomic_set(&nohz.load_balancer, -1);
2978 return 0;
2981 if (atomic_read(&nohz.load_balancer) == -1) {
2982 /* make me the ilb owner */
2983 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2984 return 1;
2985 } else if (atomic_read(&nohz.load_balancer) == cpu)
2986 return 1;
2987 } else {
2988 if (!cpu_isset(cpu, nohz.cpu_mask))
2989 return 0;
2991 cpu_clear(cpu, nohz.cpu_mask);
2993 if (atomic_read(&nohz.load_balancer) == cpu)
2994 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2995 BUG();
2997 return 0;
2999 #endif
3001 static DEFINE_SPINLOCK(balancing);
3004 * It checks each scheduling domain to see if it is due to be balanced,
3005 * and initiates a balancing operation if so.
3007 * Balancing parameters are set up in arch_init_sched_domains.
3009 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3011 int balance = 1;
3012 struct rq *rq = cpu_rq(cpu);
3013 unsigned long interval;
3014 struct sched_domain *sd;
3015 /* Earliest time when we have to do rebalance again */
3016 unsigned long next_balance = jiffies + 60*HZ;
3018 for_each_domain(cpu, sd) {
3019 if (!(sd->flags & SD_LOAD_BALANCE))
3020 continue;
3022 interval = sd->balance_interval;
3023 if (idle != CPU_IDLE)
3024 interval *= sd->busy_factor;
3026 /* scale ms to jiffies */
3027 interval = msecs_to_jiffies(interval);
3028 if (unlikely(!interval))
3029 interval = 1;
3030 if (interval > HZ*NR_CPUS/10)
3031 interval = HZ*NR_CPUS/10;
3034 if (sd->flags & SD_SERIALIZE) {
3035 if (!spin_trylock(&balancing))
3036 goto out;
3039 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3040 if (load_balance(cpu, rq, sd, idle, &balance)) {
3042 * We've pulled tasks over so either we're no
3043 * longer idle, or one of our SMT siblings is
3044 * not idle.
3046 idle = CPU_NOT_IDLE;
3048 sd->last_balance = jiffies;
3050 if (sd->flags & SD_SERIALIZE)
3051 spin_unlock(&balancing);
3052 out:
3053 if (time_after(next_balance, sd->last_balance + interval))
3054 next_balance = sd->last_balance + interval;
3057 * Stop the load balance at this level. There is another
3058 * CPU in our sched group which is doing load balancing more
3059 * actively.
3061 if (!balance)
3062 break;
3064 rq->next_balance = next_balance;
3068 * run_rebalance_domains is triggered when needed from the scheduler tick.
3069 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3070 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3072 static void run_rebalance_domains(struct softirq_action *h)
3074 int this_cpu = smp_processor_id();
3075 struct rq *this_rq = cpu_rq(this_cpu);
3076 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3077 CPU_IDLE : CPU_NOT_IDLE;
3079 rebalance_domains(this_cpu, idle);
3081 #ifdef CONFIG_NO_HZ
3083 * If this cpu is the owner for idle load balancing, then do the
3084 * balancing on behalf of the other idle cpus whose ticks are
3085 * stopped.
3087 if (this_rq->idle_at_tick &&
3088 atomic_read(&nohz.load_balancer) == this_cpu) {
3089 cpumask_t cpus = nohz.cpu_mask;
3090 struct rq *rq;
3091 int balance_cpu;
3093 cpu_clear(this_cpu, cpus);
3094 for_each_cpu_mask(balance_cpu, cpus) {
3096 * If this cpu gets work to do, stop the load balancing
3097 * work being done for other cpus. Next load
3098 * balancing owner will pick it up.
3100 if (need_resched())
3101 break;
3103 rebalance_domains(balance_cpu, SCHED_IDLE);
3105 rq = cpu_rq(balance_cpu);
3106 if (time_after(this_rq->next_balance, rq->next_balance))
3107 this_rq->next_balance = rq->next_balance;
3110 #endif
3114 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3116 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3117 * idle load balancing owner or decide to stop the periodic load balancing,
3118 * if the whole system is idle.
3120 static inline void trigger_load_balance(struct rq *rq, int cpu)
3122 #ifdef CONFIG_NO_HZ
3124 * If we were in the nohz mode recently and busy at the current
3125 * scheduler tick, then check if we need to nominate new idle
3126 * load balancer.
3128 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3129 rq->in_nohz_recently = 0;
3131 if (atomic_read(&nohz.load_balancer) == cpu) {
3132 cpu_clear(cpu, nohz.cpu_mask);
3133 atomic_set(&nohz.load_balancer, -1);
3136 if (atomic_read(&nohz.load_balancer) == -1) {
3138 * simple selection for now: Nominate the
3139 * first cpu in the nohz list to be the next
3140 * ilb owner.
3142 * TBD: Traverse the sched domains and nominate
3143 * the nearest cpu in the nohz.cpu_mask.
3145 int ilb = first_cpu(nohz.cpu_mask);
3147 if (ilb != NR_CPUS)
3148 resched_cpu(ilb);
3153 * If this cpu is idle and doing idle load balancing for all the
3154 * cpus with ticks stopped, is it time for that to stop?
3156 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3157 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3158 resched_cpu(cpu);
3159 return;
3163 * If this cpu is idle and the idle load balancing is done by
3164 * someone else, then no need raise the SCHED_SOFTIRQ
3166 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3167 cpu_isset(cpu, nohz.cpu_mask))
3168 return;
3169 #endif
3170 if (time_after_eq(jiffies, rq->next_balance))
3171 raise_softirq(SCHED_SOFTIRQ);
3174 #else /* CONFIG_SMP */
3177 * on UP we do not need to balance between CPUs:
3179 static inline void idle_balance(int cpu, struct rq *rq)
3183 /* Avoid "used but not defined" warning on UP */
3184 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3185 unsigned long max_nr_move, unsigned long max_load_move,
3186 struct sched_domain *sd, enum cpu_idle_type idle,
3187 int *all_pinned, unsigned long *load_moved,
3188 int this_best_prio, int best_prio, int best_prio_seen,
3189 struct rq_iterator *iterator)
3191 *load_moved = 0;
3193 return 0;
3196 #endif
3198 DEFINE_PER_CPU(struct kernel_stat, kstat);
3200 EXPORT_PER_CPU_SYMBOL(kstat);
3203 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3204 * that have not yet been banked in case the task is currently running.
3206 unsigned long long task_sched_runtime(struct task_struct *p)
3208 unsigned long flags;
3209 u64 ns, delta_exec;
3210 struct rq *rq;
3212 rq = task_rq_lock(p, &flags);
3213 ns = p->se.sum_exec_runtime;
3214 if (rq->curr == p) {
3215 delta_exec = rq_clock(rq) - p->se.exec_start;
3216 if ((s64)delta_exec > 0)
3217 ns += delta_exec;
3219 task_rq_unlock(rq, &flags);
3221 return ns;
3225 * Account user cpu time to a process.
3226 * @p: the process that the cpu time gets accounted to
3227 * @hardirq_offset: the offset to subtract from hardirq_count()
3228 * @cputime: the cpu time spent in user space since the last update
3230 void account_user_time(struct task_struct *p, cputime_t cputime)
3232 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3233 cputime64_t tmp;
3235 p->utime = cputime_add(p->utime, cputime);
3237 /* Add user time to cpustat. */
3238 tmp = cputime_to_cputime64(cputime);
3239 if (TASK_NICE(p) > 0)
3240 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3241 else
3242 cpustat->user = cputime64_add(cpustat->user, tmp);
3246 * Account system cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @hardirq_offset: the offset to subtract from hardirq_count()
3249 * @cputime: the cpu time spent in kernel space since the last update
3251 void account_system_time(struct task_struct *p, int hardirq_offset,
3252 cputime_t cputime)
3254 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3255 struct rq *rq = this_rq();
3256 cputime64_t tmp;
3258 p->stime = cputime_add(p->stime, cputime);
3260 /* Add system time to cpustat. */
3261 tmp = cputime_to_cputime64(cputime);
3262 if (hardirq_count() - hardirq_offset)
3263 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3264 else if (softirq_count())
3265 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3266 else if (p != rq->idle)
3267 cpustat->system = cputime64_add(cpustat->system, tmp);
3268 else if (atomic_read(&rq->nr_iowait) > 0)
3269 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3270 else
3271 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3272 /* Account for system time used */
3273 acct_update_integrals(p);
3277 * Account for involuntary wait time.
3278 * @p: the process from which the cpu time has been stolen
3279 * @steal: the cpu time spent in involuntary wait
3281 void account_steal_time(struct task_struct *p, cputime_t steal)
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3284 cputime64_t tmp = cputime_to_cputime64(steal);
3285 struct rq *rq = this_rq();
3287 if (p == rq->idle) {
3288 p->stime = cputime_add(p->stime, steal);
3289 if (atomic_read(&rq->nr_iowait) > 0)
3290 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3291 else
3292 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3293 } else
3294 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3298 * This function gets called by the timer code, with HZ frequency.
3299 * We call it with interrupts disabled.
3301 * It also gets called by the fork code, when changing the parent's
3302 * timeslices.
3304 void scheduler_tick(void)
3306 int cpu = smp_processor_id();
3307 struct rq *rq = cpu_rq(cpu);
3308 struct task_struct *curr = rq->curr;
3310 spin_lock(&rq->lock);
3311 update_cpu_load(rq);
3312 if (curr != rq->idle) /* FIXME: needed? */
3313 curr->sched_class->task_tick(rq, curr);
3314 spin_unlock(&rq->lock);
3316 #ifdef CONFIG_SMP
3317 rq->idle_at_tick = idle_cpu(cpu);
3318 trigger_load_balance(rq, cpu);
3319 #endif
3322 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3324 void fastcall add_preempt_count(int val)
3327 * Underflow?
3329 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3330 return;
3331 preempt_count() += val;
3333 * Spinlock count overflowing soon?
3335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3336 PREEMPT_MASK - 10);
3338 EXPORT_SYMBOL(add_preempt_count);
3340 void fastcall sub_preempt_count(int val)
3343 * Underflow?
3345 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3346 return;
3348 * Is the spinlock portion underflowing?
3350 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3351 !(preempt_count() & PREEMPT_MASK)))
3352 return;
3354 preempt_count() -= val;
3356 EXPORT_SYMBOL(sub_preempt_count);
3358 #endif
3361 * Print scheduling while atomic bug:
3363 static noinline void __schedule_bug(struct task_struct *prev)
3365 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3366 prev->comm, preempt_count(), prev->pid);
3367 debug_show_held_locks(prev);
3368 if (irqs_disabled())
3369 print_irqtrace_events(prev);
3370 dump_stack();
3374 * Various schedule()-time debugging checks and statistics:
3376 static inline void schedule_debug(struct task_struct *prev)
3379 * Test if we are atomic. Since do_exit() needs to call into
3380 * schedule() atomically, we ignore that path for now.
3381 * Otherwise, whine if we are scheduling when we should not be.
3383 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3384 __schedule_bug(prev);
3386 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3388 schedstat_inc(this_rq(), sched_cnt);
3392 * Pick up the highest-prio task:
3394 static inline struct task_struct *
3395 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3397 struct sched_class *class;
3398 struct task_struct *p;
3401 * Optimization: we know that if all tasks are in
3402 * the fair class we can call that function directly:
3404 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3405 p = fair_sched_class.pick_next_task(rq, now);
3406 if (likely(p))
3407 return p;
3410 class = sched_class_highest;
3411 for ( ; ; ) {
3412 p = class->pick_next_task(rq, now);
3413 if (p)
3414 return p;
3416 * Will never be NULL as the idle class always
3417 * returns a non-NULL p:
3419 class = class->next;
3424 * schedule() is the main scheduler function.
3426 asmlinkage void __sched schedule(void)
3428 struct task_struct *prev, *next;
3429 long *switch_count;
3430 struct rq *rq;
3431 u64 now;
3432 int cpu;
3434 need_resched:
3435 preempt_disable();
3436 cpu = smp_processor_id();
3437 rq = cpu_rq(cpu);
3438 rcu_qsctr_inc(cpu);
3439 prev = rq->curr;
3440 switch_count = &prev->nivcsw;
3442 release_kernel_lock(prev);
3443 need_resched_nonpreemptible:
3445 schedule_debug(prev);
3447 spin_lock_irq(&rq->lock);
3448 clear_tsk_need_resched(prev);
3450 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3451 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3452 unlikely(signal_pending(prev)))) {
3453 prev->state = TASK_RUNNING;
3454 } else {
3455 deactivate_task(rq, prev, 1);
3457 switch_count = &prev->nvcsw;
3460 if (unlikely(!rq->nr_running))
3461 idle_balance(cpu, rq);
3463 now = __rq_clock(rq);
3464 prev->sched_class->put_prev_task(rq, prev, now);
3465 next = pick_next_task(rq, prev, now);
3467 sched_info_switch(prev, next);
3469 if (likely(prev != next)) {
3470 rq->nr_switches++;
3471 rq->curr = next;
3472 ++*switch_count;
3474 context_switch(rq, prev, next); /* unlocks the rq */
3475 } else
3476 spin_unlock_irq(&rq->lock);
3478 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3479 cpu = smp_processor_id();
3480 rq = cpu_rq(cpu);
3481 goto need_resched_nonpreemptible;
3483 preempt_enable_no_resched();
3484 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3485 goto need_resched;
3487 EXPORT_SYMBOL(schedule);
3489 #ifdef CONFIG_PREEMPT
3491 * this is the entry point to schedule() from in-kernel preemption
3492 * off of preempt_enable. Kernel preemptions off return from interrupt
3493 * occur there and call schedule directly.
3495 asmlinkage void __sched preempt_schedule(void)
3497 struct thread_info *ti = current_thread_info();
3498 #ifdef CONFIG_PREEMPT_BKL
3499 struct task_struct *task = current;
3500 int saved_lock_depth;
3501 #endif
3503 * If there is a non-zero preempt_count or interrupts are disabled,
3504 * we do not want to preempt the current task. Just return..
3506 if (likely(ti->preempt_count || irqs_disabled()))
3507 return;
3509 need_resched:
3510 add_preempt_count(PREEMPT_ACTIVE);
3512 * We keep the big kernel semaphore locked, but we
3513 * clear ->lock_depth so that schedule() doesnt
3514 * auto-release the semaphore:
3516 #ifdef CONFIG_PREEMPT_BKL
3517 saved_lock_depth = task->lock_depth;
3518 task->lock_depth = -1;
3519 #endif
3520 schedule();
3521 #ifdef CONFIG_PREEMPT_BKL
3522 task->lock_depth = saved_lock_depth;
3523 #endif
3524 sub_preempt_count(PREEMPT_ACTIVE);
3526 /* we could miss a preemption opportunity between schedule and now */
3527 barrier();
3528 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3529 goto need_resched;
3531 EXPORT_SYMBOL(preempt_schedule);
3534 * this is the entry point to schedule() from kernel preemption
3535 * off of irq context.
3536 * Note, that this is called and return with irqs disabled. This will
3537 * protect us against recursive calling from irq.
3539 asmlinkage void __sched preempt_schedule_irq(void)
3541 struct thread_info *ti = current_thread_info();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 struct task_struct *task = current;
3544 int saved_lock_depth;
3545 #endif
3546 /* Catch callers which need to be fixed */
3547 BUG_ON(ti->preempt_count || !irqs_disabled());
3549 need_resched:
3550 add_preempt_count(PREEMPT_ACTIVE);
3552 * We keep the big kernel semaphore locked, but we
3553 * clear ->lock_depth so that schedule() doesnt
3554 * auto-release the semaphore:
3556 #ifdef CONFIG_PREEMPT_BKL
3557 saved_lock_depth = task->lock_depth;
3558 task->lock_depth = -1;
3559 #endif
3560 local_irq_enable();
3561 schedule();
3562 local_irq_disable();
3563 #ifdef CONFIG_PREEMPT_BKL
3564 task->lock_depth = saved_lock_depth;
3565 #endif
3566 sub_preempt_count(PREEMPT_ACTIVE);
3568 /* we could miss a preemption opportunity between schedule and now */
3569 barrier();
3570 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3571 goto need_resched;
3574 #endif /* CONFIG_PREEMPT */
3576 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3577 void *key)
3579 return try_to_wake_up(curr->private, mode, sync);
3581 EXPORT_SYMBOL(default_wake_function);
3584 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3585 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3586 * number) then we wake all the non-exclusive tasks and one exclusive task.
3588 * There are circumstances in which we can try to wake a task which has already
3589 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3590 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3592 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3593 int nr_exclusive, int sync, void *key)
3595 struct list_head *tmp, *next;
3597 list_for_each_safe(tmp, next, &q->task_list) {
3598 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3599 unsigned flags = curr->flags;
3601 if (curr->func(curr, mode, sync, key) &&
3602 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3603 break;
3608 * __wake_up - wake up threads blocked on a waitqueue.
3609 * @q: the waitqueue
3610 * @mode: which threads
3611 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3612 * @key: is directly passed to the wakeup function
3614 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3615 int nr_exclusive, void *key)
3617 unsigned long flags;
3619 spin_lock_irqsave(&q->lock, flags);
3620 __wake_up_common(q, mode, nr_exclusive, 0, key);
3621 spin_unlock_irqrestore(&q->lock, flags);
3623 EXPORT_SYMBOL(__wake_up);
3626 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3628 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3630 __wake_up_common(q, mode, 1, 0, NULL);
3634 * __wake_up_sync - wake up threads blocked on a waitqueue.
3635 * @q: the waitqueue
3636 * @mode: which threads
3637 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3639 * The sync wakeup differs that the waker knows that it will schedule
3640 * away soon, so while the target thread will be woken up, it will not
3641 * be migrated to another CPU - ie. the two threads are 'synchronized'
3642 * with each other. This can prevent needless bouncing between CPUs.
3644 * On UP it can prevent extra preemption.
3646 void fastcall
3647 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3649 unsigned long flags;
3650 int sync = 1;
3652 if (unlikely(!q))
3653 return;
3655 if (unlikely(!nr_exclusive))
3656 sync = 0;
3658 spin_lock_irqsave(&q->lock, flags);
3659 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3660 spin_unlock_irqrestore(&q->lock, flags);
3662 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3664 void fastcall complete(struct completion *x)
3666 unsigned long flags;
3668 spin_lock_irqsave(&x->wait.lock, flags);
3669 x->done++;
3670 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3671 1, 0, NULL);
3672 spin_unlock_irqrestore(&x->wait.lock, flags);
3674 EXPORT_SYMBOL(complete);
3676 void fastcall complete_all(struct completion *x)
3678 unsigned long flags;
3680 spin_lock_irqsave(&x->wait.lock, flags);
3681 x->done += UINT_MAX/2;
3682 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3683 0, 0, NULL);
3684 spin_unlock_irqrestore(&x->wait.lock, flags);
3686 EXPORT_SYMBOL(complete_all);
3688 void fastcall __sched wait_for_completion(struct completion *x)
3690 might_sleep();
3692 spin_lock_irq(&x->wait.lock);
3693 if (!x->done) {
3694 DECLARE_WAITQUEUE(wait, current);
3696 wait.flags |= WQ_FLAG_EXCLUSIVE;
3697 __add_wait_queue_tail(&x->wait, &wait);
3698 do {
3699 __set_current_state(TASK_UNINTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 schedule();
3702 spin_lock_irq(&x->wait.lock);
3703 } while (!x->done);
3704 __remove_wait_queue(&x->wait, &wait);
3706 x->done--;
3707 spin_unlock_irq(&x->wait.lock);
3709 EXPORT_SYMBOL(wait_for_completion);
3711 unsigned long fastcall __sched
3712 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3714 might_sleep();
3716 spin_lock_irq(&x->wait.lock);
3717 if (!x->done) {
3718 DECLARE_WAITQUEUE(wait, current);
3720 wait.flags |= WQ_FLAG_EXCLUSIVE;
3721 __add_wait_queue_tail(&x->wait, &wait);
3722 do {
3723 __set_current_state(TASK_UNINTERRUPTIBLE);
3724 spin_unlock_irq(&x->wait.lock);
3725 timeout = schedule_timeout(timeout);
3726 spin_lock_irq(&x->wait.lock);
3727 if (!timeout) {
3728 __remove_wait_queue(&x->wait, &wait);
3729 goto out;
3731 } while (!x->done);
3732 __remove_wait_queue(&x->wait, &wait);
3734 x->done--;
3735 out:
3736 spin_unlock_irq(&x->wait.lock);
3737 return timeout;
3739 EXPORT_SYMBOL(wait_for_completion_timeout);
3741 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3743 int ret = 0;
3745 might_sleep();
3747 spin_lock_irq(&x->wait.lock);
3748 if (!x->done) {
3749 DECLARE_WAITQUEUE(wait, current);
3751 wait.flags |= WQ_FLAG_EXCLUSIVE;
3752 __add_wait_queue_tail(&x->wait, &wait);
3753 do {
3754 if (signal_pending(current)) {
3755 ret = -ERESTARTSYS;
3756 __remove_wait_queue(&x->wait, &wait);
3757 goto out;
3759 __set_current_state(TASK_INTERRUPTIBLE);
3760 spin_unlock_irq(&x->wait.lock);
3761 schedule();
3762 spin_lock_irq(&x->wait.lock);
3763 } while (!x->done);
3764 __remove_wait_queue(&x->wait, &wait);
3766 x->done--;
3767 out:
3768 spin_unlock_irq(&x->wait.lock);
3770 return ret;
3772 EXPORT_SYMBOL(wait_for_completion_interruptible);
3774 unsigned long fastcall __sched
3775 wait_for_completion_interruptible_timeout(struct completion *x,
3776 unsigned long timeout)
3778 might_sleep();
3780 spin_lock_irq(&x->wait.lock);
3781 if (!x->done) {
3782 DECLARE_WAITQUEUE(wait, current);
3784 wait.flags |= WQ_FLAG_EXCLUSIVE;
3785 __add_wait_queue_tail(&x->wait, &wait);
3786 do {
3787 if (signal_pending(current)) {
3788 timeout = -ERESTARTSYS;
3789 __remove_wait_queue(&x->wait, &wait);
3790 goto out;
3792 __set_current_state(TASK_INTERRUPTIBLE);
3793 spin_unlock_irq(&x->wait.lock);
3794 timeout = schedule_timeout(timeout);
3795 spin_lock_irq(&x->wait.lock);
3796 if (!timeout) {
3797 __remove_wait_queue(&x->wait, &wait);
3798 goto out;
3800 } while (!x->done);
3801 __remove_wait_queue(&x->wait, &wait);
3803 x->done--;
3804 out:
3805 spin_unlock_irq(&x->wait.lock);
3806 return timeout;
3808 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3810 static inline void
3811 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3813 spin_lock_irqsave(&q->lock, *flags);
3814 __add_wait_queue(q, wait);
3815 spin_unlock(&q->lock);
3818 static inline void
3819 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3821 spin_lock_irq(&q->lock);
3822 __remove_wait_queue(q, wait);
3823 spin_unlock_irqrestore(&q->lock, *flags);
3826 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3828 unsigned long flags;
3829 wait_queue_t wait;
3831 init_waitqueue_entry(&wait, current);
3833 current->state = TASK_INTERRUPTIBLE;
3835 sleep_on_head(q, &wait, &flags);
3836 schedule();
3837 sleep_on_tail(q, &wait, &flags);
3839 EXPORT_SYMBOL(interruptible_sleep_on);
3841 long __sched
3842 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3844 unsigned long flags;
3845 wait_queue_t wait;
3847 init_waitqueue_entry(&wait, current);
3849 current->state = TASK_INTERRUPTIBLE;
3851 sleep_on_head(q, &wait, &flags);
3852 timeout = schedule_timeout(timeout);
3853 sleep_on_tail(q, &wait, &flags);
3855 return timeout;
3857 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3859 void __sched sleep_on(wait_queue_head_t *q)
3861 unsigned long flags;
3862 wait_queue_t wait;
3864 init_waitqueue_entry(&wait, current);
3866 current->state = TASK_UNINTERRUPTIBLE;
3868 sleep_on_head(q, &wait, &flags);
3869 schedule();
3870 sleep_on_tail(q, &wait, &flags);
3872 EXPORT_SYMBOL(sleep_on);
3874 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3876 unsigned long flags;
3877 wait_queue_t wait;
3879 init_waitqueue_entry(&wait, current);
3881 current->state = TASK_UNINTERRUPTIBLE;
3883 sleep_on_head(q, &wait, &flags);
3884 timeout = schedule_timeout(timeout);
3885 sleep_on_tail(q, &wait, &flags);
3887 return timeout;
3889 EXPORT_SYMBOL(sleep_on_timeout);
3891 #ifdef CONFIG_RT_MUTEXES
3894 * rt_mutex_setprio - set the current priority of a task
3895 * @p: task
3896 * @prio: prio value (kernel-internal form)
3898 * This function changes the 'effective' priority of a task. It does
3899 * not touch ->normal_prio like __setscheduler().
3901 * Used by the rt_mutex code to implement priority inheritance logic.
3903 void rt_mutex_setprio(struct task_struct *p, int prio)
3905 unsigned long flags;
3906 int oldprio, on_rq;
3907 struct rq *rq;
3908 u64 now;
3910 BUG_ON(prio < 0 || prio > MAX_PRIO);
3912 rq = task_rq_lock(p, &flags);
3913 now = rq_clock(rq);
3915 oldprio = p->prio;
3916 on_rq = p->se.on_rq;
3917 if (on_rq)
3918 dequeue_task(rq, p, 0, now);
3920 if (rt_prio(prio))
3921 p->sched_class = &rt_sched_class;
3922 else
3923 p->sched_class = &fair_sched_class;
3925 p->prio = prio;
3927 if (on_rq) {
3928 enqueue_task(rq, p, 0, now);
3930 * Reschedule if we are currently running on this runqueue and
3931 * our priority decreased, or if we are not currently running on
3932 * this runqueue and our priority is higher than the current's
3934 if (task_running(rq, p)) {
3935 if (p->prio > oldprio)
3936 resched_task(rq->curr);
3937 } else {
3938 check_preempt_curr(rq, p);
3941 task_rq_unlock(rq, &flags);
3944 #endif
3946 void set_user_nice(struct task_struct *p, long nice)
3948 int old_prio, delta, on_rq;
3949 unsigned long flags;
3950 struct rq *rq;
3951 u64 now;
3953 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3954 return;
3956 * We have to be careful, if called from sys_setpriority(),
3957 * the task might be in the middle of scheduling on another CPU.
3959 rq = task_rq_lock(p, &flags);
3960 now = rq_clock(rq);
3962 * The RT priorities are set via sched_setscheduler(), but we still
3963 * allow the 'normal' nice value to be set - but as expected
3964 * it wont have any effect on scheduling until the task is
3965 * SCHED_FIFO/SCHED_RR:
3967 if (task_has_rt_policy(p)) {
3968 p->static_prio = NICE_TO_PRIO(nice);
3969 goto out_unlock;
3971 on_rq = p->se.on_rq;
3972 if (on_rq) {
3973 dequeue_task(rq, p, 0, now);
3974 dec_load(rq, p, now);
3977 p->static_prio = NICE_TO_PRIO(nice);
3978 set_load_weight(p);
3979 old_prio = p->prio;
3980 p->prio = effective_prio(p);
3981 delta = p->prio - old_prio;
3983 if (on_rq) {
3984 enqueue_task(rq, p, 0, now);
3985 inc_load(rq, p, now);
3987 * If the task increased its priority or is running and
3988 * lowered its priority, then reschedule its CPU:
3990 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3991 resched_task(rq->curr);
3993 out_unlock:
3994 task_rq_unlock(rq, &flags);
3996 EXPORT_SYMBOL(set_user_nice);
3999 * can_nice - check if a task can reduce its nice value
4000 * @p: task
4001 * @nice: nice value
4003 int can_nice(const struct task_struct *p, const int nice)
4005 /* convert nice value [19,-20] to rlimit style value [1,40] */
4006 int nice_rlim = 20 - nice;
4008 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4009 capable(CAP_SYS_NICE));
4012 #ifdef __ARCH_WANT_SYS_NICE
4015 * sys_nice - change the priority of the current process.
4016 * @increment: priority increment
4018 * sys_setpriority is a more generic, but much slower function that
4019 * does similar things.
4021 asmlinkage long sys_nice(int increment)
4023 long nice, retval;
4026 * Setpriority might change our priority at the same moment.
4027 * We don't have to worry. Conceptually one call occurs first
4028 * and we have a single winner.
4030 if (increment < -40)
4031 increment = -40;
4032 if (increment > 40)
4033 increment = 40;
4035 nice = PRIO_TO_NICE(current->static_prio) + increment;
4036 if (nice < -20)
4037 nice = -20;
4038 if (nice > 19)
4039 nice = 19;
4041 if (increment < 0 && !can_nice(current, nice))
4042 return -EPERM;
4044 retval = security_task_setnice(current, nice);
4045 if (retval)
4046 return retval;
4048 set_user_nice(current, nice);
4049 return 0;
4052 #endif
4055 * task_prio - return the priority value of a given task.
4056 * @p: the task in question.
4058 * This is the priority value as seen by users in /proc.
4059 * RT tasks are offset by -200. Normal tasks are centered
4060 * around 0, value goes from -16 to +15.
4062 int task_prio(const struct task_struct *p)
4064 return p->prio - MAX_RT_PRIO;
4068 * task_nice - return the nice value of a given task.
4069 * @p: the task in question.
4071 int task_nice(const struct task_struct *p)
4073 return TASK_NICE(p);
4075 EXPORT_SYMBOL_GPL(task_nice);
4078 * idle_cpu - is a given cpu idle currently?
4079 * @cpu: the processor in question.
4081 int idle_cpu(int cpu)
4083 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4087 * idle_task - return the idle task for a given cpu.
4088 * @cpu: the processor in question.
4090 struct task_struct *idle_task(int cpu)
4092 return cpu_rq(cpu)->idle;
4096 * find_process_by_pid - find a process with a matching PID value.
4097 * @pid: the pid in question.
4099 static inline struct task_struct *find_process_by_pid(pid_t pid)
4101 return pid ? find_task_by_pid(pid) : current;
4104 /* Actually do priority change: must hold rq lock. */
4105 static void
4106 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4108 BUG_ON(p->se.on_rq);
4110 p->policy = policy;
4111 switch (p->policy) {
4112 case SCHED_NORMAL:
4113 case SCHED_BATCH:
4114 case SCHED_IDLE:
4115 p->sched_class = &fair_sched_class;
4116 break;
4117 case SCHED_FIFO:
4118 case SCHED_RR:
4119 p->sched_class = &rt_sched_class;
4120 break;
4123 p->rt_priority = prio;
4124 p->normal_prio = normal_prio(p);
4125 /* we are holding p->pi_lock already */
4126 p->prio = rt_mutex_getprio(p);
4127 set_load_weight(p);
4131 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4132 * @p: the task in question.
4133 * @policy: new policy.
4134 * @param: structure containing the new RT priority.
4136 * NOTE that the task may be already dead.
4138 int sched_setscheduler(struct task_struct *p, int policy,
4139 struct sched_param *param)
4141 int retval, oldprio, oldpolicy = -1, on_rq;
4142 unsigned long flags;
4143 struct rq *rq;
4145 /* may grab non-irq protected spin_locks */
4146 BUG_ON(in_interrupt());
4147 recheck:
4148 /* double check policy once rq lock held */
4149 if (policy < 0)
4150 policy = oldpolicy = p->policy;
4151 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4152 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4153 policy != SCHED_IDLE)
4154 return -EINVAL;
4156 * Valid priorities for SCHED_FIFO and SCHED_RR are
4157 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4158 * SCHED_BATCH and SCHED_IDLE is 0.
4160 if (param->sched_priority < 0 ||
4161 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4162 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4163 return -EINVAL;
4164 if (rt_policy(policy) != (param->sched_priority != 0))
4165 return -EINVAL;
4168 * Allow unprivileged RT tasks to decrease priority:
4170 if (!capable(CAP_SYS_NICE)) {
4171 if (rt_policy(policy)) {
4172 unsigned long rlim_rtprio;
4174 if (!lock_task_sighand(p, &flags))
4175 return -ESRCH;
4176 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4177 unlock_task_sighand(p, &flags);
4179 /* can't set/change the rt policy */
4180 if (policy != p->policy && !rlim_rtprio)
4181 return -EPERM;
4183 /* can't increase priority */
4184 if (param->sched_priority > p->rt_priority &&
4185 param->sched_priority > rlim_rtprio)
4186 return -EPERM;
4189 * Like positive nice levels, dont allow tasks to
4190 * move out of SCHED_IDLE either:
4192 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4193 return -EPERM;
4195 /* can't change other user's priorities */
4196 if ((current->euid != p->euid) &&
4197 (current->euid != p->uid))
4198 return -EPERM;
4201 retval = security_task_setscheduler(p, policy, param);
4202 if (retval)
4203 return retval;
4205 * make sure no PI-waiters arrive (or leave) while we are
4206 * changing the priority of the task:
4208 spin_lock_irqsave(&p->pi_lock, flags);
4210 * To be able to change p->policy safely, the apropriate
4211 * runqueue lock must be held.
4213 rq = __task_rq_lock(p);
4214 /* recheck policy now with rq lock held */
4215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4216 policy = oldpolicy = -1;
4217 __task_rq_unlock(rq);
4218 spin_unlock_irqrestore(&p->pi_lock, flags);
4219 goto recheck;
4221 on_rq = p->se.on_rq;
4222 if (on_rq)
4223 deactivate_task(rq, p, 0);
4224 oldprio = p->prio;
4225 __setscheduler(rq, p, policy, param->sched_priority);
4226 if (on_rq) {
4227 activate_task(rq, p, 0);
4229 * Reschedule if we are currently running on this runqueue and
4230 * our priority decreased, or if we are not currently running on
4231 * this runqueue and our priority is higher than the current's
4233 if (task_running(rq, p)) {
4234 if (p->prio > oldprio)
4235 resched_task(rq->curr);
4236 } else {
4237 check_preempt_curr(rq, p);
4240 __task_rq_unlock(rq);
4241 spin_unlock_irqrestore(&p->pi_lock, flags);
4243 rt_mutex_adjust_pi(p);
4245 return 0;
4247 EXPORT_SYMBOL_GPL(sched_setscheduler);
4249 static int
4250 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4252 struct sched_param lparam;
4253 struct task_struct *p;
4254 int retval;
4256 if (!param || pid < 0)
4257 return -EINVAL;
4258 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4259 return -EFAULT;
4261 rcu_read_lock();
4262 retval = -ESRCH;
4263 p = find_process_by_pid(pid);
4264 if (p != NULL)
4265 retval = sched_setscheduler(p, policy, &lparam);
4266 rcu_read_unlock();
4268 return retval;
4272 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4273 * @pid: the pid in question.
4274 * @policy: new policy.
4275 * @param: structure containing the new RT priority.
4277 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4278 struct sched_param __user *param)
4280 /* negative values for policy are not valid */
4281 if (policy < 0)
4282 return -EINVAL;
4284 return do_sched_setscheduler(pid, policy, param);
4288 * sys_sched_setparam - set/change the RT priority of a thread
4289 * @pid: the pid in question.
4290 * @param: structure containing the new RT priority.
4292 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4294 return do_sched_setscheduler(pid, -1, param);
4298 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4299 * @pid: the pid in question.
4301 asmlinkage long sys_sched_getscheduler(pid_t pid)
4303 struct task_struct *p;
4304 int retval = -EINVAL;
4306 if (pid < 0)
4307 goto out_nounlock;
4309 retval = -ESRCH;
4310 read_lock(&tasklist_lock);
4311 p = find_process_by_pid(pid);
4312 if (p) {
4313 retval = security_task_getscheduler(p);
4314 if (!retval)
4315 retval = p->policy;
4317 read_unlock(&tasklist_lock);
4319 out_nounlock:
4320 return retval;
4324 * sys_sched_getscheduler - get the RT priority of a thread
4325 * @pid: the pid in question.
4326 * @param: structure containing the RT priority.
4328 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4330 struct sched_param lp;
4331 struct task_struct *p;
4332 int retval = -EINVAL;
4334 if (!param || pid < 0)
4335 goto out_nounlock;
4337 read_lock(&tasklist_lock);
4338 p = find_process_by_pid(pid);
4339 retval = -ESRCH;
4340 if (!p)
4341 goto out_unlock;
4343 retval = security_task_getscheduler(p);
4344 if (retval)
4345 goto out_unlock;
4347 lp.sched_priority = p->rt_priority;
4348 read_unlock(&tasklist_lock);
4351 * This one might sleep, we cannot do it with a spinlock held ...
4353 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4355 out_nounlock:
4356 return retval;
4358 out_unlock:
4359 read_unlock(&tasklist_lock);
4360 return retval;
4363 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4365 cpumask_t cpus_allowed;
4366 struct task_struct *p;
4367 int retval;
4369 mutex_lock(&sched_hotcpu_mutex);
4370 read_lock(&tasklist_lock);
4372 p = find_process_by_pid(pid);
4373 if (!p) {
4374 read_unlock(&tasklist_lock);
4375 mutex_unlock(&sched_hotcpu_mutex);
4376 return -ESRCH;
4380 * It is not safe to call set_cpus_allowed with the
4381 * tasklist_lock held. We will bump the task_struct's
4382 * usage count and then drop tasklist_lock.
4384 get_task_struct(p);
4385 read_unlock(&tasklist_lock);
4387 retval = -EPERM;
4388 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4389 !capable(CAP_SYS_NICE))
4390 goto out_unlock;
4392 retval = security_task_setscheduler(p, 0, NULL);
4393 if (retval)
4394 goto out_unlock;
4396 cpus_allowed = cpuset_cpus_allowed(p);
4397 cpus_and(new_mask, new_mask, cpus_allowed);
4398 retval = set_cpus_allowed(p, new_mask);
4400 out_unlock:
4401 put_task_struct(p);
4402 mutex_unlock(&sched_hotcpu_mutex);
4403 return retval;
4406 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4407 cpumask_t *new_mask)
4409 if (len < sizeof(cpumask_t)) {
4410 memset(new_mask, 0, sizeof(cpumask_t));
4411 } else if (len > sizeof(cpumask_t)) {
4412 len = sizeof(cpumask_t);
4414 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4418 * sys_sched_setaffinity - set the cpu affinity of a process
4419 * @pid: pid of the process
4420 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4421 * @user_mask_ptr: user-space pointer to the new cpu mask
4423 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4424 unsigned long __user *user_mask_ptr)
4426 cpumask_t new_mask;
4427 int retval;
4429 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4430 if (retval)
4431 return retval;
4433 return sched_setaffinity(pid, new_mask);
4437 * Represents all cpu's present in the system
4438 * In systems capable of hotplug, this map could dynamically grow
4439 * as new cpu's are detected in the system via any platform specific
4440 * method, such as ACPI for e.g.
4443 cpumask_t cpu_present_map __read_mostly;
4444 EXPORT_SYMBOL(cpu_present_map);
4446 #ifndef CONFIG_SMP
4447 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4448 EXPORT_SYMBOL(cpu_online_map);
4450 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4451 EXPORT_SYMBOL(cpu_possible_map);
4452 #endif
4454 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4456 struct task_struct *p;
4457 int retval;
4459 mutex_lock(&sched_hotcpu_mutex);
4460 read_lock(&tasklist_lock);
4462 retval = -ESRCH;
4463 p = find_process_by_pid(pid);
4464 if (!p)
4465 goto out_unlock;
4467 retval = security_task_getscheduler(p);
4468 if (retval)
4469 goto out_unlock;
4471 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4473 out_unlock:
4474 read_unlock(&tasklist_lock);
4475 mutex_unlock(&sched_hotcpu_mutex);
4477 return retval;
4481 * sys_sched_getaffinity - get the cpu affinity of a process
4482 * @pid: pid of the process
4483 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4484 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4486 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4487 unsigned long __user *user_mask_ptr)
4489 int ret;
4490 cpumask_t mask;
4492 if (len < sizeof(cpumask_t))
4493 return -EINVAL;
4495 ret = sched_getaffinity(pid, &mask);
4496 if (ret < 0)
4497 return ret;
4499 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4500 return -EFAULT;
4502 return sizeof(cpumask_t);
4506 * sys_sched_yield - yield the current processor to other threads.
4508 * This function yields the current CPU to other tasks. If there are no
4509 * other threads running on this CPU then this function will return.
4511 asmlinkage long sys_sched_yield(void)
4513 struct rq *rq = this_rq_lock();
4515 schedstat_inc(rq, yld_cnt);
4516 if (unlikely(rq->nr_running == 1))
4517 schedstat_inc(rq, yld_act_empty);
4518 else
4519 current->sched_class->yield_task(rq, current);
4522 * Since we are going to call schedule() anyway, there's
4523 * no need to preempt or enable interrupts:
4525 __release(rq->lock);
4526 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4527 _raw_spin_unlock(&rq->lock);
4528 preempt_enable_no_resched();
4530 schedule();
4532 return 0;
4535 static void __cond_resched(void)
4537 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4538 __might_sleep(__FILE__, __LINE__);
4539 #endif
4541 * The BKS might be reacquired before we have dropped
4542 * PREEMPT_ACTIVE, which could trigger a second
4543 * cond_resched() call.
4545 do {
4546 add_preempt_count(PREEMPT_ACTIVE);
4547 schedule();
4548 sub_preempt_count(PREEMPT_ACTIVE);
4549 } while (need_resched());
4552 int __sched cond_resched(void)
4554 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4555 system_state == SYSTEM_RUNNING) {
4556 __cond_resched();
4557 return 1;
4559 return 0;
4561 EXPORT_SYMBOL(cond_resched);
4564 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4565 * call schedule, and on return reacquire the lock.
4567 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4568 * operations here to prevent schedule() from being called twice (once via
4569 * spin_unlock(), once by hand).
4571 int cond_resched_lock(spinlock_t *lock)
4573 int ret = 0;
4575 if (need_lockbreak(lock)) {
4576 spin_unlock(lock);
4577 cpu_relax();
4578 ret = 1;
4579 spin_lock(lock);
4581 if (need_resched() && system_state == SYSTEM_RUNNING) {
4582 spin_release(&lock->dep_map, 1, _THIS_IP_);
4583 _raw_spin_unlock(lock);
4584 preempt_enable_no_resched();
4585 __cond_resched();
4586 ret = 1;
4587 spin_lock(lock);
4589 return ret;
4591 EXPORT_SYMBOL(cond_resched_lock);
4593 int __sched cond_resched_softirq(void)
4595 BUG_ON(!in_softirq());
4597 if (need_resched() && system_state == SYSTEM_RUNNING) {
4598 local_bh_enable();
4599 __cond_resched();
4600 local_bh_disable();
4601 return 1;
4603 return 0;
4605 EXPORT_SYMBOL(cond_resched_softirq);
4608 * yield - yield the current processor to other threads.
4610 * This is a shortcut for kernel-space yielding - it marks the
4611 * thread runnable and calls sys_sched_yield().
4613 void __sched yield(void)
4615 set_current_state(TASK_RUNNING);
4616 sys_sched_yield();
4618 EXPORT_SYMBOL(yield);
4621 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4622 * that process accounting knows that this is a task in IO wait state.
4624 * But don't do that if it is a deliberate, throttling IO wait (this task
4625 * has set its backing_dev_info: the queue against which it should throttle)
4627 void __sched io_schedule(void)
4629 struct rq *rq = &__raw_get_cpu_var(runqueues);
4631 delayacct_blkio_start();
4632 atomic_inc(&rq->nr_iowait);
4633 schedule();
4634 atomic_dec(&rq->nr_iowait);
4635 delayacct_blkio_end();
4637 EXPORT_SYMBOL(io_schedule);
4639 long __sched io_schedule_timeout(long timeout)
4641 struct rq *rq = &__raw_get_cpu_var(runqueues);
4642 long ret;
4644 delayacct_blkio_start();
4645 atomic_inc(&rq->nr_iowait);
4646 ret = schedule_timeout(timeout);
4647 atomic_dec(&rq->nr_iowait);
4648 delayacct_blkio_end();
4649 return ret;
4653 * sys_sched_get_priority_max - return maximum RT priority.
4654 * @policy: scheduling class.
4656 * this syscall returns the maximum rt_priority that can be used
4657 * by a given scheduling class.
4659 asmlinkage long sys_sched_get_priority_max(int policy)
4661 int ret = -EINVAL;
4663 switch (policy) {
4664 case SCHED_FIFO:
4665 case SCHED_RR:
4666 ret = MAX_USER_RT_PRIO-1;
4667 break;
4668 case SCHED_NORMAL:
4669 case SCHED_BATCH:
4670 case SCHED_IDLE:
4671 ret = 0;
4672 break;
4674 return ret;
4678 * sys_sched_get_priority_min - return minimum RT priority.
4679 * @policy: scheduling class.
4681 * this syscall returns the minimum rt_priority that can be used
4682 * by a given scheduling class.
4684 asmlinkage long sys_sched_get_priority_min(int policy)
4686 int ret = -EINVAL;
4688 switch (policy) {
4689 case SCHED_FIFO:
4690 case SCHED_RR:
4691 ret = 1;
4692 break;
4693 case SCHED_NORMAL:
4694 case SCHED_BATCH:
4695 case SCHED_IDLE:
4696 ret = 0;
4698 return ret;
4702 * sys_sched_rr_get_interval - return the default timeslice of a process.
4703 * @pid: pid of the process.
4704 * @interval: userspace pointer to the timeslice value.
4706 * this syscall writes the default timeslice value of a given process
4707 * into the user-space timespec buffer. A value of '0' means infinity.
4709 asmlinkage
4710 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4712 struct task_struct *p;
4713 int retval = -EINVAL;
4714 struct timespec t;
4716 if (pid < 0)
4717 goto out_nounlock;
4719 retval = -ESRCH;
4720 read_lock(&tasklist_lock);
4721 p = find_process_by_pid(pid);
4722 if (!p)
4723 goto out_unlock;
4725 retval = security_task_getscheduler(p);
4726 if (retval)
4727 goto out_unlock;
4729 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4730 0 : static_prio_timeslice(p->static_prio), &t);
4731 read_unlock(&tasklist_lock);
4732 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4733 out_nounlock:
4734 return retval;
4735 out_unlock:
4736 read_unlock(&tasklist_lock);
4737 return retval;
4740 static const char stat_nam[] = "RSDTtZX";
4742 static void show_task(struct task_struct *p)
4744 unsigned long free = 0;
4745 unsigned state;
4747 state = p->state ? __ffs(p->state) + 1 : 0;
4748 printk("%-13.13s %c", p->comm,
4749 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4750 #if BITS_PER_LONG == 32
4751 if (state == TASK_RUNNING)
4752 printk(" running ");
4753 else
4754 printk(" %08lx ", thread_saved_pc(p));
4755 #else
4756 if (state == TASK_RUNNING)
4757 printk(" running task ");
4758 else
4759 printk(" %016lx ", thread_saved_pc(p));
4760 #endif
4761 #ifdef CONFIG_DEBUG_STACK_USAGE
4763 unsigned long *n = end_of_stack(p);
4764 while (!*n)
4765 n++;
4766 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4768 #endif
4769 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4771 if (state != TASK_RUNNING)
4772 show_stack(p, NULL);
4775 void show_state_filter(unsigned long state_filter)
4777 struct task_struct *g, *p;
4779 #if BITS_PER_LONG == 32
4780 printk(KERN_INFO
4781 " task PC stack pid father\n");
4782 #else
4783 printk(KERN_INFO
4784 " task PC stack pid father\n");
4785 #endif
4786 read_lock(&tasklist_lock);
4787 do_each_thread(g, p) {
4789 * reset the NMI-timeout, listing all files on a slow
4790 * console might take alot of time:
4792 touch_nmi_watchdog();
4793 if (!state_filter || (p->state & state_filter))
4794 show_task(p);
4795 } while_each_thread(g, p);
4797 touch_all_softlockup_watchdogs();
4799 #ifdef CONFIG_SCHED_DEBUG
4800 sysrq_sched_debug_show();
4801 #endif
4802 read_unlock(&tasklist_lock);
4804 * Only show locks if all tasks are dumped:
4806 if (state_filter == -1)
4807 debug_show_all_locks();
4810 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4812 idle->sched_class = &idle_sched_class;
4816 * init_idle - set up an idle thread for a given CPU
4817 * @idle: task in question
4818 * @cpu: cpu the idle task belongs to
4820 * NOTE: this function does not set the idle thread's NEED_RESCHED
4821 * flag, to make booting more robust.
4823 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4825 struct rq *rq = cpu_rq(cpu);
4826 unsigned long flags;
4828 __sched_fork(idle);
4829 idle->se.exec_start = sched_clock();
4831 idle->prio = idle->normal_prio = MAX_PRIO;
4832 idle->cpus_allowed = cpumask_of_cpu(cpu);
4833 __set_task_cpu(idle, cpu);
4835 spin_lock_irqsave(&rq->lock, flags);
4836 rq->curr = rq->idle = idle;
4837 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4838 idle->oncpu = 1;
4839 #endif
4840 spin_unlock_irqrestore(&rq->lock, flags);
4842 /* Set the preempt count _outside_ the spinlocks! */
4843 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4844 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4845 #else
4846 task_thread_info(idle)->preempt_count = 0;
4847 #endif
4849 * The idle tasks have their own, simple scheduling class:
4851 idle->sched_class = &idle_sched_class;
4855 * In a system that switches off the HZ timer nohz_cpu_mask
4856 * indicates which cpus entered this state. This is used
4857 * in the rcu update to wait only for active cpus. For system
4858 * which do not switch off the HZ timer nohz_cpu_mask should
4859 * always be CPU_MASK_NONE.
4861 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4864 * Increase the granularity value when there are more CPUs,
4865 * because with more CPUs the 'effective latency' as visible
4866 * to users decreases. But the relationship is not linear,
4867 * so pick a second-best guess by going with the log2 of the
4868 * number of CPUs.
4870 * This idea comes from the SD scheduler of Con Kolivas:
4872 static inline void sched_init_granularity(void)
4874 unsigned int factor = 1 + ilog2(num_online_cpus());
4875 const unsigned long gran_limit = 100000000;
4877 sysctl_sched_granularity *= factor;
4878 if (sysctl_sched_granularity > gran_limit)
4879 sysctl_sched_granularity = gran_limit;
4881 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4882 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4885 #ifdef CONFIG_SMP
4887 * This is how migration works:
4889 * 1) we queue a struct migration_req structure in the source CPU's
4890 * runqueue and wake up that CPU's migration thread.
4891 * 2) we down() the locked semaphore => thread blocks.
4892 * 3) migration thread wakes up (implicitly it forces the migrated
4893 * thread off the CPU)
4894 * 4) it gets the migration request and checks whether the migrated
4895 * task is still in the wrong runqueue.
4896 * 5) if it's in the wrong runqueue then the migration thread removes
4897 * it and puts it into the right queue.
4898 * 6) migration thread up()s the semaphore.
4899 * 7) we wake up and the migration is done.
4903 * Change a given task's CPU affinity. Migrate the thread to a
4904 * proper CPU and schedule it away if the CPU it's executing on
4905 * is removed from the allowed bitmask.
4907 * NOTE: the caller must have a valid reference to the task, the
4908 * task must not exit() & deallocate itself prematurely. The
4909 * call is not atomic; no spinlocks may be held.
4911 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4913 struct migration_req req;
4914 unsigned long flags;
4915 struct rq *rq;
4916 int ret = 0;
4918 rq = task_rq_lock(p, &flags);
4919 if (!cpus_intersects(new_mask, cpu_online_map)) {
4920 ret = -EINVAL;
4921 goto out;
4924 p->cpus_allowed = new_mask;
4925 /* Can the task run on the task's current CPU? If so, we're done */
4926 if (cpu_isset(task_cpu(p), new_mask))
4927 goto out;
4929 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4930 /* Need help from migration thread: drop lock and wait. */
4931 task_rq_unlock(rq, &flags);
4932 wake_up_process(rq->migration_thread);
4933 wait_for_completion(&req.done);
4934 tlb_migrate_finish(p->mm);
4935 return 0;
4937 out:
4938 task_rq_unlock(rq, &flags);
4940 return ret;
4942 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4945 * Move (not current) task off this cpu, onto dest cpu. We're doing
4946 * this because either it can't run here any more (set_cpus_allowed()
4947 * away from this CPU, or CPU going down), or because we're
4948 * attempting to rebalance this task on exec (sched_exec).
4950 * So we race with normal scheduler movements, but that's OK, as long
4951 * as the task is no longer on this CPU.
4953 * Returns non-zero if task was successfully migrated.
4955 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4957 struct rq *rq_dest, *rq_src;
4958 int ret = 0, on_rq;
4960 if (unlikely(cpu_is_offline(dest_cpu)))
4961 return ret;
4963 rq_src = cpu_rq(src_cpu);
4964 rq_dest = cpu_rq(dest_cpu);
4966 double_rq_lock(rq_src, rq_dest);
4967 /* Already moved. */
4968 if (task_cpu(p) != src_cpu)
4969 goto out;
4970 /* Affinity changed (again). */
4971 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4972 goto out;
4974 on_rq = p->se.on_rq;
4975 if (on_rq)
4976 deactivate_task(rq_src, p, 0);
4977 set_task_cpu(p, dest_cpu);
4978 if (on_rq) {
4979 activate_task(rq_dest, p, 0);
4980 check_preempt_curr(rq_dest, p);
4982 ret = 1;
4983 out:
4984 double_rq_unlock(rq_src, rq_dest);
4985 return ret;
4989 * migration_thread - this is a highprio system thread that performs
4990 * thread migration by bumping thread off CPU then 'pushing' onto
4991 * another runqueue.
4993 static int migration_thread(void *data)
4995 int cpu = (long)data;
4996 struct rq *rq;
4998 rq = cpu_rq(cpu);
4999 BUG_ON(rq->migration_thread != current);
5001 set_current_state(TASK_INTERRUPTIBLE);
5002 while (!kthread_should_stop()) {
5003 struct migration_req *req;
5004 struct list_head *head;
5006 spin_lock_irq(&rq->lock);
5008 if (cpu_is_offline(cpu)) {
5009 spin_unlock_irq(&rq->lock);
5010 goto wait_to_die;
5013 if (rq->active_balance) {
5014 active_load_balance(rq, cpu);
5015 rq->active_balance = 0;
5018 head = &rq->migration_queue;
5020 if (list_empty(head)) {
5021 spin_unlock_irq(&rq->lock);
5022 schedule();
5023 set_current_state(TASK_INTERRUPTIBLE);
5024 continue;
5026 req = list_entry(head->next, struct migration_req, list);
5027 list_del_init(head->next);
5029 spin_unlock(&rq->lock);
5030 __migrate_task(req->task, cpu, req->dest_cpu);
5031 local_irq_enable();
5033 complete(&req->done);
5035 __set_current_state(TASK_RUNNING);
5036 return 0;
5038 wait_to_die:
5039 /* Wait for kthread_stop */
5040 set_current_state(TASK_INTERRUPTIBLE);
5041 while (!kthread_should_stop()) {
5042 schedule();
5043 set_current_state(TASK_INTERRUPTIBLE);
5045 __set_current_state(TASK_RUNNING);
5046 return 0;
5049 #ifdef CONFIG_HOTPLUG_CPU
5051 * Figure out where task on dead CPU should go, use force if neccessary.
5052 * NOTE: interrupts should be disabled by the caller
5054 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5056 unsigned long flags;
5057 cpumask_t mask;
5058 struct rq *rq;
5059 int dest_cpu;
5061 restart:
5062 /* On same node? */
5063 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5064 cpus_and(mask, mask, p->cpus_allowed);
5065 dest_cpu = any_online_cpu(mask);
5067 /* On any allowed CPU? */
5068 if (dest_cpu == NR_CPUS)
5069 dest_cpu = any_online_cpu(p->cpus_allowed);
5071 /* No more Mr. Nice Guy. */
5072 if (dest_cpu == NR_CPUS) {
5073 rq = task_rq_lock(p, &flags);
5074 cpus_setall(p->cpus_allowed);
5075 dest_cpu = any_online_cpu(p->cpus_allowed);
5076 task_rq_unlock(rq, &flags);
5079 * Don't tell them about moving exiting tasks or
5080 * kernel threads (both mm NULL), since they never
5081 * leave kernel.
5083 if (p->mm && printk_ratelimit())
5084 printk(KERN_INFO "process %d (%s) no "
5085 "longer affine to cpu%d\n",
5086 p->pid, p->comm, dead_cpu);
5088 if (!__migrate_task(p, dead_cpu, dest_cpu))
5089 goto restart;
5093 * While a dead CPU has no uninterruptible tasks queued at this point,
5094 * it might still have a nonzero ->nr_uninterruptible counter, because
5095 * for performance reasons the counter is not stricly tracking tasks to
5096 * their home CPUs. So we just add the counter to another CPU's counter,
5097 * to keep the global sum constant after CPU-down:
5099 static void migrate_nr_uninterruptible(struct rq *rq_src)
5101 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5102 unsigned long flags;
5104 local_irq_save(flags);
5105 double_rq_lock(rq_src, rq_dest);
5106 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5107 rq_src->nr_uninterruptible = 0;
5108 double_rq_unlock(rq_src, rq_dest);
5109 local_irq_restore(flags);
5112 /* Run through task list and migrate tasks from the dead cpu. */
5113 static void migrate_live_tasks(int src_cpu)
5115 struct task_struct *p, *t;
5117 write_lock_irq(&tasklist_lock);
5119 do_each_thread(t, p) {
5120 if (p == current)
5121 continue;
5123 if (task_cpu(p) == src_cpu)
5124 move_task_off_dead_cpu(src_cpu, p);
5125 } while_each_thread(t, p);
5127 write_unlock_irq(&tasklist_lock);
5131 * Schedules idle task to be the next runnable task on current CPU.
5132 * It does so by boosting its priority to highest possible and adding it to
5133 * the _front_ of the runqueue. Used by CPU offline code.
5135 void sched_idle_next(void)
5137 int this_cpu = smp_processor_id();
5138 struct rq *rq = cpu_rq(this_cpu);
5139 struct task_struct *p = rq->idle;
5140 unsigned long flags;
5142 /* cpu has to be offline */
5143 BUG_ON(cpu_online(this_cpu));
5146 * Strictly not necessary since rest of the CPUs are stopped by now
5147 * and interrupts disabled on the current cpu.
5149 spin_lock_irqsave(&rq->lock, flags);
5151 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5153 /* Add idle task to the _front_ of its priority queue: */
5154 activate_idle_task(p, rq);
5156 spin_unlock_irqrestore(&rq->lock, flags);
5160 * Ensures that the idle task is using init_mm right before its cpu goes
5161 * offline.
5163 void idle_task_exit(void)
5165 struct mm_struct *mm = current->active_mm;
5167 BUG_ON(cpu_online(smp_processor_id()));
5169 if (mm != &init_mm)
5170 switch_mm(mm, &init_mm, current);
5171 mmdrop(mm);
5174 /* called under rq->lock with disabled interrupts */
5175 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5177 struct rq *rq = cpu_rq(dead_cpu);
5179 /* Must be exiting, otherwise would be on tasklist. */
5180 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5182 /* Cannot have done final schedule yet: would have vanished. */
5183 BUG_ON(p->state == TASK_DEAD);
5185 get_task_struct(p);
5188 * Drop lock around migration; if someone else moves it,
5189 * that's OK. No task can be added to this CPU, so iteration is
5190 * fine.
5191 * NOTE: interrupts should be left disabled --dev@
5193 spin_unlock(&rq->lock);
5194 move_task_off_dead_cpu(dead_cpu, p);
5195 spin_lock(&rq->lock);
5197 put_task_struct(p);
5200 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5201 static void migrate_dead_tasks(unsigned int dead_cpu)
5203 struct rq *rq = cpu_rq(dead_cpu);
5204 struct task_struct *next;
5206 for ( ; ; ) {
5207 if (!rq->nr_running)
5208 break;
5209 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5210 if (!next)
5211 break;
5212 migrate_dead(dead_cpu, next);
5216 #endif /* CONFIG_HOTPLUG_CPU */
5218 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5220 static struct ctl_table sd_ctl_dir[] = {
5221 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5222 {0,},
5225 static struct ctl_table sd_ctl_root[] = {
5226 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5227 {0,},
5230 static struct ctl_table *sd_alloc_ctl_entry(int n)
5232 struct ctl_table *entry =
5233 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5235 BUG_ON(!entry);
5236 memset(entry, 0, n * sizeof(struct ctl_table));
5238 return entry;
5241 static void
5242 set_table_entry(struct ctl_table *entry, int ctl_name,
5243 const char *procname, void *data, int maxlen,
5244 mode_t mode, proc_handler *proc_handler)
5246 entry->ctl_name = ctl_name;
5247 entry->procname = procname;
5248 entry->data = data;
5249 entry->maxlen = maxlen;
5250 entry->mode = mode;
5251 entry->proc_handler = proc_handler;
5254 static struct ctl_table *
5255 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5257 struct ctl_table *table = sd_alloc_ctl_entry(14);
5259 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5260 sizeof(long), 0644, proc_doulongvec_minmax);
5261 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5262 sizeof(long), 0644, proc_doulongvec_minmax);
5263 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5264 sizeof(int), 0644, proc_dointvec_minmax);
5265 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5266 sizeof(int), 0644, proc_dointvec_minmax);
5267 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5268 sizeof(int), 0644, proc_dointvec_minmax);
5269 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5270 sizeof(int), 0644, proc_dointvec_minmax);
5271 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5272 sizeof(int), 0644, proc_dointvec_minmax);
5273 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277 set_table_entry(&table[10], 11, "cache_nice_tries",
5278 &sd->cache_nice_tries,
5279 sizeof(int), 0644, proc_dointvec_minmax);
5280 set_table_entry(&table[12], 13, "flags", &sd->flags,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5283 return table;
5286 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5288 struct ctl_table *entry, *table;
5289 struct sched_domain *sd;
5290 int domain_num = 0, i;
5291 char buf[32];
5293 for_each_domain(cpu, sd)
5294 domain_num++;
5295 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5297 i = 0;
5298 for_each_domain(cpu, sd) {
5299 snprintf(buf, 32, "domain%d", i);
5300 entry->ctl_name = i + 1;
5301 entry->procname = kstrdup(buf, GFP_KERNEL);
5302 entry->mode = 0755;
5303 entry->child = sd_alloc_ctl_domain_table(sd);
5304 entry++;
5305 i++;
5307 return table;
5310 static struct ctl_table_header *sd_sysctl_header;
5311 static void init_sched_domain_sysctl(void)
5313 int i, cpu_num = num_online_cpus();
5314 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5315 char buf[32];
5317 sd_ctl_dir[0].child = entry;
5319 for (i = 0; i < cpu_num; i++, entry++) {
5320 snprintf(buf, 32, "cpu%d", i);
5321 entry->ctl_name = i + 1;
5322 entry->procname = kstrdup(buf, GFP_KERNEL);
5323 entry->mode = 0755;
5324 entry->child = sd_alloc_ctl_cpu_table(i);
5326 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5328 #else
5329 static void init_sched_domain_sysctl(void)
5332 #endif
5335 * migration_call - callback that gets triggered when a CPU is added.
5336 * Here we can start up the necessary migration thread for the new CPU.
5338 static int __cpuinit
5339 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5341 struct task_struct *p;
5342 int cpu = (long)hcpu;
5343 unsigned long flags;
5344 struct rq *rq;
5346 switch (action) {
5347 case CPU_LOCK_ACQUIRE:
5348 mutex_lock(&sched_hotcpu_mutex);
5349 break;
5351 case CPU_UP_PREPARE:
5352 case CPU_UP_PREPARE_FROZEN:
5353 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5354 if (IS_ERR(p))
5355 return NOTIFY_BAD;
5356 kthread_bind(p, cpu);
5357 /* Must be high prio: stop_machine expects to yield to it. */
5358 rq = task_rq_lock(p, &flags);
5359 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5360 task_rq_unlock(rq, &flags);
5361 cpu_rq(cpu)->migration_thread = p;
5362 break;
5364 case CPU_ONLINE:
5365 case CPU_ONLINE_FROZEN:
5366 /* Strictly unneccessary, as first user will wake it. */
5367 wake_up_process(cpu_rq(cpu)->migration_thread);
5368 break;
5370 #ifdef CONFIG_HOTPLUG_CPU
5371 case CPU_UP_CANCELED:
5372 case CPU_UP_CANCELED_FROZEN:
5373 if (!cpu_rq(cpu)->migration_thread)
5374 break;
5375 /* Unbind it from offline cpu so it can run. Fall thru. */
5376 kthread_bind(cpu_rq(cpu)->migration_thread,
5377 any_online_cpu(cpu_online_map));
5378 kthread_stop(cpu_rq(cpu)->migration_thread);
5379 cpu_rq(cpu)->migration_thread = NULL;
5380 break;
5382 case CPU_DEAD:
5383 case CPU_DEAD_FROZEN:
5384 migrate_live_tasks(cpu);
5385 rq = cpu_rq(cpu);
5386 kthread_stop(rq->migration_thread);
5387 rq->migration_thread = NULL;
5388 /* Idle task back to normal (off runqueue, low prio) */
5389 rq = task_rq_lock(rq->idle, &flags);
5390 deactivate_task(rq, rq->idle, 0);
5391 rq->idle->static_prio = MAX_PRIO;
5392 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5393 rq->idle->sched_class = &idle_sched_class;
5394 migrate_dead_tasks(cpu);
5395 task_rq_unlock(rq, &flags);
5396 migrate_nr_uninterruptible(rq);
5397 BUG_ON(rq->nr_running != 0);
5399 /* No need to migrate the tasks: it was best-effort if
5400 * they didn't take sched_hotcpu_mutex. Just wake up
5401 * the requestors. */
5402 spin_lock_irq(&rq->lock);
5403 while (!list_empty(&rq->migration_queue)) {
5404 struct migration_req *req;
5406 req = list_entry(rq->migration_queue.next,
5407 struct migration_req, list);
5408 list_del_init(&req->list);
5409 complete(&req->done);
5411 spin_unlock_irq(&rq->lock);
5412 break;
5413 #endif
5414 case CPU_LOCK_RELEASE:
5415 mutex_unlock(&sched_hotcpu_mutex);
5416 break;
5418 return NOTIFY_OK;
5421 /* Register at highest priority so that task migration (migrate_all_tasks)
5422 * happens before everything else.
5424 static struct notifier_block __cpuinitdata migration_notifier = {
5425 .notifier_call = migration_call,
5426 .priority = 10
5429 int __init migration_init(void)
5431 void *cpu = (void *)(long)smp_processor_id();
5432 int err;
5434 /* Start one for the boot CPU: */
5435 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5436 BUG_ON(err == NOTIFY_BAD);
5437 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5438 register_cpu_notifier(&migration_notifier);
5440 return 0;
5442 #endif
5444 #ifdef CONFIG_SMP
5446 /* Number of possible processor ids */
5447 int nr_cpu_ids __read_mostly = NR_CPUS;
5448 EXPORT_SYMBOL(nr_cpu_ids);
5450 #undef SCHED_DOMAIN_DEBUG
5451 #ifdef SCHED_DOMAIN_DEBUG
5452 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5454 int level = 0;
5456 if (!sd) {
5457 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5458 return;
5461 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5463 do {
5464 int i;
5465 char str[NR_CPUS];
5466 struct sched_group *group = sd->groups;
5467 cpumask_t groupmask;
5469 cpumask_scnprintf(str, NR_CPUS, sd->span);
5470 cpus_clear(groupmask);
5472 printk(KERN_DEBUG);
5473 for (i = 0; i < level + 1; i++)
5474 printk(" ");
5475 printk("domain %d: ", level);
5477 if (!(sd->flags & SD_LOAD_BALANCE)) {
5478 printk("does not load-balance\n");
5479 if (sd->parent)
5480 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5481 " has parent");
5482 break;
5485 printk("span %s\n", str);
5487 if (!cpu_isset(cpu, sd->span))
5488 printk(KERN_ERR "ERROR: domain->span does not contain "
5489 "CPU%d\n", cpu);
5490 if (!cpu_isset(cpu, group->cpumask))
5491 printk(KERN_ERR "ERROR: domain->groups does not contain"
5492 " CPU%d\n", cpu);
5494 printk(KERN_DEBUG);
5495 for (i = 0; i < level + 2; i++)
5496 printk(" ");
5497 printk("groups:");
5498 do {
5499 if (!group) {
5500 printk("\n");
5501 printk(KERN_ERR "ERROR: group is NULL\n");
5502 break;
5505 if (!group->__cpu_power) {
5506 printk("\n");
5507 printk(KERN_ERR "ERROR: domain->cpu_power not "
5508 "set\n");
5511 if (!cpus_weight(group->cpumask)) {
5512 printk("\n");
5513 printk(KERN_ERR "ERROR: empty group\n");
5516 if (cpus_intersects(groupmask, group->cpumask)) {
5517 printk("\n");
5518 printk(KERN_ERR "ERROR: repeated CPUs\n");
5521 cpus_or(groupmask, groupmask, group->cpumask);
5523 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5524 printk(" %s", str);
5526 group = group->next;
5527 } while (group != sd->groups);
5528 printk("\n");
5530 if (!cpus_equal(sd->span, groupmask))
5531 printk(KERN_ERR "ERROR: groups don't span "
5532 "domain->span\n");
5534 level++;
5535 sd = sd->parent;
5536 if (!sd)
5537 continue;
5539 if (!cpus_subset(groupmask, sd->span))
5540 printk(KERN_ERR "ERROR: parent span is not a superset "
5541 "of domain->span\n");
5543 } while (sd);
5545 #else
5546 # define sched_domain_debug(sd, cpu) do { } while (0)
5547 #endif
5549 static int sd_degenerate(struct sched_domain *sd)
5551 if (cpus_weight(sd->span) == 1)
5552 return 1;
5554 /* Following flags need at least 2 groups */
5555 if (sd->flags & (SD_LOAD_BALANCE |
5556 SD_BALANCE_NEWIDLE |
5557 SD_BALANCE_FORK |
5558 SD_BALANCE_EXEC |
5559 SD_SHARE_CPUPOWER |
5560 SD_SHARE_PKG_RESOURCES)) {
5561 if (sd->groups != sd->groups->next)
5562 return 0;
5565 /* Following flags don't use groups */
5566 if (sd->flags & (SD_WAKE_IDLE |
5567 SD_WAKE_AFFINE |
5568 SD_WAKE_BALANCE))
5569 return 0;
5571 return 1;
5574 static int
5575 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5577 unsigned long cflags = sd->flags, pflags = parent->flags;
5579 if (sd_degenerate(parent))
5580 return 1;
5582 if (!cpus_equal(sd->span, parent->span))
5583 return 0;
5585 /* Does parent contain flags not in child? */
5586 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5587 if (cflags & SD_WAKE_AFFINE)
5588 pflags &= ~SD_WAKE_BALANCE;
5589 /* Flags needing groups don't count if only 1 group in parent */
5590 if (parent->groups == parent->groups->next) {
5591 pflags &= ~(SD_LOAD_BALANCE |
5592 SD_BALANCE_NEWIDLE |
5593 SD_BALANCE_FORK |
5594 SD_BALANCE_EXEC |
5595 SD_SHARE_CPUPOWER |
5596 SD_SHARE_PKG_RESOURCES);
5598 if (~cflags & pflags)
5599 return 0;
5601 return 1;
5605 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5606 * hold the hotplug lock.
5608 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5610 struct rq *rq = cpu_rq(cpu);
5611 struct sched_domain *tmp;
5613 /* Remove the sched domains which do not contribute to scheduling. */
5614 for (tmp = sd; tmp; tmp = tmp->parent) {
5615 struct sched_domain *parent = tmp->parent;
5616 if (!parent)
5617 break;
5618 if (sd_parent_degenerate(tmp, parent)) {
5619 tmp->parent = parent->parent;
5620 if (parent->parent)
5621 parent->parent->child = tmp;
5625 if (sd && sd_degenerate(sd)) {
5626 sd = sd->parent;
5627 if (sd)
5628 sd->child = NULL;
5631 sched_domain_debug(sd, cpu);
5633 rcu_assign_pointer(rq->sd, sd);
5636 /* cpus with isolated domains */
5637 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5639 /* Setup the mask of cpus configured for isolated domains */
5640 static int __init isolated_cpu_setup(char *str)
5642 int ints[NR_CPUS], i;
5644 str = get_options(str, ARRAY_SIZE(ints), ints);
5645 cpus_clear(cpu_isolated_map);
5646 for (i = 1; i <= ints[0]; i++)
5647 if (ints[i] < NR_CPUS)
5648 cpu_set(ints[i], cpu_isolated_map);
5649 return 1;
5652 __setup ("isolcpus=", isolated_cpu_setup);
5655 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5656 * to a function which identifies what group(along with sched group) a CPU
5657 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5658 * (due to the fact that we keep track of groups covered with a cpumask_t).
5660 * init_sched_build_groups will build a circular linked list of the groups
5661 * covered by the given span, and will set each group's ->cpumask correctly,
5662 * and ->cpu_power to 0.
5664 static void
5665 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5666 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5667 struct sched_group **sg))
5669 struct sched_group *first = NULL, *last = NULL;
5670 cpumask_t covered = CPU_MASK_NONE;
5671 int i;
5673 for_each_cpu_mask(i, span) {
5674 struct sched_group *sg;
5675 int group = group_fn(i, cpu_map, &sg);
5676 int j;
5678 if (cpu_isset(i, covered))
5679 continue;
5681 sg->cpumask = CPU_MASK_NONE;
5682 sg->__cpu_power = 0;
5684 for_each_cpu_mask(j, span) {
5685 if (group_fn(j, cpu_map, NULL) != group)
5686 continue;
5688 cpu_set(j, covered);
5689 cpu_set(j, sg->cpumask);
5691 if (!first)
5692 first = sg;
5693 if (last)
5694 last->next = sg;
5695 last = sg;
5697 last->next = first;
5700 #define SD_NODES_PER_DOMAIN 16
5702 #ifdef CONFIG_NUMA
5705 * find_next_best_node - find the next node to include in a sched_domain
5706 * @node: node whose sched_domain we're building
5707 * @used_nodes: nodes already in the sched_domain
5709 * Find the next node to include in a given scheduling domain. Simply
5710 * finds the closest node not already in the @used_nodes map.
5712 * Should use nodemask_t.
5714 static int find_next_best_node(int node, unsigned long *used_nodes)
5716 int i, n, val, min_val, best_node = 0;
5718 min_val = INT_MAX;
5720 for (i = 0; i < MAX_NUMNODES; i++) {
5721 /* Start at @node */
5722 n = (node + i) % MAX_NUMNODES;
5724 if (!nr_cpus_node(n))
5725 continue;
5727 /* Skip already used nodes */
5728 if (test_bit(n, used_nodes))
5729 continue;
5731 /* Simple min distance search */
5732 val = node_distance(node, n);
5734 if (val < min_val) {
5735 min_val = val;
5736 best_node = n;
5740 set_bit(best_node, used_nodes);
5741 return best_node;
5745 * sched_domain_node_span - get a cpumask for a node's sched_domain
5746 * @node: node whose cpumask we're constructing
5747 * @size: number of nodes to include in this span
5749 * Given a node, construct a good cpumask for its sched_domain to span. It
5750 * should be one that prevents unnecessary balancing, but also spreads tasks
5751 * out optimally.
5753 static cpumask_t sched_domain_node_span(int node)
5755 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5756 cpumask_t span, nodemask;
5757 int i;
5759 cpus_clear(span);
5760 bitmap_zero(used_nodes, MAX_NUMNODES);
5762 nodemask = node_to_cpumask(node);
5763 cpus_or(span, span, nodemask);
5764 set_bit(node, used_nodes);
5766 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5767 int next_node = find_next_best_node(node, used_nodes);
5769 nodemask = node_to_cpumask(next_node);
5770 cpus_or(span, span, nodemask);
5773 return span;
5775 #endif
5777 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5780 * SMT sched-domains:
5782 #ifdef CONFIG_SCHED_SMT
5783 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5784 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5786 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5787 struct sched_group **sg)
5789 if (sg)
5790 *sg = &per_cpu(sched_group_cpus, cpu);
5791 return cpu;
5793 #endif
5796 * multi-core sched-domains:
5798 #ifdef CONFIG_SCHED_MC
5799 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5800 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5801 #endif
5803 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5804 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5805 struct sched_group **sg)
5807 int group;
5808 cpumask_t mask = cpu_sibling_map[cpu];
5809 cpus_and(mask, mask, *cpu_map);
5810 group = first_cpu(mask);
5811 if (sg)
5812 *sg = &per_cpu(sched_group_core, group);
5813 return group;
5815 #elif defined(CONFIG_SCHED_MC)
5816 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5817 struct sched_group **sg)
5819 if (sg)
5820 *sg = &per_cpu(sched_group_core, cpu);
5821 return cpu;
5823 #endif
5825 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5826 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5828 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5829 struct sched_group **sg)
5831 int group;
5832 #ifdef CONFIG_SCHED_MC
5833 cpumask_t mask = cpu_coregroup_map(cpu);
5834 cpus_and(mask, mask, *cpu_map);
5835 group = first_cpu(mask);
5836 #elif defined(CONFIG_SCHED_SMT)
5837 cpumask_t mask = cpu_sibling_map[cpu];
5838 cpus_and(mask, mask, *cpu_map);
5839 group = first_cpu(mask);
5840 #else
5841 group = cpu;
5842 #endif
5843 if (sg)
5844 *sg = &per_cpu(sched_group_phys, group);
5845 return group;
5848 #ifdef CONFIG_NUMA
5850 * The init_sched_build_groups can't handle what we want to do with node
5851 * groups, so roll our own. Now each node has its own list of groups which
5852 * gets dynamically allocated.
5854 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5855 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5857 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5858 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5860 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5861 struct sched_group **sg)
5863 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5864 int group;
5866 cpus_and(nodemask, nodemask, *cpu_map);
5867 group = first_cpu(nodemask);
5869 if (sg)
5870 *sg = &per_cpu(sched_group_allnodes, group);
5871 return group;
5874 static void init_numa_sched_groups_power(struct sched_group *group_head)
5876 struct sched_group *sg = group_head;
5877 int j;
5879 if (!sg)
5880 return;
5881 next_sg:
5882 for_each_cpu_mask(j, sg->cpumask) {
5883 struct sched_domain *sd;
5885 sd = &per_cpu(phys_domains, j);
5886 if (j != first_cpu(sd->groups->cpumask)) {
5888 * Only add "power" once for each
5889 * physical package.
5891 continue;
5894 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5896 sg = sg->next;
5897 if (sg != group_head)
5898 goto next_sg;
5900 #endif
5902 #ifdef CONFIG_NUMA
5903 /* Free memory allocated for various sched_group structures */
5904 static void free_sched_groups(const cpumask_t *cpu_map)
5906 int cpu, i;
5908 for_each_cpu_mask(cpu, *cpu_map) {
5909 struct sched_group **sched_group_nodes
5910 = sched_group_nodes_bycpu[cpu];
5912 if (!sched_group_nodes)
5913 continue;
5915 for (i = 0; i < MAX_NUMNODES; i++) {
5916 cpumask_t nodemask = node_to_cpumask(i);
5917 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5919 cpus_and(nodemask, nodemask, *cpu_map);
5920 if (cpus_empty(nodemask))
5921 continue;
5923 if (sg == NULL)
5924 continue;
5925 sg = sg->next;
5926 next_sg:
5927 oldsg = sg;
5928 sg = sg->next;
5929 kfree(oldsg);
5930 if (oldsg != sched_group_nodes[i])
5931 goto next_sg;
5933 kfree(sched_group_nodes);
5934 sched_group_nodes_bycpu[cpu] = NULL;
5937 #else
5938 static void free_sched_groups(const cpumask_t *cpu_map)
5941 #endif
5944 * Initialize sched groups cpu_power.
5946 * cpu_power indicates the capacity of sched group, which is used while
5947 * distributing the load between different sched groups in a sched domain.
5948 * Typically cpu_power for all the groups in a sched domain will be same unless
5949 * there are asymmetries in the topology. If there are asymmetries, group
5950 * having more cpu_power will pickup more load compared to the group having
5951 * less cpu_power.
5953 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5954 * the maximum number of tasks a group can handle in the presence of other idle
5955 * or lightly loaded groups in the same sched domain.
5957 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5959 struct sched_domain *child;
5960 struct sched_group *group;
5962 WARN_ON(!sd || !sd->groups);
5964 if (cpu != first_cpu(sd->groups->cpumask))
5965 return;
5967 child = sd->child;
5969 sd->groups->__cpu_power = 0;
5972 * For perf policy, if the groups in child domain share resources
5973 * (for example cores sharing some portions of the cache hierarchy
5974 * or SMT), then set this domain groups cpu_power such that each group
5975 * can handle only one task, when there are other idle groups in the
5976 * same sched domain.
5978 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5979 (child->flags &
5980 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5981 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5982 return;
5986 * add cpu_power of each child group to this groups cpu_power
5988 group = child->groups;
5989 do {
5990 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5991 group = group->next;
5992 } while (group != child->groups);
5996 * Build sched domains for a given set of cpus and attach the sched domains
5997 * to the individual cpus
5999 static int build_sched_domains(const cpumask_t *cpu_map)
6001 int i;
6002 #ifdef CONFIG_NUMA
6003 struct sched_group **sched_group_nodes = NULL;
6004 int sd_allnodes = 0;
6007 * Allocate the per-node list of sched groups
6009 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6010 GFP_KERNEL);
6011 if (!sched_group_nodes) {
6012 printk(KERN_WARNING "Can not alloc sched group node list\n");
6013 return -ENOMEM;
6015 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6016 #endif
6019 * Set up domains for cpus specified by the cpu_map.
6021 for_each_cpu_mask(i, *cpu_map) {
6022 struct sched_domain *sd = NULL, *p;
6023 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6025 cpus_and(nodemask, nodemask, *cpu_map);
6027 #ifdef CONFIG_NUMA
6028 if (cpus_weight(*cpu_map) >
6029 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6030 sd = &per_cpu(allnodes_domains, i);
6031 *sd = SD_ALLNODES_INIT;
6032 sd->span = *cpu_map;
6033 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6034 p = sd;
6035 sd_allnodes = 1;
6036 } else
6037 p = NULL;
6039 sd = &per_cpu(node_domains, i);
6040 *sd = SD_NODE_INIT;
6041 sd->span = sched_domain_node_span(cpu_to_node(i));
6042 sd->parent = p;
6043 if (p)
6044 p->child = sd;
6045 cpus_and(sd->span, sd->span, *cpu_map);
6046 #endif
6048 p = sd;
6049 sd = &per_cpu(phys_domains, i);
6050 *sd = SD_CPU_INIT;
6051 sd->span = nodemask;
6052 sd->parent = p;
6053 if (p)
6054 p->child = sd;
6055 cpu_to_phys_group(i, cpu_map, &sd->groups);
6057 #ifdef CONFIG_SCHED_MC
6058 p = sd;
6059 sd = &per_cpu(core_domains, i);
6060 *sd = SD_MC_INIT;
6061 sd->span = cpu_coregroup_map(i);
6062 cpus_and(sd->span, sd->span, *cpu_map);
6063 sd->parent = p;
6064 p->child = sd;
6065 cpu_to_core_group(i, cpu_map, &sd->groups);
6066 #endif
6068 #ifdef CONFIG_SCHED_SMT
6069 p = sd;
6070 sd = &per_cpu(cpu_domains, i);
6071 *sd = SD_SIBLING_INIT;
6072 sd->span = cpu_sibling_map[i];
6073 cpus_and(sd->span, sd->span, *cpu_map);
6074 sd->parent = p;
6075 p->child = sd;
6076 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6077 #endif
6080 #ifdef CONFIG_SCHED_SMT
6081 /* Set up CPU (sibling) groups */
6082 for_each_cpu_mask(i, *cpu_map) {
6083 cpumask_t this_sibling_map = cpu_sibling_map[i];
6084 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6085 if (i != first_cpu(this_sibling_map))
6086 continue;
6088 init_sched_build_groups(this_sibling_map, cpu_map,
6089 &cpu_to_cpu_group);
6091 #endif
6093 #ifdef CONFIG_SCHED_MC
6094 /* Set up multi-core groups */
6095 for_each_cpu_mask(i, *cpu_map) {
6096 cpumask_t this_core_map = cpu_coregroup_map(i);
6097 cpus_and(this_core_map, this_core_map, *cpu_map);
6098 if (i != first_cpu(this_core_map))
6099 continue;
6100 init_sched_build_groups(this_core_map, cpu_map,
6101 &cpu_to_core_group);
6103 #endif
6105 /* Set up physical groups */
6106 for (i = 0; i < MAX_NUMNODES; i++) {
6107 cpumask_t nodemask = node_to_cpumask(i);
6109 cpus_and(nodemask, nodemask, *cpu_map);
6110 if (cpus_empty(nodemask))
6111 continue;
6113 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6116 #ifdef CONFIG_NUMA
6117 /* Set up node groups */
6118 if (sd_allnodes)
6119 init_sched_build_groups(*cpu_map, cpu_map,
6120 &cpu_to_allnodes_group);
6122 for (i = 0; i < MAX_NUMNODES; i++) {
6123 /* Set up node groups */
6124 struct sched_group *sg, *prev;
6125 cpumask_t nodemask = node_to_cpumask(i);
6126 cpumask_t domainspan;
6127 cpumask_t covered = CPU_MASK_NONE;
6128 int j;
6130 cpus_and(nodemask, nodemask, *cpu_map);
6131 if (cpus_empty(nodemask)) {
6132 sched_group_nodes[i] = NULL;
6133 continue;
6136 domainspan = sched_domain_node_span(i);
6137 cpus_and(domainspan, domainspan, *cpu_map);
6139 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6140 if (!sg) {
6141 printk(KERN_WARNING "Can not alloc domain group for "
6142 "node %d\n", i);
6143 goto error;
6145 sched_group_nodes[i] = sg;
6146 for_each_cpu_mask(j, nodemask) {
6147 struct sched_domain *sd;
6149 sd = &per_cpu(node_domains, j);
6150 sd->groups = sg;
6152 sg->__cpu_power = 0;
6153 sg->cpumask = nodemask;
6154 sg->next = sg;
6155 cpus_or(covered, covered, nodemask);
6156 prev = sg;
6158 for (j = 0; j < MAX_NUMNODES; j++) {
6159 cpumask_t tmp, notcovered;
6160 int n = (i + j) % MAX_NUMNODES;
6162 cpus_complement(notcovered, covered);
6163 cpus_and(tmp, notcovered, *cpu_map);
6164 cpus_and(tmp, tmp, domainspan);
6165 if (cpus_empty(tmp))
6166 break;
6168 nodemask = node_to_cpumask(n);
6169 cpus_and(tmp, tmp, nodemask);
6170 if (cpus_empty(tmp))
6171 continue;
6173 sg = kmalloc_node(sizeof(struct sched_group),
6174 GFP_KERNEL, i);
6175 if (!sg) {
6176 printk(KERN_WARNING
6177 "Can not alloc domain group for node %d\n", j);
6178 goto error;
6180 sg->__cpu_power = 0;
6181 sg->cpumask = tmp;
6182 sg->next = prev->next;
6183 cpus_or(covered, covered, tmp);
6184 prev->next = sg;
6185 prev = sg;
6188 #endif
6190 /* Calculate CPU power for physical packages and nodes */
6191 #ifdef CONFIG_SCHED_SMT
6192 for_each_cpu_mask(i, *cpu_map) {
6193 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6195 init_sched_groups_power(i, sd);
6197 #endif
6198 #ifdef CONFIG_SCHED_MC
6199 for_each_cpu_mask(i, *cpu_map) {
6200 struct sched_domain *sd = &per_cpu(core_domains, i);
6202 init_sched_groups_power(i, sd);
6204 #endif
6206 for_each_cpu_mask(i, *cpu_map) {
6207 struct sched_domain *sd = &per_cpu(phys_domains, i);
6209 init_sched_groups_power(i, sd);
6212 #ifdef CONFIG_NUMA
6213 for (i = 0; i < MAX_NUMNODES; i++)
6214 init_numa_sched_groups_power(sched_group_nodes[i]);
6216 if (sd_allnodes) {
6217 struct sched_group *sg;
6219 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6220 init_numa_sched_groups_power(sg);
6222 #endif
6224 /* Attach the domains */
6225 for_each_cpu_mask(i, *cpu_map) {
6226 struct sched_domain *sd;
6227 #ifdef CONFIG_SCHED_SMT
6228 sd = &per_cpu(cpu_domains, i);
6229 #elif defined(CONFIG_SCHED_MC)
6230 sd = &per_cpu(core_domains, i);
6231 #else
6232 sd = &per_cpu(phys_domains, i);
6233 #endif
6234 cpu_attach_domain(sd, i);
6237 return 0;
6239 #ifdef CONFIG_NUMA
6240 error:
6241 free_sched_groups(cpu_map);
6242 return -ENOMEM;
6243 #endif
6246 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6248 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6250 cpumask_t cpu_default_map;
6251 int err;
6254 * Setup mask for cpus without special case scheduling requirements.
6255 * For now this just excludes isolated cpus, but could be used to
6256 * exclude other special cases in the future.
6258 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6260 err = build_sched_domains(&cpu_default_map);
6262 return err;
6265 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6267 free_sched_groups(cpu_map);
6271 * Detach sched domains from a group of cpus specified in cpu_map
6272 * These cpus will now be attached to the NULL domain
6274 static void detach_destroy_domains(const cpumask_t *cpu_map)
6276 int i;
6278 for_each_cpu_mask(i, *cpu_map)
6279 cpu_attach_domain(NULL, i);
6280 synchronize_sched();
6281 arch_destroy_sched_domains(cpu_map);
6285 * Partition sched domains as specified by the cpumasks below.
6286 * This attaches all cpus from the cpumasks to the NULL domain,
6287 * waits for a RCU quiescent period, recalculates sched
6288 * domain information and then attaches them back to the
6289 * correct sched domains
6290 * Call with hotplug lock held
6292 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6294 cpumask_t change_map;
6295 int err = 0;
6297 cpus_and(*partition1, *partition1, cpu_online_map);
6298 cpus_and(*partition2, *partition2, cpu_online_map);
6299 cpus_or(change_map, *partition1, *partition2);
6301 /* Detach sched domains from all of the affected cpus */
6302 detach_destroy_domains(&change_map);
6303 if (!cpus_empty(*partition1))
6304 err = build_sched_domains(partition1);
6305 if (!err && !cpus_empty(*partition2))
6306 err = build_sched_domains(partition2);
6308 return err;
6311 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6312 int arch_reinit_sched_domains(void)
6314 int err;
6316 mutex_lock(&sched_hotcpu_mutex);
6317 detach_destroy_domains(&cpu_online_map);
6318 err = arch_init_sched_domains(&cpu_online_map);
6319 mutex_unlock(&sched_hotcpu_mutex);
6321 return err;
6324 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6326 int ret;
6328 if (buf[0] != '0' && buf[0] != '1')
6329 return -EINVAL;
6331 if (smt)
6332 sched_smt_power_savings = (buf[0] == '1');
6333 else
6334 sched_mc_power_savings = (buf[0] == '1');
6336 ret = arch_reinit_sched_domains();
6338 return ret ? ret : count;
6341 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6343 int err = 0;
6345 #ifdef CONFIG_SCHED_SMT
6346 if (smt_capable())
6347 err = sysfs_create_file(&cls->kset.kobj,
6348 &attr_sched_smt_power_savings.attr);
6349 #endif
6350 #ifdef CONFIG_SCHED_MC
6351 if (!err && mc_capable())
6352 err = sysfs_create_file(&cls->kset.kobj,
6353 &attr_sched_mc_power_savings.attr);
6354 #endif
6355 return err;
6357 #endif
6359 #ifdef CONFIG_SCHED_MC
6360 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6362 return sprintf(page, "%u\n", sched_mc_power_savings);
6364 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6365 const char *buf, size_t count)
6367 return sched_power_savings_store(buf, count, 0);
6369 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6370 sched_mc_power_savings_store);
6371 #endif
6373 #ifdef CONFIG_SCHED_SMT
6374 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6376 return sprintf(page, "%u\n", sched_smt_power_savings);
6378 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6379 const char *buf, size_t count)
6381 return sched_power_savings_store(buf, count, 1);
6383 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6384 sched_smt_power_savings_store);
6385 #endif
6388 * Force a reinitialization of the sched domains hierarchy. The domains
6389 * and groups cannot be updated in place without racing with the balancing
6390 * code, so we temporarily attach all running cpus to the NULL domain
6391 * which will prevent rebalancing while the sched domains are recalculated.
6393 static int update_sched_domains(struct notifier_block *nfb,
6394 unsigned long action, void *hcpu)
6396 switch (action) {
6397 case CPU_UP_PREPARE:
6398 case CPU_UP_PREPARE_FROZEN:
6399 case CPU_DOWN_PREPARE:
6400 case CPU_DOWN_PREPARE_FROZEN:
6401 detach_destroy_domains(&cpu_online_map);
6402 return NOTIFY_OK;
6404 case CPU_UP_CANCELED:
6405 case CPU_UP_CANCELED_FROZEN:
6406 case CPU_DOWN_FAILED:
6407 case CPU_DOWN_FAILED_FROZEN:
6408 case CPU_ONLINE:
6409 case CPU_ONLINE_FROZEN:
6410 case CPU_DEAD:
6411 case CPU_DEAD_FROZEN:
6413 * Fall through and re-initialise the domains.
6415 break;
6416 default:
6417 return NOTIFY_DONE;
6420 /* The hotplug lock is already held by cpu_up/cpu_down */
6421 arch_init_sched_domains(&cpu_online_map);
6423 return NOTIFY_OK;
6426 void __init sched_init_smp(void)
6428 cpumask_t non_isolated_cpus;
6430 mutex_lock(&sched_hotcpu_mutex);
6431 arch_init_sched_domains(&cpu_online_map);
6432 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6433 if (cpus_empty(non_isolated_cpus))
6434 cpu_set(smp_processor_id(), non_isolated_cpus);
6435 mutex_unlock(&sched_hotcpu_mutex);
6436 /* XXX: Theoretical race here - CPU may be hotplugged now */
6437 hotcpu_notifier(update_sched_domains, 0);
6439 init_sched_domain_sysctl();
6441 /* Move init over to a non-isolated CPU */
6442 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6443 BUG();
6444 sched_init_granularity();
6446 #else
6447 void __init sched_init_smp(void)
6449 sched_init_granularity();
6451 #endif /* CONFIG_SMP */
6453 int in_sched_functions(unsigned long addr)
6455 /* Linker adds these: start and end of __sched functions */
6456 extern char __sched_text_start[], __sched_text_end[];
6458 return in_lock_functions(addr) ||
6459 (addr >= (unsigned long)__sched_text_start
6460 && addr < (unsigned long)__sched_text_end);
6463 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6465 cfs_rq->tasks_timeline = RB_ROOT;
6466 cfs_rq->fair_clock = 1;
6467 #ifdef CONFIG_FAIR_GROUP_SCHED
6468 cfs_rq->rq = rq;
6469 #endif
6472 void __init sched_init(void)
6474 u64 now = sched_clock();
6475 int highest_cpu = 0;
6476 int i, j;
6479 * Link up the scheduling class hierarchy:
6481 rt_sched_class.next = &fair_sched_class;
6482 fair_sched_class.next = &idle_sched_class;
6483 idle_sched_class.next = NULL;
6485 for_each_possible_cpu(i) {
6486 struct rt_prio_array *array;
6487 struct rq *rq;
6489 rq = cpu_rq(i);
6490 spin_lock_init(&rq->lock);
6491 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6492 rq->nr_running = 0;
6493 rq->clock = 1;
6494 init_cfs_rq(&rq->cfs, rq);
6495 #ifdef CONFIG_FAIR_GROUP_SCHED
6496 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6497 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6498 #endif
6499 rq->ls.load_update_last = now;
6500 rq->ls.load_update_start = now;
6502 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6503 rq->cpu_load[j] = 0;
6504 #ifdef CONFIG_SMP
6505 rq->sd = NULL;
6506 rq->active_balance = 0;
6507 rq->next_balance = jiffies;
6508 rq->push_cpu = 0;
6509 rq->cpu = i;
6510 rq->migration_thread = NULL;
6511 INIT_LIST_HEAD(&rq->migration_queue);
6512 #endif
6513 atomic_set(&rq->nr_iowait, 0);
6515 array = &rq->rt.active;
6516 for (j = 0; j < MAX_RT_PRIO; j++) {
6517 INIT_LIST_HEAD(array->queue + j);
6518 __clear_bit(j, array->bitmap);
6520 highest_cpu = i;
6521 /* delimiter for bitsearch: */
6522 __set_bit(MAX_RT_PRIO, array->bitmap);
6525 set_load_weight(&init_task);
6527 #ifdef CONFIG_PREEMPT_NOTIFIERS
6528 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6529 #endif
6531 #ifdef CONFIG_SMP
6532 nr_cpu_ids = highest_cpu + 1;
6533 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6534 #endif
6536 #ifdef CONFIG_RT_MUTEXES
6537 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6538 #endif
6541 * The boot idle thread does lazy MMU switching as well:
6543 atomic_inc(&init_mm.mm_count);
6544 enter_lazy_tlb(&init_mm, current);
6547 * Make us the idle thread. Technically, schedule() should not be
6548 * called from this thread, however somewhere below it might be,
6549 * but because we are the idle thread, we just pick up running again
6550 * when this runqueue becomes "idle".
6552 init_idle(current, smp_processor_id());
6554 * During early bootup we pretend to be a normal task:
6556 current->sched_class = &fair_sched_class;
6559 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6560 void __might_sleep(char *file, int line)
6562 #ifdef in_atomic
6563 static unsigned long prev_jiffy; /* ratelimiting */
6565 if ((in_atomic() || irqs_disabled()) &&
6566 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6567 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6568 return;
6569 prev_jiffy = jiffies;
6570 printk(KERN_ERR "BUG: sleeping function called from invalid"
6571 " context at %s:%d\n", file, line);
6572 printk("in_atomic():%d, irqs_disabled():%d\n",
6573 in_atomic(), irqs_disabled());
6574 debug_show_held_locks(current);
6575 if (irqs_disabled())
6576 print_irqtrace_events(current);
6577 dump_stack();
6579 #endif
6581 EXPORT_SYMBOL(__might_sleep);
6582 #endif
6584 #ifdef CONFIG_MAGIC_SYSRQ
6585 void normalize_rt_tasks(void)
6587 struct task_struct *g, *p;
6588 unsigned long flags;
6589 struct rq *rq;
6590 int on_rq;
6592 read_lock_irq(&tasklist_lock);
6593 do_each_thread(g, p) {
6594 p->se.fair_key = 0;
6595 p->se.wait_runtime = 0;
6596 p->se.exec_start = 0;
6597 p->se.wait_start_fair = 0;
6598 p->se.sleep_start_fair = 0;
6599 #ifdef CONFIG_SCHEDSTATS
6600 p->se.wait_start = 0;
6601 p->se.sleep_start = 0;
6602 p->se.block_start = 0;
6603 #endif
6604 task_rq(p)->cfs.fair_clock = 0;
6605 task_rq(p)->clock = 0;
6607 if (!rt_task(p)) {
6609 * Renice negative nice level userspace
6610 * tasks back to 0:
6612 if (TASK_NICE(p) < 0 && p->mm)
6613 set_user_nice(p, 0);
6614 continue;
6617 spin_lock_irqsave(&p->pi_lock, flags);
6618 rq = __task_rq_lock(p);
6619 #ifdef CONFIG_SMP
6621 * Do not touch the migration thread:
6623 if (p == rq->migration_thread)
6624 goto out_unlock;
6625 #endif
6627 on_rq = p->se.on_rq;
6628 if (on_rq)
6629 deactivate_task(task_rq(p), p, 0);
6630 __setscheduler(rq, p, SCHED_NORMAL, 0);
6631 if (on_rq) {
6632 activate_task(task_rq(p), p, 0);
6633 resched_task(rq->curr);
6635 #ifdef CONFIG_SMP
6636 out_unlock:
6637 #endif
6638 __task_rq_unlock(rq);
6639 spin_unlock_irqrestore(&p->pi_lock, flags);
6640 } while_each_thread(g, p);
6642 read_unlock_irq(&tasklist_lock);
6645 #endif /* CONFIG_MAGIC_SYSRQ */
6647 #ifdef CONFIG_IA64
6649 * These functions are only useful for the IA64 MCA handling.
6651 * They can only be called when the whole system has been
6652 * stopped - every CPU needs to be quiescent, and no scheduling
6653 * activity can take place. Using them for anything else would
6654 * be a serious bug, and as a result, they aren't even visible
6655 * under any other configuration.
6659 * curr_task - return the current task for a given cpu.
6660 * @cpu: the processor in question.
6662 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6664 struct task_struct *curr_task(int cpu)
6666 return cpu_curr(cpu);
6670 * set_curr_task - set the current task for a given cpu.
6671 * @cpu: the processor in question.
6672 * @p: the task pointer to set.
6674 * Description: This function must only be used when non-maskable interrupts
6675 * are serviced on a separate stack. It allows the architecture to switch the
6676 * notion of the current task on a cpu in a non-blocking manner. This function
6677 * must be called with all CPU's synchronized, and interrupts disabled, the
6678 * and caller must save the original value of the current task (see
6679 * curr_task() above) and restore that value before reenabling interrupts and
6680 * re-starting the system.
6682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6684 void set_curr_task(int cpu, struct task_struct *p)
6686 cpu_curr(cpu) = p;
6689 #endif